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ABSTRACT

We study the use and impact of a dictionary in a tomographic reconstruction setup. First, we build two different
dictionaries: one using a set of bases functions (Discrete Cosine Transform), and the other that is learned using
patches extracted from training images, similar to the image that we would like to reconstruct. We use K-SVD as
the learning algorithm. These dictionaries being local, we convert them to global dictionaries, ready to be applied
on whole images, by generating all possible shifts of each atom across the image. During the reconstruction, we
minimize the reconstruction error by performing a gradient descent on the image representation in the dictionary
space. Our experiments show promising results, allowing to eliminate standard artifacts in the tomographic
reconstruction, and to reduce the number of measurements required for the inversion. However, the quality of
the results depends on the convergence of the learning process, and on the parameters of the dictionaries (number
of atoms, convergence criterion, atom size, etc.). The exact influence of each of these remains to be studied.
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1. INTRODUCTION

In this article, we study the benefits of using a dictionary in the context of inverse problems, more specifically
in the tomography setup. We chose an emerging application of ultrasound tomography in breast screening to
practically demonstrate possible improvements in the image quality when specific learned dictionaries are used
in the reconstruction process. Assuming that the image to be reconstructed has a sparse representation in the
space of a learned dictionary the reconstruction process can be improved in two ways. First, the image can be
reconstructed with higher resolution because a smaller data set is needed compared to the requirements for the
same resolution and without the learned dictionary. Second, if we have a noisy data set the image will have
better quality when reconstructed with the learned dictionary than without. The idea behind these benefits is
that learned dictionaries will allow for more efficient representation of an image and therefore the image can be
represented in a lower dimensional space. Thus, because of this dimensionality reduction less measurements will
be needed to recover this image.

Throughout this paper we cover the application of learned dictionaries in ultrasound tomography by going
from theoretical questions on how to learn dictionaries to the very practical issues of using them in this concrete
application. The paper is organized as follows. In Section 2, we first introduce the notion of sparse coding, its
different variations and the main approaches to solve it. In Section 3, we present the two families of dictionaries:
complete bases and learned dictionaries. We describe one example of complete basis composed of Discrete Cosine
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Transform basis functions, and then list the main techniques for dictionary learning. We focus particularly on
K-SVD, as it shows good results in many applications, and has a complexity-wise efficient implementation. We
present our tomography setup and the application of these dictionaries in Section 4. We first describe how learned
dictionaries are trained on patches extracted from medical images obtained with other imaging modalities. We
then explain how the local atoms of these dictionaries are “globalized” to be applied on whole images. Finally,
we explain how the original reconstruction problem should be adapted such that the learned dictionary can be
used. Reconstruction results are presented in Section 5, in which we compare the different dictionaries, and also
explore the influence of the dictionary parameters (patch size, number of atoms) on the reconstruction quality.
Finally, we conclude this article in Section 6 with some discussion and perspectives of future work.

2. SPARSE REPRESENTATION OF SIGNALS

Let y ∈ R
n be a signal of any kind (image, sound, MRI measurement, etc). Using an overcomplete dictionary

matrix D ∈ R
n×K , with K > n, that contains K columns {dj}Kj=1 (called atoms), y can be represented as a

sparse linear combination of these atoms, such that this representation is either exact :

y =Dx, (1)

or approximate :
y ≈ Dx with ‖y −Dx‖p ≤ ε. (2)

D being overcomplete, an infinite number of solutions are available for the representation problem. The so-
lution with the fewest number of nonzero coefficients is certainly an appealing representation. This sparsest
representation is the solution of either :

min
x

‖x‖0 with constraint y =Dx, (3)

or
min
x

‖x‖0 with constraint ‖y −Dx‖p ≤ ε, (4)

with ‖·‖0 being the L0 norm, counting the number of nonzero entries of a vector.

2.1 Sparse coding

Sparse coding is the process of computing the representation x based on the signal y and the dictionaryD. This
process, commonly called “atom decomposition”, requires solving Eq. (1) or Eq. (2), usually using a “pursuit
algorithm” that finds an approximate solution.

Indeed, exact determination of the sparsest representation proves to be NP-hard. Thus, approximations are
considered instead.

2.1.1 Greedy approach

Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP)1 are the two simplest algorithms commonly
used to solve the atom decomposition problem. They basically select the dictionary atoms sequentially, and
involve computing the inner product between the signal and dictionary columns. By setting the stopping rule of
the algorithm, one can either find a solution to Eq. (1) or Eq. (2).

If the approximation delivered has k0 nonzero coefficients, OMP has a complexity of O(k0nK).

2.1.2 Convexification approach

A second well-known approach consists of replacing the L0 norm with a L1 norm (Basis Pursuit (BP)), or with
a Lp(p ≤ 1) norm (Focal Underdertermined System Solver (FOCUSS)). Lagrange multipliers are used to convert
the constraint into a penalty term, and an iterative method is used to solved the minimisation problem.

These algorithms have been shown to recover well the signal, given that the sought solution x is sparse
enough.
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3. CHOICE OF THE DICTIONARY

To solve the minimization problems in Eqs. (3) and (4), one should first decide how to build the dictionary D.
The choice of the dictionary will greatly influence the sparsity of x and the quality of the reconstructed signal.

There are two different approaches for choosing this dictionary : the complete bases approach, in which a
prespecified set of functions are used, or the learning-based approach, in which a set of function is designed to
fit a given set of signal examples.

3.1 Complete bases

Choosing a prespecified transform matrix is appealing because it is simpler. Also, in many case it leads to simple
and fast algorithms for the evaluation of the sparse representation. This is indeed the case for overcomplete
wavelets, curvelets, short-time Fourier transforms, and more.

The success of such dictionaries in applications depends on how suitable they are to sparsely describe the
signals in question. While used for many years, this analytic approach has been frequently outperformed by
dictionaries based on learning.

3.1.1 Discrete Cosine Transform

To compare with learned dictionaries, we used Discrete Cosine Transform (DCT)2 as a complete basis to build
a dictionary. In one dimension, DCT defines a set of N basis functions as follows:

fk(x) = cos

[
π

N
(x +

1

2
)k

]
, k = 0, . . . , N − 1.

These bases can be easily extended to 2 dimensions, by taking two sets of 1D basis functions and multiplying
them two by two. Figure 1 shows an example of such a dictionary, with 81 atoms of 8× 8 pixels.

Figure 1. Example of an overcomplete set of 81 2D DCT basis functions, for patches of size 8× 8.

3.2 Learning-based approach

In this approach, that has recently led to state-of-the-art results in many applications, the dictionary is built
such that it leads to a sparse representation of the training signals. There are many ways to build this dictionary.
The main ones are described in the following.

3.2.1 Online learning

Most algorithms take the training set as a whole when using it for learning the dictionary. In real-world applica-
tions, for instance video processing, the dataset may contain millions of samples, thus rendering impossible the
use of a batch algorithm.

Online algorithms using a stochastic approach have been proposed by Bottou.3 They randomly sample the
training set and use at each iteration only one sample to update the dictionary. This approach has been shown
to be significantly faster than batch algorithms, and to achieve similar results.

An online algorithm for dictionary learning and sparse coding is proposed by Mairal.4
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3.2.2 Component analysis

Principal Component Analysis (PCA) is an orthogonal linear transformation that projects the data into a new
coordinate system such that its first component in this new representation (called the first principal component)
explains the greatest variance of the data, the second coordinate the second greatest variance, etc. It can be
computed using the singular value decomposition of the data matrix, and thus may be computationally expensive.
The main drawback of PCA is that because it produces a complete set of orthogonal bases, it sometimes cannot
model properly the data.

There exist different variations of the PCA algorithm:

• Sparse Principal Component Analysis (SPCA),5 in which the output is constrained to be sparse.

• Independent Component Analysis (ICA),6 that allows the learning of non-orthogonal bases, thus allowing
to model properly data having a non-Gaussian distribution.

The main limitation of this family of algorithms is that it produces complete bases, that may sometimes not
be sufficient to allow a good representation of the data, as opposed to an overcomplete basis.

3.2.3 K-Means

K-Means is a clustering algorithm, in which a set of descriptive vectors {dk}Kk=1 is learned, and each sample is
represented by the closest of those vectors (usually in the L2 distance measure). This can be seen as an extreme
sparse representation, in which only one of the coefficient is nonzero and is equal to one.

The algorithm is performed by iteratively applying two steps :

1. assign each sample xi to the closest descriptive vector dk

2. updates the vectors dk such that they better represent their assigned xi (usually by using their mean)

This two-steps approach inspired many other algorithms, that usually only differ in the way they assign the
xi or update the dk.

3.2.4 Maximum Likelihood

This method uses probabilistic reasoning for reconstructing the dictionary D. It assumes that for every example
y :

y =Dx+ v,

with x a sparse representation and v Gaussian white noise with variance σ2.

Given the examples Y = {yi}Ni=1, this method want to maximize the likelihood P (Y |D) by finding the best
D, with constraint that the columns of the representation X are sparse.

The problem can be expressed as follows :

D = argmax
D

N∑
i=1

max
xi

{P (yi,xi|D)} (5)

= argmin
D

N∑
i=1

min
xi

{
‖Dxi − yi‖22 + λ ‖xi‖1

}
. (6)

This minimisation problem can be approximated using an iterative algorithm, where first the xi are calculated
using a gradient descent, and then the dictionary D is updated to reflect better the new xi :

D(n+1) =D(n) − η

N∑
i=1

(
D(n)xi − yi

)
xT
i .
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3.2.5 Method of Optimal Directions (MOD)

This algorithm follows the K-Means philosophy, in which first a coding stage is performed using any pursuit algo-
rithm (generally OMP or FOCUSS), and then the dictionary is updated to fit better the obtained representation.
The main contribution of MOD is its simpler way of updating the dictionary.

After the coding stage, we define for each sample the error ei = yi −Dxi. The overall representation mean
square error is thus given by :

‖E‖2F = ‖[e1, e2, · · · , en]‖2F = ‖Y −DX‖2F ,

where the notation ‖A‖2F stands for the Frobenius norm, defined as ‖A‖2F =
√∑

ijA
2
ij .

Assuming X is fixed, we can update D in order to minimise this error. By deriving the above equation with
respect to D and equaling it to zero, we obtain the relation (Y −DX)XT = 0. The resulting update rule for
D is thus :

D(n+1) = Y X(n)T ·
(
X(n)X(n)T

)−1

.

3.2.6 Maximum A-Posteriori

Similarly to the maximum likelihood method, this approach uses a probabilistic view of the problem. However,
instead of maximising the likelihood of the output given the dictionary P (Y |D), the posterior P (D|Y ) is used.
Using Bayes’ rule, we have P (D|Y ) ∝ P (Y |D)P (D). Thus, we can use the likelihood expression as before, and
add a prior on the dictionary.

Compared to MOD, this kind of algorithm provides slower training methods.

3.2.7 Union of Orthonormal Bases

This method, introduced by Elad7 and generalized by Gribonval,8 exploits the fact that any signal y ∈ R
n has a

unique representation in different orthonormal bases D(i) ∈ R
n×n. Let D(1),D(2), · · · ,D(L) be L of these bases.

We can write :

y =
n∑

i=1

D
(1)
(i) x

(1)
i = D(1)x(1) = D(2)x(2) = · · · = D(L)x(L),

where x(i) ∈ R
n is the representation of y in the base D(i). By taking the union of these L bases as an

overcomplete dictionary

D =
[
D(1)|D(2)| · · · |D(L)

]
∈ R

n×nL

and setting

y∗ =
[
yT |yT | · · · |yT ]T ∈ R

nL

x =
[
x(1)T |x(2)T | · · · |x(L)T

]T
∈ R

nL,

we obtain the following system : y∗ =Dx.

It has been shown by Bruckstein9 that by carefully choosing the basesD(i) (such that they have high mutual
coherence), we can have a sparse representation x of y∗ in the overcomplete dictionary D. Moreover, this
structure allows for a more effective dictionary update, leading to a faster training.

3.2.8 K-SVD

K-SVD is a generalisation of the K-Means algorithm, and thus follows the same two-steps iterating process. In
the first step, called the Sparse Coding stage, any pursuit algorithm can be used to compute the representation
x, allowing it to have at most T0 non-zero coefficients :

min
x

{
‖yi −Dx‖22

}
subject to ‖x‖0 ≤ T0.

The main difference with K-Means resides in the second step, called the Codebook Update Stage : while
K-Means freezes the x to update the dictionary D, K-SVD changes the columns of D sequentially, and allows
the relevant coefficients of x to be updated as well.

Proc. of SPIE Vol. 8138  81381C-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/24/2015 Terms of Use: http://spiedl.org/terms



Update procedure Here is the detailed update procedure of K-SVD, done for each atom dk, k = 1, ...,K in
the dictionary D(j−1), obtained from the previous iteration of the algorithm :

1. Define the set of training samples that use this atom dk :

wk = {i|1 < i < N, xi(k) �= 0}
(where xi is the ith training sample and xi(k) is the kth coefficient of this sample).

2. Compute the residual error e
(i)
k , corresponding to the atom k, of each sample xi, i ∈ wk :

e
(i)
k = yi −

∑
j �=k

djxi(j)

Ek =
[
e
(i1)
k e

(i2)
k · · · e(im)

k

]
, ij ∈ wk

3. Apply SVD decomposition to Ek :
Ek = UΔV T

4. Choose the updated atom dk to be the first column of U : dk = U1

5. Update the kth coefficient of each sample xi, i ∈ wk to be the corresponding coefficient in the first column
of Δ(1, 1)V .

Implementation The implementation of both approximate K-SVD and Batch-OMP presented by Rubin-
stein10 were used.

4. APPLICATION TO INVERSE PROBLEMS

4.1 Tomography setup

The inverse problem that we focused on is acoustic or ultrasound tomography. In this setup, we use emitters
and receivers, placed on a circle around an object of interest. Each emitter sends sequentially a sound, and all
receivers record for each emitter the time of flight of the sound, i.e. how long it took to cross between the two. If
we have n emitters/receivers, we measure n2 times of flight. The goal is then to recover the sound speeds inside
the area of interest.

To do so, we divide the area between the emitters/receivers in a grid of size m ×m, and consider that the
sound speed is constant inside each cell. Then, we build a measurement matrixM of size n2 ×m2. This matrix
describes, for each “ray” going from one emitter to one receiver, the length of the segment that crosses each cell.
Figure 2 shows a simplified example of such a setup.

The n2 times of flight are recorded in the vector tof , which gives us the following equation:

Mx = tof ,

where x is a vector of size m2 containing the inverse sound speed in each cell of the grid, i.e. x =
(

1
c1

1
c2

· · · 1
cm2

)
.

4.2 Solving the inverse problem

The current approach for solving this problem is an iterative method that uses gradient descent to find the best
solution x to this equation, with fixed M and measured tof . At each step, we compute the cost function fc(x),
which is usually the L2 norm of the error:

fc(x) = ‖Mx− tof‖2

To compute the update of the sound speeds for the next step, we simply take the derivative of the cost function:

δfc(x)

δx
= 2(Mx− tof )TM

and update x by incrementing it by this gradient (or a scaled version of the gradient).
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Figure 2. Example of the tomography setup. Each emitter/receiver (red circles) emits a sound, that the other receivers
record. The path of the sound can be seen as a ray. We measure the length of the portions of one ray that cross each cell
of the grid to build the matrix M .

4.3 Usage of the dictionary

We would now like to introduce a dictionary in this tomography setup. To do so, we represent the sound speeds
c as a linear combination of the columns of some dictionary ψ:

c = ψθ.

The dictionary ψ either comes from an overcomplete basis, or is learned using some problem-specific data, as
explained above. The unknowns that we are now interested in are the coefficients in the dictionary space θ.

As we have seen in the previous section, dictionary atoms correspond to small patches of images. While such
dictionaries can be used directly for problems like image denoising, it is not the case for the tomography setup.
Indeed, we need to have a full dictionary to represent the sound speeds in the whole image at once, i.e. c = ψθ.

Thus, from our initial learned dictionary D, we build a new dictionary ψ, that consists of all the shifted
versions of each atom of D. To do so, for each local atom of size b × b, we generate (n − b + 1)2 global atoms
of size n× n, by shifting it across the image at all possible positions, and filling the rest of the atom with zeros.
This process is illustrated in figure 3.

Now, we can replace the sound speeds vector c with ψθ in the equations above, which gives:

Mψ�θ� = tof ,

where ψ� and θ� are respectively the elementwise inverse of ψ and θ, i.e. ψ�
ij = 1

ψij
and θ�i = 1

θi
. The cost

function is changed to
fc(θ) = ‖Mψ�θ� − tof‖2

and the gradient now becomes

δfc(θ)

δθ
= 2(Mψ�θ� − tof )TM(ψ�θ�).2ψ,

where (·).2 means squared elementwise. θ� is updated as before, by incrementing it by the gradient above (or a
scaled version of it).
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Figure 3. Expansion of the learned dictionary D (left), that contains atoms of size b× b, to a global dictionary ψ (right)
that contains atoms of size n× n, and is generated by shifting each atom of D to all possible positions in the image.

5. RESULTS

5.1 Dictionary learning

To learn dictionaries for our experiments, we used a dataset of medical images, similar to the ones we would
have to reconstruct. For different combinations of patch size and number of atoms, we extracted 100’00 patches
from these images, and applied K-SVD on them to learn a dictionary.

Figure 4 shows examples of such learned dictionaries, for different numbers of atoms, and different patch
sizes.

(a) 48 atoms, 6× 6 (b) 81 atoms, 8× 8 (c) 512 atoms, 16× 16

Figure 4. Examples of dictionaries learned using K-SVD on 100’000 patches extracted from a dataset of medical images.
Different setup are illustrated, with the patch sizes and the number of atoms varying.

5.2 Reconstruction results

To evaluate the impact of the dictionaries, we picked one 144×144 image similar to the training images. We then
ran our tomography software to simulate measurements from 256 emitters/receivers placed on a circle around
the image, and finally ran the inversion algorithm on these measurements, to try and reconstruct the original
image. We compared three experiments:

1. inversion without a dictionary (INV)

2. inversion with a DCT dictionary (INV-DCT)
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Figure 5. Original image used for tomography experiments.

3. inversion with a dictionary learned using K-SVD (INV-KSVD)

The original image used for this experiment is shown in Figure 5, and the reconstructed images, obtained
with the three variants of the experiments, are shown in Figure 6.

(a) INV (14.70 dB) (b) INV-DCT (16.37 dB) (c) INV-KSVD (16.47 dB)

Figure 6. Result of the inversion process for the three variants of the experiment, with 256 emitters/receivers and 256
atoms of 8× 8 pixels for the dictionaries. Numbers in parentheses are the PSNRs of each image compared to the original
one.

We see that the dictionary does not improve very much the results in this setup. However, one has to
notice that the measurements give more than enough information to recover the image without the help of a
dictionary. Indeed, for an image of 144×144 pixels, we have 256∗255 measurements, which is more than enough.
However, note that the measurements we used were generated by our software, and thus noise-free. Running
the same experiment in a real-world setup should better emphasize the benefits of dictionaries, as the structural
information they provide should help getting rid of the noisy parts of the signal, thanks to the sparsity constraint.

The primary goal of this project being to investigate whether dictionaries can help improve an image in poor
measuring conditions, we tried the same experiment, but this time with less emitters/receivers. Instead of 256,
we tried with 128, and then 64. Resulting images can be seen in Figures 5.2 and 5.2 respectively.

We see that this time the original version (INV) shows severe artifacts and a very poor quality, whereas the
structure enforced by the dictionaries helps obtaining much nicer results. In fact, the difference between 128
and 256 emitters/receiver is barely noticeable with the K-SVD dictionary. The difference between 128 and 64
emitters/receivers is even more dramatic: the INV version has heavy ray artifacts, where K-SVD shows a pretty
smooth reconstruction.
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(a) INV (13.08 dB) (b) INV-DCT (13.00 dB) (c) INV-KSVD (16.20 dB)

Figure 7. Result of the inversion process for the three variants of the experiment, with 128 emitters/receivers and 256
atoms of 8× 8 pixels for the dictionaries. Numbers in parentheses are the PSNRs of each image compared to the original
one.

(a) INV (9.99 dB) (b) INV-DCT (8.90 dB) (c) INV-KSVD (16.01 dB)

Figure 8. Result of the inversion process for the three variants of the experiment, with 64 emitters/receivers and 256
atoms of 8× 8 pixels for the dictionaries. Numbers in parentheses are the PSNRs of each image compared to the original
one.

Note that the results obtained with the DCT dictionary are not as good as the one obtained with the learned
dictionary. This comes from the fact that for comparison purposes, we showed results with the same parameters
(patch size and number of atoms) for both DCT and K-SVD dictionaries, though these were not the optimal ones
for DCT. Detailed results presented below indicated that better results can be achieved with a DCT dictionary.

In any case, more detailed experiments should be performed to determine the exact influence of the learning
algorithm on the results of the inversion problem. The effects of the dictionary parameters (number of atoms,
patch size) should also be further investigated.

6. CONCLUSION

In this article, we introduced the idea of using dictionaries in the context of a tomography setup. We first
described the problem of sparse coding and its different solutions in Section 2. Then, we presented in Section
3 the two approaches for choosing a dictionary, either by picking a set of predefined functions, or by crafting it
using some problem-specific data. We listed the different techniques for learning a dictionary, and illustrated our
choice of one methods of each kind, namely the Discrete Cosine Transform as a complete basis, and K-SVD as
learning algorithm. We introduced our tomography setup in Section 4, first in its original form, and then modified
to make use of a dictionary. We also explained how our dictionaries defined for local atoms are generalized to
be applied on whole images. Finally, we presented some interesting results in Section 5, in which dictionaries
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were able to help getting rid of downsampling and ray artifacts when the number of measurements was reduced.
This shows promising applications for increasing the reconstruction resolution and quality when the number of
measurements is limited. Some results with different combinations of number of measurements, number of atoms
and patch sizes were also exhibited, but a formal and systematic study of the influence of these parameters still
remains to be done.

6.1 Future work

As said above, the exploration of the influence of the dictionary structure (complete basis or learning-based?
Which learning algorithm?), as well as the dictionary parameters (number of atoms, patch size) should be further
investigated. More specifically, we would like to try dictionaries learned using Maximum Likelihood, as well as
the 2D convolutional sparsenet developed by Culpepper.11

Moreover, the tomography setup on which we ran our reconstruction experiments was a very simplistic one:
straight rays, no noise, etc. Further experiments should be run using a more complex setup, for instance with
bent rays, to explore the effect of dictionaries in these cases.
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