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Efficient approximate scaling of spherical functions in the
Fourier domain with generalization to hyperspheres

Ivan Dokmanić, Student Member, IEEE, Davor Petrinović, Member, IEEE

Abstract—We propose a simple model for approximate scaling of
spherical functions in the Fourier domain. The proposed scaling model
is analogous to the scaling property of the classical Euclidean Fourier
transform. Spherical scaling is used for example in spherical wavelet
transform and filter banks or illumination in computer graphics. Since
the function that requires scaling is often represented in the Fourier
domain, our method is of significant interest. Furthermore, we extend
the result to higher-dimensional spheres. We show how this model follows
naturally from consideration of a hypothetical continuous spectrum.
Experiments confirm the applicability of the proposed method for several
signal classes. The proposed algorithm is compared to an existing linear
operator formulation.

Index Terms—sphere, scaling, spherical harmonics, n-sphere, hyper-
spherical harmonics

I. INTRODUCTION

In many cases it is convenient to describe a spherical function using
its Fourier coefficients, often because spherical harmonics of a given
order span a rotationally invariant subspace in the space of square
integrable functions on the unit sphere, L2(S2). Various applications
require scaling (dilating or contracting) of the function on a sphere
and if the function is represented by its Fourier coefficients, it would
be beneficial to perform the scaling directly in the Fourier domain.
See for example spherical wavelets, [1], [2], spherical filter banks,
[3], illumination in computer graphics [4] or spherical point density
estimation, [5], [6]. Spectral computation is further facilitated by the
development of fast spherical transform algorithms [7], [8] analogous
to the Euclidean fast Fourier transform.

A linear operator formulation of spectral domain scaling has been
proposed in [4]. We propose an approximate method that is very
simple in comparison to the existing methods - it involves resampling
of the spectrum, and the computational cost is equal to the cost of
the resampling step. Our method is based on a neat property that we
came across during our previous work on n-spherical convolution
and density estimation.

It is known that the functions on compact spaces such as the
sphere have a discrete Fourier transform. We propose an approximate
continuous spectrum model that mimics the scaling property of
a classical Fourier transform in the context of Euclidean signal
processing. An analogy may be drawn with the function on a circle:
it is natural to expand it in the Fourier series, but if we regard the
circle as an interval, we may use the Fourier transform as well.

We derive the scaling model by studying the behavior of a
rectangular (indicator) function at the north pole, and subsequently
show how it can be used to model arbitrary axisymmetric and
separable nonaxisymmetric functions. By axisymmetric functions we
refer (somewhat imprecisely) to functions that depend only on the
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colatitude θ. This restriction simplifies the derivation of the scaling
model. We demonstrate the applicability of the derived model to
separable nonaxisymmetric functions in Section V. The derived result
is strengthened by the fact that it has a straightforward higher-
dimensional generalization (i.e. generalization to functions that live
on an n-sphere).

II. MODEL

The classical Fourier transform of a scaled function on the real
line f(ax) is |a|−1F (ω/a) where F (ω) =

∫
f(x)e−jωx dx. We

propose a comparably simple model for scaling of functions on the
2-sphere S2. Let f ∈ L2(S2). Its spectrum is given by F (l,m) =∫
S2 fY

m
l dω where

Y ml (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)ejmφ (1)

are the spherical harmonics of order l and degree m and dω =
sin θ dθ dφ is the rotation invariant measure in the usual spherical
polar coordinates [9], [10]. Pml are the associated Legendre functions
[9] which degenerate to Legendre polynomials Pl for m = 0. Since
we deal with an axisymmetric f , F (l,m) = 0 for m 6= 0 i.e.
its spatial and spectral representations are fully determined by one
dimensional signals and sequences.

Furthermore, let g(θ, φ) = f(kθ, φ), k > 0. Then for some
exponent β we would like to compute the spectrum of g as

G(l) ≡ G(l, 0) = F (l/k, 0) · k−β . (2)

We omit the second spectrum index m since in the derivation of the
model we deal exclusively with axisymmetric functions. Note that
(2) generally requires evaluation of F at the non-integer argument.
It anticipates the (hypothetical) underlying continuous spectrum that
will be used to derive the scaling model.

This correspondence demonstrates that such a simple model is
only approximate, but yields a good solution for a certain class
of functions. Furthermore, in deriving the model we show that the
notion of continuous spectrum naturally follows from hypergeometric
generalization of Legendre and Gegenbauer polynomials [9].

A. Rect function

The goal of this subsection is to determine the exponent β in (2).
The technique that follows is inspired by two assumptions:

1) The model, though approximate, should be the same for all
spherical signals.

2) The model should be applicable for all scaling factors, even
very small i.e. the model must also be valid in the k → 0
limit.

Given these, we find the β for the simplest case - a rectangular
function on a 2-sphere - and then apply it to other signals.
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Denote by ra a spherical analogue of a rect function centered
around the north pole. It is defined as

ra(θ, φ) =

{
1 for θ ≤ a

0 otherwise,
(3)

with spectrum given by

Ra(l) =

√
π
(
P(l−1)(cos a) + P(l+1)(cos a)

)
√

2l + 1
. (4)

Note that we call it a “rect” function since it is a rectangle when
evaluated along the meridian.

According to the proposed scaling model (2), we would like the
following to hold for some β,

Ra(l) = R(ka)(l/k) · k−β , (5)

which follows from (2) and the fact that ra(θ, φ) = r(ka)(kθ, φ). It
is assumed here that we can somehow evaluate (4) for non-integer l.
It is indeed possible to do it if we express the Legendre polynomial
in terms of a hypergeometric function 2F1, see for example [9]. The
behavior of (5) may be better understood if we expand the right hand
side in Taylor series about a = 0,

Rak(l/k) · k−β =
k1.5−β
√

2l + k

∞∑
r=1

poly2r−1(l, k)a2r, (6)

where poly2r−1(l, k) is a complete homogeneous polynomial of
order 2r − 1.

Ideally, a single solution for β (a single model) would be suitable
for any choice of a, l and k. Since the model is approximate, the
exact solution for β varies with these parameters. We would like to
somehow choose a generally suitable β. Since the model equality (5)
must be valid for all k > 0, we require it to be correct in the k → 0
limit as well. It is clear from (6) that we must choose β = 3

2
in order

for limk→0 Rak(l/k)·k−β not to vanish or diverge. Any other choice
would result in the wrong amplitude of a spatially scaled function
when contracted using the proposed model.
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Fig. 1. Rectangle-like functions obtained by inverse transform of the “limit”
spectrum (7) plotted along the meridian. Bandwidth used for the narrowest
a = 0.05 case was 2000. Bandwidths for other cases are accordingly scaled
(inversely proportional). Abscissae are normalized so that the discontinuity
occurs at 0.5. This two facts result in a matching ripple frequency for all
widths.

It is informative to compute this limit explicitly,

lim
k→0

Rak(l/k) · k−β = a2

√
πl

2

∞∑
r=0

(−1)r

r!(r + 1)!

(
al

2

)2r

= a
√

2π/lJ1(al), (7)

where J1 is the Bessel function of the first kind and order one (see
e.g. [9]).

Fig. 1 shows the inverse transform of the sampled continuous
spectrum (7) plotted along the meridian, with scaled abscissae.
Ideally, this would give identical bandlimited rectangular signals, but
due to approximation, we get the result that depends on a. Note
however that it perfectly models the discontinuity at a (0.5 with
scaled abscissa). Furthermore, note that this is simply a plot of the
inverse transform of (7), not the actual application of the model.

Actual (analytical) rectangle spectrum (4) in comparison to the
limit spectrum (7) is shown in Fig. 2. Even though a slight mis-
match may be noticed for spatially wider functions, the similarity is
significant.
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Fig. 2. Discrete spectrum of the spherical rect signal shown against the limit
continuous spectrum given by (7) for different widths a. (a) a = 0.1, (b)
a = 0.3, (c) a = 0.8, (d) a = 1.1.

III. n-SPHERE

The described approach may be generalized to n-dimensional
spheres embedded in Rn+1. Using the usual hyperspherical angular
coordinates (see for example [5], [10]) we may write the hyperspher-
ical harmonics on Sn as [10], [11],

ΞlK(ξ) = AlK

n−2∏
i=0

C
n−i−1

2
+ki+1

ki−ki+1
(cos θn−i) sinki+1 θn−ie

±jkn−1θ1 .

(8)

A compound index K is a multi-index (k1, . . . , kn−1) of integers
such that l ≡ k0 ≥ k1 ≥ · · · ≥ kn−2 ≥ |kn−1| ≥ 0. Cλp (t) are the
Gegenbauer polynomials [9] and the normalization factor is given by
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(AlK)2 =
1

2π(n+1)/2

n−2∏
i=0

22ki+1+n−i−3×

×
(ki − ki+1)!(n− i+ 2ki − 1)Γ2

(
n−i−1

2
+ ki+1

)
√
π Γ(ki + ki+1 + n− i− 1)

. (9)

The generalized axial symmetry means that the signal is dependent
on one angle parameter only and that the spectrum may be indexed
by a single index l, same as for the n = 2 case. For an axisymmetric
function f we compute the Fourier coefficients as

F (l) =

∫
Sn

f(ω)Ξl0(ω)dω (10)

where subscript 0 denotes the multi-index K = (0, . . . , 0) and

dω =

n∏
j=1

sinn−j θn−j+1 dθj (11)

is the rotation invariant measure on Sn in hyperspherical coordinates.
We may compute the rectangle spectrum and the limit spectrum

analogously to the 2-sphere case. The derivation is algebraically more
involved than in the 2-sphere case but the presented final results are
again simple. Derived results for sphere dimensionalities n = 2, 3 and
4 are summarized in Table I. One can assume that β as introduced
in (2) is always (n+ 1)/2 on an n-sphere, but we don’t prove this.

TABLE I
SERIES TERMS AND LIMITS OF THE RECTANGLE SPECTRUM SCALED WITH

THE SCALE FACTOR k → 0 FOR DIFFERENT DIMENSIONALITIES.

n r-th series term Series sum Scaling exp.
(
∑∞
r=0) (cont. spectrum) β

2

√
πl

2

(−1)r(l/2)2r

r!(r + 1)!
a2+2r a

√
2π

l
J1(al)

3

2

3 2l
√

2
(−1)r(l2/2)r

r!(3 + 2r)!!
a3+2r 2a

3
2

√
π

l
J 3

2
(al)

4

2

4
(
l

2

) 3
2 π(−1)r(l/2)2r

r!(r + 2)!
a4+2r πa2

√
2

l
J2(al)

5

2

The limit spectrum may be further rewritten using the spherical
Bessel function jp(x) =

√
π/2xJp+1/2(x). This fact is very

interesting since the spherical Bessel function is related to the sinx/x
(sinc) function, and it is known that the spectrum of a rectangle in
the Euclidean case is in fact a sinc [12]. In particular,

jp(x) = (−x)p
(

1

x

d

dx

)p
sinx

x
.

For integer p this results in a combination of damped sines and
cosines. This is actually the case for odd-dimensional spheres
embedded in even-dimensional Euclidean spaces e.g. S3 ⊂ R4.
Consequently, the series sum for n = 3 in the second row of Table
I may also be written as 2l

√
2(sin al − al cos al)/l2.

IV. EXPERIMENT

Since the proposed model is one-parametric, it is completely
determined by the derived choice of β. We now apply it to different
signals. The setup is as follows - we first compute the mother
spectrum and then resample it to find the approximate spectrum
of a scaled signal (thus assuming the existence of the underlying
continuous spectrum). Note that we use simple linear interpolation for

resampling. If the scaling asks for bandwidth expansion (resampling
on a denser grid) then linear may be replaced by some more
involved interpolation scheme, such as cubic spline. Nevertheless,
linear interpolation should suffice for relatively smooth spectra.

The scaling algorithm is summarized in Algorithm 1. It is exactly
what was used to generate the plots in Fig. 3. Note that this algorithm
automatically adapts the spectrum width to the scaled signal width
in the spatial domain.

Algorithm 1 Compute scaled replicas
1: for l = 0 : (B0 − 1) do . B0 - original bandwidth
2: F (l)←

∫
S2 fY

0
l dξ . Mother spectrum

3: end for
4: for all k ∈ K do . K are the scales
5: L ← 0 : k−1 : (B0 − 1) . Resample the spectrum
6: l← 0 . New spectrum index
7: for all l′ ∈ L do . Linearly interpolate
8: la ← floor(l′), lb ← ceil(l′)
9: ∆F ← F (lb)− F (la)

10: Fk(l)←
(
F (la) + (l′ − la)∆F

)
· k−3/2

11: l← l + 1
12: end for
13: end for

One can verify that the simple linear interpolation works well
in Fig. 3. This figure was obtained by scaling the functions with
the proposed scaling model and than exactly rescaling them back
to enable a meaningful comparison. It is also observable that the
model works better for functions whose energy is concentrated near
the north pole. This is intuitive given that the Taylor expansion (6) is
about a = 0, where a is the width of the rect function. Fig. 4 shows
the spherical plots of the rectangle and Gaussian-like function scaled
using the proposed model for different scaling factors.

Furthermore, note that we do not include the inverse transform in
the Algorithm 1. This is because the whole idea is to operate in the
spectral domain directly. Indeed, many applications do not require
the inverse transform up until late in the process (see for example
[5]).

A. Approximation error

We have used two signals for model validation: a bandlimited
version of a spherical rectangle defined in (3), and a smooth,
Gaussian-like function given by

fs(θ) = e−(θ/s)2 , θ ∈ [0, π]. (12)

The approximation errors were computed as

E(k) = 10 log10

∫ θmax
0
{f(θ)− f̃k(θ)}2 dθ∫ θmax

0
f(θ)2 dθ

. (13)

The function f̃k was obtained by scaling f with a scale factor k using
the proposed model and then scaling it back with a scale factor 1/k
using the exact spatial scaling. In our experiments θmax corresponds
to unit value of the normalized colatitude on the plots in Fig. 3.

The error curves shown in Fig. 3 suggest that the smoother
functions like the Gaussian exhibit smaller approximation errors over
a wider range of scaling factors. The dashed line in Fig. 3f shows the
error for cubic spline based resampling instead of linear. It can be
observed that the error becomes saturated as we contract the function,
but becomes large when the function is dilated (approximately when
the scaled function occupies more than a half of the sphere).
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Fig. 3. Functions on a sphere approximately scaled using the proposed spectral model. Subfigures (a) and (b) show the scaling of the Gaussian-like function
(12) for scaling ranges k ∈ [1, 2.5] and k ∈ [1, 11]. with initial s = 0.05. (d) and (e) show the scaling of a bandlimited rect signal (3) for scaling ranges
k ∈ [1, 1.5] and k ∈ [1, 2.5] with initial a = 0.33. (c) and (f) show the error (13) due to approximation for both contracted and dilated cases. Dashed line in
(f) shows the error with cubic spline interpolation instead of linear. For Gaussian, k ∈ [0.1, 10] and for rect, k ∈ [0.4, 2.5]. In (c) and (f), round dots show
the errors obtained with the method proposed in [4] for s = 0.05 and a = 0.33, respectively. The case with the smallest error was computed using the exact
matrix for k = 0.55. Other cases were computed by interpolating between matrices for (k = 0.5 and k = 0.6), (k = 0.4 and k = 0.7) and (k = 0.3 and
k = 0.8).

The approximation error depends on the function being scaled,
its initial scale and on the scaling factor itself. A more detailed
theoretical error analysis would be very complicated and falls outside
of the scope of this manuscript. Numerically computed errors in Fig.
3 suggest that the proposed method is applicable in applications
that don’t require numerical exactness, but involve subjective (i.e.
visual) assessment of the scaled function, as can be seen in Fig. 4.
Note that in the bandlimited scenario, scaling always involves an
approximation, regardless of the used scaling method.

V. EXTENSION TO SEPARABLE FUNCTIONS

Even though we claimed that we will discuss functions that
depend only on θ, we will outline the extension of the model
to separable nonaxisymmetric functions. These are the functions
that can be written as a product of azimuthal and colatitudal part,
f(θ, φ) = u(θ)v(φ). The key insight here is given by Fig. 5 and the
observation that

F (l,m) = Nm
l

∫
u(θ)Pml (θ) sin θ dθ

∫
v(φ)ejmφdφ

= A(l,m)ejΦ(m), (14)

where Nm
l is the normalization factor as in (1). In (14), Φ(m)

represents the total phase of the second integral, which is also the
total phase of F (l,m) since the first integral has a zero phase. For
this reason, the phase of F (l,m) depends only on m (the integral
with respect to φ doesn’t depend on l). This in turn corresponds

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
, - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .

0 |  * |  
1 |  * * * |  
2 |  * * * * * |  
3 |  * * * * * * * |  
4 |  * * * * * * * * * |  
5 |  * * * * * * * * * * * |  

' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - '

Scaling along

each column!

m

l

Fig. 5. Shape of the spectrum of a bandlimited spherical function. The arrow
indicates the direction of the scaling in spectrum.

to the fact that each column in Fig. 5 has a constant phase in the
separable case. The algorithm then proceeds as follows (for each
column of the spectrum): (1) decouple amplitude and phase, (2)
interpolate the amplitude according to Algorithm 1, (3) reintroduce
the phase information. Fig. 6 shows the result of the application of
this procedure to a separable spherical function.

VI. COMPARISON WITH AN EXISTING METHOD

It was noted by authors in [4] that the scaling of spherical functions
may be regarded as a linear operator that acts on the vector of
spherical harmonic coefficients. This method essentially provides
exact scaling, with the remarks that follow. Elements of the operator
matrix are computed using numerical integration. The cost of this
computation prohibits the real-time computation of matrix elements.
They must be computed in advance for some scaling factors and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Spherical plots of the functions scaled using the proposed model: (a) mother bandlimited rectangle (3) with a = 0.33, (b)-(d) rectangle in (a) scaled
with scaling factors k−1 = 0.5, 1.4, 1.8, (e) mother bandlimited Gaussian-like function (12) with s = 0.25, (f)-(h) Gaussian in (e) scaled with scaling factors
k−1 = 0.4, 1.6, 2.4.

(a) (b) (c) (d)

Fig. 6. Spherical plots of the separable “mother” function in (a) scaled by
factors (b) k−1 = 0.5, (c) k−1 = 1.7, (d) k−1 = 2.4 using the proposed
separable extension.

then interpolated for other, arbitrary factors. Furthermore, scaling
of the bandlimited function generally produces a non-bandlimited
function, therefore their method is approximate as well. However, it
may be made arbitrarily exact whereas the model proposed in this
paper always yields an approximation.

If we are scaling a function f(θ, φ) with bandwidth B by a
factor k, fk(θ, φ) = f(kθ, φ), the model that we propose assumes a
proportional bandwidth scaling as well. That is, if the function fk is
approximated using the proposed model, its bandwidth is k ·B. Since
the complete spherical Fourier transform of a spherical function with
the bandwidth B has B2 samples, and given that the complexity of
linear interpolation is proportional to the number of output samples, it
is easy to see that the proposed method has a complexity of O(k2B2).

On the other hand, the method proposed in [4] involves multiplying
the coefficient vector of size B2 by a scaling matrix of size B2 ×
B2. This matrix, however, is a sparse matrix, with only B(2B2 +
1)/3 non-zero entries. Therefore, the complexity of their method is
O(k3B3) (again by assuming the appropriate bandwidth scaling).

The method proposed in [4] requires the scaling matrices to be
precomputed. If the application calls for a relatively high bandwidth,
storing these matrices may become a problem. As an example, if
we wanted to store 40 scaling matrices of bandwidth B = 200
using a double precision, we should allocate around 1.7 GB of
memory for non-zero matrix elements. This problem becomes more
prominent if we want to shrink the function, since this generally
requires bandwidth expansion. Scaling the function with k = 3 would
require 46 GB of memory for precomputed matrices in the above

example. In contrast, the property that we exploit in this paper has
no storage requirements except for the input and output transform
coefficients. At B = 200 and double precision, spherical coefficients
occupy 320 KB of memory.

To compare the accuracy of the two methods, we have computed
the scaling matrices for the scaling factor k = 0.55 and for several
nearby scale factors. Errors were computed using (13), and are
denoted in the Fig. 3c and 3f by round dots (corresponding to the
lowermost error curves). For the smallest error, the exact matrix
was used, and for the other three cases, the scaling matrix was
obtained by linear interpolation. In the exact case the baseline error is
determined by the accuracy of matrix elements (numerical integration
on an equiangular grid with 160000 knots). Furthermore, the scaled
function is never exactly bandlimited and the spectrum truncation
also introduces an error. We may conclude that if the scaling matrix
is computed exactly, then the accuracy of the method in [4] is
significantly higher than the accuracy of the method proposed in this
paper. However, in the real-time applications only the finite number
of scaling matrices may be precomputed in which case the errors
may become comparable.

The final issue is generality. Property described in this paper is
readily applicable only for axisymmetric functions and separable
nonaxisymmetric functions. Generalization is the topic of an ongoing
research. On the other hand, it is easily extended to n-spheres which
is of interest for higher dimensional applications whereas only the
2-sphere case is considered in [4].

VII. CONCLUSION

We have derived and demonstrated a simple spectral domain based
technique for scaling of the functions on an n-sphere. Although
this technique provides approximate scaling, the results suggest that
it may be used in many practical situations where efficiency and
simplicity are required.

In summary we have shown that the Fourier transform of
axisymmetric function f(kθ) on an n-sphere is approximately
k−(n+1)/2F (l/k), where F (l) is the Fourier transform of f(θ) and
F is evaluated at the non-integer positions in a resampling sense. This
result is analogous to the Euclidean case, and in fact degenerates to
the familiar |a|−1F (ω/a) if we set n = 1 in the previous expression.
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We have also outlined the extension of the algorithm to separable
spherical functions that are not axisymmetric and provided a com-
parison with an existing scaling method.

Further work involves extension to nonseparable, nonaxisymmetric
functions.
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