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Abstract 
Kicker magnets are usually significant contributors to 

the beam coupling impedance of particle accelerators. An 
accurate understanding of their impedance is required in 
order to correctly assess the machine intensity limitations. 
The field matching method derived by H. Tsutsui for the 
longitudinal and transverse dipolar (driving) impedance 
of simple models of kickers in the ultrarelativistic regime 
was already extended to the non-ultrarelativistic case, and 
to the quadrupolar (detuning) impedance in the 
ultrarelativistic case. This contribution presents the 
extension to the quadrupolar impedance in the non-
ultrarelativistic case, as well as benchmarks with other 
available methods to compute the impedance. In 
particular, all the components of the impedances are 
benchmarked with (1) Tsutsui's model, i.e. in the 
ultrarelativistic limit, (2) the model for the flat chamber 
impedance recently computed by N. Mounet and  
E. Métral, in the case of finite relativistic gamma, and 
with (3) CST Particle Studio simulations. 

INTRODUCTION 
Kickers can be major contributors to the total beam 

coupling impedance and cause of heating issues in 
particle accelerators [1]. Previous studies were done in 
order to compute the impedance related to these devices. 
B. Zotter and E. Métral computed the impedance of a flat 
chamber [2] using Yokoya factors [3], valid for = 1 
and good conductor boundaries, but, in order to take into 
account the specific quadrupolar part of the impedance of 
kickers made of dispersive material, it turned to be 
necessary to use Tsutsui’s model for the longitudinal [4],  
transverse driving [5] and detuning impedances [6]. In the 
frame of this model, Tsutsui’s model was recently 
extended for machines operating in the non-
ultrarelativistic regime (i.e. β < 1) as the case of the Rapid 
Cycling Synchrotron ring (RCS) in the China Spallation 
Neutron Source (CSNS) [7]. In this contribution this latter 
theory is extended to the calculation of the quadrupolar 
transverse impedances.   

FIELD MATCHING METHOD 
The Field Matching Method is commonly used to deal 

with discontinuities and multi-layer problems. In our case 
we will consider the geometry reported in Fig. 1.  

The beam is a point-like charge travelling at the centre 
of the kicker exciting an electromagnetic (e.m.) field both 
in vacuum and in ferrite. 

Figure 1: Kicker simplified geometry. The structure is 
infinitely long in the z direction. 

To compute this field, we could solve the Maxwell 
equations in presence of the source current (the beam) but 
it turns out to be difficult due to singularity problems. In 
order to overcome this limitation a primary field is 
computed from the source beam, the most simple as 
possible. This primary field plus an unknown scattered 
field both in vacuum and ferrite is then matched at the 
separation between layers. This will compensate the 
primary field satisfying the boundary conditions. 
Eventually, in order to compute the impedance we need 
to: 

 Set the correct source beam and its primary field. 
 Divide the geometry in sub-domains in which the 

scattered e.m. fields are calculated.  
 Match the e.m. fields at the boundaries of each 

domain. 
 Compute the impedance. 

Primary Fields 
In order to compute the quadrupolar impedance, a 

single point-like source current placed at the geometrical 
centre of the kicker moving with velocity =  in 
vacuum can be considered. As primary fields ( ) we will 
consider the e.m. fields generated by the charge in free 
space (as written above, this is not a solution of our 
problem but a “first guess” that will be compensated by 
the scattered field in order to satisfy the boundary 
conditions). Solving Maxwell equations [8] leads us to: 
 ( )( , ) = 2 ( ) + 	,	
( )( , ) = 2 ( ) + 	, 
( )( , ) = 2 ( )	, 
( )( , ) = − ( )( , ), 
( )( , ) = ( )( , ) . 

 
 
 
 

 
(1) 

where = / , = 1/ 1 −  is the relativistic factor, ≅ 377	Ω the characteristic vacuum impedance,	 ≅1.602	 × 10 	C	 the proton charge, ,  respectively the 

MOPS073 Proceedings of IPAC2011, San Sebastián, Spain

772C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D05 Instabilities - Processes, Impedances, Countermeasures

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147975716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


modified Bessel function of order 0 and 1. Taking into 
account the parallel PEC plates at = ±	 , i.e. adding the 
image currents, one gets: 
 ( ) = 2 (−1) − 2 ( ) ,	
( ) = 2 (−1) ( ),	 
( ) = 2 (−1) ( ),	 
( ) = −2 (−1) ( ),	 
( ) = 2 (−1) − 2 ( ). 

 

 
 
 
 

 
(2) 

where = ( − 2 ) + . 
Scattered Fields 

In vacuum, the e.m. fields ( ) are solution of the 
Helmholtz equation taking into account the PEC 
boundary conditions at = ±	 . We have: 
 ( ) = ( ) ( ) ,	
( ) = ( ) ( ),	 
( ) = ( − kk A )− ( ) ( ), 
( ) = ( + kk A ) ( ) ( ),	 
( ) = ( + ωϵ k A )− ( ) ( ),	 
( ) = ( − ωϵ k A )− ( ) ( ), 

 

 
 
 
 

 
 
 
 
(3) 

where = / . The eigenvalues are = (2 + 1) /2  
with 	∈ (0, +∞) . The  are instead constrained only by 
the separability condition	 + = − .  

In ferrite the e.m. fields ( ) have analogous 
expression. Imposing the PEC surfaces at = ±( + ) =±  we get: 
 ( ) = cos( ) ( ) ,	
( ) = ( ) os( ),	 
( ) = ( + kg C )( − ) ( ) ( ), 
( ) = ( − kg C )( − ) ( ) ( ), 
( ) = ( − ωεg C )− ( − ) ( ) ( ), 
( ) = ( + ωεg C )( − ) ( ) ( ), 

 

 
 
 
 

 
 
 
 
(4) 

where = −  and = / . The eigenvalues are = (2 + 1) /2 . The  are instead constrained only 
by the separability condition	 + = − . 
The material characteristics are plugged in the 
permeability =  and permittivity	 = 0 . 

Matching 
Once the e.m. fields are derived we can apply the 

continuity relations [9] on the separation layers vacuum-
ferrite at = ± . We have a set of 4 x-dependent 
equations in 4 n-vector unknowns , , , .  
I) ( ) + ( ) = ( ) II) ( ) + ( ) = ( ) 
III) ( ) + ( ) = ( ) IV) ( ) + ( ) = ( ) 

The system can be solved expanding the source term in 
Fourier series and matching each modal component of the 
fields. The full expressions of the coefficients were 
derived in [7]. 

Quadrupolar Impedance Calculation 
To get the transverse quadrupolar (or detuning) 

impedance we have to displace a test particle with respect 
to the beam trajectory on (x, y)=(0, 0) by a quantity  in 
the plane of interest [10]. 
The impedance is given by: = [ ( , 0) − ( , 0)] , = [ (0, ) − (0, )] , 
 
where   is the displacement of the test particle with 
respect to the source beam trajectory and =  is the 
dipole moment. Since ∇ × = −  we get: 
 = − 1 ( , 0),									 = − 1 (0, ). 
 

All these formulas have to be evaluated respectively in =  and = .  Substituting the field  in vacuum 
from the first equation in Eq. (3) we eventually obtain the 
formula for the detuning impedance: 
 = 1 ,												 = 1 . 

It is worth to notice that the two components do not 
cancel each other if < ∞, even if their difference could 
be negligible (see also [11 Eq. (22)] and Fig. 2 in the next 
section). 

APPLICATIONS AND BENCHMARKS 
The current model was already applied in the past to 

compute longitudinal and dipolar impedances: the non-
ultrarelativistic formulae obtained in [7] were compared 
with the ultrarelativistic case analysed by Tsutsui. In Fig. 
2 we present a comparison for the quadrupolar impedance 
of the MKE.61651 SPS kicker with various relativistic β, 
showing the expected convergence to the ultra-relativistic 
model for β = 1.  
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