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Abstract—In the context of environmental monitoring, outdoor
wireless cameras are vulnerable to natural hazards. To benefit
from the inexpensive imaging sensors, we introduce a multi-
camera monitoring system to share the physical risk. With
multiple cameras focusing at a common scenery of interest, we
propose an interleaved sampling strategy to minimize per-camera
consumption by distributing sampling tasks among cameras. To
overcome the uncertainties in the sensor network, we propose
a robust adaptive synchronization scheme to build optimal
sampling configuration by exploiting the broadcast nature of
wireless communication. The theory as well as simulation results
verify the fast convergence and robustness of the algorithm.

Under the interleaved sampling configuration, we propose
three video coding methods to compress correlated video streams
from disjoint cameras, namely, distributed/independent/joint cod-
ing schemes. The energy profiling on a two-camera system shows
that independent and joint coding perform substantially better.
The comparison between two-camera and single-camera system
shows 30%-50% per-camera consumption reduction. On top of
these, we point out that MIMO technology can be potentially
utilized to push the communication consumption even lower.

I. INTRODUCTION

Wireless sensor networks find widespread applications
in environmental monitoring, where use cases range from
wildlife monitoring [9] to microclimate monitoring [2]. Thanks
to the availability of low-cost image sensor chips, such as
CMOS cameras, wireless sensor networks can extend their
functionalities to include image and video monitoring [7].
Among the many applications of cameras in environmental
monitoring, we are especially interested in natural hazards
detection, such as avalanche. To detect such a random event, a
single monitoring camera is usually programmed to capture the
scenery of interest periodically (1-60 images/hour in our case),
and transfer the image sequence back to a base station (BS)
in real-time. However, the camera itself is also experiencing
unpredictable weather conditions and consequently can be
affected by surrounding major events. For example, Fig. 1
shows a wireless sensor station destroyed by an avalanche in
a recent deployment of ours.

Moreover, for visual applications to become ubiquitous, we
need to tackle the problem of processing and transmitting
large amounts of data, under the severe energy constraints of
wireless sensor networks (e.g., nodes operating on batteries

(a) (b)

Fig. 1. Environmental monitoring hazards in the Swiss Alps. A SwissEx
(http://www.swiss-experiment.ch) wireless sensor station at Davos destroyed
by an avalanche: (a) The station after the avalanche. (b) After snow melt.

and a solar panel). As the radio transceiver is often the
largest energy consumer, minimizing the transmitted data is
a necessary step to augment wireless sensor networks with
image/video capabilities.

In this paper, we show that a multi-camera wireless network
provides a solution to the two main concerns of visual mon-
itoring: (i) It increases robustness to unpredictable events by
adding redundancy. (ii) It allows to reduce energy consumption
on each camera by distributing image sampling tasks among
all neighboring cameras, while the event detection probability
is kept the same.

In order to increase robustness, we consider the scenario
where cameras are in different locations but observe a common
scenery of interest. Therefore, they generate correlated image
sequences (video). In case of camera failure, as long as there
is still one surviving, we will not lose the visual access to the
scenery of interest. Meanwhile, surviving cameras also have
a good chance to record the invaluable event that destroyed
other cameras (e.g., an avalanche), and can transfer the images
back to the base station.

In normal operations, to deliver all images generated by
such a multi-camera system, each camera communicates with
the BS through a wireless link (we consider long-range com-
munication scenario). Based on this configuration, we propose
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a general image capture (sampling) framework to solve two
problems raised in multi-camera system:
• From an event detection point of view, what is an optimal

sampling strategy using multiple cameras?
• Since views from disjoint cameras have strong correla-

tions, what is an energy efficient way to deliver images
from all cameras to the BS?

Motivated by the successive refinement coding of two static
sources [4], we extend this scheme to encode videos1 from
n cameras: each camera samples at frequency f/n, and the
sampling time of cameras are arranged in an interleaved
manner, imitating a single camera sampling at frequency f . In
this way, we distribute the risk of physical hazard and energy
burden of wireless transmission into n independent cameras,
while the overall event detection capability is kept the same.

In this paper, we develop this idea and show that a uniform
sampling configuration is optimal in terms of event detection
probability. To tackle the unknown clock offsets and possible
camera failure, we propose a robust adaptive synchroniza-
tion algorithm to build the optimal sampling structure that
exploits the broadcast nature of wireless communication. In
case of new camera arrival or camera malfunction, cameras
autonomously adapt to the optimal configuration.

To compress all image sequences from n disjoint cameras,
we use distributed video coding (DVC) schemes [6] [12].
Alternatively, we propose a joint video coding scheme by
exploiting the fact that for long-range communication, energy
consumption is significantly lower in reception (RX) than in
transmission (TX). The final energy profiling on a two-camera
system shows that joint coding offers a better compression rate
compared to the distributed coding scheme.

Our main contributions in this paper are:
1) We propose a novel sampling framework to fully exploit

the advantage of multiple cameras, which can distribute
risk and energy among n cameras, and the consumption
per camera is reduced by a factor of n.

2) We find that a joint coding method outperforms the
state-of-art DVC scheme substantially in our application,
where sampling rate is much lower than conventional
video and thus inter-frame correlation is not strong
enough for DVC to be efficient.

3) We point out the potential of MIMO technology: a
multi-camera network has fundamental energy saving
as compared with traditional single-camera system, and
thus in principle the communication consumption per
camera is reduced by a factor of n2.

The remainder of this paper is organized as follows: We
present related works in Section II. In Section III, we introduce
an optimal sampling framework for multiple cameras, and
propose a robust adaptive synchronization scheme to build the
correct sampling structure autonomously. Simulation results
are also given to verify this algorithm. Section IV introduces

1Note that for environmental monitoring applications the frame rate is much
lower than conventional video at 30 fps.

three video coding methods to compress image sequences
from all cameras, namely, distributed/independent/joint coding
schemes. Section V evaluates a two-camera system, where the
experimental setup and detailed results are given. Finally, in
Section VI we point out the potential of MIMO technology
for multi-camera systems.

II. RELATED WORK

Low power and inexpensive wireless imaging sensors [13]
have became available in recent years. They were originally
intended for gesture recognition, indoor monitoring, and object
retrieval [10] [17]. Wireless cameras used for environmental
monitoring have also been proposed [7], but cameras are
treated as independent nodes. Our work on a multi-camera
wireless monitoring network addresses the following two
issues: (i) sampling by multiple sensors; (ii) distributed video
coding.

The general idea to exploit the sampling capability of
multiple sensors is inspired by space-time sound field sampling
theory [1], where the optimal sampling grid is achieved by a
tight packing of sound field’s spectrum replicas. We translate
this idea to the field of camera networks, where multiple
cameras monitor a common scenery of interest for robustness
purposes. By interleaving the sampling time of cameras, we
find the optimal sampling configuration to maximize the event
detection probability. This is also related to our previous work
on successive refinement coding of two static sources [4] [5],
where two cameras cooperate in a Ping-Pong fashion to
achieve joint successive refinement coding of stereo-view
images. Our proposed scheme in this paper can be thought as
an extension from two cameras to multiple cameras, as well
as from static images to video streams.

Compressing interleaved multi-view videos is related to
multi-view distributed video coding. This area has been
rapidly evolving recently in the context of conventional videos,
due to standardization efforts for 3DTV. As opposed to
our setup, multi-view distributed coding tackles the non-
interleaved setup. The most recent works of this area include
homography/epipolar based schemes [14], and PRISM derived
schemes [18] which was originally developed as single-view
coding scheme [12].

III. OPTIMAL SAMPLING USING MULTIPLE CAMERAS

In this section, we introduce an interleaved sampling struc-
ture for a multi-camera network. It is designed to distribute
physical risk and energy burden among all deployed cameras,
while being optimal in terms of event detection probability.
Then, we propose a robust adaptive synchronization scheme,
that can autonomously learn the network configuration and
converge exponentially to the optimal sampling structure.

A. Interleaved sampling structure

Suppose we have some wireless cameras equipped with
long-range radio (typically several kilometers, up to 20km),
and each can be programmed to capture images periodically.
Initially we install one camera to monitor a scenery of interest,
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Fig. 2. Multi-camera monitoring network: (a) By monitoring a common
scenery of interest, multiple cameras (represented by dots) share the risk of
physical hazard and energy burden of wireless transmission. (b) Interleaved
sampling setup of two cameras trying to capture a random event.

and it captures images at a fixed sampling frequency f . In
order to increase the robustness of system, we deployed n−1
extra cameras to monitor the same scenery of interest (see
Fig. 2a). In order to share the energy burden among all cam-
eras, we reduce the sampling frequency of each camera to f/n.
Under such a scenario, we want to find the optimal sampling
strategy that maximizes the probability to catch/record an
event.

Fig. 2b shows a two-camera setup as described above: the
arrows represent the time instants of captured images. The
sampling frequency of each camera is fixed at f/2, and δ1
is the interleaved offset between the sampling grid of two
cameras. If we assume a particular event happening randomly
(uniform distribution) with a time length ∆, then with a
sampling scheme like in Fig. 2b, the probability Pd that we
catch the event is related to the choice of δ1. In the following,
we prove that the optimal sampling strategy is a symmetric
interleaved setup.

Theorem 1: For n cameras each sampling at frequency
f/n, the optimal sampling strategy is a symmetric interleaved
setup with uniform spacing of 1/f .

Proof: Denote δ1, δ2, · · · , δn be the interleaved offsets
between the sampling grid of adjacent cameras (In Fig. 2b, the

case n = 2 is shown). They are constrained by
n∑
i=1

δi = n/f .

When n = 2 (we can assume δ1 < 1/f because of
symmetry), since the event occurs at a uniform distribution
with a time length ∆, the probability Pd that we catch the
event can be expressed as

Pd =


f∆, ∆ < δ1

f(∆ + δ1)/2, δ1 < ∆ < 2/f − δ1
1, ∆ > 2/f − δ1

.

Thus, the optimal choice of δ1 that maximizes the detection
probability is

arg max
δ1

Pd =

{
δ1 > ∆, ∆ < 1/f

δ1 < ∆, ∆ > 1/f
,

from which we know that δ1 = 1/f is the universal choice
to maximize Pd. Therefore, in the optimal sampling setting,
two cameras are sampling in a symmetric interleaved manner:
each samples at frequency f/2, and the interleaved offset is
1/f .

Algorithm 1 Adaptive synchronization algorithm
1: if camera startup then
2: Wait for T = n/f
3: if detect a beacon then
4: Set a random time to initiate the first TX
5: else
6: I’m Anchor, initiate a TX immediately
7: end if
8: else if I’m Anchor then
9: Repeat TX every T

10: else
11: xk, xk+1: current/next TX schedule of “me”
12: x−, x+: time-stamp of two adjacent beacons to xk
13: xk+1 = T + (x− + x+)/2
14: if haven’t received Anchor beacon for M · T, (M > 1)

then
15: I’m Anchor, initiate a TX immediately
16: end if
17: end if
18: k = k + 1

We can generalize this to the case when n > 2: For δk and
δk+1, when the random event happens inside them, the optimal
strategy is to choose δk = δk+1 according to the argument of
two-camera case above.

By doing such partition from δ1 to δn−1, we can get δ1 =
δ2, δ2 = δ3, · · · , δn−1 = δn. Thus the symmetric interleaved
setup δ1 = δ2 = · · · = δn is the optimal sampling strategy.

B. Adaptive synchronization scheme

Knowing the optimal sampling structure of a multi-camera
network, it is of practical interest to investigate if these
cameras can autonomously setup such a configuration, given
the uncertainties presented in sensor networks:
• n decreases: some camera fails to work.
• n increases: a new camera is installed.
• Local clocks of cameras are not synchronized and are

subject to drift.

In the following, we propose an algorithm to tackle all
these problems. We make some practical assumptions: (i) All
cameras are equipped with long-range radio to communicate
with the BS, and they are able to overhear each other (all
within the radio communication range); (ii) Every camera has
a timer, and they send its own image periodically at a fixed
interval T = n/f .

We denote the first installed camera as an Anchor camera,
which fixes its own schedule irrespective of other cameras.
Algorithm 1 illustrates the detailed iterative scheme to achieve
adaptive synchronization. The basic idea is that each camera
sends a beacon followed by its own image (referred to as a
TX) according to the scheduled interval T . Meanwhile, each
camera records the time-stamps of the two adjacent beacons
to its current transmission and adjust its next transmission
schedule to be located at the same distance from the predicted
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Fig. 3. Simulation results of adaptive synchronization scheme. Five unsynchronized cameras starts at k = 0, one camera pops up at k = 100, and one
random camera dies at k = 200. The green squares labels the camera that shows/disappears. k denotes the number of sampling intervals passed. x(k)i /T − k
denotes the normalized sampling time of camera i. (a) Algorithm 1 under perfect overhearing condition. (b) Algorithm 1 under 10% overhearing loss. (c)
Algorithm 1 improved by robust update (Algorithm 2) under 10% overhearing loss.

two adjacent beacons. In this way, when some cameras sud-
denly show up or disappear, each camera can adaptively adjust
the transmission schedules to recover the correct sampling
configuration. Note that it is also possible that the Anchor will
fail to work in the long run, thus it is important to identify
this camera with a special beacon so that others can claim a
new Anchor when they found there is no Anchor alive.

In practice, the camera number n is actually not necessary to
any nodes. Once the system is alive, each node sticks to their
original sampling interval. When new camera is installed, they
automatically adapt to the new sampling configuration, and
thus the overall sampling frequency of the system is increased.
On the other hand, since n is known at the initial deployment,
we can reduce the sampling frequency of all cameras, and thus
the designed power budget of each camera (solar panel size)
can be reduced.

We prove the convergence of Algorithm 1 in the following:
Theorem 2: Under the condition of perfect overhearing, the

adaptive synchronization algorithm converges to the symmet-
ric interleaved sampling structure in an exponential manner.

Proof: Denote the number of cameras as n, the scheduled
interval of each camera as T , and the time-stamp of camera
i’s kth TX as x(k)

i , i = 1, . . . , n, k = 1, 2, . . .. Under the
condition of perfect overhearing, any camera can hear other
cameras’ beacons without any loss. Therefore, we can interpret
the adaptive synchronization algorithm as:

X(k+1) = A ·X(k) + η, (1)

where X(k) =
(
x

(k)
1 , x

(k)
2 , x

(k)
3 , · · · , x(k)

n−1, x
(k)
n

)T
, and

A =



1 0 0 · · · 0

1
2

0 1
2

. . .
...

0 1
2

0
. . . 0

. . .
. . .

. . .
. . . 1

2
1
2

0 · · · 0 1
2

0


, η =



T
T
T
...
T
3T
2


.

|A − λI| = (1−λ)√
λ2−1

((
−λ+

√
λ2−1

2

)n
−
(
−λ−

√
λ2−1

2

)n)
,

thus the eigenvalues of A are

λi = cos
(i− 1)π

n
, i = 1, · · · , n.

Given the structure of A, the corresponding eigenvector vi
satisfies v1 = (1, 1, · · · , 1)

T, and vi =
(

0, v
(2)
i , · · · , v(n)

i

)T

for i 6= 1. Thus, we can expand

X(1) = x
(1)
1 v1 +

n∑
i=2

αivi, η = Tv1 +

n∑
i=2

βivi,

which are then plugged into the solution of recurrence (1):

X(k) = AkX(1) +

k−1∑
j=0

Ajη

= x
(1)
1 λk1v1 +

n∑
i=2

αiλ
k
i vi +

k−1∑
j=0

(
Tλj1v1 +

n∑
i=2

βiλ
j
ivi

)

= (x
(1)
1 + kT )v1 +

n∑
i=2

(
αiλ

k
i + βi

1− λki
1− λi

)
vi.

Since |λi| < 1 for i > 1, X(k) − (x
(1)
1 + kT )v1 converges

exponentially to a unique solution

lim
k→∞

(X(k) − (x
(1)
1 + kT )v1) =

n∑
i=2

βi
1− λi

vi.

On the other hand, it is straightforward to verify that X(k)−
(x

(1)
1 +kT )v1 = T ·

(
0, 1

n
, · · · , n−1

n

)T satisfies the convergence
condition. Therefore, the algorithm converges to the symmetric
interleaved sampling structure.

Fig. 3 shows the simulation results of the adaptive syn-
chronization scheme. Five unsynchronized cameras starts at
k = 0, one camera appears with a random sampling time at
k = 100, and one random camera dies at k = 200. Here
k denotes the number of sampling intervals elapsed, thus it
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Algorithm 2 Robust schedule update algorithm (replace Lines
11-13 of Algorithm 1).

1: xk, xk+1: current/next TX schedule of “me”
2: x−, x+: time-stamp of two adjacent beacons to xk
3: x∆ = (x− + x+)/2− xk
4: if |x∆| > thre then
5: xk+1 = T + xk + sgn(x∆) · thre
6: else
7: xk+1 = T + xk + x∆

8: end if
9: if |x∆| > 2 · thre then

10: thre = 2 · thre
11: else if |x∆| < thre/2 then
12: thre = thre/2
13: end if

represents the kth TX of each camera. x(k)
i /T −k denotes the

normalized sampling time of camera i, which should converge
to (i− 1)/n when there are n cameras (same notations as in
the proof of Theorem 2). Each trace records the evolution of
a camera’s normalized sampling time. Notice that the Anchor
camera is setup so that it always coincides with the horizontal
axis. Fig. 3a shows the performance of Algorithm 1 under
perfect overhearing condition. It can be seen that all cameras
do converge to the optimal sampling structure quickly (within
25 steps), withstanding all uncertainties as we mentioned in
the beginning of Sec. III-B.

However, if the perfect overhearing condition does not
hold, Algorithm 1 could degrade badly. Fig. 3b shows the
performance when each camera has 10% possibility to miss the
beacon sent by other cameras, which suggests that the original
algorithm totally fails under packet losses. To overcome this,
we propose a robust schedule update algorithm that adaptively
limits the change rate of transmission schedule. As described
in Algorithm 2, each camera has a threshold variable thre,
which is initialized to a certain value (e.g., 0.01 ·T ) at startup.
At each update round, the maximum adjustment is limited
to thre, meanwhile thre is also adaptively adjusted. In
this way, the algorithm can learn the optimal threshold, and
is robust to some burst errors caused by overhearing loss.
Fig. 3b shows the performance of Algorithm 1 with this
improvement. As we can see, with the same overhearing loss
rate, it converges fast (within 50 steps), and keeps steady after
it converges.

IV. VIDEO CODING OF MULTI-CAMERA SYSTEM

Under the optimal interleaved sampling configuration, mul-
tiple cameras cooperate to monitor a common scenery. If the
images sequences from disjoint cameras are registered prop-
erly so that the shared views are aligned, then they actually
forms a single video sequence which can be thought of as be-
ing captured by a single camera sampling at frequency f (See
Fig. 4 as an illustration of the two-camera case). To exploit
this fact, we investigate three video coding schemes, namely,
distributed/independent/joint coding schemes to compress the

Fig. 4. Interleaved sampling: dual image sequences can be regarded as a
single video stream.

Quantizer
Slepian-
Wolf

Encoder

Slepian-
Wolf

Decoder

Recons-
truction

Intra-frame
Encoder

Intra-frame
Decoder

Keyframe

Wyner-Ziv
frame

Multiplexer Side 
information

Encoder Decoder

Fig. 5. Block diagram of the DISCOVER encoding/decoding architecture.

data from the cameras. We assume the view registrations
between static cameras have been estimated2, and only the
overlapped area is considered in the coding process (non-
overlapped areas are encoded independently using conven-
tional methods).

A. Independent video coding

The difficulty in merging/coding image sequences of multi-
ple cameras is that they require direct communication between
cameras which is usually not feasible. Therefore, a simple
solution to avoid inter-camera communication is to apply a
conventional video coder like H.264 [11] independently to
each camera.

B. Distributed video coding

Since consecutive frames are from physically separated
cameras, distributed video coding (DVC) is a specialized tool
recently developed for such compression task [6] [12]. In such
schemes, the significant burden of motion estimation is shifted
from the encoder to the decoder, and therefore the encoder
virtually assumes no knowledge of previous and following
frames while encoding a particular video frame.

DISCOVER [6] is one of the mainstream distributed video
coders that performs close to the standard video compression
method like H.264. The basic idea (see Fig. 5) is to multiplex
the input video stream into keyframes and Wyner-Ziv frames,
and the keyframe is regarded as the side information to
reconstruct the Wyner-Ziv frame at the decoder. The encoder
assumes no knowledge of keyframes while encoding the
Wyner-Ziv frame, thus no communication is necessary if we
distribute keyframes and Wyner-Ziv frames among cameras.
The advantage of such a scheme is that it uses a significantly
lower encoding complexity than traditional video compression
methods, and therefore, it can be easily implemented on an
embedded platform consuming little CPU power.

2See [3] for image registration algorithm.
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Switch to 1:
Transmitting,
Tx on, Rx off. 

Switch to 2:
Overhearing,
Tx off, Rx on.

Fig. 6. Virtual joint video coding based on a hybrid coder (encoder part at
each camera). Q is quantization block, P is prediction block, and Ixx is the
inverse operation of xx. The motion data estimated in the prediction block is
also sent but not explicitly drawn in the diagram.

C. Joint video coding by overhearing

Since the image sampling rate of environmental monitoring
application is constraint by severe energy supply, the radio
channel occupation remains very low (see [3] for calculations).
For interleaved sampling configurations, this implies that two
cameras will not transmit simultaneously and no interference
exists. Therefore, the long range radio used between the
cameras and the BS (typically 20km) provides a sufficient
overhearing coverage for neighboring cameras. On the other
hand, energy consumptions of transmission (TX) and reception
(RX) are highly non-symmetric especially in the long-range
setup (see Table I), this motivates us to use overhearing since
the coding gain in TX will compensate the energy loss in RX.

TABLE I
POWER CONSUMPTION OF SHORT AND LONG RANGE TRANSCEIVERS [16].

GSM 802.11b Bluetooth

RX (mW) 240 60 30

TX (mW) 2860 350 14.5

Range (m) 20k 40 10

In contrast with the distributed coding approach, we propose
a joint video coding scheme that uses overhearing as a passive
link between cameras. Fig. 6 shows a modified H.264 hybrid
coder to achieve joint coding of all cameras. Each camera
has such an encoding unit, in which the feedback loop of
the hybrid coder is split into two different routes. The first
route (when switch=1) is identical to a conventional hybrid
coder, where the source image is fed into the prediction block.
On the contrary, the second route (when switch=2) bypasses
the overheard message into the prediction block, which is the
codewords generated by other camera.

Each camera switches to 1 when it is in transmission mode,
otherwise it switches to 2 for overhearing. By repeating this
cooperation, the prediction blocks of all cameras are always
synchronized and store the latest frame for joint coding.
Therefore, the encoder at each camera is virtually compressing

a video sampled at frequency f , rather than its own sampling
frequency f/n. As a consequence, inter-camera correlation is
fully exploited and better compression ratio is expected.

V. CASE STUDY: ENERGY PROFILING OF A TWO-CAMERA
SYSTEM

The most critical factor in evaluating a wireless camera
network is the energy consumption3. To get an approximate
energy profiling of a two-camera system, we first collect
some image datasets for benchmarking purposes using two
conventional cameras. Then we can obtain the computation
consumption by running the previous described video com-
pression schemes using these datasets on a typical embedded
image processing platform Sensorcam [3]. Meanwhile, the
video size after compression can be used to estimate the
communication consumption by using typical long-range radio
power (see Table I). Then, the global energy profiling is the
summation of computation and communication consumptions.
In the following, we first introduce the experimental setup, and
then give the detailed evaluation results.

A. Experimental setup

Fig. 7a shows the two monitoring cameras deployed on the
roof of a building used to capture benchmark images. Due to
the limited space, two cameras are placed closer than a real-
world monitoring setup. Therefore, we choose two different
sceneries with different depth structures (see Fig. 7b and
Fig. 7c) to investigate the algorithm: Scene A captures the
facade of a building which is a planar scene suitable for
homography geometry. In contrast, Scene B includes buildings
stretching out to the mountains far away, which has a complex
depth structure. The later one introduces parallax between
two views mimicking two cameras deployed in a distributed
manner.

Our image processing platform, Sensorcam, includes an
ARM based Marvell XScale PXA270 module which runs an
embedded Linux system. All algorithms described in Sec. V
are implemented using C/C++ for running on the Sensorcam
board. Refer to [3] for detailed information about datasets and
implementation. Table II lists some of the parameters related
to the experiments.

B. Compression-complexity tradeoff

The global energy consumed at each camera can be ex-
pressed as:

Eglobal = EENC + ETX + ERX, (2)

where EENC denotes the computation energy spent on video
encoding (e.g., H.264), ETX denotes the communication en-
ergy for transmitting codewords, and ERX denotes the com-
munication energy for overhearing. From the global energy
point of view, it is worth considering what is the most energy
efficient allocation for computation and communication: As
the computation complexity increases, the size of bitstream

3The real-time monitoring does not allow latency, so all video coding
schemes we used in this paper send images immediately after captured.
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(a) (b) (c)

Fig. 7. Experimental setup to capture datasets: (a) Two surveillance cameras with solar power system watching Scene B. (b) The setup of two cameras (red
dots) on roof of a building in campus. Scene A and B show the viewpoints of two datasets. (c) The stereo image samples of Scene A and B respectively.

TABLE II
PARAMETERS USED IN ENERGY PROFILING

Sensorcam [3]
CPU 520MHz
SDRAM 64MB
FLASH 32MB
Consumption (normal) 800mW
Consumption (sleep) 7mW

Long-range radio [16]
Consumption (Tx@30dBm) 2860mW
Consumption (Rx) 240mW
Consumption (idle) 14mW
Speed 64Kbps

camera
Resolution 640×480
Consumption (active) 120mW

after source coding gradually approaches the rate-distortion
limit. On the other hand, more computation energy is used to
achieve high compression ratio.

The H.264 encoder provides some preset options to tradeoff
compression efficiency against encoding speed. For notation
purpose, we label these complexity presets as level 1-10 (level
1 has the lowest complexity, level 10 has the best compression
ratio). We evaluate the optimal tradeoff, under different target
qualities, GOPs (group of pictures4), and sampling intervals
(inverse of sampling frequency f as defined in Sec. III-A).

Fig. 8 shows the global energy profiles (measured in
µJ/pixel) of some representative combinations of three factors
for Scene A and Scene B. It is interesting to observe that the
optimal choice of H.264 complexity always falls at level 2.
Therefore, in the following we set the complexity of H.264
encoder to level 2.

C. Video compression comparisons

In Sec. IV we have introduced three different video coding
schemes for multi-camera system, including distributed video
coding (DISCOVER), H.264 based joint coding scheme, and
H.264 based independent coding scheme. We now compare
these three schemes.

4For error-resilience purpose. E.g., if sampling interval is 1min and GOP=4,
then we can recover from packet loss within 4min.
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Fig. 8. The global energy consumption using H.264 video coder with respect
to its complexity level. The legend shows the parameters used: data-set name,
QP (target quality control), GOP (group of pictures) and T (sampling interval,
equals 1/f ). Each test encodes 12 frames for speed consideration.
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Fig. 9. Distributed versus Joint video coding: global energy versus quality
curves of system using distributed/joint video coding for two data-sets.
The GOP parameters are chosen to maximize video compression ratio. The
sampling interval is fixed to 5min. Each test encodes 30 frames (5 frames for
DISCOVER) due to speed consideration.

For all schemes, the global energy consumption can be
obtained using (2). Particularly, ERX = 0 for indepen-
dent/distributed coding schemes, and ERX 6= 0 for the joint
coding scheme since overhearing is required. Fig. 9 shows
the comparison between distributed and joint video coding
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Fig. 10. Independent versus Joint video coding: global energy saving
(measured in %) of joint coding compared with independent video coding. The
saving is plotted in a 2D-parameter space of (sampling interval, GOP), which
is interpolated by 64 grid samples and value of each sample is obtained by
encoding 32 frames for speed consideration. The target qualities (QP) of both
schemes are equal and fixed. The dashed lines show parameter combinations
that have a constant error-resilience capability (recover in max. 60min).

schemes using the two datasets. It can be seen that joint video
coding outperforms distributed video coding. The significant
loss for distributed coding suggests that the state-of-art DVC
schemes rely heavily on strong correlations between succes-
sive video frames, while this is usually not feasible in an
application like environmental monitoring (sampling rate is
much lower: 0.0003− 0.02 fps versus 30 fps in conventional
video coding).

Fig. 10 shows the energy saving of joint coding compared to
independent video coding. Notice that since the sampling rate
of environmental monitoring is much lower than in regular
video coding, the GOP value of interest is also lower. The
dashed lines show parameter combinations that have a constant
error-resilience capability, namely the system can recover from
an error in maximum 60min. Clearly, as the sampling interval
increases (traverses on the dashed line from left to right), the
advantage of joint video coding appears. Eventually, when the
sampling interval goes to 20-30min, the energy saving is close
to 10%. To sum up,

1) For environmental monitoring with static scenery, dis-
tributed coding fails to exploit the temporal correlation
between disjoint cameras.

2) In long-range communication setup, joint coding by
overhearing outperforms independent coding when the
sampling rate is low.

3) Considering the system complexity, when the sampling
rate is not low enough (i.e., sampling interval smaller
than 10min), independent coding is the most efficient
video compression scheme for multi-camera system.

D. Per-camera consumption

Fig. 11 illustrates the per-camera real-time consumption of a
two-camera system using H.264 based joint coding (depicted
by solid lines with three consumption categories: TX, RX,
and CPU). As we can see, the communication (TX+RX) and
computation (CPU) consumptions approximately share 3:1 of
the global energy. Moreover, the computation consumption is
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Fig. 11. Per-camera real-time consumption of a two-camera system using
joint coding (solid lines). As a comparison, the dashed line shows the
consumption of a single-camera system with the same sampling frequency.
The data-set used is Scene A (14:00-24:00), the sampling interval is 4min,
and GOP is 4. The consumption of the two-camera system consists of three
categories: CPU for computation energy spent on video encoding, TX for
energy of wireless transmission, and RX for overhearing. Single denotes the
global consumption of single-camera system (including all three categories).
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Fig. 12. How Space-Division Multiple Access (SDMA) works to create
MIMO advantage for environmental monitoring camera networks.

generally very static, while the communication consumption
varies as the scene changes (e.g., consumes less at night
because scene structure is much simpler).

All previous evaluations focus on the two-camera system.
We can also evaluate the global consumption of a naive single-
camera monitoring system as a comparison. Despite losing
the robustness, a single camera does not have overheads like
registration error and overhearing consumption. To verify if
multiple cameras really share the energy cost, we check if the
per-camera consumption in a multi-camera system is smaller
than the consumption in single-camera case?

The dashed line in Fig. 11 shows the real-time consumption
of a single-camera system with the same sampling frequency.
The comparison shows that the per-camera consumption of the
two-camera system is reduced by 30%-50%, depending on the
scenery condition. This energy saving factor is approximately
consistent with the factor of camera number, which is 2 in this
case.

VI. MIMO ENERGY SAVING

In the previous sections, we have shown that a multi-camera
system can distribute the risk and energy burden. Apart from
the sampling and coding scheme we present in the previous
sections, with the MIMO technology [15], we can push the
communication consumption even lower: Multi-camera system
requires less overall communication energy than a single
camera. In practice, MIMO has been successfully applied to
indoor application like IEEE 802.11n WLAN. We expect in
the near future practical MIMO communication hardware will
also be used for wireless sensor networks [8].

1869



The basic principle of 802.11n is to use multiple antennas
and a rich scattering multi-path environment to create spatial
diversity. Unlike the indoor scenario for 802.11n, the environ-
mental monitoring camera operates in open space where multi-
path scattering is much lower. In this case, the uplink MIMO
channel from TX antennas to the base station (BS) is a well
conditioned fading channel only if the antennas are far apart.
Therefore, physically separated wireless cameras provides a
potentially good MIMO setup.

Fig. 12 shows an example: Two cameras (each has one TX
antenna) are located 10km away from the BS and they use
1GHz band for cameras-to-BS communication, the separation
requirement between two cameras (antennas) is 500m [15,
P.301] for a 6m RX antenna at the BS. In such case, a so-
called space-division multiple access (SDMA) technique can
be employed to boost the wireless link speed. In theory, under
the same energy constraint, the use of SDMA doubles the
maximum wireless link speed. In other words, to transmit the
same number of images, a two-camera system spends half
of overall communication energy as compared with a single-
camera system. Therefore, despite the computation energy, the
consumption per camera is reduced by a factor of 2 × 2.
Similarly, if the number of cameras is n, then MIMO can
potentially reduce the communication consumption per camera
by a factor of n2, which is a significant improvement.

VII. CONCLUSIONS

We propose a multi-camera system for environmental moni-
toring to increase the robustness of the system. By interleaving
the sampling time of all cameras, the event detection proba-
bility is kept the same as in a single-camera system, while
the energy burden is distributed among all cameras. To deal
with the uncertainties in sensor network, we propose a robust
adaptive synchronization scheme to build the optimal sampling
structure autonomously. The theory as well as simulation
results show that with help of overhearing, this algorithm
converges to the optimal configuration fast, and can tolerate
certain overhearing loss.

To compress the correlated videos from disjoint cam-
eras, we propose three video coding methods, namely, dis-
tributed/independent/joint coding schemes. The evaluation re-
sults on a two-camera system shows that joint/independent
video coding perform substantially better than distributed
video coding. The results also suggest that in a long-range
communication scenario, joint coding outperforms indepen-
dent coding when the sampling rate is low.

For future work, we are planning to deploy a multi-camera
system using Sensorcam in the Swiss Alps. An experimental
deployment of a wireless sensor network of 12 solar-powered
weather stations, with one autonomous wireless camera, has
shown good performance and survived over an entire winter
season. Finally, we showed the potential of MIMO technology
for reducing communication consumption even further. We
expect this technology to be employed in sensor networks in
the near future.
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