
Journal of Systems Architecture 58 (2012) 61–72

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
Memory power optimization of Java-based embedded systems exploiting
garbage collection information q

Jose Manuel Velasco a,⇑, David Atienza b,a, Katzalin Olcoz a

a DACYA-Complutense University of Madrid (UCM), Avda Complutense s/n, 28040 Madrid, Spain
b Embedded Systems Laboratory-EPFL, EPFL-STI-IEL-ESL, 1015 Lausanne, Switzerland

a r t i c l e i n f o
Article history:
Received 25 August 2009
Received in revised form 22 August 2011
Accepted 18 November 2011
Available online 3 December 2011

Keywords:
Garbage collection
Java
Memory exploration
Embedded systems
1383-7621/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.sysarc.2011.11.002

q This work is partially supported by the Spanish G
TIN2008-00508, CSD00C-07-20811 and the Swiss NSF
⇑ Corresponding author.

E-mail addresses: mvelascc@fis.ucm.es (J.M. Velasco), d
katzalin@dacya.ucm.es (K. Olcoz).
a b s t r a c t

Nowadays, Java is used in all types of embedded devices. For these memory-constrained systems, the
automatic dynamic memory manager (Garbage Collector or GC) has been always a key factor in terms
of the Java Virtual Machine (JVM) performance. Moreover, in current embedded platforms, power con-
sumption is becoming as important as performance. Thus, in this paper we present an exploration, from
an energy viewpoint, of the different possibilities of memory hierarchies for high-performance embedded
systems when used by state-of-the-art GCs. This is a starting point for a better understanding of the inter-
actions between the Java applications, the memory hierarchy and the GC.

Hence, we subsequently present two techniques to reduce energy consumption on Java-based embed-
ded systems, based on exploiting GC information. The first technique uses GC execution behavior to
reduce leakage energy consumption taking advantage of the low-power mode of actual multi-banked
SDRAM memories and it is intended for generational collectors. This technique can achieve a reduction
up to 50% of SDRAM memory leakage.

The second technique involves the inclusion of a software-controlled (scratch-pad) memory that stores
GC instructions under the JVM control to reduce the active energy consumption and also improve the per-
formance of the target embedded system and it is aimed at all kind of garbage collectors. For this last
technique we have experimented with two different approaches for selecting the GC code to be stored
in the scratchpad memory: one static and one dynamic. Our experimental results show that the proposed
dynamic scratchpad management approach for GCs enables up to 63% energy consumption reduction and
25% performance improvement during the collector phase, which means, in terms of JVM execution, a
global reduction of 29% and 17% for energy and cycles, respectively.

Overall, this work outlines that the key for an efficient low-power implementation of Java Virtual
Machines for high-performance embedded systems is the synergy between the GC choice, the memory
architecture tuning, and the inclusion of power management schemes controlled by the JVM, exploiting
knowledge of the GC behavior.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

According to recent studies of the programming community
[32], Java is probably, one of the most popular programming lan-
guages in the world. We are used to the presence of Java in all kind
of servers, personal desktops and, more recently, embedded sys-
tems. In fact, nowadays, the Java Standard Platform is being used
in all types of embedded devices, ranging from routers, smart
phones, 3G telecommunication devices and gas pumps [33,28].
ll rights reserved.

overnment Research Grants
Grant No. 200021-127282.

avid.atienza@epfl.ch (D. Atienza),
One of the main reasons for this large growth is that the use of Java
in high-performance embedded systems allows developers to de-
sign new portable services, which can run in almost all available
platforms without the use of special cross-compilers to port them,
as happens with other languages (e.g., C or C++). Nevertheless, the
abstraction provided by Java creates a major issue, which is the
performance degradation of the system due to the inclusion of an
additional component, i.e., the Java Virtual Machine (JVM), to inter-
pret the native Java code and execute it onto the underlying
architecture.

In recent years, a very important research effort has been per-
formed in Java-based systems to improve performance up to the le-
vel required in new embedded devices. This research has been
mainly performed in the JVM. Much work has been focused on opti-
mizing the execution time spent in the automatic object reclamation

https://core.ac.uk/display/147975797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.sysarc.2011.11.002
mailto:mvelascc@fis.ucm.es
mailto:david.atienza@epfl.ch
mailto:katzalin@dacya.ucm.es
http://dx.doi.org/10.1016/j.sysarc.2011.11.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

62 J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72
or Garbage Collector (GC) subsystem, which is one of the main
sources of overall performance degradation of the system
[3,20,8,34]. As a result, state-of-the-art GCs (e.g., generational GCs,
incremental mark-and-sweep algorithms) have reduced their la-
tency of response and the amount of time that the system needs to
be stopped to compact the whole list of unused objects in Java-based
designs. However, the increasing need for low-power systems limits
very significantly the use of Java for new embedded devices since
GCs are usually efficient enough in performance, but very costly in
energy and power [6]. Thus, optimized (from the energy viewpoint)
automatic dynamic memory reclamation mechanisms and method-
ologies to tune them have to be proposed for a complete integration
of Java in the design of latest high-performance embedded systems,
which include tight low-power constraints for portability purposes.

In this paper we present a detailed exploration of energy versus
performance memory hierarchy trade-offs for embedded systems
in presence of a broad range of different state-of-the-art GCs, which
is the first step to define suitable memory management optimiza-
tions for energy-aware Java-based embedded systems. Next, we
propose a static and a run-time energy management approach,
which rely on two techniques to reduce the energy consumption
of the whole memory system, namely: (1) using specific GC informa-
tion for leakage energy consumption reduction and (2) using an
instruction scratchpad memory directed by the virtual machine to
store the most used methods of the GC, thus reducing the active en-
ergy consumed by the JVM. We have tried two approaches for this
last technique: the first approach uses a scratchpad memory assign-
ment at compile time to store critical code of the GC. The second ap-
proach performs an additional run-time code reallocation to
improve the static assignment of Java methods to scratch-pad mem-
ories by the JVM, adjusting at run-time the assigned methods based
on a continuous history monitoring of recent GC behavior. Our re-
sults show up to 45% leakage reduction with negligible performance
impact, as well as 50% overall energy and 30% performance improve-
ments for the GC with respect to classical cache-based JVM memory
architectures [10,3,6].

The rest of the paper is organized as follows. In Section 2 we sum-
marize related work in the area of JVM design and GC optimizations.
In Section 3 we describe the experimental setup used to investigate
the energy consumption features of the various memory hierarchies
possibilities, the representative state-of-the-art GCs used and the
considered applications. In Section 4, we present the memory hier-
archy exploration and in Section 5 and 6 the main proposals for en-
ergy optimization based on the analysis of the memory behavior of
the garbage collectors. Finally, in Section 7 we summarize the main
conclusions of this work.
2. Related work

Nowadays a wide variety of well-known techniques for unipro-
cessor GCs (e.g., reference counting, mark-sweep collection, copy-
ing GCs) are available in a general-purpose context within the
software community [15]. A substantial amount of research on
GC policies and architectural exploration has mainly focused on
performance [3,20,10]. Our work extends this research for an over-
all memory hierarchy exploration of high-performance embedded
systems.

Eeckout et al. [8] investigate the micro-architectural implications
of several virtual machines including Jikes. In their work, each vir-
tual machine has a different GC, so their results are not consistent
with respect to memory management. Similarly, Sweeney et al.
[27] conclude that GC increases the cache misses for both instruction
and data. However, they do not analyze the impact of different strat-
egies in the total energy consumed in the system as we explore in
this work. In a recent study, Hu and John [10] explore the perfor-
mance and power consumption of the overall Java virtual machine
to propose microarchitectural changes, but for much larger memo-
ries in desktop and server systems. Thus, their results are comple-
mentary to our analysis for embedded systems.

Chen et al. [6] focus on reducing the static energy consump-
tion in a multi-banked main memory by tuning the collection fre-
quency of a Mark&Sweep-based collector that shuts off memory
banks that do not hold live data. Thus, the static leakage is de-
creased by turning off the unnecessary banks. So, this approach
is suited for applications with a small memory footprint relative
to embedded system memory size. Then, a hybrid Mark&Sweep
and reference counting collector is developed by Griffin et al.
[9]. This hybrid collector reduces the number of collections com-
pared to a classical Mark&Sweep strategy and therefore the im-
pact of garbage collection, in terms of energy consumption, is
also reduced. Nevertheless, the benefit of a reference counting
collector is only limited to applications with no cyclic data
structures.

In addition, several works are based on dynamic profiling of
the behavior of data [17], instructions [13] or both [35] to choose
the scratchpad memory contents. These techniques are comple-
mentary to our strategy, which relies on the fact that garbage col-
lection is a highly predictable virtual machine phase because its
usage of methods is largely application independent. Then, closer
to this work, in [20] it is proposed a scratchpad allocation scheme
implemented inside the JVM without compiler support, but the
authors do not analyze the effects in power consumption and
do not explore different GC algorithms, as we perform in this
work. In this regard, a more complete study regarding energy
consumption is performed in [19], which proposes two imple-
mentation strategies for allocating objects that can significantly
reduce the memory system energy consumption of Java applica-
tions. The first strategy uses part of on-chip memory resources
as a local memory to achieve better performance than a cache-
only architecture. Thus, Java application objects are allocated
using an annotation-based approach to improve the memory sys-
tem energy consumption. Then, the second strategy proposes the
use of object co-location, which exploits the temporal locality al-
ready present in heap references to achieve better spatial locality
and less cache misses, with a subsequent energy consumption
reduction. The proposed object co-location approach and the
use of local memories to reduce energy consumption is comple-
mentary to our memory hierarchy exploration and GC allocation
methods. Therefore, these mechanisms can be additionally used
in combination to our proposed memory hierarchy customization
(cf. Section 6) for high-performance embedded systems.

In addition, Badea et al. [2] focused on reducing the impact of
the just-in-time virtual machine compiler. This is achieved pri-
marily through the use of superoperators, namely, new bytecodes
that combine a sequence of standard bytecodes and optimize
their combined execution. In fact, this approach is also comple-
mentary to ours as the use of superoperators could potentially
enable more virtual machine functionally to be stored on our pro-
posed scratchpad memory.

Finally, in [34] it has been recently performed an initial study
of GC behavior with respect to the memory hierarchies of embed-
ded systems and potential energy savings of software-controlled
memories with respect to cache-based systems. In this work we
extend this preliminary exploration of memory hierarchies and
GCs performance for high-performance embedded systems, as
well as quantify the benefits of using static and run-time GC code
allocation for energy optimization, controlled by the underlying
JVM. Thus, we achieve 15–20% additional energy consumption
savings by suitably selecting the most appropriate GC and JVM
methods for each phase of the high-performance embedded sys-
tem execution.

J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72 63
3. Experimental framework

In this section we first detail the simulation environment used
to obtain detailed memory energy consumption of the JVM and
performance estimation (for both the application and the collector
phase), which are based on cycle-accurate simulations of the origi-
nal Java code of the applications under study. Then, we summarize
the representative set of considered GCs in our experiments and
the set of applications used as case studies.
3.1. Java-based simulation environment for embedded systems

Our simulation environment consists of three different parts.
First, the detailed simulations of our case studies have been obtained
after modifying and instrumenting the code of Jikes Research Virtual
Machine (RVM) from the IBM Watson Research Center [11]. Jikes
RVM is a Java virtual machine designed for research. It is written
in Java and the components of the virtual machine are Java objects
[12]. Jikes is designed as a modular system to enable the possibility
of modifying extensively the source code to implement different GC
strategies and custom GCs. We have used version 2.3.2 along with
the Java Virtual memory Management Toolkit (JVMTk) [11].

The main modifications in Jikes have been performed to inte-
grate in it the Dynamic SimpleScalar framework (DSS) [21], which
is an upgrade of the well known SimpleScalar simulator [1]. DSS
enables a complete Java virtual machine simulation by supporting
dynamic compilation, threads scheduling and garbage collection. It
is based on a PowerPC ISA and has a fully functional cache simula-
tor. Therefore, as proposed in [18], we have included a cross-com-
piler to be able to run our whole Jikes-DSS system onto the 32-bit
x86-based platform available for the experiments instead of the
PowerPC-based system traditionally used for DSS.

Finally, after the simulation in our Jikes-DSS environment, en-
ergy figures are calculated with an updated version (v5.1) of the
CACTI model [31], which is a complete energy/delay/area model,
scalable to different technology nodes, for embedded SRAMs and
that includes leakage as well as active power in the different com-
ponents of the memory cells. For our results in this paper, we use
the 90 nm technology node. Regarding the energy results for the
SDRAM main memory, we also include static power values (e.g.,
bank precharging, page misses) derived from a power estimation
tool of Micron for a 16 MB mobile SDRAM [29,30].
3.2. Studied state-of-the-art GCs

In this section we describe the main differences among the
studied GCs to show how they can cover the whole state-of-the-
art spectrum of choices in current GCs. We refer to [15] for a com-
plete overview of GC techniques used in our experiments with
Jikes [11].

First, we need to distinguish between the garbage collector and
the mutator, as described in Dijkstra’s terminology [15]. During the
collector phase, the JVM is executing the garbage collection algo-
rithm (distinguishing and reclaiming garbage), while the mutator
phase refers to the JVM executing the user application along with
its remaining tasks (class loader, code interpreter, code compiler,
scheduler, I/O, etc.). We report the performance and energy results
for these two phases for all the considered GCs. In our study, all
the collectors fall into the category of GCs known as tracing stop-
the-world [15]. This implies that the running application (or muta-
tor) is paused during garbage collection to avoid inconsistencies in
the references to dynamic memory in the system. To distinguish
the live objects from garbage, the tracing strategy relies on deter-
mining which objects are not pointed to by any living object. To this
end, it needs to traverse a whole relationship graph through the
memory recursively [15]. The way of reclaiming the garbage pro-
duces the different tracing collectors of this paper. Inside this class
we study the following representative GCs for embedded devices:

– Mark-and-sweep (or MS): The allocation policy uses a set of dif-
ferent block-size free-lists. This produces both internal and
external fragmentation. Once the tracing phase has marked
the living data, the collector needs to sweep all the available
memory to find unreachable objects and reorganize the free-
lists. The sweeping of the whole heap is very costly and, to avoid
it in the Jikes virtual machine, the sweep-phase is implemented
as lazy [15]. This means that the sweep is delayed up to the allo-
cation phase. This is a classical collector implemented in several
typical embedded JVMs, such as, Kaffe [16], JamVM [24] or
Kissme [25], and even in the virtual machines of other lan-
guages as Lisp, Scheme or Ruby. It is also used as a complement
to traditional reference counting collectors [15], like in the Perl
VM or in the Python VM.

– Copying collector (SemiSpace or SS): It divides the available space
of memory in two halves, called semispaces. The objects that
are found alive are copied in the other semispace in order and
compacted. Finally, the references between the blocks and from
the root set are updated to the new semispace. Allocation can be
performed easily incrementing a pointer across the unused
semispace. Since both the new objects and the copied ones
are allocated into contiguous blocks, the memory shows little
fragmentation. By counterpart, this strategy entails other disad-
vantages that arise in the reclaiming phase. The immortal data,
during the time of an execution, are scanned and copied repeat-
edly with the consequent unproductive overhead. The available
memory is reduced to half and most of the time this space is
wasted. Thus, when there are tight memory constraints, it is
by far the worst GC. In our experiments the number of cycles
and global energy of SS are much bigger (3� more) than those
of the remaining algorithms and so we did not include this GC
in the figures.

– Generational Collectors (or GenMS and GenCopy in our experi-
ments): In this kind of GCs, the heap is divided into areas
according to the antiquity of the data. When an object is cre-
ated, it is assigned to the youngest generation, the nursery
space. As objects survive different collections they mature, that
is to say, they are copied into older generations. The frequency
with which a collection takes place is lower in older genera-
tions. In order to operate correctly, the JVM has a write-barrier
for instructions that can modify a pointer to an object. This way
the collector is able to follow the references of objects in the
mature generations on objects in the youngest generations
without collecting the mature spaces. These references are
saved in the remembered set. This task seems to entail an
important overhead and makes the difference relative to the
non-generational ones during the mutator phase (see Section
4 for more details). However, collecting generations instead of
the full heap produces a larger amount of collections of less cost
each.

We have experimented with a flexible nursery size generational
collector, which is usually known as Appel collector [15]. The gen-
erational Appel collector divides the heap into two generations:
nursery and mature. When an object is created, it is assigned to
the youngest generation, the nursery space, in which all free space
is contained. When the nursery is full, the collector copies all sur-
viving objects to the mature space, and then reduces the nursery
size by the same volume. It repeats this process until the nursery
size falls below a certain threshold, at which point it performs a full
heap collection. The collector returns the freed space to the nurs-
ery. In Jikes RVM, this threshold is fixed by default to 0.5 MB. This

64 J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72
strategy has proven to be the best regarding performance for gen-
erational GCs [34,15].

The generational collector can manage the distinct generations
with the same policy or assign to each one different strategies. The
nursery always uses copying collectors because objects that survive
a collection are always copied to the mature generation. For the ma-
ture generation we consider here two options. First, the GenCopy,
which is a generational collector with semispace copying policy in
both nursery and mature generation. The SUN Java 2 Standard Edi-
tion (J2SE) JVM by default uses a GC very similar to this one, which
employs a Mark&Compact strategy in the mature generation. Sec-
ond, the GenMS, which is a hybrid generational collector with semi-
space copying policy in the nursery and mark-and-sweep strategy in
the mature generation. The Chives Virtual Machine [15] uses a hy-
brid generational collector but with three generations instead of
only two.

– Copying collector with Mark-and-Sweep (or CopyMS in our experiments):
It is the non-generational version of the previous one. Objects
that survive a collection are managed with a mark-and-sweep
strategy and therefore they are not moved any more. Since it
is not generational it avoids the overhead instructions of the
write barriers in the mutator phase. It is the best performing
considering the number of collections, but all collections are full
heap; thus, consuming more energy per collection, as our
results show (cf. Section 4).

In Jikes, these five collectors (MS, SS, CopyMS, GenMS and Gen-
Copy) manage objects bigger than a certain threshold (by default
16 K) in a special area. The JMTK reserves for larger objects a region
of the heap, the Large Object Space (LOS). The new large objects are
allocated in a Baker’s tread-mill style [15], namely using a doubled
linked list of fixed-size blocks. Jikes also reserves space for immor-
tal data and meta data (where the references among generations
are recorded, usually known as the remembered set). These special
memory zones are also studied in our experimental results.

Finally, although we study all the previous GCs with the pur-
pose of covering the whole range of options for automatic memory
management, real-life Java-based embedded systems typically em-
ploy MS or SS since they are initially the GCs that possess less com-
plex algorithms to implement. Thus, they theoretically put less
pressure in the processing power of the final embedded system
and achieving good overall results (e.g., performance of memory
hierarchy, L1 cache behavior, etc.). We demonstrate in this work
that generational GCs achieve significantly better global results
than more classical GCs used in the JVMs proposed for embedded
systems [19,6,15].
3.3. Case studies

We have implemented the GCs presented in the previous sub-
section in the proposed experimental setup, and tested them while
running the benchmarks in the suite SPECjvm98 [26] and some
additional applications, modeling a complex memory hierarchy,
representative of latest high-performance embedded devices.
These benchmarks are launched as dynamic services and exten-
sively use dynamic data allocation. The applications considered
in our experiments are:

� Sixlegs Java PNG Decoder (javapng) [14]: it decodes PNG images.
It supports all valid bit depths (grayscale/color), interlacing, pal-
etted images, alpha channel/transparency, gamma correction,
etc. The set of images belongs to PngSuite [23] and BrokenSuite
[5]. It dynamically allocates to up to 36 MB, none of them in the
LOS.
� Java Blowfish [7]: it encrypts a text file (first 5 chapters from
Don Quixote [22]) using symmetric block cypher with a vari-
able-length key. It dynamically allocates objects in the LOS
(up to 4 MB) and uses up to 76 MB of small objects.
� Java Crypto from Bouncy Castle [4] package (JDK 1.2). It

encrypts and decrypts a text file (first 5 chapters from Don
Quixote), and allocates up to 90 MB in small objects and 2 MB
in the LOS.
� 222 mpegaudio: it is an MPEG audio decoder. The workload

consists of about 4 MB of audio data. The dynamic data is about
28 MB. This application does not allocate data in the LOS.
� 201 compress: it compresses and then uncompresses a large

file. It mainly allocates objects in the LOS (18 MB) while it uses
only 4 MB of small objects.
� 202 Jess: it is the Java version of an expert shell system using

NASA CLIPS. It is essentially a combination of if–then structures.
It allocates 48 MB (plus 4 MB in the LOS) and most objects are
short-lived.
� 209 DB: builds an in-memory data base and operates on it. The

data base is a 1 MB file, which is resident in memory. It allocates
up to 224 MB of data.
� 205 Raytrace: raytraces a scene into a memory buffer. It allo-

cates a large amount of small data (155 MB + 1 MB in the LOS)
with different lifetimes.
� 213 javac: it is the java compiler. It has the highest program

complexity and its data is a mixture of short and quasi-immor-
tal objects (35 MB + 3 MB in the LOS).
� 228 jack: it is a Java parser generator with lexical analysis. It

allocates up to 480 MB of short lived data.
� 227 mtrt: it is a dual-threaded version of raytrace. It can allo-

cate up to 355 MB of data.

The suite SPECjvm98 offers three input sets (referred as s1, s10,
s100), with different data sizes. In this study we have used the
medium input data size, represented as s10, due to the complexity
of the simulation framework. The simulations of the different
benchmarks correspond to multiple executions of each benchmark
to reach a total execution time of 10 min, which corresponds to
reaching a stationary situation for each benchmark regarding pro-
cessing and memory utilization. Furthermore, to better explore the
influence of garbage collection, the considered execution mode al-
lowed us to run a predefined number of times the different bench-
marks without forcing a memory flush between them. Finally, our
results report average figures from 10 iterations of our experimen-
tal setup in each case, where all the results were very similar (vari-
ations of less than 4%).
4. Analysis of embedded memory hierarchy influence in GC
efficiency

This section shows the application of the previously explained
experimental setup (see Section 3 for more details) to perform a
detailed study of automatic garbage collection mechanisms for
high-performance embedded systems according to their key met-
rics (i.e., energy, power and performance of the memory subsys-
tem). In our experiments, the memory architecture consists of
three different levels: an on-chip SRAM L1 memory (with sepa-
rated D-cache/I-cache), an on-chip unified SRAM L2 memory and
an off-chip SDRAM main memory, both distinguishing leakage
and dynamic power in a 90 nm technology node (Section 3). We
have run our experiments with four different L1 sizes: 8, 16, 32
and 64 K, using a block size of 32 bytes and testing associativity be-
tween 1-way and 4-ways, which are typical for high-performance
embedded systems with low-power constraints [20,6,10]. The
experiments have been repeated using different blocks replace-

J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72 65
ment policies, namely, Least Recently Used (LRU), First-In First-Out
(FIFO) and random, but only the best results (LRU policy) are
shown in the paper due to space limitations (identical trends were
observed for the other policies). The L2 size is always fixed to
256 KB, with a basic block size of 128 bytes, using a 4-way associa-
tivity, and an LRU-based replacement policy. Finally, the main
memory size is 16 MB.
4.1. Dependence of GC algorithms on the cache memory organization

Fig. 1 indicates the number of accesses of the mutator and col-
lector to the different caches, differentiating both instructions and
data accesses, and reporting the number of collections for each GC,
namely 30 for Mark&Sweep, 57 for CopyMS, 121 for GenMS and
141 for GenCopy (but only three and eight are global collections
for GenMS and GenCopy, respectively). The configuration shown
uses 32 KB for the L1 data and instruction caches, but the results
are very similar for other cache sizes. These results sweep the asso-
ciativity range from 1 to 4 ways. As this figure shows, the mutator
accesses are very similar for all the GCs, but the number of accesses
to L1 caches (for both instructions and data of the mutator and col-
lector) are always smaller in the generational collectors, i.e.,
approximately 33% less for GenMS than CopyMS. The reason is
that, although the generational GCs have a much larger amount
of collection phases, they are mainly local (i.e., covering in the
end only a small percentage of the heap), while the non-genera-
tional collectors perform complete heap collections. Then, the
number of accesses to the L2 caches decreases linearly when the
L1 size increases, but there is a more important reduction effect
in the number of accesses when the associativity of the L1 cache
increases for a certain size. Indeed, for 32 KB, comparing a direct
cache with a 4-way one, the number of L1 misses can vary up to
65% for the different configurations, while the GC algorithm does
not seem to have a large influence. This conclusion is valid for all
the tested L1 cache sizes, as a 4-way configuration achieves a
45% decrease with respect to a direct cache for 8 KB, 50% for
16 KB and 75% for 64 KB. Furthermore, L2 misses are smaller than
2% in all the cases, and L1 is the main source of power consumption
reductions in the different memory configurations.

Then, as Fig. 2 shows for 32 KB L1-caches (other L1 cache sizes
show similar trends), the number of total cycles for the execution
of the application and the virtual machine is less for generational
collectors, namely, 50% less execution time for GenMS with respect
 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

421421

N
um

be
r o

f A
cc

es
se

s

Associativity varie

Global Num

MarkSweep
30 col

CopyMS
57 col

Fig. 1. Cache memory hierarchy
to CopyMS. Besides, the number of cycles decreases significantly in
each type of GC when the associativity increases.

Similarly, Fig. 3 shows that the energy consumption (including
leakage and dynamic parts) for the different levels of the memory
hierarchy (L1, L2 and main memory), for both the mutator (mut- in
Fig. 3) and the GC (col-), is significantly smaller in generational col-
lectors than in more classic non-generational GCs. Furthermore, as
Fig. 3 also indicates, the decrease in cache misses as the associativ-
ity increases is not large enough to compensate for the larger en-
ergy per access to caches with higher associativity. Therefore, the
overall energy consumption increases more with associativity than
execution time decreases.
4.2. Exploration of energy-performance trade-offs for cache memory
configuration in GCs

The previously observed conflicting trends between energy and
performance for different memory configurations create a very
interesting design space to be explored for each type of GC. In
Fig. 4, we present the different energy and performance trade-offs
for the best collection algorithm, i.e., GenMS. In this figure, the to-
tal execution time (in seconds) is depicted against the global en-
ergy consumption of the memory (in Joules) for the twelve more
relevant L1 configurations explored, namely, L1 data and instruc-
tion caches using associativity values of 1, 2 and 4, with different
sizes of 8, 16, 32 and 64 KB.

The Pareto-optimal curve is composed of the points: 32 K size
and direct associativity (light diamond), 16 K and 2 ways (big dark
asterisk), 32 K and 2 ways (light square), 16 K and 4 ways (big dark
cross) and 32 K and 4 ways (light triangle) in Fig. 4. Similar Pareto-
optimal curves have been obtained for the other GC algorithms ex-
plored. These results indicate that the lowest L1 cache energy solu-
tion is obtained using a direct cache of 32 KB (light diamond the
figure), followed by a 2-way cache of 16 KB (big dark asterisk) and
a 2-way 32 KB (light square). Conversely, the fastest solutions are al-
ways the ones corresponding to both sizes with 4-way associativity
(big dark cross and light triangle). Furthermore, the 4-way 64 KB L1
cache (small light cross) is only slightly faster than the previous one
of 32 KB (less than 5%), but it consumes 40% more energy than the
other solutions. Thus, although theoretically it can be considered
part of the Pareto curve, it cannot be considered a good solution
for embedded systems.
421421

s from 1 way to 4 ways

ber of Accesses

GenMS
121 col

GenCopy
141 col

col-L2
col-data-L1

col-ins-L1
mut-L2

mut-data-L1
mut-ins-L1

accesses for all studied GCs.

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

421421421421

N
um

be
r o

f c
yc

le
s

Associativity varies from 1 way to 4 ways

Global Cycles

MarkSweep
30 col

CopyMS
57 col

GenMS
121 col

GenCopy
141 col

col-cycles
mut-cycles

Fig. 2. Global execution cycles for different GCs.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

421421421421

N
an

o-
jo

ul
es

Associativity varies from 1 way to 4 ways

Global Energy

MarkSweep
30 col

CopyMS

57 col

GenMS
121 col

GenCopy
141 col

col-Main-Memory
col-L2

col-data-L1
col-ins-L1

mut-Main-Memory
mut-L2

mut-data-L1
mut-ins-L1

Fig. 3. Energy breakdown for a 32 KB L1-cache.

66 J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72
5. Leakage reduction opportunities in generational GC

Once we have analyzed the design space we propose to reduce
the energy consumption figures of GCs due to leakage by taking
advantage of the knowledge of the allocation and GC behavior of
the JVM. Moreover, this energy reduction is accomplished with
negligible performance degradation (less than 2% in overall JVM
performance).
5.1. Analysis of static energy consumption

We have measured the percentage of the global consumption of
main memory due to leakage for all L1 cache sizes (8, 16, 32 and
64 KB) and associativities (1, 2 and 4). We only present the results
for the generational GCs, which have shown to be the best ones
regarding overall energy consumption in high-performance
embedded systems (cf. Section 4). For GenMS the percentage of
global energy of main memory due to leakage varies from 20% to
22% for the mutator and from 70% to 75% for the collector, and
the bigger values correspond to the bigger caches with higher asso-
ciativities. For GenCopy the figures are from 20% to 21% for the
mutator and from 46% to 51% for the collector. Table 1 depicts
the leakage figures for the 32 KB direct mapped configuration.

From these results, we can draw two conclusions. On the one
hand, the amount of static energy consumption during the collec-
tor phase is relevant, and much bigger than for the mutator phase.
So, it is worth trying to reduce it. On the other hand, the static en-
ergy depends strongly on the collector algorithm, being larger for
the GCs based on the mark and sweep strategy [15] than for the
copying collectors. The reason is twofold. First, a higher number
of global collections of GenCopy generates more memory accesses
and energy consumption. Second, copying collectors not only scan
the mature space to find live objects but also copy all of them.
Thus, in the following we study the behavior of both types of gen-
erational GCs to find opportunities for static energy reduction in
each case.
5.2. Leakage reduction analysis per type of generational GC

As explained in Section 3.2, generational GCs divide the heap in
different areas. The areas are the following ones: immortal, Large
Object Space (LOS) or objects bigger than a certain threshold, ma-

Fig. 4. Design space, including the Pareto curve points, of memory energy consumption (in Joules) versus global execution time (in seconds) for the GenMS collector.

Table 1
Summary of leakage and system energy consumption reduction for generational GCs with a main memory size of 16 MB and 8 banks.

Leakage% (of energy) Leakage reduction% (of total leakage) Final reduction%

Mutator Collector Mutator Collector Leakage Global energy

GenMS 20.7 70.1 8 22.5 10.8 2.6
GenCopy 20.4 49.5 23 69.2 42.1 11.3

J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72 67
ture and nursery. There is an additional zone, called nursery re-
serve, equal to the size of the nursery, which is kept free for allo-
cating objects that survive a garbage collection.

During minor collections only the nursery is scanned to find live
objects and copy them in the nursery reserve, which becomes part
of the mature space. Therefore, the immortal, LOS and mature
areas are not accessed during minor collections, thanks to genera-
tional write barriers (cf. Section 3.2), but they still consume static
energy. As a result, if the allocation of mature objects is contiguous,
as for GenCopy, we can put the banks holding this data in low-
power mode during minor collections, thus avoiding leakage
power consumption. On the contrary, for GenMS the mature area
is not contiguous, so only the banks holding immortal and LOS ob-
jects can be put in low power mode. In any case, we must turn on
these memory banks before the GC processes the remembered set,
so that the references in mature generations can be updated with-
out performance penalties. Overall, this predictive wake-up can be
estimated correctly based on the executed garbage collection
methods, so this phase only entails in the end between 6% and
9% of the total collection time (less than 2% in overall execution
time). As shown in Table 1, this technique reduces leakage energy
consumption during collection by 22% for GenMS and 69% for
GenCopy.

Furthermore, a similar leakage power optimization approach,
controlled by the JVM, can be applied on copy-based generational
GCs, during the mutator phase, because they allocate space for the
nursery reserve contiguously. Hence, in particular in the case of
GenCopy, while the mutator is running, no access occurs to the
main memory space reserved to copy the nursery generation and
the mature generation, which enables shutting down these mem-
ory banks. Therefore, as Table 1 depicts, 23% of leakage can be
saved during the mutator execution phase. In the case of GenMS,
this technique can be applied during the period of execution time
before the first global collection. After this first collection, the nurs-
ery reserve is no longer contiguous because it is interleaved with
mature objects. Thus, the total benefit for GenMS during the muta-
tor phase is 8%.

In Table 1 we can see a summary of energy reduction of main
memory due to leakage reduction for generational collectors using
this technique and with a 16 MB main memory size. In the first col-
umn we show the name of the generational collectors. In the sec-
ond and third column, we show the percentage of total main
memory consumption due to leakage during mutator and collector
phase. That is to say: for the GenMS collector and during the collec-
tor phase, 70.1% of the energy consumed is due to leakage loses
and only 29.9% is due to dynamic accesses. During the mutator
phase the situation is quite different: 20.7% is due to leakage and
79.3% is due to dynamic accesses. In the fourth and fifth columns,
we show the percentage of leakage reduction that can be achieved
with this technique, distinguishing between the mutator and col-
lector phase. That is to say: for the GenMS collector and during
the collector phase, this technique reduces the leakage up to a
22.5% (69.2% for GenCopy). During the mutator phase, the leakage
is reduced up to a 8% for GenMS and up to 23% for GenCopy. In the
sixth column, we can observe the final leakage reduction percent-
age, which is 10% of the total leakage for GenMS but reaches up to
42% for GenCopy. Finally, in the last column it is shown the reduc-
tion percentage in the total main memory energy consumption. So,
this technique itself can achieve a reduction up to 11.3% of the total
energy consumed in the main memory for GenCopy and up to 2.6%

68 J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72
for GenMS. In Table 2 we show the same values in the case the
main memory size is 32 MB. As we can see, the increase of main
memory size means a bigger reserved space size and a bigger ma-
ture generation size and, therefore, bigger leakage figures. This
way, it is likely that the relevance of this technique scales with fu-
ture main memory sizes.

These results show very clear opportunities for leakage power
reductions in JVM by using the knowledge of the specific GC mech-
anism used, in combination with the low-power technology fea-
tures added to the latest SDRAM memories [29] available for
high-performance embedded systems. Furthermore, these results
indicate that these leakage energy savings would be even larger
with bigger main memories, as expected to be included in forth-
coming high-performance embedded systems. In addition, they
show that Mark-and-Compact GC strategies [15], which provide
contiguous allocation of mature objects, can be beneficial in the fu-
ture to fully exploit leakage reduction in embedded systems with
larger main memories.

6. Exploiting scratchpad memories for active energy
consumption reduction in GCs

The exploration of the memory hierarchy of high-performance
embedded systems (cf. Section 4.2) has indicated that energy in-
creases with memory size and associativity more than execution
time and L1 cache misses decrease. Indeed none of the L1 configu-
rations with 64 KB was part of the Pareto curve of Fig. 4, and the 4-
way configurations with 16 and 32 KB were the most energy con-
suming points in the Pareto curve. Therefore, in this section we ex-
plore power-efficient ways of increasing performance, i.e., without
increasing cache size and associativity. One way for doing so is the
use of a software controlled scratchpad (SP) memory for JVM
instructions. We can select the JVM instructions to be included in
the SP using two different approaches, namely:

� Statically, choosing the instructions among all the JVM code,
which can lead to under-utilization of the SP memory depend-
ing on the dynamic Java application behavior.
� Dynamically, with the inherent profiling overhead, but with a

more efficient use of the SP memory.

Thus, in this paper, we explore the different trade-offs in order
to exploit the fact that garbage collection is predictable and mostly
application independent [10,8]. In particular, based on our explora-
tion of the JVM, we have observed that:

� From all the different JVM tasks: class loading, dynamic linking,
code compiling, threads scheduling, type verification, etc., and
in the context of limited memory devices, the GC has one of
the biggest percentage in both execution time and energy
consumption.
� Once the memory manager runs out of memory, and before the

garbage collection starts, the JVM must execute several man-
agement tasks. Thus, the JVM is able to anticipate the start of
a garbage collection operation several hundreds of thousands
of instructions in advance. The same situation occurs from the
moment the garbage collection finishes until the moment the
Table 2
Summary of leakage and system energy consumption reduction for generational GCs with

Leakage% (of energy) Leakage reductio

Mutator Collector Mutator

GenMS 33.8 76.1 10.5
GenCopy 31.3 60.5 38.4
application resumes its execution. As a result, there is enough
time to turn on/off a scratchpad memory (as well replacing its
content) before any new mutator or collector phase actually
start.
� The GC behavior does not depend significantly on application

profile.

Therefore, the GC code is one of the best candidates to store in a
software- controlled or SP memory. Since SP memories are smaller,
less energy consuming and faster than cache memories, this ap-
proach is feasible if the size of GC methods is small enough to fit
in a SP memory of reasonable size and we find locality phases (in
execution time or memory address regions) in the used GC meth-
ods at run-time. To this end, we have measured the code size of the
different GCs used in our experiments and found out that even
though the size of all collector methods is about 350 KB, only a
small number of them is responsible for the majority of the
instruction executed. Even in the worst case, which corresponds
to GenMS, just using 8 KB we can store the methods of 35.8% of
the accessed instructions, with 16 KB we can cover 53.8% of
instructions, with 32 KB we can reach 73.6% of instructions and
with 64 KB we can cover more than 93% of the GC instructions.
Thus, by adding up to 64 KB of scratchpad memory, the final mem-
ory hierarchy can be very power-efficient with respect to increas-
ing the cache memory size. Note that a configuration with 32 KB of
L1 for data and another 32 KB of L1 for instructions and 64 KB for
scratchpad is slightly smaller in area than a configuration with
64 KB of L1 cache [31,20], which did not result in a good energy-
performance trade-off.

The selection of methods to store in the scratchpad is defined at
compile time. Thus, when compiling the JVM, the selected methods
are mapped contiguously in the range of memory addresses that
belong to the scratchpad memory. In addition, we have also con-
sidered the option of using a SP memory to allocate the most ac-
cessed methods of the mutator phase in the JVM as well as the
GC methods, or to allocate data structures of the JVM. In this re-
gard, our experiments have indicated that the methods of the
JVM, outside the GC ones, that could exploit the SP are those re-
lated to the compilation and dynamic class loading tasks, which
consume more cycles and memory. Nonetheless, the reduced size
of the GCs methods and their higher locality and predictability
with respect to the dynamic compilation classes related to the
mutator imply that an optimal energy reduction can be achieved
by only considering allocating GC methods in scratchpad memo-
ries. Thus, we focus on the GC methods from now on.
6.1. Static SP assignment of GC methods

Our first approach is to use a SP for the most frequently used GC
methods and to store the rest of them in the L1 instruction cache.
Then, during the mutator phase the SP is switched to low-power
mode by our modified JVM. Since the content of the scratchpad
is always the same, this assignment can be statically decided, i.e.,
at design time. To this end, the most frequently used methods
(on average) are selected based on profiling of the executed bench-
marks (cf. Section 3.3).
a main memory size of 32 MB and 16 banks.

n% (of total leakage) Final reduction%

Collector Leakage Global energy

28.2 12.2 4.3
80.9 52.3 19

J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72 69
This simple static approach reduces both GC time and energy
for all L1 sizes and associativities, particularly when 64 KB of
scratchpad are added to the memory system. We only show the re-
sults of adding 64 KB of SP to the points in the Pareto-optimal
curve for GenMS of Fig. 4, as this point captures almost all the crit-
ical GC methods. For the other GC algorithms, the gains are even
larger because these GCs consume more power and execution time
as we will show.

The new figures of execution cycles and energy consumption
after adding the SP are depicted in Fig. 5, represented in a light
shade and labeled SP-64 K. Only time and energy during collection
are represented in this figure because the mutator values remain
the same. As this figure shows, the configurations with 16 KB of
L1 cache are no longer part of the Pareto curve. In fact, the config-
urations with 32 KB of L1 have the best energy-performance trade-
offs, because the GC energy is reduced between 30% and 40% and
the GC cycles are reduced between 20% and 25%. For example,
the addition of a 64 KB scratchpad to a system with 32 KB of direct
mapped L1 for instruction and data produces a 25% reduction in
the number of cycles of the collector and a 40% reduction in GC en-
ergy consumption. Since the energy consumed by GenMS with the
cache-only memory configuration is minimal for a 32 KB 1-way L1,
this 40% GC energy reduction produces almost 8% global energy
reduction. However, for the same configuration with GenCopy
(the second best GC), the 54% collector energy reduction obtained
adding a scratchpad reaches almost a 20% global energy reduction.

6.2. Dynamic SP allocation for GC methods

Although garbage collection is mostly application independent,
there are some differences in the most used methods depending on
the number of objects that survive a collection and depending on
whether the collection is minor or not. Thus, in this section we
dynamically adapt the allocated GC methods into the SP memory
according to the current run-time behavior captured by the JVM
information. Based on a compile-time analysis of the profiling of
GC methods, we have divided the GC methods into three different
categories:

� Mature: the most used methods during global collections.
� Copy: the most used methods for minor collections with many

survivors.
Fig. 5. New design space, including the new Pareto cu
� Mark: the most used methods for minor collections with few
survivors.

Then, at run-time we dynamically select the actual SP content
based on specific application behavior, as shown in the pseudo-
code of Fig. 6. As this figure indicates, the algorithm starts by pre-
paring the garbage collection (globalPrepare part), thus the JVM
needs to load a selected set of GC methods in the SP memory. To
this end, if a global collection occurs, the JVM loads the set of meth-
ods intended for the mature space (imageMature). Conversely, if
the collection is limited to the nursery space (else branch), the
JVM can choose what to load in the SP (scratchpadImage) between
two sets of methods, which have been monitored and selected in
the previous garbage collection. Finally, this first part of the execu-
tion of the algorithm indicates the JVM to record the amount of
memory used by the GC in the nursery and mature space before
the collection starts.

Once the garbage collection process has finished (globalRelease
part), in order to select the contents of the two possible sets of meth-
ods to be chosen from in the next collection, the algorithm calculates
the amount of copied memory as the difference between the mem-
ory used by the mature space after and before the garbage collection.
Then, we calculate the ratio of memory currently being used in the
mature space by dividing the amount of copied memory by the ini-
tial amount of assigned memory in the nursery before collection, and
then we increase our own internal counter to keep track of when was
the last time that we updated the list of methods to be loaded (pro-
fileCounter). Every N collections (set to five in our experiments after
multiple tests), indicated by our internal counter, the JVM obtains an
average ratio. This ratio indicates which methods to load in the SP
memory during nursery collections. In case the ratio is bigger than
a certain threshold (thresholdRatio, fixed to 20% of the copied mem-
ory with respect to the assigned memory), the JVM loads the most
used methods for minor garbage collections with many survivors
(imageCopy set). Otherwise, the JVM loads the most used methods
for minor collections with few survivors (imageMark set). At the
beginning, before the first ratio can be calculated, the algorithm indi-
cates the JVM to load the imageMark set of methods, as there are no
elements and, hence, it falls indirectly in the category with few
survivors.

In order to assess the efficiency of our proposed algorithm and
run-time SP memory loading approach we have compared it with
rve points, after including a scratchpad memory.

Fig. 6. Pseudocode algorithm for runtime selection of GC methods.

70 J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72
the possible optimum selection of methods to store in the SP during
GC, assuming a full knowledge of future application and JVM behav-
ior, i.e., as an oracle. To this end, for every benchmark we have ob-
tained the optimum set of GC methods to store in the SP by
exhaustive off-line profiling. The results obtained with this ap-
proach are labeled as Off-line in Fig. 7. We then compare them with
the static approach presented in Section 6.1, labeled as Average in
this figure, and with the run- time dynamic selection approach we
have just introduced in this section, labeled as Adaptive. The results
in Fig. 7 correspond to the lowest energy solution (L1 of 32 KB, direct
mapped) of the Pareto curve of memory configuration. The reduc-
tion in cycles is not shown because it follows a similar trend. The re-
sults for each GC algorithm are normalized to the only-cache
configuration for the same GC algorithm.

As Fig. 7 depicts, for the GenCopy GC, the proposed run-time
adaptive approach is very close to the optimum off-line oracle of fu-
Fig. 7. Comparisons of method selection algorithms for different
ture GC behavior for every size of SP (only 1% worse). In the case of
the GenMS algorithm, the adaptive approach reaches also near-opti-
mal results for the 32 and 64 KB SP memory sizes (only 3% worse
than the oracle), being worse (up to 40%) than the optimum off-line
approach for smaller SP memory sizes (8 and 16 KB). The reason is
that the garbage collection algorithm of GenMS is more complex
and includes a very variable set of methods to be selected at each
moment in time of its execution, which is much more difficult to
capture with just the average history. Nonetheless, note that a very
similar behavior degradation would occur if caches of only 8 or
16 KB are used instead of 32 KB, as considered in the baseline
embedded systems. Overall, the main conclusion is that by just add-
ing 64 KB of SP memory, it is possible to reduce by 50% the consumed
energy and by 30% the execution time for both generational GCs,
which results in a much more power-efficient way of increasing
memory than increasing cache size and associativity.
scratchpad sizes, and with a 32 KB direct-mapped L1 cache.

Table 3
Summary of final reduction achieved during collection and global execution, for both
energy and cycles, using a 64 KB scratchpad and a 32 KB L1 cache.

Collector Collection % Reduction%

Collection Global

Access Energy Cycles Energy Cycles Energy Cycles

M&S 47 33 54 52 34 17 18
CopyMS 52 46 68 63 25 29 17
GenMS 29 20 40 44 27 9 11
GenCopy 40 33 51 57 32 19 16

J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72 71
Table 3 presents summary of how the reductions during collec-
tor phase (for both energy consumption and execution cycles)
translate into global reductions for the four collectors with the
adaptive strategy. The L1 size is 32 KB, the best energy point in
the Pareto curve, and the scratchpad size is 64 KB. First, we show
the collection percentage relative to global values for access, en-
ergy consumption and cycles. Second, we show the reductions
achieved using a scratchpad memory during the collector phase
for energy and cycles. And finally, how these values translates into
global reductions. As we can see, in the case of generational collec-
tors (best suited collectors), this technique reduces global energy
consumption and global cycles about a 10% for GenMS and more
than a 15% for GenCopy.

7. Conclusions

Due to the portable nature of Java applications, new high-perfor-
mance embedded devices are now including Java in their designs as
one of the most popular implementation languages. However, new
complex dynamic embedded applications (e.g., multimedia) require
large processing requirements and imply very energy-hungry fea-
tures for latest embedded devices. Therefore, JVMs should be de-
signed trying to minimize energy consumption while preserving a
minimum level of processing power. In this paper we have shown
that the GC is a critical element in the overall amount of energy con-
sumed by the JVM. Also, we have evaluated the importance for en-
ergy consumption of the interactions between the GC choice and
the underlying memory hierarchy configuration. In particular, we
have presented a detailed energy-performance trade-off exploration
of the different possibilities of memory hierarchies for high-perfor-
mance embedded systems when used by state-of-the-art GCs. In
addition, we consider the potential benefits of including a scratch-
pad memory in the memory hierarchy of high-performance embed-
ded systems, controlled by the JVM, to store critical code of the GCs,
which optimize the energy and performance figures of the GCs up to
50% and 40%, respectively, by using a run-time adaptive approach in
comparison to classical cache-based memory architectures. Fur-
thermore, our experimental results have shown that more than
45% energy consumption reduction can be achieved in the main
memory by efficiently exploiting the low-power mode in the banks
of the latest memories. All in all, this results outline that efficient
low-power implementation of JVM can be achieved for high-perfor-
mance embedded systems by exploiting the synergy between the
specific GC algorithm used and the inclusion of power management
schemes, exploiting the hardware features of latest embedded
memories, controlled directly by the JVM.

References

[1] T. Austin, Simple scalar llc, 2004, <http://simplescalar.com/>.
[2] C. Badea, A. Nicolau, A. Veidenbaum, Impact of jvm superoperators on energy

consumption in resource-constrained embedded systems, SIGPLAN Not. 43 (7)
(2008) 23–30.
[3] S.M. Blackburn, P. Cheng, K.S. Mckinley, Myths and realities: The performance
impact of garbage collection. In: In Proceedings of the ACM Conference on
Measurement and Modeling Computer Systems, ACM Press, 2004, pp. 25–36.

[4] Bouncycastle, The bouncy castle crypto apis for java, <http://www.bouncycastle.org/
java.html>.

[5] BrokenSuite, Suite of broken png images, <http://code.google.com/p/javapng/
wiki/BrokenSuite>.

[6] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, M. Wolczko,
Tuning garbage collection for reducing memory system energy in an
embedded java environment, ACM Trans. Embedded Comput. Syst. 1 (2002)
27–55.

[7] Chilkat, Java encryption examples, <http://www.example-code.com/java/
encryption.asp>.

[8] L. Eeckhout, A. Georges, K.D. Bosschere, How java programs interact with
virtual machines at the microarchitectural level, in: Proceedings of the ACM
Con- ference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Anaheim, California, USA, ACM Press, New York, USA,
2003.

[9] P. Griffin, W. Srisa-an, J.M. Chang, An energy efficient garbage collector for java
embedded devices, in: LCTES, ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, Tools and Theory for Embedded Systems, 2005, pp. 230–
238.

[10] S. Hu, L. John, Impact of virtual execution environments on processor energy
consumption and hw adaptation. in: Proc. VEE, 2006, Ottawa, Ontario, Canada,
ACM Press, 2006.

[11] IBM. Thejikesrvm, <http://oss.software.ibm.com/developerworks/oss/
jikesrvm/>.

[12] S.M. Inc, The source for java technology, 2003, <http://java.sun.com>.
[13] A. Janapsatya, A. Ignjatovic, S. Parameswaran, A novel instruction scratchpad

memory optimization method based on concomitance metric, in: ASP-DAC,
2006, pp. 612–617.

[14] JavaPNG, Sixlegs java png decoder, <http://code.google.com/p/javapng/>.
[15] R. Jones, Garbage Collection Algorithms for Automatic Dynamic Memory

Management, fourth ed., John Wiley and Sons, 2000.
[16] Kaffe, Kaffe is a clean room implementation of the java virtual machine, 2005,

<http://www.kaffe.org/>.
[17] M. Kandemir, I. Kadayif, U. Sezer, Exploiting scratch-pad memory using pres-

burger formulas, in: ISSS ’01: Proceedings of the 14th international
symposium on Systems synthesis, New York, NY, USA, ACM, 2001, pp. 7–
12.

[18] D. Kegel, Building and testing gcc/glibc cross toolchains, 2004, <http://
www.kegel.com/crosstool/>.

[19] S. Kim, S. Tomar, N. Vijakrishnan, M. Kandemir, M. Irwin, Energy-efficient java
execution using local memory and object co-location, In: IEE Proceedings –
Computers and Digital Techniques on-line, 2004.

[20] N. Nguyen, A. Dominguez, R. Barua, Scratch-pad memory allocation without
compiler support for java applications, in: Proceedings of the 2007
international conference on Compilers, architecture, and synthesis for
embedded systems, 2007.

[21] D. T. U. of Massachusetts Amherst and the University of Texas, Dynamic simple
scalar, 2004, <http://www-ali.cs.umass.edu/DSS/index.html>.

[22] Project-Gutenberg, Don quixote by miguel de cervantes saavedra, <http://
www.gutenberg.org/etext/996>.

[23] W. Schaik, The ‘‘official’’ test-suite for png. <http://www.schaik.com/pngsuite/
>.

[24] Sourceforge, Jamvm – a compact java virtual machine, 2004, <http://jamvm
.sourceforge.net/>.

[25] Sourceforge, kissme java virtual machine, 2005, <http://kissme .sourceforge.net>.
[26] SPEC, Specjvm98 documentation, March 1999, <http://www.specbench.org/

osg/jvm98/>.
[27] P.F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, M. Hind.

Using hardware performance monitors to understand the behavior of java
application, in: USENIX 3rd Virtual Machine Research and Technology
Symposium (VM’04), 2004.

[28] D. Takahashi, Java chips make a comeback, 2001, <http://www .redh erring
.com/>.

[29] M. technologies Inc., <http://www.micron.com/>.
[30] M. technologies Inc., System-power calculator, <http://www.micron.com/>.
[31] S. Thoziyoor, J.H. Ahn, M. Monchiero, J.B. Brockman, N.P. Jouppi, A comp

rehensive memory modeling tool and its application to the design and analysis
of future memory hierarchies, in: ISCA, 2008, pp. 51–62.

[32] Tiobe, <http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html>.
[33] B. Vandette, Deploying java platform. standard edition (java se) in today’s

embedded devices, <http://developers.sun.com/learning/javaoneonline//pdf/
TS-2602.pdf?>.

[34] J.M. Velasco, D. Atienza, K. Olcoz. Exploration of memory hierarchy
configurations for efficient garbage collection on high-performance embe
dded systems. in: GLSVLSI ’09: Proceedings of the 19th ACM Great Lakes
symposium on VLSI, New York, NY, USA, ACM, 2009, pp. 3–8.

[35] M. Verma, L. Wehmeyer, P. Marwedel, Dynamic overlay of scratchpad memory
for energy minimization. in: CODES+ISSS ’04: Proceedings of the 2nd IEEE/
ACM/IFIP international conference on Hardware/software codesign and
system synthesis, New York, NY, USA, ACM, 2004, pp. 104–109.

http://simplescalar.com/
http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html
http://code.google.com/p/javapng/wiki/BrokenSuite
http://code.google.com/p/javapng/wiki/BrokenSuite
http://www.example-code.com/java/encryption.asp
http://www.example-code.com/java/encryption.asp
http://oss.software.ibm.com/developerworks/oss/jikesrvm/
http://oss.software.ibm.com/developerworks/oss/jikesrvm/
http://java.sun.com
http://code.google.com/p/javapng/
http://www.kaffe.org/
http://www.kegel.com/crosstool/
http://www.kegel.com/crosstool/
http://www-ali.cs.umass.edu/DSS/index.html
http://www.gutenberg.org/etext/996
http://www.gutenberg.org/etext/996
http://www.schaik.com/pngsuite/
http://jamvm.sourceforge.net/
http://jamvm.sourceforge.net/
http://kissme.sourceforge.net
http://www.specbench.org/osg/jvm98/
http://www.specbench.org/osg/jvm98/
http://www.redherring.com/
http://www.redherring.com/
http://www.micron.com/
http://www.micron.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://developers.sun.com/learning/javaoneonline//pdf/TS-2602.pdf?
http://developers.sun.com/learning/javaoneonline//pdf/TS-2602.pdf?

72 J.M. Velasco et al. / Journal of Systems Architecture 58 (2012) 61–72
Jose M. Velasco received a bachelor degree in Education
in 1994, a MSc in Physics in 1999, both from Complu-
tense University of Madrid (UCM), a Master degree in
Telecommunication Engineering in 2001 from the
Technical University of Madrid (UPM) and a PhD degree
in Computer Science (UCM) under the supervision of
Francisco Tirado, Katzalin Olcoz and David Atienza.
Currently, he holds a position as Assistant Professor at
the Department of Computer Architecture and System
Engineering of Complutense University of Madrid. His
research interests include automatic memory manage-
ment algorithms, hardware and software optimizations

for virtual machines, and high-performance distributed garbage collection. He has
published in several reviewed conferences from a wide range of topics as the Great
Lakes Symposium on VLSI (GLSVLSI), European Conference on Object-Oriented

Programming (ECOOP) or the International Conference on Parallel Computing
(ParCo).

Prof. David Atienza received his MSc and PhD degrees
in Computer Science from Complutense University of
Madrid (UCM), Spain, and Inter-University Micro-Elec-
tronics Center (IMEC), Belgium, in 2001 and 2005,
respectively. Currently, he is Professor and Director of
the Embedded Systems Laboratory (ESL) at EPFL, Swit-
zerland, and Adjunct Professor at the Computer Archi-
tecture and Automation Department of UCM.
Additionally, he is Scientific Counselor of long-time
research of IMEC Nederland (IMEC-NL), Holst Centre,
Eindhoven, The Netherlands. His research interests
focus on design methodologies for high-performance

embedded systems and Systems-on-Chip (SoC), including new thermal manage-
ment techniques for 2D/3D Multi-Processor SoCs, dynamic memory management
and memory hierarchy optimizations for embedded systems, novel architectures
for logic and memories in forthcoming nano-scale electronics and 3D integrated
circuits, as well as Networks-on-Chip design. In these fields, he is co-author of more
than 100 publications in prestigious journals and international conferences. He has
received a Best Paper Award at the IEEE/IFIP VLSI-SoC 2009 Conference and three
Best Paper Award Nominations at the HPCS 2010, ICCAD 2006 and DAC 2004
conferences. He is an Associate Editor of IEEE Transactions on CAD (in the area of
System-Level Design), IEEE Letters on Embedded Systems and Elsevier Integration:
The VLSI Journal. He is also an elected member of the Executive Committee of the
IEEE Council of Electronic Design Automation (CEDA) since 2008 and an elected
member of the Board of Governors of the IEEE Circuits and Systems Society (CASS)
since 2010.

Prof. Katzalin Olcoz received the MS degree in Physics
from the Complutense University of Madrid (UCM) in
1991. After that, she joined the ArTeCS group, where she
has held several research and teaching positions. She
received her Ph.D degree in the summer of 1997. Her
advisor was Dr. Francisco Tirado. Her dissertation,
Testable hardware allocation in High Level Synthesis,
deals with the automatic design of RT-level data paths
that include the hardware needed for their self-test.
Since 2000, she is an associate professor in the Depart-
ment of Computer Architecture and System Engineering
of the UCM. As a Ph.D. student she visited the German

National Center for Research in Computer Science (Bonn), in 1993, where she
worked under the supervision of Prof. Raul Camposano. She also collaborated with
Prof. Jean Francois Santucci, from University of Corsica during the years 1996-1998.

Her research interests include processor design, virtual machines and hardware and
software optimizations of dynamic memory management on multimedia applica-
tions, with special emphasis on low-power embedded systems.

	Memory power optimization of Java-based embedded systems exploiting garbage collection information
	1 Introduction
	2 Related work
	3 Experimental framework
	3.1 Java-based simulation environment for embedded systems
	3.2 Studied state-of-the-art GCs
	3.3 Case studies

	4 Analysis of embedded memory hierarchy influence in GC efficiency
	4.1 Dependence of GC algorithms on the cache memory organization
	4.2 Exploration of energy-performance trade-offs for cache memory configuration in GCs

	5 Leakage reduction opportunities in generational GC
	5.1 Analysis of static energy consumption
	5.2 Leakage reduction analysis per type of generational GC

	6 Exploiting scratchpad memories for active energy consumption reduction in GCs
	6.1 Static SP assignment of GC methods
	6.2 Dynamic SP allocation for GC methods

	7 Conclusions
	References

