
Efficient Fail-Stop Signatures from the Factoring
Assumption

Atefeh Mashatan and Khaled Ouafi

Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

Atefeh.Mashatan@epfl.ch, Khaled.Ouafi@epfl.ch

Abstract. In this paper, we revisit the construction of fail-stop signa-
tures from the factoring assumption. These signatures were originally
proposed to provide information-theoretic-based security against forg-
eries. In contrast to classical signature schemes, in which signers are pro-
tected through a computational conjecture, fail-stop signature schemes
protect the signers in an information theoretic sense, i.e., they guaran-
tee that no one, regardless of its computational power, is able to forge
a signature that cannot be detected and proven to be a forgery. Such a
feature inherently introduced another threat: malicious signers who want
to deny a legitimate signature.
Many construction of fail-stop signatures were proposed in the literature,
based on the discrete logarithm, the RSA, or the factoring assumptions.
Several variants of this latter assumption were used to construct fail-sop
signature schemes. Bleumer et al. (EuroCrypt ’90) proposed a fail-stop
signature scheme based on the difficulty of factoring large integers and
Susilo et al. (The Computer Journal, 2000) showed how to construct a
fail-stop signature scheme from the so-called “strong factorization” as-
sumption. A later attempt by Schmidt-Samoa (ICICS ’04) was to propose
a fail-stop signature scheme from the p2q factoring assumption.
Compared to those proposals, we take a more traditional approach by
considering the Rabin function as our starting point. We generalize this
function to a new bundling homomorphism while retaining Rabin’s ef-
ficient reduction to factoring the modulus of the multiplicative group.
Moreover, we preserve the efficiency of the Rabin function as our scheme
only requires two, very optimized, modular exponentiations for key gen-
eration and verification. This improves on older constructions from fac-
toring assumptions which required either two unoptimized or four ex-
ponentiations for key generation and either two unoptimized or three
modular exponentiations for verifying.

Key words: Fail-stop signature schemes, Digital signatures, Rabin func-
tion, Factoring

1 Introduction

Digital signatures are one of the main achievements of public key cryptogra-
phy: they are the main primitive that ensures authenticity of data transmitted

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147975566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

through an insecure channel. In being so, digital signatures were originally de-
signed to be the “digital” equivalent to handwritten signatures. Their underlying
mechanism is simple and elegant: to each person is associated a “public” key that
can be used to verify any signature this person has produced for a document
or certificate. To each such key, that is publicly known, is associated a so-called
“private” key that is known to the signer only and is used to sign electronic
messages or documents. Naturally, this private key should not be computable
from the public key. A computational assumption believed to be “impossible”
to solve is usually used to prevent this scenario.

However, when coming to the practical world, the question of forgeries was
quickly raised by lawyers and judges. This case was even more critical in countries
like Germany in which digital signatures have a legal value. However, cryptogra-
phers initially ignored the problem of forgery and repudiation, that is because the
whole security of a digital signature scheme stands on the shoulders of a problem
that we trust to be “hard” to solve. So, as long as the computational assumption
holds, forgeries do not happen, except with very small probability that we also
hope to never occur. Nevertheless, from a legal point of view, forgeries do exist
and signers have to be given the ability to defend themselves against them.

Fail-stop signatures were designed to address this problem: they provide the
signer with a mean to prove that a signature is a forgery and that the crypto-
graphic assumption holding the security of the scheme has been broken. So, in the
case of a dispute, the signer can exhibit the evidence and deny any responsibility
on it. Furthermore, such a forgery shows that the scheme has become insecure,
and thus has to be stopped, hence the denomination “fail-stop”. Since they con-
sider the extreme eventuality of the break of a hard cryptographic problem,
fail-stop signature schemes should protect the signers against computationally
unlimited adversaries. However, granting to signers the ability to prove forgeries
is not without risk. Indeed, a malicious signer may try to prove that a signature
he has produced is a forgery. This way, he can free himself from any commitment
the signed document may induce. Unfortunately, it is theoretically impossible to
ensure security against computationally unlimited malicious signers if we assume
that the forgers are so. Instead, the security against a malicious signer is only
computational, i.e., it assumes that solving the hard problem for this party is
infeasible.

1.1 Previous Work

While the most popular and efficient scheme is based on the discrete logarithm
problem [19], few convincing schemes from the factoring assumption were pro-
posed in the literature. Surprisingly, the first fail-stop signature scheme was
based on the factorization assumption [3]. More precisely, it was originally re-
lated to the notion of claw-free pairs of permutations in [3] but then reformulated
in [11] to explicitly relate the security of the scheme to the factoring assumption.
This scheme, to which we refer as the QR scheme, is based on the hardness of
factoring an RSA modulus n = pq with factors being such that p ≡ 3 mod 8 and
q ≡ 7 mod 8. Up to date, it is unclear how to compare the difficulty of factoring

such moduli compared to the classical RSA ones. Moreover, the scheme seems
to be made so that it works so its structure is not very “natural”.

Later, Susilo et al. proposed another scheme [17], that, following [15], we
refer to as the order scheme, based on the difficulty of factoring an RSA modulus
n = pq when the algorithm is also given an element from a superset Z⋆

P of Z⋆
n

(such that P is prime and a that P −1 is a multiple of n) of order q. This scheme
has been shown to be insecure by Schmidt-Samoa [15] but was also repaired in
the same paper by reducing the message space form Z⋆

n to Zp. This fix affected
the efficiency of the scheme as it made signatures around three times larger than
their corresponding messages.

In parallel, Schmidt-Samoa proposed a scheme based on the hardness of
factoring RSA moduli of the form n = p2q [15] (we refer to this one as the p2q
scheme). Although it is probably the most elegant scheme of those mentioned
before, this scheme inherently requires larger sizes for the modulus compared
to the other two. Recently, Susilo proposed a fail-signature scheme from the
factoring and discrete logarithm assumption [16]. However, we note that its
security proof does not make any reduction to the factoring problem but rather
to the discrete logarithm problem in an RSA group. Therefore, we do not consider
it based on a factoring assumption.

1.2 Our Contribution

We revisit the design of fail-stop signatures from the factoring assumption. Our
starting point is the Rabin function, f(x) = x2 mod n, whose invertibility is
known to be equivalent to the problem of factoring the integer n. As a con-
sequence of the Chinese Remainder theorem, when n = pq, a classical RSA
modulus, this function maps four integers to a single one. In this work, we use a
generalization of the Rabin function, f(x) = xa mod n, for a a that divides the
order of the group Z⋆

n. In practice, we will construct such moduli by choosing a p
that satisfies p−1 ≡ 0 mod a. We remark that this type of RSA moduli, with a
publicly known, was already used by Benaloh to define a public key encryption
scheme [4].

As we show later, the function f(x) = xa mod n enjoys a number of nice
properties. At first, using a result from number theory due to Frobenius [6], we
prove that this function actually maps a elements of Z⋆

n to a single a-th residue
of the same group. The second property, inherited from the Rabin function is
that finding collisions is provably as hard as factoring the modulus with the
knowledge of a. The last observation is that both proofs for the results above do
not take into consideration the structure of a, but only on its size. Consequently,
numbers of the form 2s + 1 will be used for a as it allows fast computation of
the modular exponentiation in s multiplications using the square-and-multiply
method, resulting in a quadratic complexity for computing the function f . All
these properties allow us to use this function as a bundling homomorphism and
then instantiate Pfitzmann’s general construction [12] of fail-stop signatures to
yield the most efficient scheme based on a factoring assumption.

The rest of the paper is structured as follows. Section 2 provides the nec-
essary background, definitions of fail-stop signature schemes and the factoring
intractability assumption. We then dedicate Section 3 to our instantiation of the
fail-stop signature scheme and prove its security. Efficiency analysis is discussed
in Section 4.

2 Preliminaries

2.1 Notations and Negligible Probabilities

Throughout this paper, we use the expression y ← A(x) to mean that y is
assigned the output of algorithm A running on input x. An algorithm is said to
be polynomial if its running time can be expressed as a polynomial in the size
of its inputs.

If X denotes a set, |X| denotes its cardinality and x ∈R X expresses that
x is chosen from X according to the uniform distribution. If X and Y are sets,
then the relative complement of X in Y , denoted X \ Y , is the set of elements
in X, but not in Y .

We also recall the classical notions of negligible function and one-way func-
tion.

Definition 1 (Negligible Function). A function f : N→ R is negligible in k
if for any positive polynomial function p(·) there exists k0 such that:

k ≥ k0 ⇒ f(k) <
1

p(k)
.

Negligible functions in k are denoted negl(k).

2.2 Number Theoretic and Factoring Background

We call a prime number p to be a-strong, if p = 2ap′ + 1 for a prime p′ > 2a.
Note that such prime numbers are called strong by Rivest and Silverman [14]
and that for a = 1 we get the usual definition of strong primes.

In the following, we consider a probabilistic polynomial-time algorithm Gen
that, on input a security parameter 1k, that picks an integer a and generates a
random a-strong prime p = 2ap′ + 1 and a regular, not a-strong, prime number
q, such that ⌊log2 p⌋ = ⌊log2 q⌋ = ℓF(k), where ℓF(k) denotes a function that
represents, for any given security parameter k, the recommended (bit-)size of
the RSA modulus n = pq. In the end, Gen outputs n = pq and a along with p
and q. The following definition formalizes the main assumption that will be used
throughout this work.

Definition 2 (The Factorization Assumption with a-strong primes).
Let us consider a probabilistic polynomial-time algorithm AFACT who takes as
input an RSA modulus n = pq and an odd integer a, such that p, q, and p − 1/2a

are all prime numbers, and outputs p and q . The factoring assumption states
that for any such AFACT, we have

Pr
[
(p, q)← AFACT(1

k, n, a)
∣∣(n, a, p, q)← Gen(1k, a)

]
= negl(k).

The probability is taken over the random tapes of Gen and AFACT.

While this type of prime numbers has already been used before by Benaloh
to construct a public encryption scheme [4], we refer the reader to the work of
Groth [8] which makes a more detailed treatment of the factorization of such
numbers by Pollard’s rho method [13] and other factoring algorithms such as
the general number field sieve.

In the rest of this section, we concentrate on exponentiation to a and a-th
residuosity. It is well known that every x ∈ Z⋆

n has a unique a-th root if and only
if gcd(a, φ(n)) = 1, where φ(·) denotes the Euler totient function. In fact, this
ensures the correctness of the RSA cryptosystem. However, when a and φ(n)
are not coprime, an element of Z⋆

n may admit multiple a-th roots as stated by
the following theorem.

Theorem 1 (Frobenius [6]). If a divides the order of a group, then the number
of elements in the group whose order divides a is a multiple of a. If the group is
cyclic, then this number is exactly a.

Note that Z⋆
n is not cyclic when n is an RSA modulus. However, the next

theorem proves that the number of a-th roots of any element in Z⋆
n is exactly

equal to a in the class of RSA moduli we consider in this paper.

Theorem 2. Let a be an odd number and n = pq be an RSA modulus such that p
is an a-strong prime, and q is a regular prime number that satisfies gcd(a, q−1) =
1. If y is an a-th residue in Z⋆

n, then the equation ga = y mod n admits exactly
a solutions.

Proof. Let CRT : Z⋆
n → Z⋆

p×Z⋆
q denote the isomorphism induced by the chinese

remainder theorem. By applying CRT, if g is a solution to the equation ga = y
mod n, then (gp, gq) = (g mod p, g mod q) is a solution to the two equations

(gp)
a = y mod p, (1)

(gq)
a = y mod q. (2)

On one hand, Recalling that Z⋆
p is cyclic when p is prime, we can apply

Thm. 1 to deduce that Eq. (1) has exactly a solutions (remember that a divides
φ(p) = ap′). On another hand, since gcd(a, φ(q)) = 1, there must exist a′q such

that a · a′q = 1 (mod q − 1) and Eq. (2) can be rewritten as gq = ya
′
q mod q.

Hence, Eq. (2) admits one unique solution.
As there exist a tuples of the form (gp, gq) that satisfy equations (1) and

(2), by applying CRT−1, we deduce that the number of a-th roots of y in Z⋆
n is

exactly a. ⊓⊔

2.3 Fail-stop Signatures

We briefly review the basic definition of fail-stop signature schemes and their
security properties. A complete and more formal definition can be found in [5].

The idea of fail-stop signatures is to associate, to each possible message m, a
number of signatures s that passes the verification test with the public key. These
signatures are called acceptable signatures. However, the signer should not be
able to construct more than one signature from the secret key. This one signature
is called the valid signature. Of course, the set of acceptable signatures must be
small in comparison with the signature space, so that it should be difficult for
a computationally bounded signer to find an acceptable signature different from
his own.

In all cases, an adversary with unlimited computational power can always
compute the set of acceptable signatures (one way is to try the verification
algorithm with every element of the signature space). So, in order to achieve
security against such an adversary, we have to consider an information-theoretic
security determined by a security parameter σ ∈ N: an adversary with unlimited
computational power should not have enough information to distinguish the valid
signature in the set of acceptable ones except with a probability upper-bounded
by 2−σ (the probability to guess it successfully). This property is called the
signer’s security.

In parallel, verifiers must be secure against signers who, by computing a
valid proof of forgery, manage to disavow one of their own legitimate signatures.
The security against these signers can only be computational which means that
the probability of a signer disavowing his own signature is negligible in k. This
property is known as the verifier’s security.

Definition 3 (Fail-Stop Signature Schemes). A fail-stop signature scheme
is defined by the following five polynomial-time algorithms:

– KeyGen(1k, 1σ, 1N) −→ (sk, pk). This is a probabilistic polynomial-time, pos-
sibly interactive, protocol run by the signer and the verifier (or a trusted
center) runs on security parameters k, σ and an integer N representing the
number of signatures the signer can release. At the end of the protocol, he
signer obtains a private key sk which can be used to sign at most N mes-
sages (This type of signature schemes are said to be N -times). The other
party obtains the corresponding public key pk. For the sake of simplicity, the
input 1N is omitted when the scheme is meant to be used to sign one message
only.

– Sign(sk, i,m) −→ s. Given a message m, a counter i ∈ {1 . . . N}, incre-
mented at each invocation of this algorithm, and the private key sk, this
(probabilistic) polynomial-time algorithm creates a valid signature s for the
message m. When the scheme is a one-time signature scheme, i.e., N = 1,
the input i is omitted.

– Verify(pk,m; s) −→ {0, 1}. Given a signature s for m and a public key pk,
Verify is a deterministic polynomial-time algorithm that outputs 1 if the sig-
nature is acceptable, otherwise it outputs 0.

– ProveForgery(sk,m, s) −→ {pr,⊥}. On input an acceptable signature s on
m, and private key sk, this algorithm outputs a bit-string pr or ⊥ in case of
failure.

– VerifyProof(pk,m, s, pr) −→ {0, 1}. A polynomial-time algorithm that takes
on input pk, an acceptable signature s of a message m and a proof of forgery
pr and outputs either 1, meaning that the proof is valid, or 0, meaning that
the proof is invalid.

Additionally, any fail-stop signature scheme should also satisfy two correctness
properties: every signature honestly produced using Sign is acceptable and every
proof computed using ProveForgery passes the verification. This is more formally
defined hereafter.

Definition 4 (Correctness of a Fail-Stop Signature Scheme). We say
that a fail-stop signature scheme is correct if the two conditions hold:

1. Every honestly generated signature is valid, i.e.,

∀λ,N,m ∈M : Pr

[
1← Verify(pk,m, s)

∣∣∣∣ (pk, sk)← Keygen(1λ, 1N),
s← Sign(sk,m)

]
= 1.

2. Every honestly generated proof is valid, i.e.,

∀λ,N,m ∈M, s ∈ S :

Pr

1← VerifyProof(pk,m, s, pr)

∣∣∣∣∣∣
(pk, sk)← Keygen(1λ, 1N),
pr ← ProveForgery(sk,m, s),

pr ̸=⊥

 = 1.

Security against malicious signers and powerful forgers is formalized as follow.

Definition 5 (Security of a Fail-Stop Signature Scheme). A fail-stop sig-
nature scheme with security parameters k and σ is said to be secure if the two
properties hold

1. Signer’s security. The probability that a computationally unlimited ad-
versary knowing pk and the signature of N adaptively chosen messages
(m1, s1), . . . , (mN , sN) outputs a pair (m, s) such that (m, s) ̸= (mi, si), ∀i =
1 . . . N , and ProveForgery(sk,m, s) =⊥ must be smaller than 2−σ.

2. Verifier’s security. The probability that a polynomially bounded malicious
signer generates a public key pk and then outputs a pair (m, s) and a proof
of forgery pr such that VerifyProof(pk,m, s, pr) = 1 must be negligible in k.

A constraining result for fail-stop signatures is that, in order to be able to
sign N messages, the signer has to generate at least (N+1)(k−1) secret random
bits. We stress that these bits do not necessarily need to generated during the
key generation as the signature algorithm may be probabilistic and update the
internal state according to some random bits. Although this result seems a sever
limitation against the practical implementation of fail-stop signature schemes,
it has been proved in [18] that it is unavoidable if one hopes to achieve security
against unbounded adversaries.

2.4 The General Construction using Bundling Homomorphisms

A general framework for constructing a fail-stop signature scheme secure for sign-
ing one message, on which are built all known secure fail-stop signature schemes,
has been proposed by Pfitzmann [12]. It is based on the notion of bundling ho-
momorphism. We note that classical techniques such as Merkle trees [9, 10],
top-down authentication trees [7], and one-way accumulators [1, 2], can be used
to extend a one-time fail-stop signature scheme to many messages.

Definition 6 (Family of Bundling Homomorphisms). Let ı ∈ I be an in-
dexing for a family of triples (hı, Gı,Hı) such that for all possible ı ∈ I, (Gı,+, 0)
(Hı,×, 1) are Abelian groups and hı : Gı → Hı. (hı, Gı,Hı) is called a family of
bundling homomorphisms with degree level 2τ and collision-resistance security
of level k if it satisfies:

1. For every ı ∈ I, hı is an homomorphism.
2. There exist polynomial-time algorithms for sampling from I, computing hı

and the group operations in Gı and Hı, for every ı ∈ I
3. For every ı ∈ I, every image y ∈ Im(hı) has at least 2

τ preimages in Gı. We
call 2τ the bundling degree of the homomorphism.

4. It is computationally infeasible to find collisions, i.e. for any probabilistic
polynomial-time algorithm Ã, we have

Pr

[
hı(x1 − x2) = 1, x1 ̸= x2

∣∣∣∣ ı ∈R I,

(x1, x2)← Ã(ı)

]
= negl(k)

where the probability is taken among the random choice of ı and the random
coins of Ã.

The basic idea behind Pfitzmann’s construction is to use the high bundling
degree of a bundling homomorphism to “hide” the signer’s secret key, which lies
in the space of the G’s, even against powerful adversaries who can invert the
homomorphism (note that the collision resistance of bundling homomorphisms
stated in point 4 of the definition implies resistance against preimage attacks).

The complete description of the construction is described below. For the sake
of simplicity, we assume the case in which the key generation is run by the signer
in conjonction with a center trusted by the verifiers (and not necessarily by the
signer). This easily generalizes to the case of many verifiers [11].

– KeyGen(1k, 1σ). As a prekey, the center picks a random index K for the
family of bundling homomorphisms Hı. It sets h = hK , G = GK , H = HK

and also defines the finite message space M ⊂ Z.
For prekey verification, the signer has to be convinced that h is a group
homomorphism with bundling degree 2τ for an appropriate τ to be later
discussed. Once he is convinced, the signer chooses randomly his private key

sk = (sk1, sk2) ∈R G2,

and computes the public key

pk = (pk1, pk2) = (hK(sk1), hK(sk2)) ∈ H2.

– Sign(sk,m). For signing a message m ∈M , compute

s = sk1 +m · sk2,
where m · sk2 denotes the operation of performing m additions of sk2 in G.

– Verify(pk,m, s). Check whether:

h(s) = pk1 × pkm2 .

– ProveForgery(sk,m, s′). Given s′ a forgery for m that passes the verification,
the signer computes s = Sign(sk,m) and exhibits

(m, s, s′).

– VerifyProof(pk,m, s, pr). Given m and (s, s′) ∈ G2, verify that

s ̸= s′ ∧ h(s) = h(s′)

For the security analysis of this construction, we will denote SKpk the set of
secret keys that correspond to the public key pk, i.e,

SKpk = {sk ∈ SK : h(sk) = pk}.
Since h has a bundling degree of 2τ , we must have |SKpk| ≥ 2τ . In con-

sequence, given a public key (pk1, pk2) there are at least 22τ private keys that
match the signer’s public key. Each of these private keys produces a signature
that passes the verification. These keys can be computed by an adversary with
unlimited computational power, but he cannot know which of these 22

τ

keys
is the signer’s key that he used to sign the message. However, because of the
equation sk1+m×sk2 = s, it is sufficient to find one key to determine the other,
thus the number of possible private keys is reduced to 2τ .

A signer is able to prove a forgery on a message m′ only if his signature
differs from the forged signature. To measure the probability that an adversary
outputs the signer’s signature we must analyze the number of pairwise different
signatures that can be produced using the 2τ private keys. This number is related
to the number of possible secret keys that produce a valid signature. Some easy
implications show that this number is upper-bounded by the size of the set

T = {d ∈ G : h(d) = 1 ∧ (m′ −m)d = 0}.
In order to prove security, we have to consider the worst case with respect to
the choice of the message, i.e., we consider the signature that can be produced
by the maximum number of candidate secret keys,

Tmax = max
m′∈M\{0}

|{d ∈ G : h(d) = 1 ∧m′d = 0}| .

A more detailled proof and analysis of this construction can be found in [11, 12].

Theorem 3 (Security of the General Construction [11, 12]). Let a fail-
stop signature scheme following the general construction above with security pa-
rameters k, τ . We do have

1. The scheme provides a level of security k for the verifiers.
2. If 2τ is chosen such that Tmax ≤ 2τ−σ, then this scheme provides a level of

security of σ for the signer.

3 New Fail-Stop Signatures From Factoring

3.1 The Construction

Let us consider the set of RSA moduli n = pq for which p is an a-strong prime
number and p − 1 is co-prime with q. We define the following group homomor-
phism

Ha : Z⋆
n −→ Z⋆

n

x 7−→ xa mod n.

And using Pfitzmann’s general construction, the following fail-stop signature
scheme comes naturally:

KeyGen. On input σ, k the center chooses a σ-bit odd integer a and two equally
sized primes p, q such that p − 1/2a is also a prime number and that gcd(q−1, a) =
1. The prekey of the scheme then consists of n = pq and a.

To verify that the prekey is correctly generated, the signer has to be pro-
vided with a zero-knowledge proof that a indeed divides φ(n) (such a proof can
easily be constructed from general zero-knowledge proofs). From that point, he
generates the key material as follow

(sk1, sk2) ∈R Z⋆2
n , (pk1, pk2) = (ska1 mod n, ska2 mod n).

Sign. The message space is defined to be M = {1, . . . , φ(n) − 1} \ {x >
1| gcd(a, x) ̸= 1}. To sign a message m ∈M , the signer computes

s = sk1 × skm2 mod n

Verify. An element s ∈ Z⋆
n is an acceptable signature on m ∈ M if and only if

the following equality holds

sa = pk1 × pkm2 mod n.

ProveForgery. On the happening of a forgery (m, s⋆), the proof consists of, as
states the general construction, the signer’s signature s on the message m using
his secret key (sk1, sk2).

VerifyProof. Given two signatures s and s⋆ on the same message m, the proof
of forgery is valid if both signatures are different and sa = s⋆a mod n (It will
be shown in the next section that this equation leads to the factorization of n).

3.2 Security Analysis

To prove that hn, described above, is a family of bundling homomorphisms, we
first need to prove this lemma.

Lemma 1. Let n = pq and a be an odd number such that p, q are prime number
and a divides p − 1/2, p − 1/2a is prime and gcd(q − 1, a) = 1. If there exists a
successful polynomial-time algorithm Ã who succeeds in finding x1 and x2 such
that hn(x1) = hn(x2) and x1 ̸= x2, then there exists a successful polynomial-time
algorithm against the factorization problem of Def. 2.

Proof. We construct the algorithm against factoring as follows. First, it calls
upon Ã and gets x1 and x2 such that

xa
1 = xa

2 (mod n).

Since p and q are of the same size, it must be that q > a. Hence, a mod q−1 = a.
So,

xa
1 = xa

2 (mod q).

Since gcd(a, q − 1) = 1, a is invertible modulo q − 1 and it results that

x1 = x2 + k · q, for 1 ≤ k < p

Hence, we conclude that gcd(x1 − x2, q) = q.

So it is sufficient for AFACT to compute q = gcd(x1 − x2, n) and then deduce
p = n/q. Note that AFACT runs in polynomial-time if Ã does so. Moreover, it has
the same success probability of Ã. ⊓⊔

The following theorem proves that hn, described above, is a family of bundling
homomorphisms of degree 2σ:

Theorem 4. Under the Factorization Assumption of Def. 2, the construction
above is a family of bundling homomorphisms with bundling degree 2σ .

Proof. It is trivial to see that h is an homomorphism.

Regarding its bundling degree, we recall Thm. 2 which states that the number
of solutions of the equation xa = y mod n is a when y is an a-th residue of Z⋆

n.
Setting y = 1 trivially leads the kernel of the homomorphism. The kernel is thus
of size a which is lower-bounded by 2σ. ⊓⊔

At this point, we state the following theorem, which asserts the security of
our construction.

Theorem 5. The fail-stop signature scheme defined in Sec. 3.1 is secure under
the assumption that factoring integers n = pq with the knowledge of a divisor of
φ(n) is hard.

Proof. As it has already been show in Thm. 4 that hn is a family of bundling
homomorphisms, we only need to prove security for the signer. For that sake, and
according to Thm. 3, we analyse the size of the following set (Here the neutral
element is 1):

Tmax = max
m′∈M\{1}

∣∣∣{d ∈ Z⋆
n : hn(d) = 1 ∧ dm

′
= 1}

∣∣∣
= max

m′∈M\{1}

∣∣∣{d ∈ Z⋆
n : da = 1 ∧ dm

′
= 1}

∣∣∣
= max

m′∈M\{1}

∣∣{d ∈ Z⋆
n : ordZ⋆

n
(d)|a ∧ ordZ⋆

n
(d)|m′}

∣∣
= max

m′∈M\{1}

∣∣{d ∈ Z⋆
n : ordZ⋆

n
(d)|gcd(a,m′)}

∣∣
= 1

since gcd(m′, a) = 1 by definition of M .
Hence we conclude that taking a bundling homomorphism with degree 2σ is

sufficient to achieve security against powerful adversaries. ⊓⊔

4 Efficiency Analysis

Among the five algorithms of the scheme, the key generation is certainly the
most expensive operation to perform. Generating strong primes of our specified
form is done in time O

(
ℓ4F(λ) + (1 + σ + ℓF(λ))

4
)
. However, this is not a critical

issue as it is run only once. Note that this complexity is in fact very close to the
key generation of RSA with strong primes [14].

Using some simple optimization techniques, we can drastically reduce the
complexity of modular exponentiations to the power of a by choosing values for
a with very low (or very high) Hamming weight. Indeed, the security proof of
our scheme is based the size of a and not its Hamming weight. According to
the state of the art of factoring algorithms such that ECM and NFS, assuming
low Hamming weight for a does not help the adversary factoring. This way,
one can use the classical square-and-multiply technique and set a = 2α ± 1, for
some α ≥ σ. This trick allows us to reduce the complexity of all exponentiations
to a from O(ℓ3F(λ)) to O(σℓ2F(λ)). For practical applications in which the one-
time key has to be regenerated at each signature, such a feature is clearly a
benefit. Verification also benefit from this optimisations as only one modular
exponentiation (to m) remains to be done.

For typical values k = σ = 80, we need to generate a 80-bit odd a, e.g.,
a = 280 + 1, and a 1024-bit RSA modulus composed of one a-strong prime
number. Key generation is then performed using 40 + 1 = 41 modular multipli-
cations. Verification is also performed using 41 modular multiplications and one
exponentiation.

As our scheme has its operations performed in a smaller group with optimized
exponents, it clearly outperforms the p2q scheme in terms of efficiency and signa-
ture length. Since this latter is more efficient than the order scheme [15], we omit

Table 1. Comparaison of efficiency parameters of the most efficient factorization-based
fail-stop signature schemes. For better readability and easier notations, we let k denote
the length of the RSA moduli and define ρ = τ −σ. Note that we set a = 2σ +1 in our
scheme so that it does not need to be explicitly included in the public-key.

Size of sk Size of pk Size of m Size of s Sign Verify
(# mult.) (# mult.)

QR Scheme 2(ρ+ σ + k) 2k ρ ρ+ σ + k ρ < 2ρ+ σ

Our scheme 2k 2k σ 2k σ < 2σ

the order scheme from the comparison. Regarding the QR scheme, we provide
Table 1 to put a clear comparison with our scheme. It turns out that in term
of size of the keys and the signatures, our scheme behaves better than the QR
scheme. Regarding the efficiency of the other parameters and algorithms, hav-
ing a direct comparison is more difficult as the parameter ρ of the QR scheme
can be arbitrarily chosen whereas setting σ to a too large value in our scheme
would require to increase the modulus size to guard against p−1 factoring meth-
ods. However, for practical values of comparison ρ = σ = 160, we can still use
1024-bit moduli. In such a scenario, our scheme still outperforms the QR one.

References

1. Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop sig-
nature schemes without trees. In Walter Fumy, editor, Advances in Cryptology
- EUROCRYPT ’97, International Conference on the Theory and Application of
Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, vol-
ume 1233 of Lecture Notes in Computer Science, pages 480–494. Springer, 1997.

2. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentral-
ized alternative to digital sinatures (extended abstract). In Tor Helleseth, edi-
tor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and
Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993,
Proceedings, volume 765 of Lecture Notes in Computer Science, pages 274–285.
Springer, 1994.

3. Gerrit Bleumer, Birgit Pfitzmann, and Michael Waidner. A remark on a signa-
ture scheme where forgery can be proved. In Ivan Damg̊ard, editor, Advances in
Cryptology - EUROCRYPT ’90, Workshop on the Theory and Application of of
Cryptographic Techniques, Aarhus, Denmark, May 21-24, 1990, Proceedings, vol-
ume 473 of Lecture Notes in Computer Science, pages 441–445. Springer, 1991.

4. Josh Benaloh Clarkson. Dense probabilistic encryption. In Workshop on Selected
Areas of Cryptography, pages 120–128, 1994.

5. Ivan Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. On the existence of
statistically hiding bit commitment schemes and fail-stop signatures. J. Cryptology,
10(3):163–194, 1997.

6. Georg Frobenius. ber einen Fundamentalsatz der Gruppentheorie, II. Sitzungs-
berichte der Preussischen Akademie Weissenstein, 1907.

7. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308,
1988.

8. Jens Groth. Cryptography in subgroups of zn. In Joe Kilian, editor, Theory of
Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cambridge,
MA, USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture Notes in
Computer Science, pages 50–65. Springer, 2005.

9. Ralph C. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on
Security and Privacy, pages 122–134, 1980.

10. Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances
in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of
Lecture Notes in Computer Science, pages 218–238. Springer, 1990.

11. Torben P. Pedersen and Birgit Pfitzmann. Fail-stop signatures. SIAM J. Comput.,
26(2):291–330, 1997.

12. Birgit Pfitzmann. Digital Signature Schemes, General Framework and Fail-Stop
Signatures, volume 1100 of Lecture Notes in Computer Science. Springer, 1996.

13. John M. Pollard. A monte carlo method for factorization. BIT Numerical Mathe-
matics, 15(3):331–334, 1975.

14. Ron Rivest and Robert Silverman. Are ’strong’ primes needed for RSA? Cryptology
ePrint Archive, Report 2001/007, 2001. http://eprint.iacr.org/.

15. Katja Schmidt-Samoa. Factorization-based fail-stop signatures revisited. In Javier
Lopez, Sihan Qing, and Eiji Okamoto, editors, Information and Communications
Security, 6th International Conference, ICICS 2004, Malaga, Spain, October 27-
29, 2004, Proceedings, volume 3269 of Lecture Notes in Computer Science, pages
118–131. Springer, 2004.

16. Willy Susilo. Short fail-stop signature scheme based on factorization and discrete
logarithm assumptions. Theor. Comput. Sci., 410(8-10):736–744, 2009.

17. Willy Susilo, Reihaneh Safavi-Naini, Marc Gysin, and Jennifer Seberry. A new and
efficient fail-stop signature scheme. Comput. J., 43(5):430–437, 2000.

18. Eugène van Heijst, Torben P. Pedersen, and Birgit Pfitzmann. New constructions
of fail-stop signatures and lower bounds (extended abstract). In Ernest F. Brickell,
editor, Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings,
volume 740 of Lecture Notes in Computer Science, pages 15–30. Springer, 1993.

19. Eugène van Heyst and Torben P. Pedersen. How to make efficient fail-stop signa-
tures. In Rainer A. Rueppel, editor, Advances in Cryptology - EUROCRYPT ’92,
Workshop on the Theory and Application of of Cryptographic Techniques, Bala-
tonfüred, Hungary, May 24-28, 1992, Proceedings, volume 658 of Lecture Notes in
Computer Science, pages 366–377. Springer, 1993.

