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S upply contracts are used to coordinate the activities of the supply chain partners. In many industries, service level-
based supply contracts are commonly used. Under such a contract, a company agrees to achieve a certain service level

and to pay a financial penalty if it misses it. The service level used in our study refers to the fraction of a manufacturer’s
demand filled by the supplier. We analyze two types of service level-based supply contracts that are designed by a manu-
facturer and offered to a supplier. The first type of contract is a flat penalty contract, under which the supplier pays a
fixed penalty to the manufacturer in each period in which the contract service level is not achieved. The second type of
contract is a unit penalty contract, under which a penalty is due for each unit delivered fewer than specified by the
parameters of the contract. We show how the supplier responds to the contracts and how the contract parameters can be
chosen, such that the supply chain is coordinated. We also derive structural results about optimal values of the contract
parameters, provide numerical results, and connect our service level measures to traditional service level measures. The
results of our analyses can be used by decision makers to design optimal service level contracts and to provide them with
a solid foundation for contract negotiations.
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1. Introduction

Supply contracts govern the activities of the partners
of a supply chain. Various types of supply contracts
are used in supply chains, such as buyback and reve-
nue sharing contracts. Cachon (2003) provides an
overview of this literature. These types of contracts
can be used to coordinate supply chains and incentiv-
ize decision makers to place order quantities and hold
inventories that are optimal from a supply chain per-
spective. Inventory systems with a variety of service
level measures, such as availability or lead-time
requirements, are also addressed in research. In this
article, we study the coordination of supply chains
using a service level contract that enforces pre-speci-
fied service levels with financial penalty payments. In
this study, service level refers to the fraction of a man-
ufacturer’s demand filled by the supplier in a given
period. If the fraction of demand filled by the supplier
in a period is below a certain threshold, the supplier

pays a penalty to the manufacturer. Such contract
types are popular in practice. The objective of this
study is to provide analytical results for these service
level contracts and show how they can coordinate a
supply chain.
Under a service level contract, the supply chain

partners agree on a target service level for the sup-
plier and on a penalty payment that is due if the
target service level is not achieved. Service level con-
tracts are a common type of contract in various indus-
tries. In the consumer goods industry, for instance,
70% of the retailers measure the service levels of their
suppliers (Thonemann et al. 2003, 2005). One example
of a company that has implemented a service level
contract is dm-drogeriemarkt, one of the largest German
drugstore chains (Mostberger 2006). dm-drogeriemarkt
continuously monitors the service levels of its suppli-
ers and requires penalty payments if the service level
of a supplier drops below a pre-specified limit. In the
consumer goods industry, measuring supplier service
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levels and enforcing penalty payments are important
factors for ensuring high supply chain performance.
Behrenbeck et al. (2007), for instance, analyze the sup-
ply chain performance of 33 of the largest European
retailers and cluster the companies into two groups: a
group that achieves high supply chain performance
(“champions”) and a group that does not achieve high
supply chain performance (“followers”). They report
that 83% of the champions measure their suppliers’
service levels and 40% of the champions enforce
financial penalties if a pre-specified target is not met.
Out of the followers, only 59% measure their suppli-
ers’ service levels and only 5% of the followers
enforce financial penalties.
Service level contracts are also used in other indus-

tries. In the process industry, Fab-tek provides tita-
nium products for industrial use. Fab-tek has
implemented a service level contract and charges pen-
alty payments for late deliveries (Shapiro et al. 1992).
In the automotive industry, missing components can
result in downtimes of expensive manufacturing pro-
cesses or in expensive re-work. In this industry, many
original equipment manufacturers use service level
contracts with their first-tier suppliers to guarantee
high availability (Stratmann 2006).
One of the challenges when designing a service

level contract is agreeing on the contract parameters,
that is, the values of the target service level and the
penalty payment. In the literature, service level-based
inventory policies have been developed for a variety
of settings and have been analyzed extensively (see,
e.g., Zipkin 2000). The most commonly used service
level measures seem to be a and b service levels. The
a service level, also referred to as in-stock probability
or Type I service, measures the probability that all
demand of an order or period can be filled. The b ser-
vice level, also referred to as fill rate or Type II service,
measures the percentage of demand that can be filled.
These measures can be effectively calculated if the
planner has sufficient data for the service period. The
time length of the measuring period has a high impact
on the value of the service level (Thomas 2005).
Because we focus on designing service level contracts
for a single period measurement, we adopt period-
specific service levels that resemble the a and b ser-
vice levels. We then use these service level measures
to design contracts for two-echelon supply chains.
Our interest is to develop service level contracts that
can coordinate the supply chain.
The remainder of the article is organized as follows:

In section 2, we review the related literature. In sec-
tion 3, we develop a mathematical model of a two-
echelon supply chain that is governed by a service
level contract. In section 4, we analyze the optimal
response of the supplier. In section 5, we build on the
optimal response functions and derive contracts that

coordinate the supply chain. We also provide several
structural results to gain managerial insight into the
interdependencies of the contract parameters. At the
end of this section, we will also show that there exist
certain points where our service level contract param-
eter corresponds to the widely used a and b service
levels. These contract consistent points clearly have a
certain appeal to practitioners. In section 6, we ana-
lyze event sequences that are different from the one
used in the previous sections. In section 7, we con-
clude. All proofs are contained in the Appendix.

2. Literature Review

Contract-based incentive schemes for coordinating
supply chains with inventory-limited suppliers have
been extensively analyzed in literature. One possibil-
ity to achieve coordination is by reallocating back-
order costs in the supply chain, such that the supplier
makes a decision that is also optimal from a supply
chain perspective. For example, Lee and Whang
(1999) analyze a decentralized serial supply chain
where the upper echelon faces inventory holding
costs, but no backorder penalty costs. They develop
an optimal nonlinear incentive scheme that incentiv-
izes all echelons to choose the supply chain optimal
base stock levels. They subsidize certain echelons for
holding inventory and penalize others for shortages,
for example, by using a shortage reimbursement if the
upstream site fails to deliver. Porteus (2000) builds on
this approach and introduces responsibility tokens.
These tokens are given to the downstream echelon as
a replacement for real units whenever the order can-
not be fully filled. The issuer of the responsibility
token bears all the financial consequences of delayed
deliveries at lower echelons. Porteus shows that the
supply chain can be coordinated with his approach.
Cachon and Zipkin (1999) show how supply chain
coordination can be achieved in a serial two-echelon
supply chain with a payment scheme that depends
linearly on the backorders of the two echelons and the
retailer’s on-hand inventory.
More recently, Lutze and Özer (2008) analyzed

promised lead-time contracts in a serial supply chain.
The retailer orders from the supplier and in case the
retailer’s order request exceeds the supplier’s inven-
tory on-hand, the supplier can replenish from an
alternative source, for which the supplier then has to
pay a certain penalty. The supplier offers a menu of
promised lead times and lump sum payments
between the retailer and the supplier. With this con-
tract, the retailer can pay the supplier for a shorter
lead time and thereby reward the supplier for a better
performance. The authors also study the impact of a
retailer’s private service level (equivalently backlog-
ging cost) information to the end consumers on the
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supplier’s and retailer’s profits. Lutze and Özer (2008)
explicitly prove that the optimal solution for their sys-
tem follows an echelon base stock policy. In contrast,
we penalize the supplier for inferior performance and
take the base stock policy (which is not necessarily
optimal in our setting) as given and optimize over
base stock levels.
Using service levels in multi-echelon inventory sys-

tems has also been addressed by other authors. In a
study at a manufacturer for electronic testing equip-
ment, Cohen et al. (1999) identified the need for differ-
entiating service levels by offering two types of
service modes (normal and emergency). Wang et al.
(2002) build on this work and analyze service differ-
entiation based on demand-lead-time in a two-eche-
lon distribution system. Service level models are also
very popular in the area of call center operations
where the performance of outsourced call centers is
controlled closely to maintain a certain customer ser-
vice level. Milner and Olsen (2008) analyze a contract
setup where acceptable delay times are specified and
a failure to meet the specified delay times results in
financial penalties. As in our study, the penalties can
vary depending on the severity of underperformance.
Although the basic idea of controlling the delay of call
centers comes close to our problem of ensuring the
timely delivery of physical products, the focus on
queuing models, which model the service delivery,
prevents the direct application to our problem, in
which the supplier can build up safety stock well in
advance. Recent research of Kim et al. (2007) comes
closer to our inventory setup: Kim et al. (2007) analyze
a three-parameter contract with a fixed payment, a
reimbursement of the supplier’s cost, and a backorder
penalty cost. They show that the supply chain can be
coordinated for risk-neutral decision makers, but
focus on subsystem availability instead of service
levels, as in our research.
Service level contract models are related to backor-

der cost models used in supply chain contracting. For
instance, consider a backorder cost model. For given
base stock levels, we can compute service levels and
backorder levels, that is, a backorder level can be com-
puted for each service level. In backorder cost models,
a penalty is charged per backorder, whereas in our
service level model, a penalty is charged each time an
agreed-on service level is not reached. We believe
such service level modes are popular in practice.
Hence, we study them in this article.
Our study contributes to the contracting literature

by developing finite horizon service level measures
that represent the fraction of a manufacturer’s
demand filled by the supplier in a period and are close-
ly related to the traditional service levels. We propose
the coordination of supply chains by using such ser-
vice level measures in combination with periodic

financial penalty payments. We show that supply
chains can be coordinated with these contracts.

3. Model Description

We consider a two-echelon supply chain with one sup-
plier (indexed by s) and one manufacturer (indexed
by m). Both companies operate under periodic review
installation base stock policies with base stock levels ys
and ym, respectively. Excess demand is backordered
and backorders have to be filled before any new
demand is fulfilled. The sequence of events during a
period is the same at both companies: At the begin-
ning of a period, shipments arrive and orders are
placed. Then, backorders are filled. Finally, demands
arrive and are filled.
The physical unit inventory holding costs of the

supplier and manufacturer are hs and hm (with
hs \ hm to avoid trivial solutions) and are charged
against the inventory left over at the end of a period.
The manufacturer receives r for every unit sold and
encounters a backorder penalty cost bm for each unit
that is backordered at the end of a period. This cost is
interpreted as usual and includes losses in customer
goodwill (Porteus 1990). The supplier encounters pen-
alty costs if she cannot deliver at least a fraction s of
the manufacturer’s orders in a specific period. We
refer to s as the contract service level and require
0 < s � 1. A detailed model of two distinct penalty
payment terms will be discussed below. The lead time
of the supplier is Ls [ 0 and the lead time between
the supplier and the manufacturer is Lm [ 0.
Demand is stochastic, stationary, continuous, and

independent between periods. Demand can be arbi-
trarily distributed as long as the p.d.f. is strongly uni-
modal or logconcave. For an in-depth treatment of
logconcave distributions and their application to
inventory control, we refer the reader to Rosling
(2002). To keep our analyses concise, we will focus on
distributions with infinite non-negative support. Dis-
tributions with finite support can be treated analo-
gously, but they require the definition of feasible
regions for the parameter values of the supply con-
tracts, which makes the analysis much more complex
and adds little value.
We denote the demand over t periods by Dt and the

corresponding p.d.f. and c.d.f. by ftð�Þ and Ftð�Þ,
respectively. Note that the logconcave property
is inherited to demand convolutions (Karlin and
Proschan 1960), that is, if the demand over a single
period is logconcave, then the demand over the lead
time is also logconcave. Note that for an infinite hori-
zon, periodic review problem with backordering
under base stock policy, both the supplier and the
manufacturer observe the same demand information.
We optimize with respect to the total expected profits
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over an infinite planning horizon. Because demand is
stationary, the optimal base stock level is stationary
and the inventory level at the end of period
t þ Ls only depends on the demand over the previ-
ous Ls þ 1 periods (Silver et al. 1998). Similarly, the
available inventory at the beginning of period t þ Ls,
that is, after receiving the incoming order but before
the demand for the period t þ Ls occurs, only
depends on the demand over the previous Ls periods.
In inventory control, two commonly used service

levels are the a and b service levels. The a service level
(also known as in-stock probability or Type-I service)
specifies the fraction of periods in which demand is
completely filled. The b service level (also known as
fill rate or Type II service) specifies the expected frac-
tion of demand that is filled in a period. We can com-
pute the infinite horizon a and b service levels as
(Sobel 2004)

a ¼ FLsþ1 ySC
�

s

� � ð1Þ
and

b ¼ 1�
E D� ySC

�
s �DLs

� �þh iþ� �

l

¼

RySC�s

x¼0

FLsðxÞ � FLsþ1ðxÞ½ �dx
l

:

ð2Þ

These measures are based on an infinite horizon
analysis of the inventory systems, that is, an infinite
number of periods is used for measuring the ser-
vice level, whereas in our study we measure the
service level in each period. The lengths of the time
horizons over which the service levels are measured
matter. Thomas (2005) shows that service level mea-
sures with long and short time horizons might differ
significantly and that the expected finite horizon ser-
vice level is always greater than the infinite horizon
service level.
We evaluate the service level in every period. Our

contract service level s refers to the fraction of
demand filled by the supplier in a period. The manu-
facturer specifies the contract service level and the
supplier is expected to achieve this target service level
in each period. If the fraction of demand filled by the
supplier in a period is below s, a penalty must be paid
by the supplier to the manufacturer. We analyze two
types of supply contracts, which we refer to as flat
penalty and unit penalty contracts. Although the con-
tract service s level resembles the infinite horizon b
service level, the contract service level is based on a
one-period measurement and non-compliance leads
to an immediate cash outflow. This also can mean that
a service level s does not necessarily lead to a b of sim-

ilar level because the supplier treats s as another cost
term in her expected profit function and not as a side
constraint of her optimization problem.
Under a flat penalty contract, the supplier pays the

manufacturer a fixed amount p for each period in
which the contract service level s is not met, that is,
for each period in which the supplier does not fill at
least a fraction s of the manufacturer’s orders. The flat
penalty contract is related to the traditional a service
level because the quantity of the shortage is ignored.
Let D denote the demand of the current period and
let DLs denote the demand over the previous Ls peri-
ods. Then, the inventory available for filling demand
of the current period is ys � DLs and the flat penalty
function can be written as

Pfðys; p; s;D;DLsÞ ¼
p if sD[ ys �DLs

0 if sD� ys �DLs .

�

We require that backorders are filled before the
demand of the current period and that the supplier is
charged a penalty in each period in which all or some
backorders are not filled. This approach ensures that
the supplier does not build up backorders.
Under the unit penalty contract, the supplier is

charged a penalty of p for each unit she delivers fewer
than sD if she fills at least some of the demand of the
current period. If she fills no demands of the current
period, she is charged a penalty of p for each unit of
demand of the current period. The unit penalty con-
tract is related to the traditional b service level,
because the quantity of the shortage is taken into
account. The unit penalty function can be written as

Puðys; p; s;D;DLsÞ ¼
pD if DLs � ys
pðys �DLS � sDÞ� if DLs\ys.

�

The first case holds if no inventory is available at
the beginning of the period. The second case holds if
some inventory is available at the beginning of the
period.
The objectives of both parties are the maximization

of the individual expected profits. The supplier has
information on the demand distribution, but does not
need any information on the cost structure or the
inventory levels of the manufacturer. The manufac-
turer has information on the inventory holding cost of
the supplier hs, the unit cost c of the supplier, and the
lead times Ls and Lm. In industries where suppliers are
audited by manufacturers, such as in the automotive,
medical equipment, and electronics industries, manu-
facturers can estimate these costs quite accurately. In
industries where such first-hand estimates are not
available, manufacturers can rely on industry bench-
marks that are readily available (e.g., SCORmark 2008).
The service level contract is only offered once at

the beginning of the relationship and is not revised
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during the course of the relationship. The service level
contract specifies the wholesale price w, the type of
penalty function (flat or unit penalties), the penalty
cost factor p, and the contract service level s. The
sequence of contract-related events is similar to a
Stackelberg game: The manufacturer first determines
all contract parameters (w,p,s) and then offers the con-
tract to the supplier. The supplier accepts the contract
if her expected profit per period is above her reserva-
tion profit, P̂s, and rejects the contract otherwise. In
section 6 we analyze alternative event sequences
where the manufacturer does not determine all con-
tract parameters.
The overall objective is to maximize the supplier’s

and the manufacturer’s expected profits over an infi-
nite horizon. Clearly, this is only an approximation of
a real-world setting where the contract is valid only
for a given period of time.
Given the contract (w,p,s), the supplier decides on

the base stock level ys that maximizes her expected
profit per period, that is,

EP�
s ðw; p; sÞ ¼ max

ys
E
h
ðw� cÞD� hsðys �DLsþ1Þþ

� Pjðys; p; s;D;DLsÞ
i
;

where j = {f,u} depending on which penalty contract
is used. We assume that the wholesale price w does
not influence the holding cost factor hs. The decision
variable of the supplier is the supplier’s base stock
level ys. As discussed before, the inventory level at
the end of period t þ Ls only depends on the demand
over the previous Ls þ 1 periods. The available
inventory at the beginning of period t þ Ls, that is,
after receiving the incoming order but before the
demand for the period t þ Ls occurs, only depends
on the demand over the previous Ls periods. We
show later that the supplier’s problem is unimodal in
ys and hence a unique maximizer exists.
The manufacturer’s objective is to maximize his

expected profit per period. The decision variables are
the contract parameters and the manufacturer’s base
stock level ym, that is,

EP�
m ¼ max

ym;w;p;s
E ðr� wÞDþ Pjðys; p; s;D;DLsÞ½ �

� hmImðym; ysÞ � bmBmðym; ysÞ
s:t: EP�

s ðw; p; sÞ� P̂s;

ð3Þ

where j = {f,u} depending on which penalty con-
tract is used. We assume that the contract parame-
ters are only fixed once during the course of the
contract relationship and that the manufacturer fol-
lows a base stock policy. He only optimizes within
this class of policies and we note that a base stock
policy is not necessarily optimal.

The first two terms of the manufacturer’s objective
function model the two streams of income the manu-
facturer generates. The first income stream is the con-
tribution generated by selling products to end
customers. The second income stream is the penalty
payment the manufacturer receives from the supplier.
The third term of the objective function is the

expected inventory holding cost per period. We
assume that the holding cost hm does not depend on
the wholesale price w, for example, by pegging it to
the sales price r. Then Imðym; ysÞ denotes the average
inventory level at the end of a period. Following
Cachon (2003), it can be computed as

Imðym; ysÞ ¼ FLsþ1ðysÞ
Zym

d¼0

ðym � dÞfLmþ1ðdÞdd

þ
Z1

x¼ys

Zymþys�x

d¼0

ðym þ ys � x� dÞ

� fLmþ1ðdÞfLsþ1ðxÞdddx:
The fourth term of the objective function is the

expected backorder penalty cost per period, where
Bmðym; ysÞ denotes the average backorder level at the
end of the period. It can be computed as

Bmðym; ysÞ ¼ FLsþ1ðysÞ
Z1

d¼ym

ðd� ymÞfLmþ1ðdÞdd

þ
Z1

x¼ys

Z1

d¼ymþys�x

ðd� ðym þ ys � xÞÞ

� fLmþ1ðdÞfLsþ1ðxÞdddx:

The constraint EP�
s ðw; p; sÞ � P̂s ensures that the

supplier achieves an expected profit that is greater
than or equal to her reservation profit P̂s. It can
always be satisfied by choosing appropriate contract
parameters.

4. Supplier Response

In this section, we analyze how the one-period
expected profit function of the supplier is affected by
the type and parameters of the supply contract and
show that the expected profit function is quasi-con-
cave in the supplier’s base stock level. We also derive
the optimality conditions for both contract types.

4.1. Flat Penalty Contract
Under a flat penalty contract, the supplier incurs a
penalty charge of p in each period in which the con-
tract service level is not met, that is, in each period in
which sD [ ys � DLs . To determine the probability
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of this event, we partition the demand space into the
three areas shown in Figure 1. In area 1, the demand
over the previous Ls periods was greater than the base
stock level ys: The inventory is insufficient to fill the
backorders of previous periods, the service level is
zero, and the supplier incurs a penalty payment of p.
In area 2, all previous backorders are filled, but the
inventory is less than sD and the supplier incurs a
penalty of p. In area 3, all previous backorders are
filled, the inventory is sufficient to fill at least sD of
the demand, and no penalty is incurred. The probabil-
ity that the supplier incurs no penalty charge is

PrðsD� ys �DLsÞ ¼
Zys

x¼0

fLsðxÞF
ys � x

s

� �
dx

and the probability that the supplier incurs a pen-
alty charge is

PrðsD[ ys �DLsÞ ¼ 1�
Zys

x¼0

fLsðxÞF
ys � x

s

� �
dx:

The expected penalty cost per period is
pPrðsD [ ys � DLsÞ and the expected one-period
profit of the supplier can be computed as

EPf
sðysÞ ¼ E½ðw� cÞD� hsðys �DLsþ1Þþ�

� pPrðsD[ ys �DLsÞ

¼ ðw� cÞl� hs

Zys

x¼0

ðys � xÞfLsþ1ðxÞdx

� p 1�
Zys

x¼0

fLsðxÞF
ys � x

s

� �
dx

0
@

1
A:

ð4Þ

Figure 2 illustrates the cost terms for truncated nor-
mally distributed demand with l = 20, r = 5, Ls ¼ 2,
hs ¼ 1, p = 10, and s = 0.9. The expected cost function

is not necessarily convex in the base stock level ys.
Similarly, it can be demonstrated that the expected
profit function is not concave in ys. However, Proposi-
tion 1 states that the expected profit function EPf

sðysÞ
is quasi-concave in the base stock level ys and states
the optimality condition.

PROPOSITION 1. Under a flat penalty contract, EPf
sðysÞ

is quasi-concave in ys. The optimal base stock level satisfies

�hsFLsþ1ðysÞ þ p

s

Zys

x¼0

fLs xð Þf ys � x

s

� �
¼ 0:

4.2. Unit Penalty Contract
Under a unit penalty contract, the supplier incurs a
penalty charge of p for each unit of demand that is
backordered and that exceeds the number of units
required by the service level contract. To determine
the expected penalty per period, we use the demand
space partitioning of Figure 3. In area 3, all backorders
and demands are filled and it suffices to analyze areas
1 and 2. In area 1, the demand over the previous Ls
periods was greater than the base stock level ys: The
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inventory is insufficient to fill the backorders of the
previous periods and the supplier incurs a penalty
payment of pD. In area 2, all previous backorders are
filled, but the inventory is less than sD and the sup-
plier incurs a penalty of pðys � DLS � sDÞ�. So, the
expected penalty charge per period is

E Puðys; s;D;DLsÞ½ �

¼ p

Zys

x¼0

Z1

u¼ys�x
s

u� ys � x

s

� �
fðuÞfLsðxÞdudx

0
B@

þ
Z1

x¼ys

lfLsðxÞdx

1
CA

¼ p

Zys

x¼0

bs
ys � x

s

� �
fLsðxÞdxþ 1� FLsðysÞð Þl

0
@

1
A;

where

bsðzÞ ¼
Z1

d¼z

ðd� zÞfðdÞdd

is the expected backorder level. The expected one-
period profit function is

EPu
s ðyus Þ ¼ ðw� cÞl�hs

Zys

x¼0

ðys�xÞfLsþ1ðxÞdx

�p

Zys

x¼0

bs
ys�x

s

� �
fLsðxÞdxþ 1�FLsðysÞð Þl

0
@

1
A:

ð5Þ

Figure 4 illustrates the cost terms for truncated nor-
mally distributed demand with l = 20, r = 5, Ls ¼ 2,
hs ¼ 1, p = 1, s = 0.9. As before, the expected total
cost function is not convex in ys and the expected

profit function is not concave in ys. However, Proposi-
tion 2 states that the expected profit function EPu

s ðysÞ
is quasi-concave and states the optimality condition.

PROPOSITION 2. Under a unit penalty contract, EPu
s ðysÞ

is quasi-concave in ys. The optimal base stock level satis-
fies

�hsFLsþ1ðysÞ � p

Zys

x¼0

F ys�x
s

� �� 1
� �

s
fLsðxÞdx ¼ 0:

The following Proposition 3 provides sensitivity
results for flat and unit penalty contracts.

PROPOSITION 3. Under both contract types, the optimal
base stock level ys is increasing in the penalty charge p.
It is decreasing in the holding cost factor hs. The whole-
sale price w does not influence the optimal base stock
level, but has a direct effect on the expected one-period
profit of the supplier.

We have assumed here that the wholesale price w
does not influence the holding costs hs. It follows that
w does not have an effect on the optimal base stock
level. As we will show in sections 5.3 and 5.4, the reac-
tions of the optimal base stock level ys to changes in
the contract service level s are non-trivial, such that
they deserve a separate analysis.
We have seen how the supplier responds to flat and

unit penalty contracts. Next, we analyze how contract
parameters can be determined that coordinate the
supply chain.

5. Coordinating Contracts

Our interest is in solutions that coordinate the supply
chain, that is, in solutions that ensure that the maxi-
mum expected supply chain profit of a centralized
solution is achieved. Next, we will first characterize
the optimal centralized and decentralized solutions,
and then present coordinating flat and unit penalty
contracts.

5.1. Optimal Centralized Solution
To characterize the centralized solution, we first show
how the optimal base stock levels are determined in
the centralized decision-making case. We want to
optimize the following joint supplier and manufac-
turer problem:

EP�
s ðw; p; sÞ ¼ max

ys
E
h
ðw� cÞD� hsðys �DLsþ1Þþ

� Pjðys; p; s;D;DLsÞ
i
;

where j = {f,u} depending on which penalty con-
tract is used, and
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EP�
m ¼ max

ym;w;p;s
E
h
ðr� wÞDþ Pjðys; p; s;D;DLsÞ

i

� hmImðym; ysÞ � bmBmðym; ysÞ
s:t: EP�

s ðw; p; sÞ� P̂s:

The centralized profit function then equals

EP� ¼ EP�
s þ EP�

m

¼ E
�
ðr� cÞD� hsðys �DLsþ1Þþ

�hmImðym; ysÞ � bmBmðym; ysÞ
�

s:t: EP�
s ðw; p; sÞ� P̂s:

The penalty payments disappear in the centralized
solution, which means that the optimal solution is inde-
pendent of the chosen service level contract in a cen-
tralized system. The side constraint EP�

s ðw; p; sÞ � P̂s

does not influence the operational decision concern-
ing the base stock levels, that is, it can be satisfied by
a simple transfer payment. In order to obtain the
optimal base stock levels, we only have to consider
the profit function EP� ¼ Eððr � cÞD � hsðys �
DLs þ 1Þþ � hmImðym; ysÞ � bmBmðym; ysÞÞ. The solution
to this problem is attributed to Gallego and Özer
(2003), who were the first to show that the myopic
algorithm we are using in the following yields opti-
mal echelon base stock levels for periodic review
serial systems for both infinite and finite horizon
problems: The optimal centralized solution is charac-
terized by the echelon base stock levels yes and yem that
satisfy the manufacturer’s first-order condition

FLmþ1 yem
� � ¼ hs þ bm

hm þ hs þ bm
;

and the supplier’s first-order condition

� bm þ bm þ hsð ÞFLs yes � yem
� �þ bm þ hm þ hsð Þ

Z1

x¼yes�yem

fLs xð ÞFLMþ1 yes � x
� �

dx ¼ 0:

Starting with the manufacturer, these first-order
conditions yield the optimal echelon base stock levels.
The optimal installation base stock levels ySC

�
s and ySC

�
m

then can be derived from the optimal echelon base
stock levels by setting ySC

�
m ¼ yem and ySC

�
s ¼ yes � yem.

The corresponding expected supply chain profit per
period is denoted by EP�

SCðySC
�

m ; ySC
�

s Þ:
In our setting, the manufacturer’s objective is to

maximize his expected profit subject to a constraint
that the supplier’s expected profit per period is at
least P̂s: This implies that the maximum expected
profit of the manufacturer is

EP�
mðySC

�
m ; ySC

�
s Þ ¼ EP�

SCðySC
�

m ; ySC
�

s Þ � P̂s:

To achieve this profit, the manufacturer must use a
base stock level ym ¼ ySC

�
m and must design a contract

that (i) incentivizes the supplier to choose a base stock
level of ys ¼ ySC

�
s and (ii) results in an expected profit

per period of P̂s at the supplier, that is, the manufac-
turer is only interested in contracts with

EPsðySC�
s Þ ¼ ðw� cÞl� hs

ZySC�s

x¼0

ðySC�
s � xÞfLsþ1ðxÞdx

� E½PjðySC�
s ; s; p;D;DLsÞ�

¼ P̂s:

ð6Þ

In the next subsection we show how the contract
parameters are chosen in a decentralized supply chain.

5.2. Decentralized Solution
Under a decentralized solution, the manufacturer
chooses (w,p,s), such that the supplier is incentivized
to choose the supply chain optimal base stock level
and achieves a reservation profit of P̂s. Solving Equa-
tion (6) for the wholesale price w that satisfies the sup-
plier’s participation constraint, we obtain the optimal
wholesale price of the decentralized supply chain:

w�
mðySC

�
s ; s; pÞ ¼ cþ hs

l

ZySC�s

x¼0

ðySC�
s � xÞfLsþ1ðxÞdx

þ E½PjðySC�
s ; s; p;D;DLsÞ�

l
þ P̂s

l
:

ð7Þ

The equation shows that the supply chain optimal
wholesale price w�

mðySC
�

s ; s; pÞ is equal to the sum of unit
cost, expected unit inventory holding cost at the sup-
plier, expected unit penalty cost, plus the unit reserva-
tion profit P̂s=l: Thereby, w�

mðySC
�

s ; s; pÞ ensures that the
supplier’s reservation profit will always be achieved.
We show next that there exist an infinite number of

contracts (w,p,s) that achieve the first-best solution
and show how the parameter values of these contracts
can be computed.

5.3. Coordinating Flat Penalty Contract
For a flat penalty contract, Proposition 4 states for
which combinations of s and p the supplier chooses
the supply chain optimal base stock level.

PROPOSITION 4. Under a flat penalty contract, the sup-
plier’s optimal base stock level is equal to ySC

�
s if

pðsÞ ¼ hsFLsþ1ðySC�s Þ
1
s

RySC�s

x¼0

fLs xð Þf ySC�s � x
s

� �
dx

; 0\s� 1: ð8Þ
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For all ys and 0 < s � 1, there always exists a pen-
alty factor p(s) that leads to the optimal base stock
level if the underlying distribution function has infi-
nite non-negative support. Then, there always exists a
flat penalty contract that achieves the centralized
solution. Note that for demand distributions that have
a finite support, for instance, the Beta or Uniform dis-
tribution, we may not always find such a contract.
For a given contract service level s, we can compute

the coordinating penalty cost p(s) using Equation (8).
The wholesale price w then follows from Equation (7).
Therefore, there exist an infinite number of contracts
that coordinate the supply chain.
Note that we present a three-parameter contract to

the supplier, although a two-parameter contract
would be sufficient for coordinating the supply chain.
There are two main reasons for doing so. First, such
three-parameter contracts are often used in practice
(at the beginning of section 6, we provide details of an
example from the consumer goods industry and refer
to the Introduction for additional examples). Second,
the over-specification allows us to choose one param-
eter value freely and to determine the values of the
other two parameters, such that the supply chain is
coordinated (e.g., we use this approach below, where
we introduce contracts that are service level consis-
tent, i.e., contracts where the contract service level is
set equal to the optimal service level of the company.
The wholesale price and the penalty cost are then cho-
sen, such that the supply chain is coordinated).
Since it is well known that many contracts with two

parameters can coordinate the supply chain, we want
to explain in more detail the effect of our contract
parameters. The contract service level s and the pen-
alty charge p are jointly responsible for achieving a
certain base stock level at the supplier, whereas the
wholesale price w only ensures that the supplier earns
her minimum reservation profit. Clearly, we could
spare one parameter in our setting, for example, by
setting the contract service level s = 1, which would
give us a two-parameter coordinating contract, but
we would lose some applicability, since many con-
tracts in practice are negotiated with those three
parameters (w,p,s).
Figure 5 shows numerical results for three exam-

ples with truncated normally distributed demand
with l = 20, r = 5, hs ¼ 1; Ls ¼ 2, and Lm ¼ 4: To
analyze a variety of situations, we used inventory
holding cost and backorder penalty cost combinations
of ðhm; bmÞ ¼ fð1:7; 0:9Þ; ð55; 55Þ; ð1500; 1500Þg, result-
ing in optimal centralized solutions of ðySC�s ; ySC�m Þ ¼
fð30; 101Þ; ð50; 100Þ; ð60; 100Þg.
Figure 5 illustrates that the coordinating penalty

cost p(s) is increasing in the contract service level s if
the base stock level at the supplier is low ðySC�s ¼ 30Þ.
Similarly, p(s) is decreasing in the contract service

level s if the base stock level ySC�s is high ðySC�s ¼ 60Þ.
For an intermediate base stock level ðySC�s ¼ 50Þ, the
coordinating penalty cost p(s) is decreasing–increas-
ing in the contract service level s. This insight is
important for management because it illustrates that
the dependency between the contract service level s
and the penalty cost p is affected by the base stock
level ySC�s . In settings where the base stock level ySC�s is
low, increases in the contract service level s must go
along with increases in the penalty cost p. In settings
where the base stock level ySC�s is high, the opposite
holds. Proposition 5 states that these effects hold in
general.

PROPOSITION 5. Under a flat penalty contract, the pen-
alty cost factor p is quasi-convex in the contract service
level s. p increases in s for low base stock levels (where
the marginal penalty probability is increasing in s),
whereas p decreases in s for high base stock levels (where
the marginal penalty probability is decreasing in s).

To understand the rationale behind the impact of the
contract service level s on the coordinating penalty cost
p(s), recall that the supplier trades off marginal savings
in expected inventory holding cost against marginal
increases in expected penalty payments when decid-
ing on the base stock level ys. From Equation (4), it can
be seen that in a coordinated supply chain

hs
d

dys
Eðys �DLsþ1Þþ

				
ys¼ySC�s

¼

� p
d

dys
PrðsD[ ys �DLsÞ

				
ys¼ySC�s

:

Note that the marginal expected inventory holding
cost (left-hand side) does not depend on the contract
service level s, but that the marginal expected penalty
cost (right-hand side) does. Now consider a situation
where the marginal penalty payment probability, that is,
d=dysPrðsD [ ys � DLsÞ � 0 is increasing in s, such
as for ySC�s ¼ 30 in our numerical example. To keep
the marginal expected penalty payment constant in
such a setting, we must increase the penalty cost p if
we increase the contract service level s. In other
words, in situations in which the marginal penalty
payment probability is increasing in s, the coordinat-
ing penalty cost p(s) is increasing in the contract ser-
vice level s. Similarly, in situations in which the
marginal penalty payment probability is decreasing
in s, the coordinating penalty cost p(s) is decreasing in
contract service level s.
The question remaining is when the marginal pen-

alty payment probability decreases in s and when it
increases in s? To answer this question, we rewrite the
penalty payment probability as
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PrðsD[ ys �DLsÞ ¼ PrðDLs þ sD[ ysÞ;
which shows that the payment probability is a com-
plementary cumulative distribution function (ccdf.).
For our numerical example, this ccdf. is shown in
Figure 6 for various contract service levels s. Since
demand is logconcave distributed, the marginal pen-
alty payment probability, that is, the derivative of
the ccdf., is increasing for small base stock levels ys
and is decreasing for large ys, which explains why
the coordinating penalty cost p(s) is increasing for
small base stock levels ys and decreasing for large
base stock levels ys.
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5.4. Coordinating Unit Penalty Contract
Analogously to Proposition 4, Proposition 6 states for
which combinations of s and p the supplier chooses
the supply chain optimal base stock level under a unit
penalty contract.

PROPOSITION 6. Under a unit penalty contract, the sup-
plier’s optimal base stock level is equal to ySC

�
s if

pðsÞ ¼ hsFLsþ1ðySC�s Þ
R ySC�s

x¼0

1�F
ySC�s �x

s

� �� �
s fLsðxÞdx

; 0\s� 1: ð9Þ

Similar to the flat penalty contracts, there exists a
unit penalty contract for all contract service levels
0 < s � 1 that coordinate the supply chain, if the
underlying distribution function has infinite non-neg-
ative support.
For a given contract service level s, we can compute

the coordinating penalty cost p(s) using Equation (9).
Figure 7 shows numerical results for our three numer-
ical examples that are similar to the results of the
flat penalty contract. For a low base stock level
ðySC�s ¼ 30Þ, the coordinating penalty cost p(s) is
increasing in the contract service level s, for a medium
base stock level ðySC�s ¼ 50Þ it is decreasing–increasing,
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and for a large base stock level ðySC�s ¼ 60Þ it is
decreasing. As for the flat penalty contracts, we can
state general results on the effect of the contract ser-
vice level s on the coordinating penalty cost p(s) in
Proposition 7.

PROPOSITION 7. Under a unit penalty contract, the pen-
alty cost factor p is convex in the contract service level s.
p increases for low base stock levels (where the marginal
expected number of units short is increasing in s), whereas
p is decreasing for high base stock levels (where the mar-
ginal expected number of units short is decreasing in s).

As before, we can explain the effect of the contract
service level s on the coordinating penalty cost p(s) by
recalling that the supplier trades off marginal savings
in expected inventory holding cost against marginal
increases in expected penalty payments when decid-
ing on the base stock level ys. From Equation (5), it
can be seen that in a coordinated supply chain

hs
d

dys
Eðys�DLsþ1Þþ

				
ys¼ySC�s

¼

�p
d

dys

Zys

x¼0

bs
ys�x

s

� �
fLsðxÞdxþ 1�FLsðysÞð Þl

0
@

1
A
						
ys¼ySC�s

:

Using the same arguments as in subsection 5.3, we
see that in situations in which the marginal expected
number of units short, that is, d=dysð

R ys
x¼0 bsðys � x

s Þ
fLsðxÞdx þ ð1 � FLsðysÞÞlÞ, is increasing in the contract
service level s, the coordinating penalty cost p(s) is
increasing in s. In situations in which the marginal
expected number of units short is decreasing in s, the
coordinating penalty cost p(s) is decreasing in the con-
tract service level s. Figure 8 shows that the marginal
expected number of units short is increasing in the
contract service level s for small base stock levels ys
and is decreasing for large ys. As before, this observa-
tion explains the effect that, for a unit penalty con-

tract, the coordinating penalty cost p(s) is increasing
for small base stock levels ys and decreasing for large
base stock levels ys.

5.5. Contract Consistent Points
For both contract types, the manufacturer must
decide which combination of s and p to specify in the
contract. Since any point on the curves of Figures 5
and 7 coordinates the supply chain, the manufacturer
has infinitely many combinations to choose from.
However, there exists one point on each curve that is
particularly attractive. We refer to these points as con-
tract consistent points, because at these points the con-
tract service level is equal to the traditional a or b
service levels.
From a managerial perspective, it would be attrac-

tive to use supply contracts where the contract service
level s is equal to the traditional a or b service level,
because the supplier can then focus on achieving the
service level by using well-known methods from
inventory management, that is, by using Equations
(1) and (2).
Figure 9 shows how we can design such contracts

for our example with ySC
�

s ¼ 60, a = 50%, and
b = 82.75%. If we choose s = a = 50% and p = 22.86
for a flat penalty contract or s = b = 82.75% and
p = 1.24 for a unit penalty contract, the supply chain
is coordinated. We have shown before that such ser-
vice level consistent contracts always exist for flat and
unit penalty contracts.

6. Alternative Event Sequences

So far, we have assumed that the manufacturer offers
the supplier a contract and that the manufacturer
specifies all contract parameters, that is, specifies s, p,
and w. Our approach can be easily adapted to other
event sequences. We illustrate how the approach can
be adapted for a setting where the manufacturer spec-
ifies the service level s and the penalty payment p and
the supplier offers a wholesale price w.
This specific setup can be found, for example, in the

consumer goods industry. In this industry, retailers
often specify a service level that they expect all of
their suppliers to achieve and specify penalties for not
achieving them. The values of the contract service
level and the penalties are based on operational
issues, such as cost of an out-of-stock situation in the
store and administrative cost of handling stockouts,
and are communicated to the supplier and are not
negotiable. Various suppliers are then asked to quote
a wholesale price. Among other factors such as com-
petitors’ prices or prices they charge to other customers,
suppliers typically also take into account the profit or
contribution margin they want to achieve with their
products, which we model by using a reservation
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profit. This reservation profit is set by the supplier,
such that the minimum profitability target of the sup-
plier is met. If a reservation profit that is greater than
the minimum reservation profit is accepted by the
retailer, the supplier can set a reservation profit that is
greater than the minimum reservation profit. We do
not analyze reservation profit optimization in this
study, but consider a model where the supplier has
set her reservation profit and is interested in the
wholesale price she must charge in order to achieve it.
We model this setting by considering a situation

where themanufacturer (thedrugstore in thediscussion
above) sets the service level s and the penalty payment p
and then the supplier (consumer goodsmanufacturer in
the discussion above) determines the wholesale pricew
that allowher achieving her target reservation profit.As
before, our interest is only in solutions that coordinate
the supply chain, that is, in solutions where the con-
tract parameters ensure that the supplier and the
manufacturer use first-best inventory levels.
Under this event sequence, the manufacturer can

find s and p by computing the optimal ySC
�

s as before.
We have shown before that such a contract always

exists. Then, the supplier computes the wholesale
price w, such that she achieves her reservation profit.
We obtain the optimal wholesale price of the coordi-
nated supply chain by solving Equation (6) for the
wholesale price w:

w�
s ðySC

�
s ; s; pÞ ¼ cþ hs

l

ZySC�s

x¼0

ðySC�
s � xÞfLsþ1ðxÞdx

þ E½PjðySC�
s ; s; p;D;DLsÞ�

l
þ P̂s

l
:

ð10Þ

For our example with l = 20, r = 5, Ls ¼ 2, c = 5,
and hs ¼ 1, Figure 10 shows solutions for various
parameter value combinations for flat penalty and
unit penalty contracts. For instance, if the manufac-
turer requires a service level of s = 95% and requests
a penalty payment of p = 10, then the supplier can
achieve a reservation profit of P̂s ¼ 6 under a flat
penalty contract by charging a wholesale price
w = 5.6. Under a unit penalty contract the supplier
would charge w = 5.9.
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Various changes of the model setup can be incorpo-
rated quite easily. We can analyze a setup where the
supplier’s objective is maximizing her own profit by
determining all contract parameters s, p, and w, but at
the same time guaranteeing a reservation profit of P̂m

at the manufacturer. To analyze this situation, we can
simply replace P̂s in Equation (10) with EP�

SC � P̂m.
We can also analyze a setupwhere themanufacturer

sets the contract type, the supplier offers the parame-
ters s and p, and the manufacturer quotes a maximum
wholesale price w that he is willing to pay. To analyze
this situation, we first determine the centralized solu-
tion and find the coordinating contract parameters s
and p from Proposition 4 or 6. Then the manufacturer
can solve Equation (3) forw, such that EP�

m ¼ P̂m.
The discussion illustrates that there exists a variety

of event sequences that can be dealt with by our
approach. The approach for analyzing a certain
event sequence is essentially the same for all event
sequences: First, the Stackelberg leader computes the
first-best solution using the centralized model. Then,
the Stackelberg leader determines some or all contract
parameters, such that the expected profit of the Stac-
kelberg leader is maximized, taking into account that
all reservation profit constraints can be met. If not all
contract parameters are specified by the Stackelberg
leader, the Stackelberg follower responds to the incom-
pletely specified contract by specifying the remaining
contract parameters, such that the expected profit of
the Stackelberg follower is maximized, taking into
account that all reservation profit constraints aremet.

7. Conclusion

Service levels are commonlyused in theory andpractice
for evaluating supplier performance. In many supply
contracts, service levels are specified as well as the
consequences of not achieving them. In this study, we
have analyzed two types of such service level-based
supply contracts: flat penalty and unit penalty contracts.
We have shown that for any service level 0 < s � 1,
there exist a coordinating penalty cost p(s) and a whole-
sale price w, such that the supply chain is coordinated,
that is, the supply chain optimal solutions are chosen
by the supplier and the manufacturer. The supplier
achieves an expected profit that is equal to her reserva-
tionprofit and themanufacturermaximizes his expected
profit. We have also derived some structural properties
about coordinating contracts, such as the (quasi-)con-
vexity of the coordinatingpenalty cost p(s) in the contract
service level s, and have provided numerical results.
Finally, we have compared our service level measures
with the traditional service level measures and have
discussed alternative event sequences. The results of our
analyses can support decision makers in specifying the
parameters of service level-based supply contracts.

In line with the majority of the literature on supply
chain contracting, we have assumed that both supply
chain partners have information on all relevant
parameters. However, this might not always be the
case and some authors have started analyzing settings
with asymmetric information (see section 10 in
Cachon [2003] for an overview). In many situations,
the manufacturer might not know the exact supplier
reservation profit. If the expected profit of the sup-
plier is below the reservation profit, she will not
accept the contract. Therefore, the manufacturer has
to take this into account and his uncertainty on the
level of the reservation profit plays an important role.
One means of addressing this and other information
asymmetries could be the use of contract menus. Con-
tract menus have been used by Corbett et al. (2004)
and Cachon and Zhang (2006) to allow manufacturers
revealing their supplier’s true costs. However, analyz-
ing information asymmetry is beyond the scope of
this study and we leave it to future research.

Appendix

PROOF OF PROPOSITION 1. We want to show that
EPf

sðysÞ is quasi-concave in ys and a unique maxi-
mum y

f
s exists. Consider the derivative

dEPf
sðysÞ

dys
¼ �hsFLsþ1ðysÞ þ p

s

Zys

x¼0

fLs xð Þf ys � x

s

� �
dx:

Assume that the derivative dEPf
sðysÞ

dys
is non-negative

for 0 � ys � y
f
s. Then

�hsFLsþ1ðysÞ þ p

s

Zys

x¼0

fLs xð Þf ys � x

s

� �
dx � 0

, FLsþ1ðysÞ
1
s

R ys
x¼0 fLs xð Þf ys�x

s

� �
dx

� p

hs
:

We can rewrite the last line as

FLsþ1ðysÞ
1
s

R ys
x¼0 fLs xð Þf ys�x

s

� �
dx

¼ FLsþ1ðysÞ
1
s

R ys
x¼0 fLs xð Þf ys�x

s

� �
dx

� fLsþ1ðysÞ
fLsþ1ðysÞ

¼ FLsþ1ðysÞ
fLsþ1ðysÞ �

fLsþ1ðysÞ
1
s

R ys
x¼0 fLs xð Þf ys�x

s

� �
dx

� p

hs
:

ð11Þ

For logconcave frequency functions f(x), the fraction
FLs þ 1ðysÞ
fLs þ 1ðysÞ is non-decreasing in ys (Rosling 2002). For

the second term fLs þ 1ðysÞ
1
s

R ys

x¼0
fLs xð Þfðys � x

s Þdx, we find that it is

non-decreasing in ys, since the logconcavity of f(x)
implies monotone convolution ratios (Rosling 2002),
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that is, fnðysÞ
fmðysÞ is non-decreasing in ys for n � m with

fnðysÞ ¼ fLs þ 1ðysÞ and with fmðysÞ ¼ 1
s

R ys
x¼0 fLsðxÞ

fðys � x
s Þdx being the frequency function of the partial

convolution DLs þ s �D.
From ðgðxÞhðxÞÞ0 ¼ gðxÞh0ðxÞ þ g0ðxÞhðxÞ the LHS

of Equation (11) is non-decreasing in ys. It follows

that there exists only one positive area of dEPf
sðysÞ

dys
in

at most one subset of ys and the sign of dEPf
sðysÞ

dys

changes at most once from + to � and thus the
objective function EPf

sðysÞ is quasi-concave in ys.
Then, an optimal base stock level y

f
s is unique. Hence

it is sufficient to set the first derivative to zero. h

PROOF OF PROPOSITION 2. We want to show that
EPu

s ðysÞ is quasi-concave in ys and a unique maxi-
mum yus exists. Consider the derivative

dEPu
s ðysÞ

dys
¼ �hsFLsþ1ðysÞ

� p

Zys

x¼0

F ys�x
s

� �� 1
� �

s
fLsðxÞdx:

Assume that the derivative dEPf
sðysÞ

dys
is non-negative

for 0 � ys � yus . Then

�hsFLsþ1ðysÞ � p

Zys

x¼0

F ys�x
s

� �� 1
� �

s
fLsðxÞdx � 0

,
R ys
x¼0

1�F
ys�x
sð Þð Þ

s fLsðxÞdx
FLsþ1ðysÞ � hs

p
:

In the following, we will analyze the termR ys

x¼0
ð1�Fðys � x

s ÞÞfLs ðxÞdx
FLs þ 1ðysÞ . Reorganizing the term results in

R ys
x¼0 1� F ys�x

s

� �� �
fLsðxÞdx

FLsþ1ðysÞ

¼ FLsðysÞ �
R ys
x¼0 F

ys�x
s

� �
fLsðxÞdx

FLsþ1ðysÞ

¼ FLsðysÞ
FLsþ1ðysÞ 1�

Rys
x¼0

F ys�x
s

� �
fLsðxÞdx

FLsðysÞ

0
BBB@

1
CCCA:

We know that FLs ðysÞ
FLs þ 1ðysÞ is non-increasing in ys and

� 0. Also 1 �
R ys

x¼0
Fðys � x

s ÞfLs ðxÞdx
FLs ðysÞ

� �
is non-increasing in

ys and

R ys

x¼0
Fðys � x

s ÞfLs ðxÞdx
FLs ðysÞ � 1 (Rosling 2002). From

ðgðxÞhðxÞÞ0 ¼ gðxÞh0ðxÞ þ g0ðxÞhðxÞ the term FLs ðysÞ
FLs þ 1ðysÞ

1 �
R ys

x¼0
Fðys � x

s ÞfLs ðxÞdx
FLs ðysÞ

� �
is also non-increasing in ys

and d
dys

R ys

x¼0
ð1� Fðys � x

s ÞÞfLs ðxÞdx
FLs þ 1ðysÞ � 0. It follows thatR ys

x¼0

ð1�Fðys � x
s ÞÞ

s fLs ðxÞdx
FLs þ 1ðysÞ is non-increasing in ys. Then the

derivative is positive in at most one subset of ys and

the sign of
dEPu

s ðysÞ
dys

changes at most once from + to �
and hence the objective function is quasi-concave in
ys. Thus, an optimal base stock level yus is unique and
it is sufficient to set the first derivative to zero. h

PROOF OF PROPOSITION 3. Flat penalty contract: The
first part of the proof follows from considering the

optimality criterion FLs þ 1ðysÞ
1
s

R ys

x¼0
fLs ðxÞfðys � x

s Þdx � p
hs

from above.

For a higher penalty cost p, the base stock level ys
has to increase in order to achieve a change of signs

for dEPf
sðysÞ

dys
since FLs þ 1ðysÞ

1
s

R ys

x¼0
fLs ðxÞfðys � x

s Þdx is non-decreasing in

ys. Similarly, the base stock level ys has to decrease
for an increasing hs:

Unit penalty contract: The first part of the proof fol-
lows from considering the optimality criterionR ys

x¼0

ð1�Fðys � x
s ÞÞ

s fLs ðxÞdx
FLs þ 1ðysÞ � hs

p from above. For a higher penalty

cost p, the base stock level ys has to increase in order to

achieve a change of signs for
dEPu

s ðysÞ
dys

sinceR ys

x¼0

ð1�Fðys � x
s ÞÞ

s fLs ðxÞdx
FLs þ 1ðysÞ is non-increasing in ys. Similarly, the

base stock level ys has to decrease for an increasing
hs: h

PROOF OF PROPOSITION 4. The supplier solves

EP�
s ðysÞ ¼ max

ys
ðw�ðySC�

s ; s; pÞ � cÞl

� hs

Zys

x¼0

ðys � xÞfLsþ1ðxÞdx

� E½Pfðys; s; p;D;DLsÞ�:

Differentiation of the expected profit function with
respect to ys yields

d

dys
EPsðysÞ ¼ �hsFLsþ1ðysÞ

þ p

s

Zys

x¼0

fLs xð Þf ys � x

s

� �
dx:

ð12Þ

With Equation (8) in Equation (12) we see that
d=dysEPsðysÞ ¼ 0 for ys ¼ ySC

�
s : Since the expected

profit function is quasi-concave, this corresponds to
the optimal solution.
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PROOF OF PROPOSITION 5. The proof follows by the
unimodal property of the demand distribution. Con-
sider the derivative

d

ds
pðsÞ ¼ �

hsFLsþ1ðysÞ d
ds

1
s

R ySC�s

x¼0 fLsðxÞf ySC�s �x
s

� �
dx

� �

1
s

R ySC�s

x¼0 fLsðxÞf ySC�s �x
s

� �
dx

� �2
:

The term d
ds

1
s

R ySC�s

x¼0 fLsðxÞfðy
SC�
s � x

s

� �
dxÞ is the derivation

of the frequency function of the convolution
DLs þ s �D. From FnðxÞ � FmðxÞ with n � m and
n = m + ɛ, we can see that fnðxÞ � fmðxÞ for x � �y
with �y being the modal value of the convolution
DLs þ s �D with m ¼ Ls þ s and fnðxÞ � fmðxÞ for
x � �y. Thus, for a given ySC

�
s the sign of

d
ds ð1s

R ySC�s

x¼0 fLsðxÞfðy
SC�
s � x

s ÞdxÞ can change at most one
time from + to �, and it follows immediately that
the sign of dpðsÞ

ds can only change at most once from
� to +. This concludes our proof. h

PROOF OF PROPOSITION 6. The supplier solves

EP�
s ðysÞ ¼ max

ys
ðw�ðySC�

s ; s; pÞ � cÞl

� hs

Zys

x¼0

ðys � xÞfLsþ1ðxÞdx

� E½Puðys; s; p;D;DLsÞ�:

Differentiation of the expected profit function with
respect to ys yields

d

dys
EPsðysÞ ¼ �hsFLsþ1ðysÞ

� p

Zys

x¼0

F ys�x
s

� �� 1
� �

s
fLsðxÞdx: ð13Þ

With Equation (9) in Equation (13), we see that
d=dysEPsðysÞ ¼ 0 for ys ¼ ySC

�
s : Since the expected

profit function is quasi-concave, this corresponds to
the optimal solution. h

PROOF OF PROPOSITION 7. In the coordinated solution,
the penalty cost factor equals

pðsÞ ¼ � hsFLsþ1ðySC�s Þ
RySC�s

x¼0

F
ySC�s �x

s

� �
�1

� �
s fLsðxÞdx

; 0\s� 1:

First, we will analyze the denominator

�
ZySC�s

x¼0

F ySC�s �x
s

� �
� 1

� �
s

fLsðxÞdx:

By substitution with z ¼ ySC
�

s � x
s we get

Z0

z¼ySC�s
s

FðzÞ � 1ð ÞfLsðySC
�

s � zsÞdz

¼
ZySC�s

s

z¼0

1� FðzÞð ÞfLsðySC
�

s � zsÞdz ¼ F̂
ySC

�
s

s

� �
:

From Rosling (2002) we know that 1 � F(z) is log-
concave if f(z) is logconcave and that logconcavity of

1 � F(z) is closed under convolution. Thus, F̂ðySC
�

s

s Þ is
logconcave in

ySC
�

s

s and consequently

�F
ySC

�
s

s

� �
¼ 1

F̂ ySC
�

s

s

� �

is logconvex in
ySC

�
s

s : Now, let t(s) be the transforma-
tion function tðsÞ ¼ ySC

�
s

s . Clearly, t(s) is convex in
the contract service level s (0 < s � 1). Then

�F
ySC

�
s

s

� �
¼ �F tðsÞð Þ:

From Bagnoli and Bergstrom (2005), Theorem 7, we
know that if �F is logconvex and t is a convex func-
tion, the composition �FðtðxÞÞ is logconvex. From
Boyd and Vandenberghe (2004), we see that logcon-
vexity implies convexity. Scaling with a constant fac-
tor preserves convexity. Thus, p(s) is convex in the
contract service level s. h
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Gallego, G., Ö. Özer. 2003. Optimal replenishment policies for
multiechelon inventory problems under advance demand
information. Manuf. Serv. Oper. Manag. 5(2): 157–175.
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