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Convolution on the n-sphere with application to
pdf modeling
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Abstract—In this paper we derive an explicit form of the con-
volution theorem for functions on an n-sphere. Our motivation
comes from the design of a probability density estimator for
n-dimensional random vectors. We propose a pdf estimation
method that uses the derived convolution result on Sn. Ran-
dom samples are mapped onto the n-sphere and estimation is
performed in the new domain by convolving the samples with
the smoothing kernel density. The convolution is carried out
in the spectral domain. Samples are mapped between the n-
sphere and the n-dimensional Euclidean space by the generalized
stereographic projection. We apply the proposed model to several
synthetic and real world datasets and discuss the results.

Index Terms—n-sphere, hypersphere, spherical harmonics, hy-
perspherical harmonics, rotations, convolution, density estimation

I. INTRODUCTION

EXTENSION of signal processing methodologies to non-
euclidean spaces is a natural way of dealing with di-

rectional data. A common example is a 2-sphere and many
Euclidean paradigms that have found their spherical analogue.
The most basic is the notion of Fourier transform, that on the
sphere corresponds to the expansion of functions into series
of familiar spherical harmonics. Vast amount of literature is
available on such expansions, mostly from quantum mechanics
and mathematical physics [1]. It is known from group repre-
sentation theory that the Fourier transform can be defined on
any compact Lie group and consequently on homogeneous
spaces of these groups [2]. An example is the group of
rotations of a three-dimensional space about the origin, SO(3),
and the 2-sphere, S2, as a corresponding homogeneous space.
Application of signal processing methodologies to different
manifolds is facilitated by the discovery of efficient algorithms,
analogous to the Fast Fourier Transform (FFT). Efficient
algorithms have been designed and implemented for Fourier
transform on the 2-sphere [3], [4] and on the SO(3) rotation
group [5]. Some FFT generalization ideas are surveyed in [6].
The generalized concept of convolution on groups is intimately
related to the concept of filtering on homogeneous spaces.
Some insight into spherical filtering can be found in [7] and
with particular emphasis on wavelet transform in [8]–[12].
Computation of the Fourier transform and convolution on
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groups is studied within the theory of noncommutative har-
monic analysis. Examples of applications of noncommutative
harmonic analysis in engineering are analysis of the motion
of a rigid body, workspace generation in robotics, template
matching in image processing, tomography, etc. A comprehen-
sive list with accompanying theory and explanations is given
in [13].

Statistics of random vectors whose realizations are observed
along manifolds embedded in Euclidean spaces are commonly
termed directional statistics. An excellent review may be
found in [14]. It is of interest to develop tools for the
directional statistics in analogy with the ordinary Euclidean.
In particular, one can address a pdf estimation problem from
the observations on a manifold. For the ubiquitous spherical
case, a common domain example is the earth surface. Typical
pdf estimation methods are Parzen windowing [15], also
called kernel density estimation, and mixture models, with
the most popular Gaussian mixture model (GMM), [16]–[18].
Application of the GMM to source coding is discussed in [19].
A discussion of Parzen windowing on manifolds is available
in [20].

In this paper we discuss convolution on a sphere in an n-
dimensional space, Sn−1 ⊂ Rn, regarded as a homogeneous
space of the group of rotations of the n-dimensional space,
SO(n). A sphere in the n-dimensional space is a manifold
of dimension n − 1, hence the seemingly odd notation. We
derive the explicit expression for convolution in the frequency
domain. Our motivation comes from the design of a proba-
bility density estimator for data of arbitrary dimension, more
generally from source coding.

We propose a pdf estimation model that maps (n − 1)-
dimensional samples onto the Sn−1. The involved stere-
ographic mapping is beneficial for a class of bell-shaped
densities as discussed in Section IV-D. For the discussion of
benefits of transformations in density estimation see [21]. Pdf
estimation is performed in the new domain using the kernel
density estimation technique. This corresponds to putting the
smoothing kernel function at the place of each sample and
summing their contributions. Since the described technique
can be regarded as a convolution between the symmetric kernel
and the dataset, we can use the derived convolution result to
realize the estimation in the frequency domain. The spatial
estimate can be efficiently computed from the spectral model
using the fast inverse spherical Fourier transform, [3], [4], [6].

Modern work on kernel density estimation deals with de-
pendent random variables. It has been proposed by several
authors [22]–[27] that the convolution formula can be used
to improve the asymptotic properties of such estimators. The
main idea in this setting is to improve the estimator by using



2 IEEE TRANSACTIONS ON SIGNAL PROCESSING

the structure of the model (i.e. by convolution). Note that we
use the convolution only to compute the estimate, not to handle
the dependency.

Pdf estimation is important in source coding where it is
interesting to have compact representations of the data that
enable adaptation of a quantizer to the changing statistics of
the source through a narrow side-channel.

Another class of pdf estimators are those based on ex-
pansions of the pdf into series of orthogonal functions. If
the smoothing kernel in the proposed approach degenerates
to a Dirac delta function, an orthogonal series estimator is
obtained that corresponds to Fourier expansions. An excellent
general treatment of the density estimation theory along with
L1 treatment of orthogonal series estimators can be found in
[28]. L2 and L∞ cases are treated in [29]. In this context
the expansion coefficients, i.e. Fourier transform of the pdf
estimate, may be regarded as model parameters. On the sphere,
this corresponds to spherical harmonic expansions. Density
estimation from samples on S2 using Fourier transform is
treated in [30]. Deconvolution density estimation is examined
in [31] for the case of observations on S2 corrupted by random
rotations and in [32] for observations on SO(3).

This paper is organized as follows. In Section II some
background on hyperspherical harmonics and rotations in
Rn is given. In Section III we discuss convolution on Sn

and how it can be applied to density estimation. We derive
the exact expression for convolution transform in Appendix
B. In Section IV we lay out the details of the proposed
estimation algorithm on Sn. Section V gives some results on
the performance of the estimator. Experiments that verify the
sanity of the model are described in Section VI.

II. DEFINITIONS AND PREREQUISITES

By a unit sphere in Rn we refer to a set of points whose
Euclidean distance from the origin is equal to unity.

Sn−1 =
{
x ∈ Rn|xTx = 1

}
. (1)

As already mentioned, the superscript n − 1 is due to the
fact that a sphere in Rn as defined by (1) is a manifold of
dimension n− 1. Sn−1 may be parameterized by a set of hy-
perspherical polar coordinates. If (x(1), · · · , x(n)) are cartesian
coordinates in Rn, then we define the angles θ1, · · · , θn−1 and
the radius r as

x(1) = r sin θn−1 sin θn−2 · · · sin θ2 sin θ1
x(2) = r sin θn−1 sin θn−2 · · · sin θ2 cos θ1
x(3) = r sin θn−1 sin θn−2 · · · cos θ2

...

x(n−1) = r sin θn−1 cos θn−2

x(n) = r cos θn−1. (2)

By setting r = 1 we get the coordinates of a point on a unit
sphere Sn−1. This choice of coordinates is not unique, but
it is a natural generalization of spherical polar coordinates in
R3. In the familiar case of S2 ⊂ R3, θ2 corresponds to the

elevation and θ1 corresponds to the azimuth, often denoted
(θ, ϕ) = (θ2, θ1).

In the space of square integrable functions on Sn−1 we
can choose a particular orthonormal basis {ΞlK} called hyper-
spherical harmonics [2], [33]. Thus, for f ∈ L2(Sn−1) we
have

f(ξ) =
∑
l

∑
K

f̂(l,K)ΞlK(ξ), (3)

where ξ = ξ(θ1, · · · , θn−1), and f̂(l,K) are projections of f
onto the basis functions,

f̂(l,K) =
∫
Sn−1

f(ξ)ΞlK(ξ)dξ. (4)

In (3) and (4), l and K index the basis functions. A compound
index K is a sequence (k1, . . . , kn−2) of integers such that
l ≡ k0 ≥ k1 ≥ · · · ≥ kn−3 ≥ |kn−2| ≥ 0. For functions
that are not band-limited, 0 ≤ l <∞. In practice, we have to
limit the range of l. That limit corresponds to the spectral
bandwidth. Intuitively, one can think of l as of a master
index that determines some global level of detail modeled by
corresponding basis functions and K as a way of counting all
the basis functions at the l-th detail level. A rotation invariant
area element on Sn−1 is given in the introduced coordinates
as

dξ =
Γ(n/2)
2πn/2

n−1∏
j=1

sinn−j−1 θn−j dθj (5)

where normalization is chosen such that the measure of the
whole sphere is equal to 1. Note that in the remainder of the
paper the hat notation f̂ will be used for the Fourier transform
of the function f while tilde notation f̃ for the estimate of the
density f . Therefore, ̂̃f implies the spectral representation of
the estimate. Furthermore, we will use the Greek letter ξ to
denote points on Sn−1 when spherical polar parameterization
is assumed.

Analysis in the sense of (3) is a Fourier series for functions
from L2(Sn−1). In the 2-sphere case, functions ΞlK(ξ) coin-
cide with familiar spherical harmonics Y ml (θ, ϕ). An explicit
expression for hyperspherical harmonics ΞlK(ξ) is given in
Appendix A.

Rotations of Sn−1, or equivalently, rotations in Rn form
a group SO(n) whose elements are n × n real orthogonal
matrices of unit determinant. SO(n) may be parameterized by
1
2n(n− 1) real numbers. Natural choice are the Euler angles.
It can be shown that any rotation g ∈ SO(3) may be written
as a product of three matrices, g = u(ϕ)a(θ)u(ψ) where ϕ ∈
[0, 2π], θ ∈ [0, π], ψ ∈ [0, 2π], and u represents the matrix of
a rotation about the z-axis while a is the rotation about the y-
axis. Rotation of the sphere parameterized by the Euler angles
ϕ, θ and ψ takes the north pole η with cartesian coordinates
(0, 0, 1) to the point

w(θ, ϕ) = (cosϕ sin θ, sinϕ sin θ, cos θ), (6)

with spherical polar coordinates (θ, ϕ). This can be visualized
in the following fashion: first twist the function about the
z-axis for the amount specified by ψ, then tilt the sphere
so that the old north pole points in the (θ, ϕ) direction.
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The analogy can be drawn to the Rn case, although not
without some careful reflection: rotations should be regarded
as rotations in a plane, not rotations about an axis. That is the
reason that dimension of SO(n) is 1

2n(n− 1), the number of
mutually orthogonal (coordinate) planes in Rn. Rotation about
an axis in Rn is not defined because there are several mutually
nonparallel (in fact orthogonal) planes perpendicular to each
axis. While all the 1

2n(n−1) angles are needed to specify the
rotation of Sn−1, only n − 1 determine the new location of
the generalized north pole.

III. CONVOLUTION ON Sn−1

The notion of convolution is often associated with convo-
lution on the line. Given two signals f1, f2 : R → C, their
convolution is defined as

f1 ∗ f2(x) =
∫ ∞
−∞

f1(y)f2(x− y) dy. (7)

In the context of group representation theory, this is interpreted
as a convolution of square integrable functions on a real
additive group, L2(R) with the ordinary addition as a group
composition law. Similarly we define the convolution of two
functions f1(g) and f2(g) given on a general compact group
G,

f1 ∗ f2(g) =
∫
G

f1(g1)f2(g−1
1 g) dg1. (8)

Group action in the argument of f2 in (7) is called right, while
the one in (8) is called left. Unlike the case of a real line,
convolution in general is not commutative, i.e. f1 ∗ f2(g) 6=
f2 ∗ f1(g).
Sn−1 is a homogeneous space of SO(n) group. This means

that for any two points ξ1, ξ2 ∈ Sn−1 there exists some
rotation g ∈ SO(n) such that gξ1 = ξ2 i.e. SO(n) acts
transitively on Sn−1. Note that here we employ SO(n) as
a transformation group of Rn that acts on vectors from Rn by
rotating them. Therefore, gξ denotes the rotation of the point
ξ by g, regardless of the parameterization of ξ and g.

So far we have defined the convolution of functions whose
arguments are group elements. What we really want is the
convolution of functions on homogeneous spaces under the
action of a group, in particular on Sn−1. First let’s define the
rotation operator for functions on Sn−1. Each rotation g ∈
SO(n) induces a rotation operator on L2(Sn−1) by

Rn(g)f(ξ) = f(g−1ξ). (9)

We define a (left) convolution operator for an arbitrary func-
tion k ∈ L2(Sn−1) by using k as a weighing factor for
operators Rn(g) (definition adopted from [4]),

Ckf(ξ) =

(∫
SO(n)

dg k(gη)Rn(g)

)
f(ξ)

=
∫
SO(n)

k(gη)f(g−1ξ) dg

= k ∗ f(ξ). (10)

Group of motions of Sn−1 is the group of rotations of Rn,
SO(n). Therefore, we could allow that k ∈ L2(SO(n)) and

have the result that lives on SO(n). If we wanted the result on
Sn−1, we would have to integrate out (sum the contributions
of) the indistinguishable motions. This is implicit in (10).

The most interesting property of the convolution on Sn−1

is that it corresponds to multiplication of Fourier coefficients
as follows. Let f1, f2 ∈ L2(Sn−1), and f = f1 ∗ f2. Then

f̂(l,K) =

√
Γ(l + n− 2)(2l + n− 2)

l!Γ(n− 1)
f̂1(l,K)f̂2(l,0).

(11)
This property has been proved for the special case of con-
volution on S2 [4]. It is natural to assume that the similar
property is valid in the general case, but we haven’t been able
to find the formula in the literature so we derived it ourselves.
Details are given in Appendix B. The proof is straightforward
from the definition, and uses the notion of matrix elements
of the left quasi-regular representation of SO(n) and their
mutual orthogonality. Key part of the convolution formula is
the normalization factor that depends on the dimension n and
on the index l. Notice also the degeneration of K to 0 in the
second index of f̂2. This means that we only need information
about the θn−1 dependence of f2. For the 2-sphere it means
that after we apply all the motions given by the Euler angle
ψ and sum the results, we always get a function symmetric
about the z-axis, in other words a function of the elevation
only. Regardless of the azimuthal dependence of f2, from the
viewpoint of the spherical convolution we always treat it like
an axially symmetric function - just spin it around the z-axis.
It is also important to notice that (11) depends on the choice
of the measure, and needs to be adjusted by a scalar factor if
different measure is chosen.

IV. ESTIMATION MODEL

We describe the model for the general n-dimensional case,
and then give examples for two and three dimensional pro-
cesses. Figures that attempt to illustrate the concept are given
for 2-D case, that is for the 2-sphere embedded in three
dimensional Euclidean space, since these are rather intuitive
and suitable for visualization.

Probability densities of processes that are of our interest
carry most of the information near their mean. Details that are
farther away from the mean become less important in some
sense defined by the application. For example, when modeling
data source statistics with quantization and coding in mind it is
important to have compact models that require comparatively
narrow side-channels for forward adaptation. Intuitively, it
makes sense to model the pdf regions that contribute less to
the distortion with less care than those that significantly affect
the distortion. Consider a mapping from a plane to a sphere
that maps regions where process really exists to say, southern
hemisphere and everything else to the northern hemisphere.
That way the sphere area allocated for the relevant (interesting)
part of the process domain is equal to the sphere area allocated
for the whole remaining domain where pdf becomes relatively
flat. Now we can model the pdf on the sphere as if it was
the natural domain of a process. The estimation process is
illustrated in Fig. 1. We propose a generalization of this
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Fig. 1. Illustration of the estimation process. A dataset that lives in
Rn is mapped onto the n-sphere via the inverse stereographic projection.
On a sphere, density estimation is performed by convolving the samples
with a kernel density; convolution is carried out in the spectral domain.
Density estimate is then projected back into the Rn with the proper measure
adjustment (Jacobian).

Fig. 2. Stereographic projection from S2 to equatorial plane in R3. A
′

is
the projection of A from N , where N is the north pole. That is, a straight
line through N and A intersects the xOy plane at A

′
.

approach to higher dimensional spaces, e.g. mapping the 3-
D space onto the hypersurface of a hypersphere S3.

This intuitive reasoning is formalized for the univariate case
in [21]. The authors discuss the benefits of transforming the
original data and using a global width kernel density estimator
in the new domain. The transformation approach is again in
some sense equivalent to the locally adaptive kernel density
estimation, as proposed in [34].

A. Mapping the process onto the sphere

The first step is to map the n-dimensional dataset {xk}Nk=1,

xk =
[
x

(1)
k , · · · , x(n)

k

]T
onto the n-sphere. We want the result

of this mapping to be the set of spherical polar angle coor-
dinates that represent points on the unit n-sphere, {θk}Nk=1,

θk =
[
θ
(1)
k , · · · , θ(n)

k

]T
. This can be achieved by the inverse

stereographic projection.

Stereographic projection is given by

(x(1), · · · , x(n+1)) 7→
(

x(1)

1− x(n+1)
, · · · , x(n)

1− x(n+1)
, 0
)
,

(12)
where (x(1), · · · , x(n+1)) are the coordinates of the point on
the sphere Sn ⊂ Rn+1 that project to a hyperplane per-
pendicular to x(n+1) axis (through the hyperequator). This is
depicted in Fig. 2 for the S2 case. We actually use the inverse
stereographic projection to map the points from the plane onto
the sphere. Before projection we employ a preparation step
that involves debiasing and scaling the dataset,

x 7→ diag(s1, . . . , sn)(x− x), (13)

where s1, . . . , sn are scaling factors and x is the mean of the
samples. Scaling factors are a function of dataset variance, and
are chosen so that the important region of the process domain
fits approximately within a unit sphere, in accordance with the
previous discussion.

It is also possible to design a custom mapping that is
better suited to some special situation. Particular choice of the
mapping affects the estimation performance, and can be tuned
to the properties of the target process. This can be regarded
as a plug-in component of the proposed approach.

B. Parzen windowing on a sphere

Now that we have the dataset on a sphere, we want to
make a pdf estimation by centering a smoothing window
function around each sample and summing the individual
contributions. We propose an efficient method to obtain the
transform coefficients of the estimated pdf.

When using Parzen windows on a line, it is clear that the
estimation can be regarded as a convolution of the window,
and the function ∆(x) constructed by putting a Dirac delta
function δ(x) at the place of each sample,

∆(x) =
1
N

N∑
k=1

[T (xk)δ] (x)

=
1
N

N∑
k=1

δ(x− xk), (14)

where T (xk) is the operator of translation by xk.
If we know the Fourier transform of the applied window, ŵ

then the convolution, i.e. the estimate,

f̃(x) = (∆ ∗ w)(x)

=
∫ ∞
−∞

∆(y)w(x− y) dy

=
1
N

N∑
k=1

w(x− xk). (15)
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has a Fourier transform that can be written as a product

̂̃
f(ω) = ŵ(ω)∆̂(ω)

= ŵ(ω)
̂[

N∑
k=1

T (xk)δ

]
(ω)

= ŵ(ω)
N∑
k=1

e−jωxk . (16)

In (15) we assumed that the window w is symmetric.
Thus, if we want to compute the value of the transform for

a particular ω,

1) transform the window,
2) evaluate the conjugate of the basis function correspond-

ing to ω for all xk and sum the results,
3) multiply the obtained spectra.

We see that in order to obtain the transform of a Parzen
window estimate, i.e. the model, we don’t really need to find
the estimate in the spatial domain.

By analogy, we regard the Parzen windowing on Sn−1 as a
convolution of a desired window with a function obtained by
putting the spherical analogy of a Dirac delta function at the
place of each sample.

To derive a spherical analogy of the ∆(x) function, we
need to properly define a Dirac delta function on a sphere.
Furthermore, we need to determine its spectrum. A spherical
delta function can be defined by its property of extracting
a function value under integration. Let δ̊ denote the delta
function on the sphere. Then,∫

Sn−1
f(ξ)̊δ(ξ) dξ = f(η), (17)

In (17), η represents the north pole and dξ is the essentially
unique, rotation invariant area-element on the Sn−1 given by
(5). On the line or generally in Euclidean spaces we use
translation to move the Dirac delta function around, while on
the sphere it is natural to use rotations as described in Section
II.

So, to extract a function value from somewhere else than the
north pole, we would use the rotated spherical delta function,∫

Sn−1
f(ξ)

[
Rn(g)̊δ(ξ)

]
dξ = f(g−1η) (18)

Now we can define the (n − 1)-spherical analogy of the
function ∆(x) as

∆̊(ξ) =
1
N

N∑
k=1

Rn(gk )̊δ(ξ) (19)

where gk is any rotation that takes the north pole to the
position of the k-th sample.

The Fourier transform of the ∆̊ function is

̂̊∆(l,K) =
∫
Sn−1

∆̊(ξ)ΞlK(ξ) dξ

=
∫
Sn−1

(
1
N

N∑
k=1

Rn(gk )̊δ(ξ)

)
ΞlK(ξ) dξ

=
1
N

N∑
k=1

∫
Sn−1

ΞlK(ξ)Rn(gk )̊δ(ξ) dξ

=
1
N

N∑
k=1

ΞlK(ξk) (20)

where ξk = gkη.
In the spherical setting, we can again find the transform of

the dataset by simply evaluating the conjugate of the basis
function at the points where we have the samples. Therefore,
the spherical harmonic transform of the convolution of Parzen
window w(ξ) with ∆̊(ξ) becomes

ˆ̃
f(l,K) =

(
Γ(l + n− 2)(2l + n− 2)

l! Γ(n− 1)

)1/2

×

×

(
1
N

N∑
k=1

ΞK(ξk)

)
ŵ(l,0). (21)

Spatial estimate is obtained by applying the inverse spherical
harmonic transform to ˆ̃

f(l,K).
Expression (21) is definitely a more efficient way of obtain-

ing the estimate spectrum than computing the spatial estimate
and then transforming it. For large datasets, this expression
combined with the fast inverse transform (e.g. [3]) is a more
efficient way of computing the spatial estimate as well.

C. Computing the pdf in the original domain

In order to compute the pdf value for some point x ∈ Rn, it
is not sufficient to project x onto the Sn and find the value of
reconstruction. If we do that, we do not account for the area-
element stretch introduced by the stereographic transform: this
results in an invalid probability measure. To fix it, we multiply
the yet-to-be pdf by the stereographic transform Jacobian and
get the following result,

f̃(x(1), · · · , x(n)) = f̃(θ(1), ..., θ(n))(1− cos θ(n))n, (22)

so that ∫
Rn

f̃(x)dx =
∫
Sn

f̃(ξ)dξ = 1, (23)

where x = (x(1), · · · , x(n)), dx = dx(1) · · · dx(n), ξ =
(θ(1), · · · , θ(n)) and dξ as in (5).

D. Relation between transformation and density

We use the stereographic projection to focus attention on a
certain subset of the data. There are other ways of achieving
the same effect. For example, the variable window width
kernel density estimation where the window width varies with
the local data density. Stereographic projection is appropriate
for a certain class of densities, while for some densities it
doesn’t work well. To get the general idea of the density
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for which the proposed transform is beneficial, we can try to
use the result of Abramson, [34]. He demonstrated that if the
window width is proportional to f−1/2, the bias of the estimate
will be of a smaller order than with the global window width
estimator. Since we use a fixed kernel width on the sphere, we
can approximate the width of a back-projected kernel by the
n-th root of the Jacobian (22) where n is the dimension. It is
straightforward to find the density that varies with the back-
projected window width optimally in the Abramson sense. We
get

f(x) ∝
(

1
1 + ‖x‖2

)2

. (24)

On the sphere this corresponds to the density

f(ξ) ∝ (1− cos θn)2−n. (25)

For the S2, (24) gives the result that is intuitively expected.
That is, if we use the same window width for the whole sphere,
then the underlying density should be uniform. Observe that
this reasoning is not valid in the topologically different Eu-
clidean case. However, as the dimensionality grows, the tails of
the density (24) get fatter, and in fact the north pole becomes
a singular point of (25). This is not intuitive since it means
that the majority of the samples would be outside of a desired
region, i.e. on the wrong half of the sphere with regard to the
stereographic projection. If we make the natural requirement
that the density be uniform on the sphere, the back-projected
density becomes

f(x) ∝
(

1
1 + ‖x‖2

)n
. (26)

Sphere is a compact manifold without boundary. An interesting
consequence of this fact is that the convolution between
uniform density on a sphere and arbitrary kernel function
that integrates to unity is again a uniform density. Thus,
the expected bias for the estimate of a uniform density on
a sphere is exactly zero. The result (26) makes more sense
since the number of the samples being mapped to either half
of the sphere remains proportionally the same regardless of
the dimension. For n = 1, (26) gives the univariate Cauchy
distribution, although this is not true for the multivariate case.

E. Dealing with negative reconstructed pdf values

Problem inherent to orthogonal series estimates of a prob-
ability density function are negative reconstruction values.
Given that the basis functions are oscillatory, summing only
a finite number of basis functions due to spectral bandwidth
limitation obviously gives a result that takes both positive and
negative values. The same problem arises when using kernel
estimates with kernels that assume negative values [35]. Such
kernels may reduce the estimator bias, but again introduce
negative estimate values. One possibility is to use the function

f̃∗(x) =
f̃+(x)∫
f̃+(x)

. (27)

where f̃+(x) = max(f̃(x), 0). The approximation given by
(27) is optimal in the L1 sense i.e. for any probability density

g,
‖f̃∗ − g‖1 ≤ ‖f̃ − g‖1, (28)

where ‖f‖1 =
∫
|f |. This means that f̃∗ is closer than f̃ to the

density that is being estimated, thus we can only improve our
estimate by replacing f̃ with f̃∗ [28]. Density f̃∗ is sometimes
referred to as a nonnegative projection, although it is not a
projection in a true sense, since L1 is not a Hilbert space.
There is also a possibility of using a proper L2 projection, but
we use the above schema due to its simplicity.

V. WINDOW WIDTH AND THE ESTIMATOR PERFORMANCE

A. Choice of the smoothing window width

In this paper we aim at the illustration of the applicabil-
ity of the derived convolution formula and at the empirical
assessment of the proposed density estimation model without
fine-tuning the model. However, some discussion with regard
to the choice of the smoothing window is needed.

The effect of the windowing should be regarded both in the
spatial and in the frequency domain. We will use the term
bandwidth by itself when referring to width in the spectral
domain. When referring to the width of the kernel in the
spatial domain we will use the term window width. If the
window is very wide in the spatial domain, then its spectrum
is narrow. Since the estimation corresponds to a convolution
with the window, and spherical convolution is a pointwise
multiplication in the spectral domain according to (11), it
only makes sense to use relatively low model bandwidths. In
contrast, if the window is very narrow in the spatial domain,
we have to increase the model bandwidth or the estimate will
suffer from excessive ringing. This is in complete analogy with
the classical Fourier transform.

Large bandwidths (narrow smoothing windows) make sense
only if the size of the dataset is proportionally large, otherwise
the estimate will overfit the dataset. But if we use large model
bandwidth we can indeed use spatially narrow windows with
corresponding wide spectra.

Previous discussion is in accordance with intuition, since it
makes sense to use a spatially narrower window if we have
more samples in order not to oversmooth the pdf. The other
way around, if we have fewer data we need to use a wider
window so that we avoid having an estimate that resembles a
collection of spikes.

Note that the choice of the window width is not limited
to intuitive arguments only. Window width selection has a
rich literature based on rigorous mathematical arguments,
especially in the Euclidean case. For example [36] for the
spatial domain perspective and [37] for the spectral domain
(characteristic function approach). Comments on the window
width choice for the Sn case can be found in [38], [39].

B. Notes on the estimator performance

The performance of the proposed estimator is largely gov-
erned by the performance of kernel density estimators on the
n-dimensional sphere. Note that the effect of finite spectral
bandwidth can largely be put aside if the bandwidth is adapted
to the chosen window width. This means that we should
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let the spectral magnitude smoothly approach zero, and not
brick-wall it too early (see Fig. 3). Detailed discussion of
spherical density estimators can be found in [38], [39]. Various
results concerning the consistency of spherical estimators
were established in [40]. We only point out the main results
related to convergence. Expected squared-error under certain
assumptions is given in [38] as

L2(κ) ∼ N−1b1(κ) + {1− b2(κ)}2 ρ(f), (29)

where b1 and b2 are some constants that depend on the
chosen kernel, and ρ depends on the second derivative of
the underlying density function. The first term on the right-
hand side of (29) corresponds to the integrated variance and
the second one corresponds to the integrated squared bias.
Window width is controlled by the parameter κ. As κ tends to
infinity, the kernel gets narrower. We could say that the kernel
tends to a Dirac delta function. Furthermore, b2(κ) → 1 as
κ → ∞, in other words the bias term tends to zero. If the
optimal choice for κ is made in the sense of minimizing (29),
then the expected squared-error becomes

inf
κ>0
L2(κ) ∼ N−4/(n+4){ρ(f)(n−2)/2}2/(n+2)Bn, (30)

where Bn is a constant that depends on the dimensionality n.
We see that the rate achieved in the spherical case equals the
rate in the Euclidean case (see for example [41], [42]). That
is, the rates for Sn and Rn are equal. For example, if we put
n = 1, we get the familiar convergence rate of N−4/5.

To understand the overall performance of the estimator it
is important to note that the squared bias and the variance of
the back-transformed estimate are proportional to the squared
bias and the variance on the sphere. For instance, if n = 2,

{E{f̂(x)}−f(x)}2 = (1−cos θ2)4{E{f̂(ξ)}−f(ξ)}2, (31)

and
var{f̂(x)} = (1− cos θ2)4 var{f̂(ξ)} (32)

where θ2 = θ2(x) and ξ = (θ1, θ2) is the inverse stereographic
projection of x. Transformation of the dataset introduces a
multiplicative factor into the asymptotic MISE (see [21]), but
the rate of N−4/(n+4) remains. If the transform is matched to
the underlying pdf, the introduced factor reduces the MISE
accordingly. This implies that if the pointwise bias on the
sphere is zero, the back-transformed bias will be zero as well.
For the proposed estimator this occurs when the density is
given by (26).

Since the expression for the optimal smoothing parameter
requires the knowledge of the density that is being estimated,
different empirical methods for the choice of this parameter
have been proposed. Asymptotic optimality of these methods
has also been proved for the spherical case [38], [39]. Ap-
plication of such data-driven kernel width selectors should be
straightforward for the proposed estimator.

C. Window samples

For computation of the bandlimited spherical harmonic
transform in the 2-sphere case we used the discretization

scheme proposed in [3], [4] and the corresponding fast algo-
rithm implemented in S2Kit [43]. The sampling scheme used
in S2Kit is equiangular with the distance between sampling
angles inversely proportional to the bandwidth. In light of
the previous discussion, we decided to use a fixed set of
window samples for all bandwidths. For higher bandwidths,
this resulted in a smoothing window of the same shape, but
narrower in the spatial domain since the samples lie closer
to the north pole. In fact, spatial and spectral width are
reciprocal. The assumption that this would generate the same
window spectra, only scaled in frequency was experimentally
confirmed as is shown in Fig. 3. The assertion that the
straightforward n-dimensional generalization is possible was
also experimentally validated.

VI. SIMULATION/EXPERIMENTS

A. 2-D case

In the two-dimensional case, random samples are mapped
onto the surface of a regular 2-sphere. Fourier analysis on S2

corresponds to expansions into familiar spherical harmonics
that are special cases of hyperspherical harmonics. The exact
formulation of these functions is provided in Appendix A.

The smoothing kernel density is given by

w(x) ∝ exp(κµTx), (33)

where µ is the mean direction unit vector and xTx = 1. κ > 0
is a smoothing parameter that controls the window width. It
corresponds to κ in (29) and (30). This is actually a von Mises-
Fisher distribution on S2. If µ is the north pole, (33) reduces
to the following form in spherical coordinates,

w(θ, ϕ) ∝ exp(κ cos θ). (34)

As described in Section V, we actually sampled the smoothing
window and used a fixed set of samples. We experimented with
three different windows

ws1[j] ∝ exp (10 cos (π(2j + 1)/20)) , j = 0, . . . , 2
ws2[j] ∝ exp (10 cos (π(2j + 1)/28)) , j = 0, . . . , 4
ws3[j] ∝ exp (10 cos (π(2j + 1)/40)) , j = 0, . . . , 6. (35)

For indices j larger than the indicated maximum, we assume
that the window value is zero.

Model estimate in the spectral domain is now given by

ˆ̃
f(l,m) =

√
1

2l + 1

(
1
N

N∑
k=1

Y ml (θk, ϕk)

)
ŵ(l, 0) (36)

We verified the model on two random processes, one arti-
ficial, and one obtained from the Line Spectrum Frequencies
(LSF) data [44], [45]. Furthermore, we compared it with GMM
pdf estimates of the same process realizations, using GMM
with the same total number of scalar parameters.
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Fig. 3. Spatial and spectral plots of the used smoothing windows: a) window samples used in 2-D case, b) windows samples used in 3-D case, c) and d)
window spectra shown for different bandwidths for 2-D and 3-D cases, e) and f) suitably normalized spectrum magnitude - it can be observed that all spectral
magnitude responses are of the same shape, only differently normalized. Spectral magnitudes are given as functions of the master index l, with K set to 0.

B. Ring-shaped process

In this experiment, the proposed model was used to estimate
the density of a synthetic ring-shaped process depicted in Fig.
4. The process pdf can be analytically written down as

fRING(r) =
1

2π

(
χ[τ2,σ2](r)
σ2

2 − τ2
2

+
χ[τ1,σ1](r)
σ2

1 − τ2
1

)
, (37)

where r = ‖x‖, χA(r) is an indicator function of a set A, τ1,2
are the inner radii and σ1,2 outer the radii of the rings. The

scaling factor (13) is computed as

sj =
1

2
√

var{x(j)
k }Nk=1

.

Training dataset comprised 20000 random samples. Our model
successfully describes the original density from samples. No-
tice that spherical estimation is not an iterative process, and
it always gives a usable model, while GMM makes sense
only for a moderate number of components and the model
has problems with overfitting if the number of components
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Fig. 4. Synthetic pdf used in the first 2-D experiment. Probability of
generating a sample in either ring is 0.5.
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Fig. 5. Integrated squared L2 distance between estimates and original density
of a ring process, versus spherical harmonic bandwidth. Distance is shown
for different kernels as specified in (35). Note that the spectral bandwidth
axis is actually inversely proportional to the spatial kernel width. For each
of the kernels, optimal choice of the smoothing parameter and the spectral
bandwidth corresponds to the minimum of the error curve. Error for smaller
bandwidths increases due to the oversmoothing while for higher bandwidths
the kernels get too narrow.

is large relative to the sample size. L2 error as a function of
bandwidth is shown in Fig. 5.

C. Line spectrum frequencies (LSF)

In the second experiment we modeled the probability den-
sity of the first two LSF coefficients. Our intention was to
verify visually whether it is possible to model more compli-
cated densities from samples. Fig. 7 shows the scatter graph
of the original process, density obtained with our model and
density obtained with the GMM with same number of scalar
parameters. GMM is shown for comparison with a different
space-filling strategy. As in the previous experiment, we used
a training set of 20000 samples.

D. 3-D case

Since little concrete and practical work is available on the
usage of hyperspherical harmonics in signal processing, we

demonstrate here the application of our generalized model
to three dimensions. In three-dimensional case samples are
mapped onto the surface of a hypersphere (3-sphere), therefore
we use the hyperspherical harmonics to estimate the pdf.
Hyperspherical harmonics can be neatly written down with
the help of Gegenbauer polynomials (see Appendix A).

We chose the (θ1, θ2, θ3) coordinates on S3 according to (2).
In these coordinates, 3-sphere harmonics are given by (39) by
putting n = 4.

Same as in the 2-D case, after mapping the samples onto
a hypersphere, we smooth them out with a window. Here, we
experimented with the window of the form

w ∝ exp(−θ23κ) (38)

where κ > 0 is a smoothing parameter.
Window samples were determined as follows,

ws[j] ∝ exp(− (π(2j + 1))2 /480), j = 0, . . . , 8.

We simulated the model for two datasets. The first one was
drawn from an artificial, spiral shaped distribution, while the
second one was obtained from speech Line Spectrum Frequen-
cies data and corresponds to the first three LSF coefficients.
In both experiments the sample size was 50000.

E. Spiral-shaped process

In this experiment samples are generated according to the
pdf illustrated in Fig. 8. First a random point P is chosen
uniformly along the length of the spiral, then a sample is
generated in the plane that contains the z-axis and P according
to a bivariate normal distribution with the mean P .

In Fig. 9 it can be observed from pdf isosurfaces that the
proposed model successfully estimates the pdf from samples
of the spiral process. Again, we include the estimate obtained
by GMM for comparison. Convergence of the estimate towards
the original pdf is shown in Fig. 10. We experimented with
different prescaling factors (13) when mapping the process
onto the 3-sphere. All three factors yield virtually identical
L2 distances for given bandwidths. In particular, prescales (13)
were computed as

sj =
k−1

2
√

var{x(j)
k }Nk=1

,

where k is a parameter that controls the magnitude of scaling.

F. LSF premodeled by GMM

In order to numerically assess the performance of the pro-
posed model for a real-world dataset, we used the realizations
of the lower three LSFs. Since the actual pdf of these coef-
ficients is unknown, we first modeled the dataset with GMM
comprising 25 Gaussian components. We used our model to
estimate the pdf of a new process generated by the GMM,
and computed the L2 distance from the original GMM density
for different bandwidths. Isosurfaces of the GMM density and
densities obtained from the proposed model are shown in Fig.
11. One may observe that it is possible to describe a relatively
complicated density shape using our model. Bear in mind that
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Fig. 6. Density estimates of a synthetic ring process, compared with GMM estimates with the same number of scalar coefficients. (a) BW=12 (144 coefficients),
(b) BW=34 (1156 coefficients), (c) BW=60 (3600 coefficients). (e) 21 mixture component, (f) 166 mixture components, (g) 515 mixture components. (d) and
(h) show the crossections along the y-axis (vertical).
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Fig. 7. Estimates of distribution density of lowest two LSF coefficients, shown for different bandwidths and compared with GMM estimates for the same
number of scalar coefficients. (a) scatter graph for 3000 samples (b) BW=12 (144 coefficients), (c) BW=34 (1156 coefficients), (d) BW=60 (3600 coefficients).
(e) 21 mixture component, (f) 166 mixture components, (g) 515 mixture components.

while Fig. 11a shows the isosurface of the analytical GMM
density, densities in the remaining figures are estimated from
samples. L2 distance from the GMM is shown in Fig. 12. Note
that differently from Fig. 5 only the decreasing part of error

curves in shown in Fig. 10 and Fig. 12 (this would correspond
to the bias term due to oversmoothing). Although the optimum
is achieved for higher bandwidths, this part of the curve is
interesting in the context of compact data modeling.
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Fig. 9. Isosurfaces of spiral density estimates. Isovalue of pdf used for figure generation is 0.008. (a) original density, (b) BW=14 (1015) coefficients), (c)
BW=25 (5525 coefficients), (d) BW=40 (22140 coefficients). GMM estimates are shown in (e) for 6 mixture components, (f) for 11 mixture components and
(g) for 100 mixture components. Here, GMM is shown as an example of a different space-filling strategy, and corresponding number of scalar components
doesn’t match.

1
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Fig. 11. Isosurfaces of density estimate for a process generated by a GMM of LSF coefficients. Isovalue of pdf used for figure generation is 2. (a) original
density comprising 25 Gaussian mixture components, (b) BW=14 (1015 coefficients), (c) BW=25 (5525 coefficients), (d) BW=40 (22140 coefficients).

VII. CONCLUSION AND FUTURE WORK

We have derived the formula for the Fourier transform of
a convolution of functions on an n-sphere, Sn. Furthermore,
we proposed a probability density modeling technique that
uses the obtained result for the convolution. The samples are
mapped onto the sphere, where they are convolved with the
smoothing kernel density.

The model was applied to several synthetic and real-world
processes in two and three dimensions, i.e. on the sphere
and on the hypersphere. The obtained results suggest that the
model successfully describes processes of different structures.
Three dimensional experiments demonstrate how the familiar
spherical harmonic techniques may be extended to higher
dimensions (hyperspherical harmonics). The model is readily

extendable to dimensions higher than 3 using the provided
n-dimensional framework.

Future work includes fine tuning of the prescaling step and
the mapping parameters, as well as determining the optimal
window shape for specific datasets. Also, the information
content of the quantized expansion coefficients and the effect
of the quantization on the reconstruction will be investigated.
Another functionality that should be easy to implement is
adding the information from new samples into the existing
estimate. Since the model is of a one-shot kind, the timings
required to obtain the estimate may be accurately predicted.
This property may be useful in source coding applications.

The biggest current drawback is the lack of readily avail-
able implementations of the involved higher dimensional fast
transforms, even though the theory exists.
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Fig. 8. Illustration of the density from which data were drawn in the first 3-
D experiment. It can be viewed as a bivariate normal distribution superposed
onto the spiral.

APPENDIX A
SPHERICAL AND HYPERSPHERICAL HARMONICS

In literature there are several definitions of spherical and
hyperspherical harmonics that differ in normalization, phase
convention, choice of coordinates, etc. We generally follow the
conventions of Vilenkin [2]. Let l and K = (k1, . . . , kn−2) be
defined as in Section II. In the coordinates (2), hyperspherical
harmonics are given by

ΞlK(ξ) = AlK×

×
n−3∏
i=0

C
n−i−2

2 +ki+1

ki−ki+1
(cos θn−i−1) sinki+1 θn−i−1e

±jkn−2θ1 .

(39)
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Fig. 10. Integrated squared L2 distance between estimates and original
density of a spiral process, versus spherical harmonic bandwidth. Error is
shown for three prescaling factors.

The normalization factor is

(AlK)2 =
1

Γ
(
n
2

) n−3∏
i=0

22ki+1+n−i−4×

×
(kj − ki+1)!(n− i+ 2ki − 2)Γ2

(
n−i−2

2 + ki+1

)
√
π Γ(ki + ki+1 + n− i− 2)

.

(40)

In [33] Avery uses a convention where the area of a unit (n−

1)-sphere is
2πn/2

Γ(n/2)
. In contrast, we follow the convention

where that area is equal to unity, hence the normalization in
(5). In (39), Cλn(t) are the Gegenbauer polynomials of degree
n. They can be defined as the coefficients of αn in the power-
series expansion of the following function [46],

(1− 2tα+ α2)−λ =
∞∑
n=0

Cλn(t)αn. (41)

A reliable method for computation of Gegenbauer polynomials
is the three-term recurrence relation,

(n+2)Cλn+2(t) = 2(λ+n+1)tCλn+1(t)−(2λ+n)Cλn(t), (42)

with Cλ0 (t) = 1 and Cλ1 (t) = 2λt.
A special case of (39) are the familiar spherical harmonics

on S2. In fact, Gegenbauer polynomials are the generalization
of Legendre polynomials. Spherical harmonics on S2 are given
by

Y ml (θ, ϕ) = NlmP
m
l (cos θ)ejmϕ (43)

with the normalization factor

Nm
l =

√
(2l + 1)

(l −m)!
(l +m)!

(44)
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Fig. 12. Integrated squared L2 distance between estimates and original
density of the lower three LSF coefficients premodeled by GMM, versus
spherical harmonic bandwidth. GMM premodeling is used to obtain an
analytical model of a real-world process. Error is shown for three prescaling
factors.
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chosen so that the norm of each harmonic would be unity with
respect to the measure (5). Pml are the associated Legendre
polynomials that can also be computed via the three-term
recurrence relation

(l−m+1)Pml+1(x) = (2l+1)xPml (x)−(l+m)Pml−1(x), (45)

with m and l integers such that |m| ≤ l. The initial values are
given by1 P ll = (−1)l(2l − 1)!!(1− x2)l/2 and P ll+1(x) =
x(2l + 1)P ll (x).

APPENDIX B
DERIVATION OF THE CONVOLUTION FORMULA

Let f1, f2 ∈ L2(S2) and f = f1 ∗ f2. By definition,

f̂(l,K) =
∫
Sn−1

f(ξ) ΞlK(ξ) dξ

=
∫
Sn−1

(∫
SO(n)

f1(gη)f2(g−1ξ) dg

)
ΞlK(ξ) dξ.

(46)

After rearranging the integrals we get

f̂(l,K) =
∫
SO(n)

(∫
Sn−1

f2(g−1ξ)ΞlK(ξ) dξ
)
f1(gη) dg

(47)
First, let’s evaluate the inner integral. We introduce the matrix
elements of the rotation operator tlMK(g) via their action on
the canonical basis elements ΞlK(ξ) (see (1) in [2], page 469),∫

Sn−1
f2(g−1ξ)ΞlK(ξ) dξ

=
∫
Sn−1

f2(ξ)ΞlK(gξ) dξ

=
∫
Sn−1

f2(ξ)
∑
M

tlMK(g−1)ΞlM(ξ) dξ

=
∑
M

tlMK(g−1)
∫
Sn−1

f2(ξ)ΞlM(ξ) dξ

=
∑
M

tlMK(g−1)f̂2(l,M). (48)

Now we substitute (48) into (47),

f̂(l,K) =
∫
SO(n)

∑
M

tlMK(g−1)f̂2(l,M)f1(gη) dg

=
∑
M

f̂2(l,M)
∫
SO(n)

f1(gη)tlMK(g−1) dg. (49)

Since

T l(g)f1(η) =
∑
K

f̂1(l,K)tlMK(g)ΞlK(η)

=
∑
M

∑
K

tlMK(g)f̂1(l,K)ΞM(η). (50)

1The double exclamation mark symbol denotes the double factorial,
n!! = n(n− 2)(n− 4) · · · , (−1)!! = 0!! = 1.

and tlMK(g) = tlKM(g−1) (unitarity of the representation),

f̂(l,K) =
∑
M

f̂2(l,M)×

×
∫
SO(n)

∑
R

∑
S

tlSR(g)f̂1(l,S)ΞlR(η)tlKM(g) dg

=
∑
M

∑
R

∑
S

f̂2(l,M)f̂1(l,S)ΞlR(η)×

×
∫
SO(n)

tlSR(g)tlKM(g) dg

=
∑
M

f̂2(l,M)f̂1(l,K)ΞlM(η) (51)

but ΞlM(η) = 0 for M 6= (0, ..., 0), and

ΞlO(η) = AlOC
n−2

2
l (1), (52)

where O = (0, ..., 0) and AlO is defined in (40), so

f̂(l,K) = AlOC
n−2

2
l (1)f̂1(l,K)f̂2(l,0)

=

√
Γ(l + n− 2)(2l + n− 2)

l!Γ(n− 1)
f̂1(l,K)f̂2(l,0) (53)
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