
Sequestering by global symmetries

in Calabi-Yau string models

Christopher Andrey and Claudio A. Scrucca
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Abstract

We study the possibility of realizing an effective sequestering between visible

and hidden sectors in generic heterotic string models, generalizing previous

work on orbifold constructions to smooth Calabi-Yau compactifications. In

these theories, genuine sequestering is spoiled by interactions mixing chiral

multiplets of the two sectors in the effective Kähler potential. These effec-

tive interactions however have a specific current-current-like structure and can

be interpreted from an M -theory viewpoint as coming from the exchange of

heavy vector multiplets. One may then attempt to inhibit the emergence of

generic soft scalar masses in the visible sector by postulating a suitable global

symmetry in the dynamics of the hidden sector. This mechanism is however

not straightforward to implement, because the structure of the effective con-

tact terms and the possible global symmetries is a priori model dependent. To

assess whether there is any robust and generic option, we study the full depen-

dence of the Kähler potential on the moduli and the matter fields. This is well

known for orbifold models, where it always leads to a symmetric scalar man-

ifold, but much less understood for Calabi-Yau models, where it generically

leads to a non-symmetric scalar manifold. We then examine the possibility of

an effective sequestering by global symmetries, and argue that whereas for orb-

ifold models this can be put at work rather naturally, for Calabi-Yau models

it can only be implemented in rather peculiar circumstances.
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1 Introduction

In supergravity models, it is natural to imagine that supersymmetry breaking occurs at

an intermediate scale in a hidden sector and is dominantly mediated to the visible sector

by gravitational interactions, with the net effect of inducing soft breaking terms of a

size close to the electroweak scale. These soft terms are however induced through higher-

dimensional operators mixing visible and hidden sector fields in the effective theory, with a

structure that depends on the details of the underlying microscopic theory and is therefore

a priori generic. In particular, one naturally expects soft scalar masses with a generic flavor

structure, while the non-observation of certain flavor changing processes instead requires

these to be approximately universal. This leads to the so-called supersymmetric flavor

problem, which consists in finding a natural and robust explanation for the approximate

flavor universality that soft scalar masses need to enjoy.

One of the most interesting proposals for solving this problem is the idea of sequestering

the visible and the hidden sectors by localizing them on two distinct branes at different

positions along an extra dimension [1]. In the basic situation where these two sectors

interact only through minimal gravity in the bulk, which corresponds to the so-called

no-scale models [2], local contact terms between the two brane sectors are guaranteed

to be absent. Moreover, contact terms between each brane sector and the additional

radion chiral multiplet arising in the bulk, which can also participate to supersymmetry

breaking, turn out to be absent too. As a consequence, scalar masses vanish at the classical

level and are induced only by non-local loop effects of various kinds, like for instance

anomaly mediation [1, 3], radion-mediation [4] or brane-to-brane mediation [5, 6], which

have the crucial common characteristic of being approximately flavor-universal. Thanks

to this property, this minimal setup allows to construct phenomenologically acceptable

and satisfactory effective models based on 5D supergravity theories with one compact

dimension.

In string models, which are supposed to be the microscopic theories underlying su-

pergravity models, the framework that is needed to implement sequestering arises very

naturally, since the emergence of extra dimensions and localized matter sectors is almost

unavoidable. It has however been emphasized in [7] that there is an endemic difficulty

in realizing the minimal setup needed for sequestering. As a matter of fact, in most of

the string models where the 4D low-energy effective theory has been worked out, there

appear non-trivial contact terms between matter sectors in the effective Kähler potential,

even when these are sequestered at distinct points in the internal compact space, as well

as couplings between each matter sector and the non-minimal moduli sector. As a re-

sult, non-vanishing and non-universal soft scalar masses generically arise at the classical

level. From the perspective of the 5D intermediate effective theory obtained by retaining

only the compact dimension separating the visible and the hidden sectors, these effects

were interpreted in [7] as being induced by additional vector multiplets propagating in the

bulk and coupling non-minimally to the localized brane sectors. Since these vector mul-

tiplets appear very generically, one is then forced to conclude that sequestering is rather

unnatural to realize in string models.

For heterotic models based on a compact manifold X with a vector bundle V over it

[8, 9], the above phenomenon can be visualized very clearly. Indeed, these models have a
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simple interpretation within M -theory, where the additional extra dimension is a segment

connecting two branes supporting charged sectors [10]. These two brane sectors are then

naturally identified with visible and hidden sectors. In the weak-coupling regime, which

corresponds to a small size for the extra segment, the heterotic and M -theory pictures

becomes equivalent, the former being obtained by integrating out the heavy KK modes

in the latter. After compactifying on X, this implies a similar relation between the 4D

effective theory and a 5D theory compactified on a segment connecting two 4D branes.

In the bulk of this theory one obtains one vector multiplet for each non-trivial Kähler

structure deformation of X, with couplings to the brane sectors that are determined by

the choice of V through a shift in its Bianchi identity [11, 12, 13]. From the 4D point of

view, each of these multiplets contains one chiral multiplet zero mode describing a non-

universal modulus of X in the low-energy effective theory and one tower of vector multiplet

KK modes inducing non-trivial effective interactions when integrated out. The non-trivial

contact terms of the 4D effective Kähler potential are then in one-to-one correspondence

with the presence of non-minimal Kähler moduli for X, besides the one controlling its

overall volume, and have a structure that depends on the choice of V .

For orientifold models based on a compact manifold X with D-branes wrapped on it

(see for example [14, 15] for recent reviews), the situation is similar. Visible and hidden

sectors may naturally arise from D-branes wrapping on two non-intersecting cycles of X.

It is however less straightforward to relate the 4D effective theory to a higher-dimensional

theory and reinterpret the contact terms as being induced by the exchange of heavy fields.

Nonetheless, it turns out that in all the cases where it has been worked out, the 4D effective

theory displays a structure that is very similar to the one arising in heterotic models. In

particular, the contact terms arising in the 4D effective Kähler potential again seem to be

in one-to-one correspondence with non-minimal Kähler moduli of X, suggesting that in

this case too one should be able to interpret these as due to the exchange of corresponding

heavy vector multiplets. A precise argumentation justifying this conclusion was presented

in [7] for the special case of toroidal orientifolds, where one can make use of T -duality to

reach a situation where the two sectors are again separated by a single extra dimension,

and it is plausible that it indeed holds more in general.

In summary, we see that in string models one may naturally achieve the situation

where the visible and hidden sectors are split along an extra dimension, but this is not

enough to really achieve sequestering. Nevertheless, the situation is still better that in

a generic supergravity model, because the non-vanishing contact terms that arise in the

Kähler potential have a very specific form, as a consequence of the fact that they are

induced by the exchange of heavy vector multiplets. More precisely, these contact terms

consist of products of two or more of the current superfields Ja
v and Ja

h that act as sources

for the heavy vector superfields. One may then hope to be able to exploit the structure

of these classical contact terms to devise situations where they actually give a satisfac-

tory contribution to soft masses. In playing this game, one may take the point of view of

[16, 17] that the effective Kähler potential, which controls through the contact interactions

mixing visible and hidden sectors the general structure of soft scalar masses, is known and

therefore fixed, whereas the superpotential, which controls the size of the supersymmetry

breaking auxiliary fields of the hidden sector fields, is not known and a priori generic. For

generality, one should moreover consider the situation where both the moduli fields and
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the hidden brane fields participate to supersymmetry breaking. Finally one may also take

into account the fact that there are constraints from the condition that the supersymme-

try breaking sector should admit a metastable de Sitter vacuum with sufficiently small

energy and sufficiently long life time. For a given Kähler potential, this constrains the ac-

ceptable directions for the Goldstino vector of auxiliary fields and therefore the acceptable

superpotentials [18].

A first appealing possibility is to assume that the moduli fields dominate supersymme-

try breaking and that for some reason the contact terms between these fields and the visible

sector fields are flavor universal [16, 17]. In that case one would get a non-vanishing but

flavor-universal classical contribution to soft scalar masses, and loop contributions would

only represent a small correction. This scenario would for instance naturally occur if

the dilaton could dominate supersymmetry breaking on its own, since its couplings are

automatically universal at the classical level [16]. But unfortunately, it turns out that

due to the leading order form of the Kähler potential for the dilaton, the assumption

that it dominates supersymmetry breaking is actually incompatible with the existence of

a metastable de Sitter vacuum, at least under the assumption that the string coupling is

weak [19, 20, 18].

Another appealing possibility is to imagine that the hidden brane fields dominate su-

persymmetry breaking and that their dynamics enjoys a set of global symmetries ensuring

the conservation of the hidden-sector current superfields Ja
h , which appear together with

visible-sector current superfields Ja
v in the contact terms [21]. In such a situation, the

classical contribution to the soft scalar masses would cancel out, at least at leading or-

der in the hidden scalar expectation values, and flavor-universal loop corrections would

represent the dominant effect. The basic point behind this idea was already explained in

[22], although in a different context and in the approximation of rigid supersymmetry, and

rests on the fact that the conservation of the superfields Ja
h implies that both their F and

D components vanish. The consequent vanishing of classical soft scalar masses can then

also be viewed as a cancellation between the various contributions coming from the hidden

sector fields, which is determined by the constraints put on the ratios of their auxiliary

fields by the invariance of the superpotential under the global symmetries. In our previ-

ous paper [23], we studied how this nice framework may be implemented in supergravity

models. We showed that the cancellation mechanism is generically spoiled by non-linear

effects coming from terms with more than two currents in the contact interactions, as well

as by gravitational effects in the Ward identity of the global symmetries. We however also

argued that both of these effects become small in the limit of small expectation values

for the hidden-sector matter scalar fields, and can in practice be safely neglected. In this

situation, one would thus recover a milder form of the sequestering mechanism, working

thanks to global symmetries.

The aim of this work is to understand whether it is be possible to implement the above

mechanism of sequestering by global symmetries within generic string models and with

both the moduli and the matter fields participating to supersymmetry breaking. More

specifically, we want to clarify the circumstances under which it is possible to find suitable

global symmetries ensuring the conservation of the currents building up the contact terms.

In fact, it is a priori not automatic that such symmetries exist, because the couplings of

the heavy vector multiplets to the brane fields are not minimal gauge couplings, but rather
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dictated by modified Bianchi identities, and one may then wonder how natural it is that

they arise. For concreteness and simplicity, we shall focus on the case of heterotic models,

but we expect that it should be possible to perform a similar study for orientifold models.

In [23] we examined the special subclass of models based on orbifolds, and found that in

that case the needed global symmetries naturally arise. Our goal here is to study what

happens in the more general case of models based on smooth Calabi-Yau manifolds, and

in particular whether the needed global symmetries still arise in a natural way. One major

difficulty in this generalization concerns the knowledge of the effective Kähler potential.

For orbifold models, the exact dependence on both the moduli fields and the brane fields

is known [24, 25], and the structure of contact terms is therefore well under control. For

generic Calabi-Yau manifolds, on the other hand, only the dependence on the moduli

fields is known exactly [26, 27, 28], whereas the knowledge of the dependence on the brane

fields is mostly limited to the leading quadratic order [29]. An interesting claim on the

structure of the exact dependence on the matter fields has however recently appeared in

the literature, based on the higher-dimensional M -theory interpretation of these models

[30]. This generalizes the result of [34] applying to the special case of Calabi-Yau manifolds

possessing only a minimal volume Kähler modulus. It moreover has a structure that is

qualitatively similar to the one derived in [31, 32, 33] for orientifold models. One of our

main tasks will then be to assess this result from the standard heterotic string point of

view and to study the resulting structure of contact terms.

The rest of the paper is organized as follows. In section 2 we consider the heterotic

string compactified on a smooth Calabi-Yau manifold and study the general structure

of the effective Kähler potential. In section 3 we consider similarly the heterotic string

compactified on a toroidal orbifold and show how the effective Kähler potential for the

untwisted sector can be understood in similar terms. In section 4 we comment on the

M -theory interpretation of these models and the way in which the contact terms arising

in the effective Kähler potential can be understood as emerging from the exchange of

heavy vector multiplets. In section 5 we study the scalar manifolds emerging in these

models and discuss a canonical parametrization that is particularly convenient to describe

the neighborhood of the reference point where only the universal volume modulus has

a scalar expectation value. In section 6 we study the structure of soft scalar masses at

this reference point and examine under which circumstances they may be made to vanish

by imposing some global symmetry. In section 7 we present our conclusions. Finally,

in appendix A we summarize some basic facts about Calabi-Yau manifolds and vector

bundles over them, and in appendix B we record some useful facts about the symmetric

spaces emerging in orbifold models.

2 The heterotic string on a Calabi-Yau manifold

Let us consider the heterotic string compactified on a generic Calabi-Yau manifold X

with a generic stable holomorphic vector bundle V over it [8]. The 4D low-energy effective

supergravity theory describing such a model can be obtained by starting from the 10D

supergravity effective theory and working out its reduction on X. We shall start by

reviewing the general structure of these models. We shall next describe how the effective

Kähler potential can be derived by computing the form of the bosonic kinetic terms. We
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shall focus on the Kähler moduli and the matter fields, and study the full dependence of the

Kähler potential on these fields, generalizing the known results for the exact dependence

on the moduli and the leading dependence on the matter fields.

2.1 General structure

In the original 10D effective supergravity theory, the bosonic fields are the metric GMN ,

the antisymmetric tensor BMN , the dilaton Φ and the E8 × E8 gauge fields AX
M . It is

convenient to describe BMN in terms of a 2-form B and AX
M in terms of a Lie-algebra-

valued 1-form A. At the two-derivative order, the effective action for these fields reads:

S10 =
1

κ2
10

∫

d10x
√
−Ge−2Φ

[

1

2
R + 2 ∂MΦ ∂MΦ − 1

4
|H|2

]

+
1

g2
10

∫

d10x
√
−Ge−2Φ

[

− 1

2
tr|F |2

]

. (2.1)

The 10D gravitational and gauge couplings κ2
10 and g2

10 are related to the string slope α′

through the formula κ2
10/g

2
10 = α′/4. The 2-form F denotes the usual field-strength of

the non-Abelian gauge field A and the 3-form Γ the Chern-Simons form associated to it,

whereas the 3-form H is a modified field-strength for the Abelian antisymmetric field B:

F = dA + A ∧ A , Γ = tr
(

A ∧ dA +
2

3
A ∧ A ∧ A

)

, (2.2)

H = dB − κ2
10

g2
10

Γ . (2.3)

At higher order in the derivative expansion, there appear other terms involving the cur-

vature 2-form R = dω + ω ∧ ω related to the spin connection 1-form ω, as well as the

Chern-Simons 3-form Ξ = tr(ω ∧ dω + 2/3ω ∧ ω ∧ ω) associated to it. In particular, at

the four-derivative level one gets extra terms that essentially correspond to substituting

tr|F |2 with tr|F |2 − tr|R|2 and Γ with Γ−Ξ. These two kinds of new terms are related by

supersymmetry, and turn out to be relevant for the consistency of the microscopic theory.

Most importantly, the Bianchi identity for the 3-form H becomes

dH =
κ2

10

g2
10

(

tr(R ∧ R) − tr(F ∧ F )
)

. (2.4)

Consistent supersymmetric backgrounds must not only lead to vanishing supersymmetry

transformations of the fermions, but also solve the above Bianchi identity. In particular,

the right-hand side of (2.4) must vanish in cohomology. This represents a topological

relation between the tangent bundle TX of the compactification manifold X and the

vector bundle V over it, which restricts the possible choices of V for a given X. One

simple and universal possibility, called standard embedding, is to take V to be isomorphic

to TX. This means that V has structure group SU(3) and that the background values

of the gauge connection A and the spin connections ω are identified. In such a case the

right-hand side of (2.4) vanishes identically and the background is a Calabi-Yau geometry

for GMN . A more general possibility, called non-standard embedding, is to require that

V should have the same second Chern character as TX. This allows V to have more
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general structure groups and the background values of A and ω to differ [35, 36]. In this

more general case, however, the right-hand side of (2.4) does not vanish identically but

only modulo an exact form. As a result, the background is no-longer a simple Calabi-Yau

geometry for GMN and also involves a non-trivial profile for BMN and Φ. However, it

has been argued in [35] that such a background exists and that it can be understood as

a deformation of the standard case in a large volume or small α′ expansion. Some of the

leading corrections have been worked out in [37, 38, 39].

To characterize the models resulting from this construction, one can start by classi-

fying the relevant modes in terms of representations under the holonomy group SU(3)

of X and the structure group S of V . The 10D Lorentz group SO(1, 9) is broken to

SO(1, 3) × U(1) × SU(3), where the SO(1, 3) factor survives as 4D Lorentz symmetry.

The fundamental representation splits as 10 → 4 ⊕ 3 ⊕ 3̄. We correspondingly split the

10D Lorentz indices M into 4D Lorentz indices µ and internal SU(3) indices i, ı̄. The 10D

gauge group E8 × E8 is broken to G × S, where G is the commutant of S and survives

as 4D gauge group. One actually gets S = Sv × Sh and G = Gv × Gh, where Gv and

Gh are the commutants of Sv and Sh within the two E8 factors, but for the moment we

shall treat the two sectors together. The adjoint representation splits pretty generically

as 496 → (Adj,1) ⊕ (1,Adj) ⊕ (R, r) ⊕ (R̄, r̄), where R and r are complex and gener-

ically reducible representations of G and S (except for a few special cases that we shall

disregard for notational simplicity). We correspondingly split the 10D gauge indices X

of the adjoint representation of E8 × E8 into 4D gauge indices x in the adjoint repre-

sentation of G, indices ρ in the adjoint representation of S and indices αǫ and ᾱǭ in the

representations that are left over. Using the above decompositions, one may now classify

the bosonic fields in terms of representations of SU(3) × S. In the neutral sector, the

fields transform non-trivially only under SU(3) but are all singlets under S. Gµν gives a

symmetric tensor in the 1, Gµi, Gµı̄ give vectors in the 3⊕ 3̄, and Gi̄, Gij , Gı̄̄ give scalars

in the 1⊕ 8⊕ 6⊕ 6̄. Similarly Bµν gives an antisymmetric tensor dual to a scalar in the

1, Bµi, Bµı̄ give vectors in the 3 ⊕ 3̄, and Bi̄, Bij , Bı̄̄ give scalars in the 1 ⊕ 8 ⊕ 3 ⊕ 3̄.

Finally Φ gives just a scalar in the 1. In the charged sector, on the other hand, the fields

transform non-trivially under SU(3) × S. Ax
µ gives vectors in the (1,1), Aρ

µ gives vectors

in the (1,Adj), Aαǫ
µ and Aᾱǭ

µ give vectors in the (1, r) ⊕ (1, r̄), Ax
i , Ax

ı̄ give scalars in the

(3,1) ⊕ (3̄,1), Aρ
i , Aρ

ı̄ give scalars in the (3,Adj) ⊕ (3̄,Adj), and finally Aαǫ
i , Aαǫ

ı̄ , Aᾱǭ
i ,

Aᾱǭ
ı̄ give scalars in the (3, r) ⊕ (3̄, r) ⊕ (3, r̄) ⊕ (3̄, r̄).

The spectrum of light fields entering the 4D low-energy effective theory is determined

by figuring out all the zero-modes admitted by the above 10D bosonic fields. This is

done by associating these modes to differential forms on X taking values in appropriate

vector bundles constructed out of TX or V , and looking for all the possible independent

harmonic components of these forms. The linear space of such harmonic forms is known

to be in one-to-one correspondence with non-trivial equivalence classes of the Dolbeault

cohomology groups, and one may then use bases of such spaces to parametrize the various

light fields. For neutral fields, what matters are the tangent and cotangent bundles TX

and T ∗X with structure group SU(3), and the components of the relevant harmonic forms

fill representations of SU(3). There is 1 harmonic (3, 0) form Ω and its conjugate filling

the 1⊕ 1, h1,2 = dim(H1(X,TX)) harmonic (1, 2) forms σZ filling the 6 ⊕ 6̄, and finally

h1,1 = dim(H1(X,T ∗X)) harmonic (1, 1) forms ωA filling the 1 ⊕ 8. For charged fields,
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what matter are the bundles VAdj, Vr and Vr̄ obtained by lifting V to the representations

Adj, r and r̄ of its structure group S, and the components of the relevant harmonic forms

fill representations of SU(3)×S. There are n1 = dim(H1(X,VAdj)) harmonic (1, 0) forms

σΘ and their conjugate filling the (3,Adj) ⊕ (3̄,Adj), nR = dim(H1(X,Vr)) harmonic

(1, 0) forms uP and their conjugate filling the (3, r) ⊕ (3̄, r̄), and nR̄ = dim(H1(X,Vr̄))

harmonic (1, 0) forms vK and their conjugate filling the (3, r̄) ⊕ (3̄, r). Using the above

set of harmonic forms, one finally finds the following spectrum of light 4D bosonic fields.

In the neutral sector, there is 1 symmetric tensor coming from Gµν and belonging to the

gravitational multiplet G, 1 universal complex scalar coming from Φ and Bµν and belong-

ing to the dilaton chiral multiplet S, h1,1 complex scalars coming from the decomposition

of the forms associated to Gi̄ and Bi̄ onto the basis ωA and belonging to Kähler moduli

chiral multiplets TA, and finally h1,2 complex scalars coming from the decomposition of

the forms associated to Gij and Gı̄̄ onto the basis σZ and belonging to complex structure

moduli chiral multiplets UZ . In the charged sector, there is 1 set of vectors coming from

Ax
µ and belonging to vector multiplets V x in the Adj of G, n1 complex scalars coming

from Aρ
i and Aρ

ı̄ and belonging to vector bundle moduli chiral multiplets EΘ in the 1 of

G, nR sets of complex scalars coming from Ai
αξ and Aı̄

αξ and belonging to matter chiral

multiplets ΦPα in the R of G, and finally nR̄ sets of complex scalars coming from Ai
ᾱξ̄

and Aı̄
ᾱξ̄ and belonging to matter chiral multiplets ΨKᾱ in the R̄ of G.

The models with the simplest gauge quantum numbers are obtained by choosing bun-

dles whose structure group involves factors that are either trivial or equal to SU(3) in

each of the two sectors. In the first case one has E8 → E8 with 248 → 248, and

the gauge group in unbroken. In the second case one has E8 → E6 × SU(3) with

248 → (78,1) ⊕ (1,8) ⊕ (27,3) ⊕ (27,3), but nothing from the SU(3) factor sur-

vives and the gauge group is thus broken to E6. A first type of model can be con-

structed by making the asymmetric choice Sv = SU(3), Sh = trivial. One then finds

Gv = E6 and nv
1 = dim(H1(X,Vv ⊗ V ∗

v )), nv
27 = dim(H1(X,Vv)), nv

27
= dim(H1(X,V ∗

v ))

in the visible sector, and just Gh = E8 in the hidden sector. The standard embed-

ding where V is isomorphic to TX is a particular case of this class of models where the

Bianchi identity is automatically satisfied, with the special property that n27 = h1,2 and

n27 = h1,1. A second type of model can be constructed by making the symmetric choice

Sv = SU(3), Sh = SU(3). One then finds Gv = E6 and nv
1 = dim(H1(X,Vv ⊗ V ∗

v )),

nv
27 = dim(H1(X,Vv)), nv

27
= dim(H1(X,V ∗

v )) in the visible sector and similarly Gh = E6

and nh
1 = dim(H1(X,Vh ⊗ V ∗

h )), nh
27 = dim(H1(X,Vh)), nh

27
= dim(H1(X,V ∗

h )) in the

hidden sector. Notice that in this case Vv and Vh are not allowed to be isomorphic to TX,

because this would violate the Bianchi identity.

2.2 Effective Kähler potential

The 4D effective Kähler potential can be determined by performing the reduction of the

10D effective kinetic terms for the bosonic fields by integrating over the compact Calabi-

Yau X and comparing the result with the standard general form of the Lagrangian of 4D

supergravity theories. To perform this computation, we will make two approximations

which are commonly done and which crucially simplify the task. The first approximation

is that we will ignore the higher-derivative corrections to the 10D effective action and the

deformations of the background, and therefore simply consider the reduction of the action
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(2.1) onto a generic Calabi-Yau X with a generic stable holomorphic vector bundle V

over it. This implies that the result will only be accurate for terms involving arbitrary

powers of the moduli fields and arbitrary powers of the combination of α′ times two matter

fields, and will miss corrections involving powers of α′ that are not accompanied by two

matter fields, but this is not a big limitation for our purposes. The second approximation

is that we will ignore the effect of properly integrating out massive Kaluza-Klein modes

and restrict to the truncation of the action to the 4D massless zero-modes. This would

generically imply that the result is accurate only for terms involving an arbitrary number

of moduli but at most two matter fields, since terms with four and more matter fields

can receive corrections induced by the exchange of heavy neutral modes, and this would

represent a dramatic limitation for our purposes. We will therefore imagine to restrict to

those models for which these effects happen to be absent, at least for the term involving

four matter fields in which we are primarily interested. This is guaranteed to happen if

there is no cubic coupling between two light matter modes and one heavy moduli mode.

Finally, we shall for simplicity restrict our attention to the h1,1 Kähler moduli and the nR

families of charged matter fields in the representation R, and instead completely discard

the dilaton, the h1,2 complex structure moduli, the n1 vector bundle moduli and the nR̄

families of matter fields in the representation R̄.

To compute the 4D effective kinetic terms, we now proceed as follows. We start from

eq. (2.1) restricted to the modes associated to Gi̄, Bi̄ and Ai and integrate over the

internal manifold X. We then express the result in terms of the 4D gravitational and

gauge couplings. These are defined as κ2
4 = κ2

10/V and g2
4 = g2

10/V , where V denotes the

background value of the volume of the manifold X, and are again related as κ2
4/g

2
4 = α′/4.

In the following, we shall set κ4 = 1 by a choice of units. Moreover we shall effectively

set g4 = 1 in the scalar sector of the Lagrangian by suitably rescaling the charged matter

fields. This corresponds to setting α′ = 4. In this way, one finds the following result:

L4 =
1

V

∫

d6y
√

G

[

− 1

4
Gi̄Gpq̄ ∂µGiq̄∂

µGp̄

+
1

4
Gi̄Gpq̄

(

∂µBiq̄ + tr(Ai
↔

∂µĀq̄)
)(

∂µBp̄ + tr(Ap
↔

∂µĀ̄)
)

−Gi̄ tr(∂µAi∂
µĀ̄)

]

. (2.5)

To proceed, we associate the 10D fields Gi̄, Bi̄ and Ai to differential forms J , B and A,

which are defined as follows in local complex coordinates zi:

J = iGi̄ dzi ∧ dz̄̄ , (2.6)

B = Bi̄ dzi ∧ dz̄̄ , (2.7)

A = Aidzi . (2.8)

We then decompose these forms onto suitable bases of harmonic forms, with coefficients

identified with the 4D light fields. Some basic notation and results concerning harmonic

forms on compact Calabi-Yau manifolds X and stable holomorphic bundles V over them

are recorded for convenience in appendix A. To define the moduli fields, we shall need to

introduce a basis of harmonic (1, 1) forms ωA = ωAi̄ dzi ∧ dz̄̄ on X, which can also be
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viewed as 1 forms with values in T ∗X over X:

ωA , A = 0, · · · , h1,1 − 1 : basis of H1,1(X) ≃ H1(X,T ∗X) . (2.9)

To define the matter fields, we shall also need a basis of Lie-algebra-valued harmonic

1-forms uP = uPi dzi on Vr over X:

uP , P = 1, · · · , nR : basis of H1(X,Vr) . (2.10)

We observe now that the forms constructed by taking the product of one uP and one

conjugate ūQ and tracing over the representation r yield (1, 1) forms on X. These (1, 1)

forms are related to the description of the gauge invariant composite field that can be

formed out of two charged matter fields. Since they play an important role, we shall

define a dedicated symbol for them:

cPQ = i tr(uP ∧ ūQ) : generic (1, 1) forms on X . (2.11)

A crucial observation is that these (1, 1) forms are however generically not harmonic. As a

result, their scalar product with the non-harmonic (1, 1) forms describing massive neutral

modes is in general non-vanishing.

It turns out that the low-energy effective Kähler potential always depends on the

volume V of X, which is given by the following expression in terms of the Kähler form J :

V =
1

6

∫

X
J ∧ J ∧ J . (2.12)

More explicitly, when rewritten in terms of the 4D fields describing the moduli and matter

fields, this will depend on two quantities characterizing X and V . The first is given by

the integral of three harmonic (1, 1) forms ωA, ωB and ωC , which defines the intersection

numbers of X:

dABC =

∫

X
ωA ∧ ωB ∧ ωC . (2.13)

The second is given by the integral of the (1, 1) forms cPQ and a dual harmonic (2, 2)

form ωA, which defines the component of the harmonic part of cPQ along ωA and encodes

therefore the overlap between the traced product of the 1-forms uP and ūQ with the (1, 1)

forms ωA:

cA
PQ =

∫

X
ωA ∧ cPQ . (2.14)

It should be emphasized that (2.13) is a topological invariant, as a result of the fact that

the forms ωA are harmonic, whereas (2.14) is a priori not, because the forms cST are in

general not harmonic.

In the following, we shall restrict to the special case where the forms cPQ are harmonic

and cA
PQ is a constant topological invariant, and derive the low-energy effective Kähler

potential under these assumptions. We believe that this is a priori necessary to guarantee

that the result obtained by truncating to the massless modes, without properly integrating

out the massive modes, is reliable. But as matter of fact, we will also crucially exploit

9



these assumptions to be able to obtain a simple result. We shall discuss in subsection 2.3

what may happen in the more general case where cPQ is not harmonic and cA
PQ is not a

topological invariant. For notational simplicity, we shall from now on omit to write any

trace over the representation R of the gauge group, since the way in which these traces

appear can be reconstructed in an unambiguous way at any stage of the derivation.

2.2.1 Kähler moduli space

The effective Kähler potential for the Kähler moduli, ignoring matter fields, is well known

[29, 28]. It can be derived in a quite straightforward way by retaining only the terms

depending quadratically on space-time derivatives of the fields Gi̄ and Bi̄ in (2.5). To

work out the reduction, one considers the real (1, 1) forms J and B associated to these two

fields and decomposes the complex combination J + iB onto the basis of real harmonic

(1, 1) forms ωA, with complex coefficients TA defining the 4D complex moduli fields:

J + iB = 2TAωA . (2.15)

In components this means Gi̄ = −i(TA + T̄A)ωAi̄ and Bi̄ = −i(TA − T̄A)ωAi̄. Plugging

these decompositions into the first two terms of (2.5), one then finds a kinetic term for

the complex scalar fields TA of the form

L4 = −gmod
AB̄ ∂µTA∂µT̄B , (2.16)

where

gmod
AB̄ = − 1

V

∫

d6y
√

G Gi̄Gpq̄ωAiq̄ ωBp̄

=
1

V

∫

X
ωA ∧ ∗ωB . (2.17)

This metric does not depend at all on the forms cPQ, and the issue of whether these are

harmonic or not is therefore trivially irrelevant here. Using the decomposition J = JAωA

with JA = TA + T̄A, which implies that ∂AJB = δB
A , and the relation (A.19), one can

rewrite (2.17) in the following form:

gmod
AB̄ =

1

V

∫

X
ωA ∧ ∗ωB

= −∂A∂B̄ log V . (2.18)

From this expression we deduce that the Kähler potential is given, up to a Kähler trans-

formation, by:

K = − log V . (2.19)

This can finally be rewritten more explicitly in terms of the chiral multiplets TA and the

intersection numbers dABC as

K = − log
[1

6
dABCJAJBJC

]

, with JA = TA + T̄A . (2.20)
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This result has the special property of being special-Kähler and also of the no-scale type,

with the property:

KAKA = 3 . (2.21)

Notice finally that in geometrical terms the quantities KA and KA have the following

simple expressions:

KA = − 1

V

∫

X
ωA ∧ ∗J , KA = −

∫

X
ωA ∧ J . (2.22)

2.2.2 Matter field metric

Let us next consider the addition of matter fields, under the simplifying assumption that

their background value vanishes or is very small. In this situation, all the terms involving

the fields Ai without space-time derivatives can be neglected in (2.5), and the only term

to be added is therefore the last one. In this limit the matter sector can be considered as

a small perturbation to the moduli sector, and one can neglect the interference between

these two sectors. To work out the reduction, one may consider the 1-forms A taking values

in the representation (R, r) of G × S, and decompose them onto the basis of harmonic

1-forms uP taking values in the representation r of S with complex coefficients ΦP taking

values in the representation R of G and defining the 4D matter fields:

A = ΦP uP . (2.23)

In components this means Ai = ΦP uPi. Plugging this decomposition into the last term

of (2.5), one then finds a kinetic term for the complex scalar fields ΦP of the form

L4 = −gmat
PQ̄ ∂µΦP ∂µΦ̄Q , (2.24)

where

gmat
PQ̄ = − i

V

∫

d6y
√

G Gi̄ cPQi̄

=
1

V

∫

X
cPQ ∧ ∗J . (2.25)

This metric depends on the forms cPQ, but only through their scalar product with the

Kähler form J , which is harmonic. As a result, only the harmonic component of the

Hodge decomposition of cPQ matters, and the issue of whether the whole forms cPQ are

harmonic or not is therefore again irrelevant. Using the decomposition J = JAωA with

JA = TA + T̄A, which as before implies that ∂AJB = δB
A , as well as the decomposition of

∗J on the dual basis ωA and the relation (A.18), one may rewrite (2.25) in the following

form:

gmat
PQ̄ =

1

V

∫

X
ωA ∧ ∗J

∫

X
cPQ ∧ ωA

= ∂A log V cA
PQ . (2.26)

This means that the matter metric is linked to the moduli Kähler potential by the relation

gmat
PQ̄

= −KAcA
PQ [40, 30]. This in turn implies that the leading matter-dependent cor-

rection to the Kähler potential is given by this metric contracted with two matter fields.
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It should however be emphasized that this not only reproduces the matter kinetic terms

analyzed in this subsection, but also induces a kinetic mixing between matter and moduli

fields proportional to one matter field, as well as a correction to the moduli metric pro-

portional to two matter fields. These terms do indeed occur, as will be clarified in next

subsection, but they are negligible under the assumptions made here, and the leading

correction to the Kähler potential is indeed

∆K = −KAcA
PQΦP Φ̄Q . (2.27)

Notice finally that one can write the following simple geometric expressions for the con-

tractions KAcA
PQ and KABcB

PQ:

KAcA
PQ = − 1

V

∫

X
cPQ ∧ ∗J , (2.28)

KABcB
PQ =

1

V

∫

X
ωA ∧ ∗cPQ . (2.29)

2.2.3 Full scalar manifold

Let us finally consider the full dependence on both the Kähler moduli and the matter

fields, which is relevant when the matter fields have a non-vanishing and sizable VEV.

In this case, one has to consider all the terms in (2.5). The relevant fields are as before

Gi̄, Bi̄ and Ai. The first two can be combined to form a complex (1, 1) form J + iB,

and decomposed onto the basis of harmonic (1, 1) forms ωA. The second can be viewed

as matrix-valued 1-forms A, and decomposed onto the basis of harmonic 1-forms uP . It

however turns out that that the precise definition of the 4D moduli fields TA and matter

fields ΦS that allows to recast the action in a manifestly supersymmetric form involves a

non-trivial shift. The form of this shift may be guessed by generalizing the results applying

in the two special cases of Calabi-Yau manifolds with a single modulus and of orbifolds,

which are also the only two cases where a derivation of the full effective Kähler potential

is already known, respectively from [34] and [24]. The only quantity that can possibly

enter in the non-trivial shift is cA
PQ, and the appropriate definitions turn out to be

J + iB = 2
(

TA − 1

2
cA
PQΦP Φ̄Q

)

ωA , A = ΦP uP . (2.30)

In components this means Gi̄ = −i(TA + T̄A − cA
PQΦP Φ̄Q)ωAi̄, Bi̄ = −i(TA − T̄A)ωAi̄

and Ai = ΦP uPi. Plugging these decompositions into (2.5), one then finds kinetic terms

for the complex scalar fields TA and ΦP of the form

L4 = −gmod
AB̄ ∂µTA∂µT̄B − gmat

PQ̄ ∂µΦP ∂µΦ̄Q −
(

gmix
AQ̄ ∂µTA∂µΦ̄Q + c.c.

)

, (2.31)

where

gmod
AB̄ = − 1

V

∫

d6y
√

G Gi̄Gpq̄ ωAiq̄ ωBp̄

=
1

V

∫

X
ωA ∧ ∗ωB , (2.32)
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gmat
PQ̄ = − i

V

∫

d6y
√

GGi̄ cPQi̄ −
1

V

∫

d6y
√

GGi̄Gmn̄ cPSin̄ cRQm̄ ΦRΦ̄S

=
1

V

∫

X
cPQ ∧ ∗J +

1

V

{
∫

X
cPS ∧ ∗cRQ

}

ΦRΦ̄S , (2.33)

gmix
AQ̄ =

1

V

∫

d6y
√

G Gi̄Gmn̄ ωAin̄ cRQm̄ ΦR

= − 1

V

{
∫

X
ωA ∧ ∗cRQ

}

ΦR . (2.34)

This metric now significantly depends on the forms cPQ, not only through their scalar

product with the Kähler form J or the basis forms ωA, which are harmonic, but also

through their scalar products among themselves. As a result, not only the harmonic part

but also the exact and coexact parts of the Hodge decomposition of cPQ matter, and the

issue of whether cPQ is harmonic or not is therefore crucial in this case. As already said,

we shall for the moment assume that cPQ is harmonic and cA
PQ is constant, so that one

can use the decomposition cPQ = cA
PQωA. Taking into account the new decomposition

J = JAωA with JA = TA + T̄A − cA
PQΦP Φ̄Q, which still implies that ∂AJB = δB

A since

cA
PQ is constant, and using the relations (A.18) and (A.19), the metric components (2.32),

(2.33) and(2.34) can be rewritten as

gmod
AB̄ =

1

V

∫

X
ωA ∧ ∗ωB

= −∂A∂B̄ log V , (2.35)

gmat
PQ̄ =

1

V

{
∫

X
ωA ∧ ∗J

}

cA
PQ +

1

V

{
∫

X
ωA ∧ ∗ωB

}

cA
PScB

RQΦRΦ̄S

= ∂A log V cA
PQ − ∂A∂B̄ log V cA

PScB
RQΦRΦ̄S

= −∂P ∂Q̄ log V , (2.36)

gmix
AQ̄ = − 1

V

{
∫

X
ωA ∧ ∗ωB

}

cB
RQΦR

= ∂A∂B̄ log V cB
RQΦR

= −∂A∂Q̄ log V . (2.37)

From these expressions we see that, modulo an arbitrary Kähler transformation, the

Kähler potential is simply given by:

K = − log V . (2.38)

More explicitly, this reads in this case:

K = − log
[1

6
dABCJAJBJC

]

, with JA = TA + T̄A − cA
PQΦP Φ̄Q . (2.39)

This result coincides with the one proposed in [30] on the basis of an M -theory argu-

mentation. It manifestly reproduces the result (2.20) for the moduli and the leading
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order correction (2.27) at quadratic order in the matter fields. Moreover its satisfies a

no-scale property generalizing (2.21). This is easily demonstrated as follows [30]. Since

e−K is homogenous of degree 3 in JA, we have JA∂K/∂JA = −3. Denoting the fields by

ZI = TA,ΦP , we then compute KI = ∂K/∂JA∂JA/∂ZI . In particular, KA = ∂K/∂JA so

that KAJA = −3. Taking a derivative of this relation with respect to Z̄ J̄ , it follows that

KJ̄AJA + KA∂JA/∂Z̄ J̄ = 0, or KJ̄AJA + KJ̄ = 0. Finally, acting on this with the inverse

metric KIJ̄ one deduces that KI = −δI
AJA. It finally follows that KIK

I = −KAJA = 3.

Splitting again the two kinds of indices, this means:

KAKA + KP KP = 3 . (2.40)

Notice finally that KA, KP , KA and KP can be written in the following simple geometrical

terms:

KA = − 1

V

∫

X
ωA ∧ ∗J , KA = −

∫

X
ωA ∧ J , (2.41)

KP =
1

V

∫

X
cPSΦ̄S ∧ ∗J , KP = 0 . (2.42)

Moreover, from the assumption that the forms cPQ are harmonic it follows that also the

contraction KABcA
PQcB

RS admits a simple geometrical expression:

KABcA
PQcB

RS =
1

V

∫

X
cPQ ∧ ∗cRS . (2.43)

Similarly one also finds that

dABCcA
PQcB

RScC
MN =

∫

X
cPQ ∧ cRS ∧ cMN . (2.44)

2.3 Range of validity

The simple derivation presented in last subsection is manifestly valid in those cases where

the forms cPQ are harmonic and the quantities cA
PQ are constant topological invariants.

One special situation in which this is certainly true is when all the involved forms ωA

and uP are actually not only harmonic but actually covariantly constant. As we shall see

more explicitly in next section, this is for instance the case for toroidal orbifold models.

But we believe that it could be true also in a less trivial fashion. We will imagine that

this is indeed the case for some subset of smooth Calabi-Yau models. For further use,

let us then explore a few simple consequences of the above assumptions. Recall that

A = 0, · · · , h1,1 − 1 labels the different Kähler moduli and P,Q = 1, · · · , nR label the

different matter fields. By definition, for each of the h1,1 values of A the quantity cA
PQ

is a Hermitian nR × nR matrix. This means that even when h1,1 > n2
R, the number of

these matrices that are linearly independent can not exceed n2
R. In fact, the h1,1 matrices

cA
PQ can always be rewritten as linear combinations of the n2

R independent transposed

Hermitian matrices λA′

QP , with A′ = 0, · · · , n2
R − 1 and where the transposition is included

for later convenience. Notice that whereas the matrices cA
PQ do a priori not satisfy any

completeness relation and do not generate any closed algebra, the matrices λA′

PQ do instead

satisfy an obvious completeness relation since they form a basis of Hermitian matrices
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and generate a closed algebra, which is that of U(nR). We therefore know that under the

assumptions that we made

cA
PQ : linear combinations of λA′

QP , (2.45)

λA′

PQ : nR × nR matrices representing the generators of U(nR) . (2.46)

The extension to more general situations where instead cPQ is not harmonic and the

quantities cA
PQ are not constant topological invariants is clearly more challenging, and one

may wonder whether a result similar to (2.39) could hold true. One first major change

arising for a non-harmonic cPQ is that since its Hodge decomposition contains now not

only a harmonic piece but also an exact piece and a coexact piece, eq. (2.43) does no

longer hold true. More precisely, its left-hand side acquires extra terms matching the

contributions to the right-hand side coming from the non-harmonic parts of cPQ, which

are clearly more difficult to deal with. In particular, when going from (2.33) to (2.36),

one would get additional terms that clearly have to do with the effect of heavy non-zero

modes. In fact, these heavy modes must be related to the 10D B field. Indeed, using a

democratic formulation of the original 10D theory involving not only the 2 form B but

also its magnetic dual 6 form B̃, the contact term from which the problem originates can

be deconstructed and the seed for its origin is then reduced to a linear coupling between

B̃ and dΓ = tr(F ∧F ). When reducing on X, one then gets a direct coupling between two

light matter modes coming from A and one heavy mode coming from B̃ whenever cPQ is

not harmonic, and this must be responsible form the extra contributions to the contact

terms. A second source of difficulty arising for a non-constant cA
PQ is that this quantity

may then be expected to depend on continuous deformations of both the vector bundle

V and the manifold X. The first of these dependences, which was already mentioned

in [30], does not concern us since it would be related to vector bundle moduli, which

we have ignored from the beginning. But the second of these dependences, which we

believe should also be a priori feared, is instead directly relevant for our derivation, since

it is related to the Kähler moduli that we want to keep in the effective theory. Now,

a moduli dependence cA
PQ would imply additional terms in (2.32)–(2.34). Moreover, it

would also affect the simple relation ∂AJB = δB
A that was used to rewrite these metric in

the form (2.35)–(2.37). At first one might hope that these two sources of complications

could compensate each other, but things do not seem to be so simple. One may then

perhaps have to generalize the decomposition (2.30) through a more complicated and

implicit definition of the moduli and matter fields. We were however not able to reach a

conclusive assessment of this possibility.

We believe that subtleties very similar to those explained here for heterotic models

may actually arise also for orientifold models. More precisely, it seems to us that the

results derived in [32, 33] concerning the higher-order dependence of the Kähler potential

on the matter fields arising from D-brane sectors should a priori also be correct and

reliable only for those special models were massive non-zero modes do not induce non-

trivial corrections. We attribute the fact that this is not directly signaled by a technical

difficulty in the derivation of [32, 33] to the use of a democratic formulation in terms of all

the Ramond-Ramond forms, which deconstructs the original 10D contact term and hides

the subtlety.

15



2.4 Standard embedding

The concerns raised in previous subsection may be illustrated more concretely by consid-

ering in some detail the special case of Calabi-Yau manifolds X with a generic number

of moduli but standard embedding for the vector bundle V . In this case the situation

is somewhat simpler and there exist an alternative way of performing the dimensional

reduction for the matter fields. Indeed, recall that in this case V is identified with TX,

so that S = SU(3) and G = E6 × E8. As a consequence, the additional index in the rep-

resentation r = 3̄ can be reinterpreted as a cotangent space index, and one may exploit

this to construct the SU(3)-valued harmonic 1 forms uA in terms of the harmonic (1, 1)

forms ωA.

In the approximation where one works at leading order in the matter fields and neglects

the interference between moduli and matter fields, as in subsection 2.2.2, the way in which

this decomposition can be done has been explained in [41] (see also [42]). In the end, it

essentially amounts to describe the matter modes in terms of a standard (1, 1) form Ã and

decompose it on the basis of harmonic (1, 1) forms ωA with h1,1 complex coefficients ΦA

taking values in the representation R = (27,1) of E6 × E8 and defining the 4D matter

fields. It has been shown in [41] that one must however include a suitable power of the

norm of the covariantly constant holomorphic (3, 0) form of X in this decomposition, in

order to be able to express the potential coming from the non-derivative part of the action

in terms of a holomorphic superpotential. Here, since we are considering the case of absent

or frozen complex structure moduli, this simply implies some extra power of the volume

V , and the correct definition turns out to be

Ã = V 1/6ΦAωA . (2.47)

One then finds a kinetic term of the form

L4 = −gmat
AB̄ ∂µΦA∂µΦ̄B , (2.48)

where

gmat
AB̄ = − 1

V 2/3

∫

d6y
√

G Gi̄Gpq̄ ωAiq̄ ωBp̄

=
1

V 2/3

∫

X
ωA ∧ ∗ωB . (2.49)

Through the usual manipulations, this metric can be rewritten as

gmat
AB̄ = −V 1/3∂A∂B̄ log V . (2.50)

This implies that the matter metric is in this case linked to the moduli metric by the

relation gmat
AB̄

= e−K/3gmod
AB̄

, which was first derived in [29] by matching an actual string

scattering amplitude computation. The leading matter-dependent correction to the moduli

Kähler potential must then have the form

∆K = e−K/3KAB̄ΦAΦ̄B . (2.51)

Comparing the result (2.51) with the general expression (2.27) and requiring them to be

equal, we deduce that in the case of standard embedding the matrices cA
BC must have a
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special form. This is indeed the case. The components of the (1, 1) form cAB are found

to be given by

cABi̄ = −i V 1/3Gpq̄ ωAiq̄ ωBp̄ . (2.52)

It is a straightforward exercise to verify that the forms cAB defined by these components are

generically not harmonic, except for the particular case where ωA and/or ωB is identified

with the Kähler form J or happen more in general to be a covariantly constant (1, 1) form.

Since by eq. (2.22) one has KAωA = −J , this means that:

cAB not harmonic , but KAcAB and KBcAB harmonic . (2.53)

One may nevertheless compute the quantity cA
BC by using the expression (2.52) for the

components of cPQ. The result depends on the metric and is thus a function of TD + T̄D.

It might be possible to express this function in terms of derivatives of the Kähler potential

K for the moduli. But even without writing an explicit expression, one can observe that

the factor V 1/3Gpq̄ appearing in the expression (2.52) is a homogenous function of degree

0 in the components of the metric, and therefore in the geometric moduli fields. More

precisely, one finds that c0
00 = 1 when h1,1 = 1 and there is a single modulus T 0, whereas

cA
BC = cA

BC((TD + T̄D)/(TE + T̄E)) when h1,1 > 1 and there are several moduli TA. Since

by eq. (2.22) one has KD = −(TD + T̄D), this means that

cA
BC not constant , but KD∂DcA

BC = 0 . (2.54)

Finally, using the relation (2.28) and the expression (2.52), one easily verifies that cA
BC

does indeed satisfy an identity ensuring that the two expressions (2.27) and (2.51) are

identical:

−KAcA
BC = e−K/3KBC . (2.55)

One can demonstrate analytically that the above relation forces cA
BC to be constant in the

special case h1,1 = 1 and non-constant when instead h1,1 > 0. To do so, one starts by

assuming that (2.55) is satisfied with a constant cA
BC . One may then take a derivative of

(2.55), use ∂DcA
BC = 0 and act with the inverse of the moduli metric to derive the expres-

sion cA
BC = −e−K/3KAD

(

KBCD − 1
3KDKBC

)

. Finally, one may compute the derivative

of this expression to check whether it is really zero, as assumed. In particular, using the

identity ∂AKB = −δB
A one finds rather easily that ∂AcA

BCKBKC = −3 e−K/3
(

h1,1 − 1
)

,

which vanishes when h1,1 = 1 but not when h1,1 > 1, contradicting in this last case the

hypothesis that cA
BC was constant.

When attempting to go on and work out the result at higher orders in the matter

fields, one can no longer neglect the interference between matter and moduli fields. One

then needs to properly change the definition of the moduli fields. The natural guess based

on our general derivation is that the definition of the moduli fields should be shifted by a

term that is quadratic in the matter fields and involves cA
BC . Indirect evidence in favor of

this has been found in [41] (whose quantity σABC is seen to be proportional to our cA
BC

specified by (2.52) with the upper index lowered with the moduli metric) by studying the

interference of this redefinition and the possible emergence of a non-trivial superpotential.

It is however not obvious how one should proceed to work out the full result, as both
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of the subtleties discussed in section 2.3, namely the non-harmonicity of cBC and the

non-constancy of cA
BC , have been manifestly shown to arise in this case, except for the

particular situations where h1,1 = 1, for which the result (2.39) holds true and reduces to

the result derived in [34].

3 The heterotic string on an orbifold

It is interesting to compare the general situation occurring for compactifications on a

smooth Calabi-Yau manifold X with that of compactifications on toroidal orbifolds of the

type T 6/ZN [9], which represent singular limits of them from the geometrical point of view.

We shall briefly review the structure of these models and the derivation of the effective

Kähler potential. We shall as before focus on the Kähler moduli and the matter fields,

restricting to the untwisted sector for which a simple derivation based on dimensional

reduction is possible, and show how the known exact results for the dependence of the

Kähler potential on the Kähler moduli and matter fields can be rephrased in the same

language as in the previous section.

3.1 General structure

The ZN orbifold action that is used to define the background is specified by a first twist

vector αi = (α1, α2, α3) in the SU(3) internal space-time group and a second twist vec-

tor βα = (β1, · · · , β8;β1, · · · , β8) in the E8 × E8 gauge group. These should satisfy the

following consistency condition for some integer n, which comes from the level-matching

condition [9]:

n

N
=

∑

i

αi(αi + 1) −
∑

α

βα(βα + 1) . (3.1)

From a geometric perspective, the choice of αi defines the structure group of the tangent

space to be a discrete subgroup of SU(3), whereas the choice of βα corresponds to a choice

of vector bundle. The condition (3.1) is the analogue of the Bianchi identity (2.4) that

must be imposed for smooth Calabi-Yau compactifications and constrains the choice of

vector bundle for a given tangent bundle. This leaves as before several possibilities, among

which one again finds the special possibility of the standard embedding, which corresponds

to the choice βα = (α1, α2, α3, 0, · · · , 0) and trivially satisfies (3.1) with n = 0.

The states arising in the untwisted sector are associated to the subset of harmonic

forms on T 6 that are left invariant by the ZN twist. As a result, the low-energy effective

theory can easily be computed and turns out to be a projection of what would be obtained

by compactifying on T 6. The spectrum of neutral fields can be understood by looking at

the transformation properties of the various harmonic forms under the discrete structure

group ZN ⊂ SU(3) of TX. One in particular sees that the 1 is always kept and the 3 is

always lost, whereas h1,2 forms in the 6 and h1,1 −1 forms in the 8 survive the projection,

with h1,1 and h1,2 being the effective Hodge numbers pertaining to the untwisted sector.

We will restrict to the prototypical cases based on N = 3, 6, 7, which lead to h1,1 = 9, 5, 3

and h1,2 = 0. The spectrum of charged fields can similarly be understood by looking at

the transformation properties of the various forms not only under the discrete structure

group ZN ⊂ SU(3) of TX, but also under the discrete structure group S of V .
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The simplest models are obtained by choosing bundles whose structure group is either

trivial or a discrete ZN subgroup of SU(3) in each of the two sectors. In the first case

one has E8 → E8 with 248 → 248, and the gauge group is unbroken. In the second case

on has E8 → E6 × SU(3) with 248 → (78,1) ⊕ (1,8) ⊕ (27,3) ⊕ (27,3), and further

SU(3) → H with 3 → h, so that the gauge group is broken to E6×H, where the enhanced

gauge symmetry H ⊂ SU(3) arises as the non-trivial commutant of the discrete structure

group ZN within SU(3). In the three models under consideration, one respectively finds

the three possible maximal-rank subgroups H = SU(3), SU(2) × U(1), U(1) ×U(1), with

h = 3,2 ⊕ 1, 1⊕ 1⊕ 1. The various generations of untwisted matter fields in the 27 and

27 of E6 must then arrange into the representations h and h̄ of H descending form the 3

and 3̄ of SU(3). In order to compare with the case of smooth Calabi-Yau manifolds and

make it simpler, let us for a moment count the total numbers n27 and n27 of 27 and 27

without caring about the H quantum numbers. A first type of model can be constructed

by making the asymmetric choice Sv = ZN , Sh = trivial. One then finds Gv = E6 × H

and nv
1 = 0, nv

27 = 0, nv
27

= h1,1 in the visible sector, and just Gh = E8 in the hidden

sector. The standard embedding is a particular case of this class of models where the

level matching condition is trivially satisfied. A second type of model can be constructed

by making the symmetric choice Sv = ZN , Sh = ZN . One then finds Gv = E6 × H and

nv
1 = 0, nv

27 = 0, nv
27

= h1,1 in the visible sector, and similarly Gh = E6 × H and nh
1 = 0,

nh
27 = 0, nh

27
= h1,1 in the hidden sector. In addition, there always are h1,1 Kähler moduli.

3.2 Effective Kähler potential

The 4D effective Kähler potential for the untwisted sector of orbifold models is most easily

computed by simply retaining those fields that are invariant under the ZN projection in

(2.5). One can then compute the metric, guess the appropriate definition of the chiral

multiplets that makes this manifestly Kähler, and finally find out the form of the Kähler

potential. This last step can be done by relying on some basic properties of square

matrices, which are described at the end of appendix A. Here we would like to emphasize

that the same result can be obtained by proceeding exactly as we did in section 2 for

compactifications on smooth Calabi-Yau manifolds. We shall briefly summarize how this

is done for the three different kind of models under consideration, in order to make contact

with the results of [23]. As before, for notational simplicity we shall omit to write explicitly

the traces over the representation R of the gauge group G. We also omit any detail about

the trace over the representation r of the structure group S, since this is discrete. Finally,

we shall here restrict for concreteness to the particular models discussed at the end of the

previous subsection.

3.2.1 Models with H = SU(3)

Let us first consider the case of the Z3 orbifold, where H = SU(3). In this case, h1,1 = 9

and n(3̄,27) = 3, so that in total n
27

= 9. There are 9 harmonic (1, 1) forms ωij and 3

Z3-valued harmonic 1-forms ui, with i = 1, 2, 3:

ωij = i dzi ∧ dz̄j , (3.2)

ui = dzi . (3.3)
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The intersection numbers are found to be:

dijpqrs = ǫiprǫjqr . (3.4)

The forms cij = i ui ∧ ūj are found to be given by cij = ωij , and their components on the

basis ωmn read

cmn
ij = δm

i δn
j . (3.5)

The moduli fields T ij and the matter fields Φi are then defined by the following expansions:

J + iB = 2
(

T ij − 1

2
ΦiΦ̄j

)

ωij , (3.6)

A = Φiui . (3.7)

The Kähler potential is finally found to be given by [24, 25]:

K = − log

[

det
(

T ij + T̄ ij − ΦiΦ̄j
)

]

. (3.8)

3.2.2 Models with H = SU(2) × U(1)

Let us next consider the case of the Z6 orbifold, where H = SU(2) × U(1). In this case,

h1,1 = 5 and n(2̄,27) = 2, n(1,27) = 1, so that in total n
27

= 5. There are 5 harmonic (1, 1)

forms ωij , ω33 and 3 Z6-valued harmonic 1-forms ui, u3, with i = 1, 2:

ωij = i dzi ∧ dz̄j , ω33 = i dz3 ∧ dz̄3 , (3.9)

ui = dzi , u3 = dz3 . (3.10)

The non-vanishing entries of the intersection numbers are:

dijpq33 = ǫip3ǫjq3 . (3.11)

The forms cij = i ui ∧ ūj are easily computed and one finds cij = ωij, c33 = ω33, while the

other vanish. The non-vanishing components of these forms on the basis ωmn are

c
mn
ij = δ

m
i δ

n
j , c33

33 = 1 . (3.12)

The moduli fields T ij, T 33 and the matter fields Φi, Φ3 are then defined by the following

expansions:

J + iB = 2
(

T ij − 1

2
ΦiΦ̄j

)

ωij + 2
(

T 33 − 1

2
Φ3Φ̄3

)

ω33 , (3.13)

A = Φiui + Φ3u3 . (3.14)

The Kähler potential is finally found to be given by [24, 25]:

K = − log

[

det
(

T ij + T̄ ij − ΦiΦ̄j
)(

T 33 + T̄ 33 − Φ3Φ̄3
)

]

. (3.15)

20



3.2.3 Models with H = U(1) × U(1)

Let us finally consider the case of the Z7 orbifold, where H = U(1) × U(1). In this case,

h1,1 = 3 and n(1,27) = 3, so that in total n
27

= 3. There are 3 harmonic (1, 1) forms ω11,

ω22, ω33 and 3 Z7-valued harmonic 1-forms u1, u2, u3:

ω11 = i dz1 ∧ dz̄1 , ω22 = i dz2 ∧ dz̄2 , ω33 = i dz3 ∧ dz̄3 , (3.16)

u1 = dz1 , u2 = dz2 , u3 = dz3 . (3.17)

The non-vanishing entries of the intersection numbers are found to be:

d112233 = 1 . (3.18)

The forms cij = i ui ∧ ūj are found to be given by c11 = ω11, c22 = ω22, c33 = ω33, while

the other vanish. The non-vanishing components of these cij on the basis ωmn read:

c11
11 = 1 , c22

22 = 1 , c33
33 = 1 . (3.19)

The moduli fields T 11, T 22, T 33 and the matter fields Φ1, Φ2, Φ3 are then defined by the

following expansions:

J + iB = 2
(

T 11 − 1

2
Φ1Φ̄1

)

ω11 + 2
(

T 22 − 1

2
Φ2Φ̄2

)

ω22 + 2
(

T 33 − 1

2
Φ3Φ̄3

)

ω33 ,(3.20)

A = Φ1u1 + Φ2u2 + Φ3u3 . (3.21)

The Kähler potential is finally found to be given by [24, 25]:

K = − log

[

(

T 11+ T̄ 11− Φ1Φ̄1
)(

T 22+ T̄ 22− Φ2Φ̄2
)(

T 33+ T̄ 33− Φ3Φ̄3
)

]

. (3.22)

3.2.4 General structure

The above results can be rewritten in a more convenient and unified way by performing a

suitable change of basis for the harmonic (1, 1) forms [23], which clarifies their similarity

with the results derived for Calabi-Yau compactifications. To perform this change of basis,

we can proceed in parallel for all the three models considered above and introduce the 3×3

Hermitian matrices λA representing the generators of U(1)×H and normalized in such a

way that tr(λAλB) = δAB . More precisely, λ0 denotes the generator of U(1) proportional

to the identity matrix and λa the generators of H associated to a subset of the Gell-Mann

matrices spanning the fundamental representation of SU(3) (a = 1, · · · , 8 for H = SU(3),

a = 1, 2, 3, 8 for H = SU(2) × U(1), a = 3, 8 for H = U(1) × U(1)):

λA
ij : 3 × 3 matrices representing the generators of U(1) × H . (3.23)

We then define the new basis of harmonic (1, 1) forms ωA = λA
ijωij. The corresponding

new moduli fields then read TA = λA
jiT

ij, and since the matrices λA are Hermitian,

one finds T̄A = λA
jiT̄

ij, where T̄ ij denotes as in the previous formulae the Hermitian

conjugate of T ij as a matrix. In this new basis, the intersection numbers are given by

dABC = λA
ijλ

B
pqλ

C
rsdijpqrs, which yields

dABC = 2 tr
(

λ(AλBλC)
)

− 3 tr
(

λ(A)tr
(

λBλC)
)

+ tr
(

λ(A)tr
(

λB
)

tr
(

λC)
)

. (3.24)
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The components cA
ij of cij are instead given by cA

ij = λA
nmcmn

ij , which simply gives:

cA
ij = λA

ji . (3.25)

In this basis, the fields are defined as

J + iB = 2
(

TA − 1

2
cA
ijΦ

iΦ̄j
)

ωA , A = Φiui , (3.26)

and the Kähler potential takes the form:

K = − log

[

1

6
dABCJAJBJC

]

, JA = TA + T̄A − cA
ijΦ

iΦ̄j . (3.27)

For the untwisted sector of these orbifolds, one thus finds exactly the same kind of result

as for smooth Calabi-Yau manifolds, with the peculiarity, however, that the intersection

numbers dABC and the quantities cA
ij admit a group-theoretical interpretation. This cor-

responds to the fact that the scalar manifold becomes a symmetric space. More precisely,

in the three kinds of models under consideration the scalar manifolds are given by:

MSU(3) =
SU(3, 3 + n)

U(1) × SU(3) × SU(3 + n)
, (3.28)

MSU(2)×U(1) =
SU(2, 2 + n)

U(1) × SU(2)×SU(2 + n)
× SU(1, 1 + n)

U(1) × SU(1 + n)
, (3.29)

MU(1)×U(1) =
SU(1, 1 + n)

U(1) × SU(1 + n)
× SU(1, 1 + n)

U(1) × SU(1 + n)
× SU(1, 1 + n)

U(1) × SU(1 + n)
. (3.30)

3.3 Range of validity

For the untwisted sector of orbifold models, we see that the low-energy effective Kähler

potential can always be derived in an exact way, without any limitation. From the per-

spective of the more general study that we performed for smooth Calabi-Yau manifolds,

this reflects the fact that untwisted orbifold sectors automatically satisfy the assumptions

that we made in section 2. More specifically, we see that the forms cij are harmonic and

the quantities cA
ij are constants. This can be traced back to the fact that in this case

the forms ωA and ui are not only harmonic, but actually covariantly constant, which is a

much stronger property.

4 M-theory interpretation

The structure of the Kähler potential characterizing the 4D low-energy effective theories

of heterotic string models admits a simple interpretation in terms of a 5D effective theory

compactified on a segment S1/Z2, which describes the M -theory lift of these models. In

particular, the definition of the chiral multiplets and the structure of the Kähler potential

can be understood quite naturally and intuitively within this framework. As we shall

briefly review in this section, this is a consequence of the fact that the matter contact

terms arising from the non-trivial shift in the field-strength of the 2 form B in the heterotic

picture arises in the M -theory picture from the exchange of the heavy Kaluza-Klein modes
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of the 3 form C reduced on S1/Z2, whose couplings to the brane fields are ruled by a

Bianchi identity of the schematic form

dC = −tr(F ∧ F )δ(y − y0) . (4.1)

Here and in the following, we shall implicitly understand the splitting of the charged fields

over the two brane sectors located at different positions y0, but for notational simplicity

we shall not display this explicitly in the formulae.

4.1 General structure

The content of light bosonic fields of the 5D supergravity theory obtained by compactifying

11D supergravity on a Calabi-Yau manifold X consists of 1 symmetric tensor from GMN ,

h1,1 scalars from the (1, 1) components of Gi̄, h1,2 complex scalars from the (1, 2) and

(2, 1) components of Gij and Gı̄̄, 1 scalar from the dualization of CMNP , 1 complex

scalar from the (3, 0) and (0, 3) components of Cijk and Cı̄̄k̄, h1,1 vectors from the (1, 1)

components of CMi̄ and h1,2 complex scalars from the (1, 2) and (2, 1) components of Ci̄k̄

and Cı̄jk. In total this yields 1 symmetric tensor, h1,1 + 4h1,2 + 3 real scalar fields and

h1,1 vector fields, which corresponds to the bosonic content of 1 gravitational multiplet

G and 1 universal hypermultiplet H plus h1,1 − 1 vector multiplets Va associated to the

harmonic (1, 1) forms arising in addition to the Kähler form and h1,2 hyper multiplets HZ

associated to the harmonic (1, 2) forms [11, 12, 13].

When this 5D theory is further compactified on S1/Z2 and reinterpreted from a 4D

viewpoint, one finds N = 2 supersymmetry projected to N = 1 supersymmetry. To

understand the spectrum of neutral fields, one can then think in terms of N = 2 multiplets

and figure out their content in terms of N = 1 multiplets with definite Z2 parities. Listing

the even and odd multiplets separated by a semicolon, one finds that G = (G,T 0; Γ)

where G is the gravitational multiplet, T 0 a chiral multiplet and Γ is a spin-3/2 multiplet,

H = (S;Sc) where S and Sc are chiral multiplets, Va = (T a;V a) where T a are chiral

multiplets and V a vector multiplets, and finally HZ = (UZ ;U cZ) where UZ and U cZ are

chiral multiplets. The spectrum of light neutral multiplets thus consists of the graviton

G, the dilaton S, the overall volume modulus T 0, h1,1 − 1 relative Kähler moduli T a and

h1,2 complex structure moduli UZ . The spectrum of charged fields is instead determined

as in the weakly coupled heterotic string, except that the fields coming from the two E8

factors are now localized at the two different branes at the ends of the S1/Z2 segment.

Altogether they fill a number of N = 1 chiral multiplets ΦP , ΨK and vector multiplets

V x, in the representations R, R̄ and Adj of the gauge group.

4.2 Effective Kähler potential

The 4D effective effective Kähler potential can be determined by performing the reduction

of the 11D theory on the Calabi-Yau manifold X, and then further reducing the resulting

5D theory on S1/Z2. In this case, it is possible to do the last step by using superfields

to directly compute the Kähler potential, rather than working with the components and

looking at the bosonic kinetic terms. To perform this computation, we shall do the same

approximations as in section 2. We shall first neglect the effects of higher-derivative

corrections to the 11D effective theory and deformations of the basic background, and
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simply consider the reduction of the two-derivative 11D effective theory on X × S1/Z2.

We shall then also discard the effects of massive Kaluza-Klein modes on X, although we

will retain the effects of massive Kaluza-Klein modes on S1/Z2, which turn out to be

crucial to understand the contact terms. Correspondingly, we will also make the same

assumptions as in section 2, namely that the (1, 1) forms cPQ associated to composites

of two matter fields are harmonic and that the quantities cA
PQ are constant topological

invariants. Finally, we shall again restrict to the Kähler moduli TA and the charged matter

fields ΦP .

The starting point is the 5D intermediate theory, where we retain not only the Z2-even

submultiplets T 0, T a, ΦP , which contain the light 4D moduli and matter modes, but also

the Z2-odd submultiplets V a, which contain the heavy Kaluza-Klein modes that have non-

trivial linear couplings to the other fields and therefore need to be properly integrated out.

It is convenient to work with N = 1 superfields T 0, T a, ΦP and V a depending also on the

internal coordinate y, and integrate out the heavy modes associated to the V a directly at

the superfield level and in a clever way, by solving their equations of motion by neglecting

space-time derivatives to determine their wave-function profile. In the limit where gravity

is decoupled, this can be done with usual superfields within rigid supersymmetry along

the lines of [43, 44, 45], with T 0 playing the role of the radion superfield. Taking into

account gravitational effects is slightly more complicated, but can actually be done in

a very similar way by using a superconformal superfield formalism within supergravity,

where half of the supersymmetry is manifestly realized off-shell. This formalism has been

developed in [46, 47] and further elaborated in [48, 49]. It has the nice feature of allowing

to describe the graviphoton A0
M on the same footing as the other odd gauge fields Aa

M ,

and the volume modulus T 0 on the same footing as the other Kähler moduli T a, through

vector multiplets V A and chiral multiplets TA with A = 0, a, at the price of introducing

also some constraints. The relevant 5D Lagrangian turns out to be

Llocal
5D =

∫

d2θ

[

− 1

4
NAB(TA)W AαW B

α +
1

48
NABC D̄2

(

V A↔
Dα∂yV

B
)

W C
α

]

+ c.c.

+

∫

d4θ (−3)N 1/3(JA
y ) . (4.2)

In this expression, the quantity N is a norm function playing the role of real prepotential,

which is identified with the cubic polynomial defined by the intersection numbers dABC

of the Calabi-Yau manifold X:

N (ZA) =
1

6
dABCZAZBZC . (4.3)

The quantity W A
α denotes the usual super-field-strength associated to V A, namely

W A
α = −1

4
D̄2DαV A . (4.4)

Finally, the quantity JA
y is a current defined in terms of the quantities cA

PQ characterizing

the vector bundle V over X and given by:

JA
y = −∂yV

A + TA + T̄A − cA
PQΦP Φ̄Q δ(y − y0) . (4.5)

In the above expressions, the bosonic modes of TA come from the decomposition of

the 2 forms J and Cy with components iGi̄ and Cyi̄ on the basis of harmonic (1, 1) forms
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ωA, the bosonic modes of ΦP come from the decomposition of the Lie-algebra-valued 1

forms A, Ā with components Ai, Āı̄ on the basis of harmonic 1 forms uP , and finally the

bosonic modes of V A come from the decomposition of the 2 forms Cµ with components

Cµi̄ on the basis ωA. The correct definition of the chiral multiplets in terms of the above

modes turns out to be [30]

TA =
1

2

(

JA + iCA
y + cA

PQAP ĀQδ(y − y0)
)

, (4.6)

ΦP = AP . (4.7)

We see that these definitions reproduce the ones we have introduced in the component

derivation of section 2 based on the weakly coupled heterotic string when averaged over

the extra dimension. Here these definitions ensure that the lowest component of JA
y simply

reduces to the metric components, as required in order to reproduce an Einstein gravita-

tional kinetic term coming entirely from the bulk and not from the branes, whereas the

θσµθ̄ component of JA
y correctly reproduces the modified version of the mixed components

of the field strength implied by the reduction of the Bianchi identity (4.1):

JA
y | = JA , (4.8)

JA
y |θσµ θ̄ = ∂µAA

y − ∂yA
A
µ + icA

PQΦP↔
∂µΦ̄Qδ(y − y0) . (4.9)

This provides a nice superfield interpretation on the need for the shift in the definition of

the moduli chiral multiplets.

Integrating out the heavy modes of the vector multiplets V A effectively amounts to

replacing the currents JA
y with their zero modes in the term of the action that does not

involve the vector fields. This is easy to show in the rigid limit, where only the V a matter

[23], but actually holds true also in the supergravity regime where all the V A appear but

suffer from non-trivial constraints [49]. One finds the following expression, written within

the usual superconformal superfield formalism,

Llocal
4D =

∫

d4θ (−3)N 1/3(JA) , (4.10)

where now

JA = TA + T̄A − cA
PQΦP Φ̄Q . (4.11)

The effective Kähler potential can finally be deduced by matching the integrand of this

expression with −3 e−K/3. This gives K = − logN (JA) = − log V , which is the same

result as we obtained directly from the heterotic string:

K = − log
[1

6
dABCJAJBJc

]

, with JA = TA + T̄A − cA
PQΦP Φ̄Q . (4.12)

A component version of this five-dimensional derivation is also possible, and was presented

in [50] for the particular case where h1,1 = 1 with standard embedding.

The effective Kähler potential for the untwisted sector of orbifold compactifications

can be similarly derived from an M -theory perspective. The only changes are the same

as those already emphasized in section 3, namely that the intersection numbers dABC
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and the quantities cA
PQ acquire a simple group-theoretical interpretation. Moreover, in

this case the forms cPQ are automatically harmonic and the quantities cA
PQ are always

constant, as already discussed in section 3. Further details on a component version of this

five-dimensional derivation can be found in [51, 52, 53, 54].

4.3 Range of validity

We have seen in the previous subsection that the results derived in section 2 for the

low-energy effective Kähler potential admit a simple 5D interpretation, in which the non-

trivial contact terms spoiling the sequestered structure arise from the exchange of heavy

4D Kaluza-Klein modes of the light 5D vector multiplets coming from the harmonic com-

ponents of the M -theory 3-form C on X. This interpretation was however derived under

the same restrictive assumptions as in section 2, namely that the forms cPQ are harmonic

and that the quantities cA
PQ are constants. It is then natural to wonder once again what

would be the situation if these assumptions were to be relaxed.

The relevance of the assumptions about cPQ and cA
PQ within the M -theory perspective

must obviously be very similar to that already discussed within the heterotic perspective.

But it turns out to offer a slightly sharper perspective. The harmonicity of cPQ is as before

needed to ensure the trivial decoupling of heavy neutral modes from pairs of light charged

modes. More specifically, we see here that when cPQ is not harmonic a direct danger

comes from the heavy 5D vector multiplets that arise from the non-harmonic components

of the 3 form C on X. Indeed, such heavy modes can be brutally truncated away only

when they are not sourced by light fields, and from the reduction of the solution of the

Bianchi identity (4.1) we see that this is the case only when the non-harmonic parts of C

describing the heavy 5D vector modes have no overlap with the forms cPQ describing the

composite of two light matter modes, that is when cPQ is harmonic. In the opposite case,

one would have to properly integrate out these heavy 5D vector modes too, and this would

give extra contributions to the contact terms in the 4D effective Kähler potential. These

additional effects must correspond to the additional terms that would arise in the left-hand

side of eq. (2.43) within the heterotic perspective. The constancy of cA
PQ is again needed

to ensure a simple determination of the right definition of the chiral multiplets containing

the moduli. More specifically, we see here that for moduli-dependent cA
PQ it is not clear

how one should modify the definitions (4.6) and (4.7) to arrange that (4.8) and (4.9) hold

true.

5 General structure of the scalar manifold

We have seen that for compactifications on both smooth Calabi-Yau manifolds and singular

orbifolds the Kähler potential for the Kähler moduli and matter fields takes the same

general form, at least under the already explained assumptions. We will now study in

some more detail the general geometric features of this scalar manifold, which will be

relevant for the structure of the soft scalar masses induced in the presence of a non-trivial

superpotential. We will introduce for this purpose a new parametrization of the scalar

manifold, which will turn out to be very convenient at some special reference point.
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5.1 Canonical parametrization

The general class of scalar manifolds we want to study is defined by the following Kähler

potential, which only depends on the two symmetric and Hermitian but otherwise arbitrary

constants dABC and cA
PQ:

K = − log
[1

6
dABCJAJBJC

]

, with JA = TA + T̄A − cA
PQΦP Φ̄Q . (5.1)

The fields TA and ΦP define a specific parametrization of the scalar manifold defined

by this Kähler potential, which naturally emerges from string theory. We are however

free to make holomorphic change of coordinates as well as Kähler transformations to

define other equivalent parametrizations. It turns out that this freedom can be used to

define a particularly convenient kind of parametrization. We shall call this the canonical

parametrization, because it is a natural generalization including the N = 1 matter sector

of the one that was introduced in [55, 56] for the very special manifolds describing the

N = 2 moduli sector.

The main idea is to think of some reference point of particular interest on the scalar

manifold, and then to perform a field redefinition that allows to simplify things as much

as possible around that point. This reference point can for instance be thought of as the

one defined by the VEVs 〈TA〉 and 〈ΦP 〉 that the scalar fields would eventually acquire in

the presence of a non-trivial superpotential. Since our primary goal is to study situations

where the moduli have sizable VEVs whereas the matter fields have a small VEVs, we

shall start by considering the situation where

〈TA〉 6= 0 , 〈ΦP 〉 = 0 . (5.2)

We may now reparametrize the fields in such a way to simplify the metric and the curvature

tensor at such a point. To this aim, we shall consider the following linear field redefinitions:

T̂A = UA
BTB , Φ̂P = V P

QΦQ . (5.3)

In addition, we may also perform a Kähler transformation on K. In particular, we may

perform a trivial constant shift of the type

K̂ = K − log |α|2 . (5.4)

For our purposes, it will be enough to take UA
B to be a real matrix, V P

Q to be a complex

matrix, and α to be a real number. Under such transformations, the new Kähler potential

in terms of the new fields has the same form as the original Kähler potential in terms of

the original fields, but with new numerical coefficients given by:

d̂ABC = α2 U -1D
AU -1E

BU -1F
CdDEF , ĉA

PQ = UA
BV -1R

P V̄ -1S
QcB

RS . (5.5)

At this point, we may choose UA
B and V P

Q in such a way that the VEVs of the fields are

aligned along just one direction, the VEV of the metric becomes diagonal, and the overall

scale of one of these two quantities (but not both) is set to some reference value. We may

furthermore choose α to set the overall scale of the intersection numbers to a convenient
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value. More specifically, we shall require that in the new basis the reference point should

be at

〈T̂A〉 =

√
3

2
δA
0 , 〈Φ̂P 〉 = 0 , (5.6)

the metric at that point should take the form

〈ĝAB〉 = δAB , 〈ĝPQ〉 = δPQ , 〈ĝAQ〉 = 0 , (5.7)

and finally the Kähler frame should be such that at that point

〈K̂〉 = 0 . (5.8)

It is easy to get convinced by a counting of parameters that it is indeed always possible to

impose this kind of conditions. Moreover, by comparing the transformed expressions for

the VEVs of the fields, the metric and the Kähler potential with the values required in

the previous equations, we deduce that the new values of the numerical coefficients d̂ABC

and ĉA
PQ must satisfy the following properties:

d̂000 =
2√
3

, d̂00a = 0 , d̂0ab = − 1√
3

δab , d̂abc = generic , (5.9)

ĉ0
PQ =

1√
3

δPQ , ĉa
PQ = generic . (5.10)

The new form of the Kähler potential after the change of basis is then

K̂ = − log

[

1

6

( 2√
3
Ĵ0Ĵ0Ĵ0 −

√
3 Ĵ0ĴaĴa + d̂abcĴ

aĴbĴc
)

]

, (5.11)

where now

Ĵ0 = T̂ 0 + ˆ̄T 0 − 1√
3
δPQΦ̂P ˆ̄ΦQ , (5.12)

Ĵa = T̂ a + ˆ̄T a − ĉa
PQΦ̂P ˆ̄ΦQ . (5.13)

The above canonical parametrization has a nice interpretation from the point of view

of the properties of the Calabi-Yau manifold X and the holomorphic vector bundle V over

it, on which the model is based. It essentially corresponds to a particular choice of bases

for the harmonic forms ω̂A and ûP at the reference point defined by the VEVs. More

specifically, the sets of harmonic forms ω̂A and ûP can be chosen to be orthonormal with

respect to the natural positive definite metrics defined by ĝAB = V −1
∫

X ω̂A ∧ ∗ω̂B and

ĝPQ = V −1
∫

X ĉPQ∧∗J , and one can moreover orient them in such a way that ω̂0 is aligned

with the Kähler form J . In this way the multiplets T̂ 0 and T̂ a describe respectively the

overall volume and the relative Kähler moduli, and the fields Φ̂P are canonically defined.

In this new basis, the VEV of the metric is the identity matrix, with ĝAB = δAB and

ĝPQ = δPQ, and as shown in appendix A the intersection numbers d̂ABC and the quantities

ĉA
PQ do indeed take the structure of (5.9) and (5.10), after effectively setting the volume

V to unity by a rescaling. It is worth remarking that if the traceful part of ĉPQ were

parallel to J and thus proportional to ω̂0, whereas the remaining traceless part of ĉPQ
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were orthogonal to J and thus a linear combination of the ω̂a’s, all the matrices ĉa
PQ

would be traceless. This turns out to be the case for orbifolds, and it is not unconceivable

that it might actually also hold true for most if not all of the Calabi-Yau’s subject to the

stringent restriction that the (1, 1) forms cPQ are harmonic. We were not able to verify

this, but we find it rather suggestive that the trace part of ĉPQ indeed has positive-definite

components, like J .

Notice that the new coordinates that have been introduced do not exactly coincide

with normal coordinates at the reference point. Indeed, some of the components of the

Christoffel connection have non-trivial values:

〈Γ000̄〉 = − 2√
3

, 〈Γ0ab̄〉 = − 2√
3
δab , 〈Γab0̄〉 = − 2√

3
δab , 〈Γabc̄〉 = −d̂abc , (5.14)

〈ΓAPQ̄〉 = −ĉA
PQ . (5.15)

Nevertheless, they turn out to lead to rather simple expressions for the Riemann curvature

tensor at the reference point.

5.2 Curvature for Calabi-Yau models

In the general case of compactifications on a smooth Calabi-Yau manifold, the scalar man-

ifold M on which the low-energy effective theory is based is a generic Kähler manifold.

The curvature of such a manifold depends on the point. Let us then consider the special

reference point introduced above, assuming that it is dynamically selected by the super-

potential, and let us switch to the canonical parametrization. After a simple computation,

one finds the following results for the VEV of the Riemann tensor:

〈RAB̄CD̄〉 = δABδCD + δADδBC − d̂ACE d̂BDE , (5.16)

〈RPQ̄RS̄〉 =
1

3

(

δPQδRS + δPSδRQ

)

+ ĉa
PQĉa

RS + ĉa
PS ĉa

RQ , (5.17)

〈RPQ̄00̄〉 =
1

3
δPQ , 〈RPQ̄ab̄〉 =

2

3
δPQδab+(d̂abcĉ

c−ĉaĉb)PQ , 〈RPQ̄0b̄〉 =
1√
3
ĉb
PQ . (5.18)

These expressions are valid only around the point under consideration. In particular, they

get deformed if one switches on a non-vanishing VEV for the matter fields.

5.3 Curvature for orbifold models

In the special case of orbifold compactifications, the scalar manifold M on which the

low-energy effective theory is based is a symmetric Kähler manifold. The curvature of

such a manifold does not depend on the point. Let us nevertheless consider the special

reference point introduced above and switch as before to the canonical parametrization.

It is straightforward to verify that the new parametrization described in section 3.2.4

actually coincides with the canonical one. To do so, one simply needs to recall that c0 is

equal to 1/
√

3, whereas the ca are a subset of the transposed of the Gell-Mann matrices

λa. One then verifies that the expressions (3.24) and (3.25) do indeed take the canonical

forms defined by (5.9) and (5.10), with:

d̂abc = 2 tr(λ(aλbλc)) , ĉa
ij = λa

ji . (5.19)
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We see that in this case d̂abc is the symmetric invariant symbol of the group H, whereas

the ĉa
ij are the transposed of the generators of H in the representation h descending from

the 3 of SU(3) in terms of 3 × 3 matrices. In this case the transposed of the matrices ĉa
ij

possess the non-trivial property of being traceless and generating the Lie algebra of H,

whose structure constants can be written as

fabc = −2i tr(λ[aλbλc]) . (5.20)

Moreover, for all the three kinds of models one finds:

[λa, λb] = ifabcλ
c , {λa, λb} = dabcλ

c +
2

3
δab1 . (5.21)

Using these properties of the matrices λa, the components of the Riemann tensor are then

seen to simplify and can entirely be rewritten in terms of these matrices:

〈RAB̄CD̄〉 = tr(ĉAĉB ĉC ĉD) + tr(ĉAĉD ĉC ĉB) , (5.22)

〈RPQ̄RS̄〉 = ĉA
PQĉA

RS + ĉA
PS ĉA

RQ , (5.23)

〈RPQ̄CD̄〉 = (ĉD ĉC)PQ . (5.24)

These expressions are actually valid at any point of the scalar manifold, as already said.

Their simple form reflects the fact that the curvature of symmetric manifolds is completely

determined by the structure constants of their isometry group. This is explained in some

detail in appendix B, where we also summarize some basic results about the geometry of

such symmetric coset manifolds.

6 Soft scalar masses and sequestering

Let us now come to the crucial question of what are the properties of soft scalar masses

in the effective theories for heterotic string models compactified on a generic Calabi-Yau

manifold with a generic stable holomorphic vector bundle over it, in the presence of some

source of supersymmetry breaking. We shall restrict our analysis to the Kähler moduli and

matter fields, for which we know the form of the Kähler potential, and to the neighborhood

of the reference point introduced last section, by assuming that the superpotential that

induces supersymmetry breaking is such that the scalar VEVs of the moduli and matter

scalar fields are respectively generic and vanishing. We will first work out the general

structure of the soft scalar masses and then study the possibility of ensuring the vanishing

of these masses with the help of some kind of global symmetry.

6.1 Structure of scalar masses

Our starting point is the effective Kähler potential (5.1), which is characterized by the

two constants dABC and cA
PQ. Since we want to study soft terms at the particular ref-

erence point introduced in last section, it will be convenient to switch to the canonical

parametrization that we defined there. From now on, we shall for simplicity drop all the

hats on the redefined parameters and fields, and also the brackets denoting VEVs at the

reference point. It will moreover be convenient to further redefine T = T 0/
√

3 and corre-

spondingly J = J0/
√

3, and to explicitly split the matter fields ΦP into two sets Qα and
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Xi respectively coming from the two E8 factors, in such a way to match the notation that

was adopted in [23] for orbifold models. The visible sector is then identified with the fields

Qα and the hidden sector generically contains all the remaining fields Xi, T, T a, and the

Kähler potential becomes

K = − log
(

J3 − 1

2
JJaJa +

1

6
dabcJ

aJbJc
)

, (6.1)

where

J = T + T̄ − 1

3
QαQ̄α − 1

3
XiX̄i , (6.2)

Ja = T a + T̄ a − ca
αβQαQ̄β − ca

ijX
iX̄j . (6.3)

Let us now study this expression around the point under consideration. In the new

coordinates, this corresponds to:

T =
1

2
, T a = 0 , Qα = 0 , Xi = 0 . (6.4)

The metric takes a simple diagonal result, with non-vanishing entries given by

gT T̄ = 3 , gab̄ = δab , gαβ̄ = δαβ , gi̄ = δij . (6.5)

For the Christoffel connection, the non-vanishing components are given by

ΓTT T̄ = −6 , ΓTab̄ = −2 δab , ΓabT̄ = −2 δab , Γabc̄ = −dabc , (6.6)

ΓTPQ̄ = −δPQ , ΓaPQ̄ = −ca
PQ . (6.7)

The components of the Riemann tensor that are relevant for soft scalar terms, with a pair

of indices along the visible sector fields and the other pair along the hidden sector fields,

are then found to be

Rαβ̄i̄ =
1

3
δαβδij + ca

αβca
ij , (6.8)

Rαβ̄T T̄ = δαβ , Rαβ̄ab̄ =
2

3
δαβδab + (dabcc

c− cacb)αβ , Rαβ̄T b̄ = cb
αβ . (6.9)

We are now in position to compute the soft scalar masses induced for the visible-

sector fields Qα when the hidden-sector fields ΦΘ = Xi, T, T a get non-vanishing auxiliary

fields, at the reference point under consideration. This can be done by using the following

standard geometrical expression

m2
αβ̄ = −

(

Rαβ̄ΘΓ̄ − 1

3
gαβ̄gΘΓ̄

)

FΘF̄ Γ̄ . (6.10)

Using the results (6.5) and (6.8)-(6.9) for the metric and the Riemann tensor at the point

under consideration, this gives:

m2
αβ̄ = −ca

αβca
ijF

iF̄ ̄ −
(1

3
δαβδab + (dabcc

c− cacb)αβ

)

F aF̄ b̄

− ca
αβF aF̄ T + c.c. . (6.11)
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The structure of the soft scalar masses (6.11) can also be understood in terms of

ordinary superfields. To do this, one considers the kinetic function Ω = −3 e−K/3, which

is the gravitational analogue of the rigid Kähler potential. At the considered reference

point, it is sufficient to expand it at cubic order in Ja ≪ J . In this way one finds:

Ω ≃ −3J +
1

2

JaJa

J
− 1

6
dabc

JaJbJc

J2
. (6.12)

More precisely, the relevant terms are selected by decomposing the fields in scalar VEVs

plus fluctuations, so that J = 1 + J̃ and Ja = J̃a, and retaining up to cubic terms in an

expansion in powers of the fluctuations. This yields Ω = −3 + Ω̃ with:

Ω̃ ≃ −3 J̃ +
1

2
J̃aJ̃a − 1

2
J̃ J̃aJ̃a − 1

6
dabcJ̃

aJ̃bJ̃c . (6.13)

The soft scalar masses can the be computed by looking at the quadratic part of the

contribution to the scalar potential from Ω̃: Lm2 = −Ω̃|D,q2 . The various terms in (6.11)

then emerge as follows from Ω̃|D, after splitting the currents into visible-sector and hidden-

sector parts. The term −ca
αβca

ijF
iF̄ ̄ comes from J̃a

v |J̃a
h |D, the term −1/3 δαβδabF

aF̄ b̄

comes from −J̃v|J̃a
h |F J̃a

h |F̄ , the term −ca
αβF aF̄ T + c.c. comes from −J̃h|F̄ J̃a

v |J̃a
h |F + c.c.,

the term (cacb)αβF aF̄ b̄ comes from the combination of −3 J̃v|D and J̃a
v |F J̃a

h |F̄ + c.c., and

finally the term −dabcc
a
αβF bF̄ c̄ comes from −dabcJ̃

a
v |J̃b

h|F J̃c
h|F̄ .

6.2 Sequestering by global symmetries

From the form of the expression (6.11), we can deduce the following observations. In

the particular case where h1,1 = 1, the soft scalar masses vanish identically, even in the

presence of generic non-vanishing values for F T and F i. This is the well known situation

arising in sequestered models. In the general case where h1,1 > 1, one the contrary, the

soft scalar masses receive non-trivial contributions in the presence of generic non-vanishing

values of F T , F i and F a. However, these contributions involve very special combinations

of these auxiliary fields, controlled by the quantities dabc and the matrices ca
αβ and ca

ij .

One may then wonder whether it is possible to ensure that these combinations of auxiliary

fields vanish, so that the soft scalar masses would again vanish, by assuming that some

approximate global symmetry of the Kähler potential K is extended to constrain also

the superpotential W and therefore the Goldstino direction. It would also be interesting

to study what constraints are put on the Goldstino direction by the requirement that

there should exist a metastable supersymmetry breaking vacuum, generalizing the results

derived in [57] for Kähler moduli to include also matter fields, but we shall not attempt

to do this here.

From the results derived in the previous subsection, and taking into account that the

scalar VEVs of the fields T a and Xi are assumed to be negligible, we see that a simple

and general possibility to get vanishing soft scalar masses is to require that:

ca
ijF

iF̄ ̄ = 0 ⇔ Ja
h |D = 0 , (6.14)

F a = 0 ⇔ Ja
h |F = 0 . (6.15)
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These two relations clearly have the form of the two D and F type Ward identities that

would be implied by the conservation of the currents

Ja
h = T a + T̄ a − ca

ijX
iX̄j . (6.16)

Notice however that one might also view the two relations (6.14) and (6.15) as emerging

from the conservation of the following two independent currents, which each lead to only

one non-trivial Ward identity, respectively the D and F type one:

Ja
hX = −ca

ijX
iX̄j , (6.17)

Ja
hT = T a + T̄ a . (6.18)

This follows form the observation that at the considered vacuum reference point one finds

Ja
hX |D = Ja

h |D, Ja
hX |F = 0, Ja

hT |D = 0 and Ja
hT |F = Ja

h |F .

To understand which global symmetry would lead to this conserved current, let us now

recall that the general form of the conserved Nöther current superfield Ja for a globally

supersymmetric non-linear sigma model with a global symmetry δΦI = kI
aδǫ

a is given, in

the general case where the Kähler potential is allowed to undergo a Kähler transformation

parametrized by some holomorphic functions fa, by the following expression:

Ja = Im(kI
aKI − fa) . (6.19)

The D and F type Ward identities following from the conservation of this current take

the following form:

Ja|D = 0 ⇔ ∇IkaJ̄F I F̄ J̄ = 0 , (6.20)

Ja|F = 0 ⇔ k̄aIF
I = 0 (6.21)

Somewhat surprisingly, gravitational effects complicate the situation [23]. Although it is

not totally trivial to generalize the superfield expression (6.19), it is rather straightfor-

ward to show that the two component Ward identities (6.20) and (6.21) are deformed to

∇IkaJ̄F I F̄ J̄ = −2iDam
2
3/2 and kaIF

I = −iDam3/2, where Da = Im(kI
aKI − fa). This is

due to the fact that the auxiliary fields F I receive a gravitational contribution involving

derivatives of K, in addition to the usual contribution involving derivatives of W . Notice

however that at the particular reference point that we have considered, the only non-

vanishing component of KI is along the T direction, so that Kα = 0, Ki = 0 and Ka = 0.

Under the mild restriction that the considered symmetry should not act on T and should

not involve a Kähler transformation, meaning that kT
a = 0 and fa = 0, one would then get

Da = 0. Under this assumption, one can then use the rigid version of the Ward identities.

To get an idea of the situation, we may now start by naively applying the expression

(6.19) with a Kähler potential K given by the leading quadratic part of Ω, namely

K ≃ 1

2
(T a + T̄ a)(T a + T̄ a) + XiX̄i . (6.22)

To match (6.19) with the two partial currents (6.17) and (6.18), we would then respectively

need to take ki
a ≃ −ica

jiX
j for the matter fields Xi and kb

a ≃ iδb
a for the moduli fields
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T a. These Killing vectors define two sets of transformations that indeed leave the leading

Kähler potential (6.22) independently invariant:

δaX
i ≃ −ica

jiX
j , (6.23)

δaT
b ≃ iδb

a . (6.24)

The crucial question is now whether the transformations (6.23) and (6.24) are eligible to

represent an approximate global symmetry of K around the vacuum reference point under

consideration or not. A first condition is that the matrices ca should form a closed algebra

with [ca, cb] = −ifabcc
c. In this way the transformations (6.23) would form an algebra

with structure constants fabc associated to a group H, while the transformations (6.24)

automatically form an Abelian algebra associated to U(1)h
1,1−1. A second condition is that

higher order terms in K should have an unimportant effect and that it should somehow

be meaningful to impose to W a symmetry that leaves a priori invariant only the leading

quadratic part of K. One possibility is that the corrections spoil the symmetries (6.17)

and (6.18) but only in a parametrically suppressed way. It is however not clear whether

this can robustly happen. A more appealing possibility is that (6.23) and (6.24) can

be extended to exact symmetries of the full scalar manifold, thereby guaranteeing the

existence of exactly conserved currents which reduce to (6.17) and (6.18) in the vicinity

of the point under consideration. We see however from the form (6.1) of K that (6.23)

can be generalized to an exact symmetry only by extending it to act linearly also on the

T a in the adjoint representation of H and only if dabc corresponds to an invariant of the

group H, while (6.24) is always an exact symmetry, without the need of any modification

and for any values of dabc. The exact conserved currents differ from (6.17) and (6.18), on

one hand because of the extension in the symmetry action and on the other because of

the non-linearities in the Kähler potential. The Ward identities (6.20) and (6.21) are then

correspondingly deformed. However, taken together they still ensure that ca
ijF

iF̄ ̄ = 0

and F a = 0, which guarantee the vanishing of the soft scalar masses.

In addition to the general possibility that we just explored, there might also be other

options that arise in specific situations. For instance, the three terms of the second piece

in (6.11) may conspire to give a simpler structure, and one might try to exploit this in

the search for a different global symmetry that could ensure the vanishing of soft masses

by constraining the F a’s but without setting them all to zero. In such a case one would

however have to assume that F T vanishes to get rid of the last piece in (6.11). Let us

then study more specifically what are the options for general Calabi-Yau models and for

orbifold models, focusing for simplicity on models with a symmetric embedding in the

visible and hidden sectors, for which the set of matrices ca
αβ and ca

ij are identical.

6.3 Calabi-Yau models

For generic Calabi-Yau models, the intersection numbers dabc and the Hermitian matrices

ca
αβ or equivalently ca

ij are a priori generic, with a = 1, · · · , h11−1 and α, β, i, j = 1, · · · , nR.

The only thing that we know for sure from the discussion of section 2.3 is that the matrices

ca and c0 can always be written as transposed linear combinations of the n2
R matrices λA′

representing the generators of U(nR) in the fundamental representation. As remarked at

the end of section 5, a further property that could conceivably arise with some naturalness
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and generality is that these matrices might be traceless. In that case they could then be

expressed in terms of the n2
R − 1 traceless generators of SU(nR). On the other hand,

further restrictions leading to yet smaller subgroups H ′ seem less likely, and the minimal

case where the matrices ca themselves generate a group H of dimension h1,1 − 1 appears

to be very special.

Consider first the brane-mediated effect corresponding to the first term of (6.11). If

the matrices ca happen to be transposed linear combinations of the generators λa′

of some

group H ′ ⊂ U(nR), we may ensure the vanishing of this contribution by imposing the

global symmetry H ′ that acts as in (6.23) but with ca
ji replaced by λa′

ij : δa′Xi = −i λa′

ijX
j .

This is still an approximate symmetry of K and leads to the conservation of the larger

set of currents Ja′

hX = −λa′

jiX
iX̄j , which implies the stronger Ward identity λa′

jiF
iF̄ j = 0.

The maximal choice H ′ = U(nR) is available for any generic model, but has the drawback

that it would actually imply F i = 0, due to the completeness relation λa′

ijλ
a′

pq = δiqδpj.

Other non-maximal choices H ′ ⊂ U(nR) are instead available only in particular models,

but have the advantage of allowing F i 6= 0. Notice finally that such an approximate

symmetry group H ′ can in general not be extended to an exact symmetry of the full

scalar manifold. The only very special case where this is possible is when the ca generate

by themselves a minimal group H of dimension h1,1 − 1 and the intersection numbers dabc

are invariant under this group H.

Consider next the moduli-mediated effect corresponding to the remaining terms of

(6.11). In general one may ensure that these vanish by imposing the independent Abelian

global symmetry U(1)h
1,1−1 acting as in (6.24): δaT

b = i δb
a. This symmetry leads to the

conservation of the currents Ja
hT = T a + T̄ a, and the corresponding F type Ward identity

implies that F a = 0. Moreover it always corresponds to an exact symmetry of the full

scalar manifold. Notice finally that in this case it is rather unlikely that the second piece

of (6.11) could simplify dramatically enough to allow for other options.

We conclude that for smooth Calabi-Yau compactifications there generically exists

the possibility of ensuring the vanishing of soft scalar masses at points with negligible

VEVs for Xi and T a by imposing the approximate global symmetry U(nR)× U(1)h
1,1−1,

where the first factor acts linearly on the Xi and the second acts as a shift on the T a.

However, this forces both the F i and the F a to vanish, meaning that there is actually no

breaking of supersymmetry at all. Moreover, it is not a true symmetry of the full scalar

manifold. A more interesting situation may be obtained in the special cases where the

matrices ca generate some non-maximal subgroup H ⊂ U(nR). In such a situation, the

F i would be constrained but not forced to vanish, although the F a would still vanish,

and supersymmetry can be broken. Moreover, this symmetry can be extended to a true

symmetry of the full scalar manifold that still implies the vanishing of the scalar masses.

6.4 Orbifold models

For orbifold models, the intersection numbers dabc and the matrices ca
αβ or equivalently ca

ij ,

with a = 1, · · · , h1,1 − 1 and α, β, i, j = 1, 2, 3, are a respectively the symmetric invariant

symbol and the transposed tridimensional representation of the generators of a group

H ⊂ SU(3). Moreover, one can easily verify that the second term in (6.11) simplifies

to 1/3 δαβδab + (dabcc
c−cacb)αβ = (cbca)αβ − 1/3 δabδαβ, which is traceless. As a result,
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the mass matrix (6.11) is traceless and depends only on h1,1 − 1 independent parameters,

which can be taken to be ca
jim

2
ij .

Consider first the first brane-mediated term in (6.11). In this case, this can be ensured

to vanish by imposing the global symmetry H acting as in (6.23): δaX
i = −iλa

ijX
j . This

leads to the conservation of the currents Ja
hX = −λa

jiX
iX̄j , which implies the D type

Ward identity λa
jiF

iF̄ j = 0. Moreover, this approximate symmetry can be extended to an

exact symmetry of the full manifold, as explained in appendix B, by assigning a non-trivial

linear transformation law to the fields T a in the adjoint representation of H. Notice finally

that in this case one does not have the option of enlarging the symmetry to a bigger group

H ′ ⊂ U(nR), because the various generations are grouped into triplets transforming in

the fundamental representation of the gauge group enhancement factor, which happens to

coincide with H.

Consider next the remaining moduli-mediated terms in (6.11). In general, we may

again ensure the vanishing of these terms by imposing an independent Abelian global

symmetry U(1)h
1,1−1 acting as in (6.24): δaT

b = i δb
a. This leads to the conservation of

the currents Ja
hT = T a + T̄ a, which implies the F type Ward identity F a = 0. Moreover,

this symmetry is actually as before an exact symmetry of the full scalar manifold. Notice

finally that in this case the second piece of (6.11) actually simplifies to (dabc + ifabc)F
bF̄ c.

One may then wonder whether the vanishing of this moduli-mediated contribution could

perhaps be achieved together with the brane-mediated contribution with a single exact

global symmetry H, acting on both the Xi and the T a respectively in the fundamental and

in the adjoint representations. Comparing with the structure (6.20) of the Ward identity,

we however see that this does not work.

We conclude that for toroidal orbifold compactifications there always exists the possi-

bility of ensuring the vanishing of soft scalar masses at points with negligible VEVs for Xi

and T a by imposing the approximate global symmetry H×U(1)h
1,1

, where the first factor

acts linearly on the Xi and the second factor acts as a shift on the T a. In this situation,

the F i would be constrained but not forced to vanish, although the F a would still vanish,

and supersymmetry can be broken. Moreover, this symmetry can be extended to a true

symmetry of the full scalar manifold that still implies the vanishing of the scalar masses.

7 Conclusions

In this paper, we have attempted a general study of the structure of soft scalar masses in

heterotic string models obtained by compactification on a Calabi-Yau manifold X with a

stable holomorphic vector bundle V over it. We investigated in particular the possibility of

ensuring that such masses vanish at the classical level, by an effective sequestering mech-

anism based on global symmetries, and are then dominated by approximately universal

quantum effects, so that the supersymmetric flavor problem could be naturally solved.

Our main goal was to generalize a similar study previously done in [23] for the special

case of singular orbifolds, and to assess how much of the structure allowing for an interest-

ing implementation of this mechanism survives in the general case of smooth Calabi-Yau

manifolds. We focused for simplicity on the low-energy effective theory restricted to the

Kähler moduli TA and the charged matter fields Qα and Xi coming from the two E8

sectors, with the Qα defining the visible sector and the Xi and TA the hidden sector. We
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then studied the terms in the effective Kähler potential K that mix the visible matter

fields Qα with either the hidden moduli fields TA or the hidden matter fields Xi, and

the moduli-mediated and brane-mediated contributions to soft scalar masses for Qα that

these operators induce when TA and Xi acquire some non-vanishing auxiliary fields due

to a superpotential W of unspecified origin.

We were able to derive the full dependence of K on both TA and Qα,Xi, by using the

standard method of working out the reduction of the kinetic terms of the bosonic fields, but

only under an a priori strong assumption on X and V . This assumption consists in some

non-trivial properties of the harmonic 1-forms uP on X with values in V , which define the

charged matter zero-modes, relative to the harmonic (1, 1) forms ωA on X, which define

the neutral moduli zero-modes. More precisely, the assumption is that the (1, 1) forms

cPQ = i tr(uP ∧ ūQ) are harmonic and can be expanded onto the basis ωA with some

constant coefficients cA
PQ. For models where X and V are such that this is true, K can be

derived in closed form, with a moduli dependence controlled by the intersection numbers

dABC and a matter dependence controlled by the quantities cA
PQ, which are constant by

assumption. The result that we derived precisely matches the general form proposed in

[30] by an M -theory argumentation. We however believe that its validity is restricted to

the situations satisfying the above mentioned assumptions, which we argued to be needed

also from the M -theory viewpoint to be able to safely discard the effect of non-zero modes.

Unfortunately we have no clear idea on how restrictive the above assumption really is. We

however showed that compactifications based on orbifolds do automatically satisfy it, as a

consequence of the fact that the forms uP and ωA are in this case not only harmonic but

actually covariantly constant, and explained how the known result for K in these models

[24, 25] emerges from the more general expression that we derived.

Our main conclusions concerning the possibility of implementing an effective seques-

tering mechanism based on a global symmetry are the following. For simplicity we focused

on the reference point corresponding to scalar VEVs that are negligible for all the mat-

ter fields and sizable only for the moduli fields, where gravitational effects to the global

symmetry Ward identities trivialize. In the special case of the untwisted sector of singular

orbifolds, dabc and ca
PQ can be identified with the symmetric invariant symbol and the

transposed fundamental representation generators of some group H ⊂ SU(3), and the

scalar manifold is a symmetric Kähler manifold. It then turns out that there exists an

exact global symmetry H × U(1)h
1,1−1 of K which, if extended also to W , implies the

vanishing of all the contributions to soft terms, with constrained but non-trivial F i al-

though vanishing F a. In the more general case of smooth Calabi-Yau’s, on the other hand,

dabc and ca
PQ have no particular properties, other than being respectively symmetric and

Hermitian, and the scalar manifold is a generic Kähler manifold. It then turns out that

a similar mechanism can be at work only in the special case where the intersection num-

bers dabc and the matrices ca are respectively the symmetric invariant and the transposed

fundamental generators of some group H. In such a situation there exists an exact global

symmetry H × U(1)h
1,1−1 of K which, if extended also to W , implies the vanishing of all

the contributions to soft terms, with constrained but non-trivial F i although vanishing

F a.

In summary, it emerges rather clearly that an effective mechanism of sequestering based

on a global symmetry seems to be naturally possible only whenever the scalar manifold is
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a very particular space with properties that resemble those of symmetric spaces. From an

effective theory point of view, the analysis that we have done for this presumably larger

class of models is then somewhat similar in spirit to the analysis that was done in [58]

for models based on symmetric spaces. More precisely, the authors of [58] studied the

possibility of achieving degenerate boson and fermion masses in some arbitrary sector of

the model but at arbitrary points by suitably dialing the Goldstino direction, whereas here

we studied the possibility of achieving vanishing scalar masses in a visible matter sector

and at a particular reference point as a robust result of imposing a global symmetry on

the hidden matter and moduli sector to suitably constrain the Goldstino direction.
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A Calabi-Yau manifolds and vector bundles over them

In this appendix, we review some notation and results concerning compact Calabi-Yau

manifolds X and holomorphic vector bundles V over them. We will focus on those results

that concern more directly (1, 1) forms on X and 1 forms on X with values in V , since

these are the ingredients that we need to work out the results we are interested in.

Consider first a compact Calabi-Yau manifold X. The tangent and cotangent bundles

TX and T ∗X have structure group SU(3), since this is the holonomy group characterizing

this kind of manifolds. We can introduce a basis of h1,1 independent harmonic (1, 1) forms

ωA on X, which provide a basis for the cohomology group H1,1(X) ≃ H1(X,T ∗X):

{ωA} = basis of H1,1(X) . (A.1)

We next consider the dual basis of (2, 2) harmonic forms ωA and the corresponding basis

of 4-cycles γA, defined in such a way that
∫

X
ωA ∧ ωB =

∫

γA

ωB = δB
A . (A.2)

We may then define the intersection numbers dABC , which are topological invariants of

X counting how many times a triplet of 4 cycles γA, γB and γC intersect each other, as

dABC =

∫

X
ωA ∧ ωB ∧ ωC = intersections(γA, γB , γC) . (A.3)

Any harmonic (1, 1) form σ can be decomposed on the basis ωA as

σ = σAωA , (A.4)

with real components σA given by

σA =

∫

X
ωA ∧ σ . (A.5)
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The Hodge dual ∗σ is a harmonic (2, 2) form, and can therefore be decomposed onto the

basis of ωA as

∗σ = σA ωA , (A.6)

with real components σA given by

σA =

∫

X
ωA ∧ ∗σ . (A.7)

There always exist at least one harmonic (1, 1) form defining the Kähler structure:

J = Kähler form . (A.8)

In fact, it turns out that the volume form ∗1 on X can be expressed as the exterior product

of three Kähler forms J :

∗1 =
1

6
J ∧ J ∧ J . (A.9)

Integrating this expression over X one deduces that the volume V of X can be expressed

as follows:

V =
1

6

∫

X
J ∧ J ∧ J . (A.10)

As a consequence of the existence and the properties of J , the Hodge dual of any harmonic

(1, 1) form σ on X can be expressed in the following way in terms of J [26]:

∗σ = −J ∧ σ +
1

4V

{
∫

X
σ ∧ J ∧ J

}

J ∧ J . (A.11)

In particular, one has:

∗J =
1

2
J ∧ J . (A.12)

Taking the exterior product of (A.11) with any other harmonic (1, 1) form ρ and integrating

over X, one further deduces that the natural positive-definite scalar product on the space

of all the harmonic (1, 1) forms can be rewritten as:

∫

X
ρ ∧ ∗σ = −

∫

X
ρ ∧ σ ∧ J +

1

4V

∫

X
ρ ∧ J ∧ J

∫

X
σ ∧ J ∧ J . (A.13)

In particular, one finds:

∫

X
J ∧ ∗J = 3V , (A.14)

∫

X
ωA ∧ ∗J =

1

2

∫

X
ωA ∧ J ∧ J , (A.15)

∫

X
ωA ∧ ∗ωB = −

∫

X
ωA ∧ ωB ∧ J +

1

4V

∫

X
ωA ∧ J ∧ J

∫

X
ωB ∧ J ∧ J . (A.16)
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Dividing by V and using the decomposition J = JAωA, which implies that ωA = ∂J/∂JA,

these relations can also be rewritten in the following more compact form:

1

V

∫

X
J ∧ ∗J = 3 , (A.17)

1

V

∫

X
ωA ∧ ∗J =

∂

∂JA
log V , (A.18)

1

V

∫

X
ωA ∧ ∗ωB = − ∂2

∂JA∂JB
log V . (A.19)

Consider now a holomorphic vector bundle V over X, with structure group S. Out of

this we can define a whole family of vector bundles Vr associated to any representation r

of S, by promoting the transition functions of V , which are matrices in the fundamental

representation of S, to the corresponding matrices in the representation r of S. We can

then introduce a basis of nR harmonic 1-forms uP taking values in the representation r of

the Lie algebra of S, associated to the cohomology group H1(X,Vr):

{uP } = basis of H1(X,Vr) . (A.20)

By taking the exterior product of such a uP with a conjugate ūQ and tracing over the

indices of the representation r, one may construct (1, 1) forms on the Calabi-Yau manifold

X, which are however generically not harmonic:

cPQ = i tr
(

uP ∧ ūQ

)

. (A.21)

One may then define the following quantities, which are a priori not topological invariants

and depend in general on the geometry:

cA
PQ =

∫

X
ωA ∧ cPQ , (A.22)

In the particular cases where the (1, 1) forms cPQ are harmonic, the quantities cA
PQ

represent their components on the basis defined by the ωA, and one may then write

cPQ = cA
PQωA. More in general, one may write a Hodge decomposition with exact and

coexact terms parametrized by generic (1, 0) and (1, 2) forms αPQ and βPQ:

cPQ = cA
PQωA + ∂̄αPQ + ∂̄†βPQ . (A.23)

Notice that by performing general linear transformations one may choose convenient

special bases {ω̂A} and {ûP } for harmonic (1, 1) forms and Lie-algebra-valued 1 forms.

For instance, one may define canonical bases by requiring that the ω̂A and ûP should form

orthonormal sets with respect to the positive definite scalar products that can be defined

on them. More precisely, we can impose that

ω̂A :
1

V

∫

X
ω̂A ∧ ∗ω̂B = δAB , (A.24)

ûP :
1

V

∫

X
ĉPQ ∧ ∗J = δPQ . (A.25)

One may moreover orient these bases with respect to the Kähler form, in such a way that

ω̂0 = J/
√

3 and thus ∗J =
√

3V ω̂0. By using eqs. (A.14)-(A.16) it then follows that in
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such a basis the intersection numbers d̂ABC and the quantities ĉA
PQ have the following

special structure:

d̂000 =
2√
3
· V , d̂00a = 0 · V , d̂0ab = − 1√

3
δab · V , d̂abc = generic · V , (A.26)

ĉ0
PQ =

1√
3
δPQ , ĉa

PQ = generic . (A.27)

We would like to conclude this appendix by making a few comments concerning the

particular case of orbifolds, where the Calabi-Yau manifold X degenerates to the pro-

jection of a flat torus and the holomorphic vector bundle V over it is correspondingly

constructed as the projection of a trivial bundle. In that case, the whole technology sim-

plifies and most of the relations listed above map to simple identities in linear algebra.

Recall for instance that for any invertible square matrix M , the definitions of determinant,

cofactor and inverse imply that:

M−1
ij =

cofactorjiM

det M
=

∂Mji
detM

detM

= ∂Mji
log det M . (A.28)

Moreover, starting from MikM
−1
kj = δij , taking a derivative and multiplying by the inverse,

one also deduces that:

M−1
ij M−1

pq = −∂Mjp
M−1

iq = −∂Mqi
M−1

pj

= −∂Mjp
∂Mqi

log det M . (A.29)

Applying these relations to the matrix formed by the components of the metric, one then

sees that (A.28) and (A.29) essentially correspond to (A.18) and (A.19).

B Symmetric coset manifolds

In this appendix, we summarize some basic facts about the geometry of the symmetric

scalar manifolds appearing in the low energy effective theories of orbifold compactifica-

tions. These have the form M = G/H, where the isometry group G is a non-compact

Lie group and the isotropy group H is a maximal compact subgroup of it. Rather than

studying separately the three kinds of spaces (3.28), (3.29) and (3.30), we shall focus on

their basic building block, which is the following Grassmannian coset space for p = 1, 2, 3

and arbitrary integer n, which has complex dimension p(p + n):

M =
SU(p, p + n)

U(1) × SU(p) × SU(p + n)
. (B.1)

The canonical parametrization of the above space involves a rectangular p × (p + n)

matrix of complex coordinates ZiJ , with i = 1, · · · , p, s = 1, . . . , n and I = i, s. In this

parametrization, the full stability group H = U(1) × SU(p) × SU(p + n) acts linearly on

ZiJ , in the bifundamental representation (p,p + n)1. Moreover, at the reference point

ZiJ = 0 these canonical coordinates correspond to normal coordinates, with trivial metric

and vanishing Christoffel symbols. The Kähler potential reads [59]:

K = − log det
(

1 − ZZ̄
)

. (B.2)
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The parametrization that naturally emerges in the string setting is however a slightly

different one. It involves a p× p matrix of moduli coordinates T ij and a p× n matrix Φis

of matter coordinates. These are related as follows to the p × p and p × n sub-blocks Zij

and Zis of the above canonical coordinates ZiJ :

Zij =

(

1 − 2T

1 + 2T

)ij

, Zis =

(

2Φ

1 + 2T

)is

. (B.3)

In this new parametrization, the action of H is more complicated. However, the subgroup

U(1) × SU(p)diag × SU(n) ⊂ H still acts linearly on T ij, Φis, in the adjoint and bifun-

damental representations (1 ⊕ p2 − 1, 1)0 and (p,n)1. In particular, under the universal

subgroup U(p) ≃ U(1)×SU(p)diag that is independent of n, T ij and Φis transform in the

adjoint and the fundamental representations n2 and n. Moreover, at the reference point

T ij = 1/2 δij , Φis = 0 these new coordinates are only almost normal coordinates, with

trivial metric but some non-vanishing Christoffel symbols. The Kähler potential becomes,

up to a Kähler transformation [24]:

K = − log det
(

T + T̄ − ΦΦ̄
)

. (B.4)

The manifold under consideration is not only homogeneous but actually symmetric,

since the Lie algebra g of G is the sum of the Lie algebra h of H and a normal component

n associated to G/H, g = h ⊕ n, such that [h, h] ⊂ h, [h, n] ⊂ n and [n, n] ⊂ h. This

implies that the Riemann curvature tensor is covariantly constant, ∇mRi̄pq̄ = 0. As a

consequence, the metric and the curvature tensors with tangent space indices are both

completely fixed in terms of group theoretical properties of G and H. To be more precise,

let us label the generators of g with TX , those of h with T x and finally those of n with

T θ. The metric is then given by the Killing form of g restricted to n:

gθξ̄ = −Bθξ . (B.5)

The Riemann tensor is instead fixed by the structure constants ruling the part [n, n] ⊂ h

of the algebra, and reads

Rθξ̄στ̄ = f x
θξ f y

στ Bxy . (B.6)

Note that although the Killing form BXY on g is indefinite, its restriction Bθξ to h is

negative definite, so that the above metric is positive definite, and its restriction Bxy to

n is positive definite, so that the curvature is negative definite.

For the manifold at hand, it is a simple exercise to compute the components of the

metric and the Riemann tensor. To do so, it is convenient to switch to the standard two-

index labeling of the generators of unitary groups. The generators TΘΓ of U(p, p+n) satisfy

[TΘΓ, TΣ∆] = ηΓΣTΘ∆−ηΘ∆TΓΣ. The generators T ij and T IJ of the subgroups U(p) and

U(p+n) similarly satisfy [T ij , T kl] = δjkT il−δilT jk and [T IJ , TKL] = −δJKT IL+δILT JK .

The remaining generators T iJ and T Ij in the coset U(p, p + n)/(U(p) × U(p + n)), which

are associated to the fields ZiJ and their conjugate Z̄I̄, satisfy instead the following

commutation relations: [T iJ , T kL] = 0, [T Ij , T kL] = 0, [T iJ , TKl] = −δJKT il − δilT JK ,

[T Ij, T kL] = δjkT IL + δILT jk. The metric is trivial:

giI̄J̄ = δijδIJ . (B.7)
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The Riemann tensor is instead found to be given by the following simple expression, which

can also be verified by a direct computation using canonical coordinates at the reference

point as in [59]:

RiI̄J̄kKl̄L̄ = δijδklδILδJK + δilδjkδIJδKL . (B.8)

Finally, one may split the p(p+n) ”complex” coset generators T iJ into moduli generators

T im and matter generators T iα. The metric then splits into

gim̄n̄ = δijδmn , giα̄β̄ = δijδαβ , gim̄β̄ = 0 , (B.9)

and the Riemann tensor decomposes as

Rim̄n̄kpl̄q̄ = δijδklδmqδnp + δilδjkδmnδpq , (B.10)

Riα̄β̄kγl̄δ̄ = δijδklδαδδβγ + δilδjkδαβδγδ , (B.11)

Rim̄n̄kγl̄δ̄ = δilδjkδmnδγδ . (B.12)

At this point, one may apply the above results to the coset spaces (3.28), (3.29) and

(3.30) appearing in orbifold models. The resulting expressions can be rewritten more

conveniently by relabeling the generators associated to the moduli with a single index.

This can be done in parallel for all the three kinds of models by making use of the

3 × 3 matrices λA representing U(1) × H for the relevant subgroup H ⊂ SU(3). More

precisely, A = 0, · · · , 8 for H = SU(3), a = 0, · · · , 3, 8 for H = SU(2) × U(1) and

a = 0, 3, 8 for H = U(1) × U(1). Using the normalization condition tr(λAλB) = δAB and

the completeness properties applying to each of the three subsets of matrices, the metric

is found to be

gAB̄ = δAB , giα̄β̄ = δijδαβ , gA̄ = 0 , (B.13)

and the Riemann tensor reads

RAB̄CD̄ = tr(λAλBλCλD) + tr(λAλDλCλB) , (B.14)

Riα̄β̄kγl̄δ̄ = λA
ilλ

A
kjδαδδβγ + λA

ijλ
A
klδαβδγδ , (B.15)

RAB̄kγl̄δ̄ = (λBλA)klδγδ . (B.16)
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