-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

DejaVu: Accelerating Resource Allocation
In Virtualized Environments

Nedeljko Vast, Dejan Novakow, Svetozar Migin*, Dejan Kostt, and Ricardo Bianchihi
School of Computer and Communication Sciencé®epartment of Computer Science

EPFL, Switzerland

{firstnane. | ast nane} @pfl.ch

Abstract

Effective resource management of virtualized environsesta
challenging task. State-of-the-art management systetineraiely

on analytical models or evaluate resource allocations bying
actual experiments. However, both approaches incur afisignt
overhead once the workload changes. The former needs to r
calibrate and re-validate models, whereas the latter hasna
new set of experiments to select a new resource allocatian. D
ing the adaptation period, the system may run with an ineffici
configuration.

In this paper, we propose DejaVu — a framework that (1) mini-
mizes the resource management overhead by identifying hseha
of workload classes for which it needs to evaluate resoutoeaa
tion decisions, (2) quickly adapts to workload changes bgsify-
ing workloads using signatures and caching their prefeesdurce
allocations at runtime, and (3) deals with interferencedtingating
an “interference index”. We evaluate DejaVu by running esgn-
tative network services on Amazon EC2. DejaVu achieves more
than 10x speedup in adaptation time for each workload chesige
ative to the state-of-the-art. By enabling quick adaptmt@ejaVu
saves up to 60% of the service provisioning cost. Finalljjabe
is easily deployable as it does not require any extensiveuimen-
tation or human intervention.

Categories and Subject Descriptors D.4.8 [Operating Systeniis
Performance; K.6.4Nlanagement of Computing and Information
Systens System Management

General Terms Design, Measurement, Performance

Keywords Resource management, Data center, Virtualization

1. Introduction

Cloud computing is rapidly growing in popularity and impamte,
as an increasing number of enterprises and individuals bega
offloading their workloads to cloud service providers, sastAma-
zon, Microsoft, IBM, and Google. One of the main reasonstier t

*Work done during this author’s internship at EPFL.

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’12, March 3-7, 2012, London, England, UK.
Copyright© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

Rutgers University, USA
ri cardob@s. rutgers. edu

proliferation of cloud services is virtualization techogy. Virtu-
alization (1) enables providers to easily package and iijezeich
customer’s application into one or more virtual machineMgY,
(2) allows providers to lower operating costs by multipfextheir
physical machines (PMs) across many VMs; and (3) simplifils VV

o-placement and migration across PMs.

However, effective management of virtualized resourcea is
challenging task for providers, as it often involves séferthe best
resource allocation out of a large number of alternativesrddver,
evaluating each such allocation requires assessing gsaltper-
formance, availability, and energy consumption implicati. To
make matters worse, the workload of certain applicationtesa
over time, requiring the resource allocations to be retatad and
possibly changed dynamically. For example, the workloadedf
work services may vary in terms of the request rate and theires
requirements of the request mix.

A service that is provisioned with an inadequate number of re
sources can be problematic in two ways. If the service is-over
provisioned, the provider wastes money. If the service idetn
provisioned, its performance may violate a service-lewgective
(SLO). As an illustration of the impact of such an SLO viabati
Amazon reports that it loses 1% of sales for an increase ofri0
in response latency [15]. Thus, it is very important thatsbevice
is adequately provisioned.

Given these problems, automated resource managers orsthe sy
tem administrators themselves must be able to evaluate pwsiy
sible resource allocations quickly and accurately. Botalital
modeling and experimentation have been proposed for dvalua
ing allocations in similar datacenter settings [10, 12, 18, 30,
33, 36, 37, 40, 42, 43]. Unfortunately, these techniques reay
quire substantial time. Although modeling enables a largen
ber of allocations to be quickly evaluated, it also typigaiée-
quires time-consuming (and often manual) re-calibratiod ee-
validation whenever workloads change appreciably. In resit
sandboxed experimentation can be more accurate than mgdeli
but requires executions that are long enough to producesepta-
tive results. For example, [42] suggests that each expatimay
require minutes to execute. Finally, experimenting withotece
allocations on-line, via simple heuristics and/or feedbeantrol
[2, 8, 21, 28, 38, 41], has the additional limitation that &ytative
allocations are exposed to users.

This paper addresses this set of problems by proposing DgjaV
a system that simplifies and accelerates the managementwf vi
alized resources in cloud computing services. The key ieéénd
DejaVu is to cache and reuse the results of previous resalioze
cation decisions. When the DejaVu framework detects thakwo
load conditions have changed (perhaps because a VM or sasvic
not achieving its desired performance), it can lookup th@e

https://core.ac.uk/display/147975367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cache, each time using a VM identification andvarkload sig-
nature The signature is an automatically determined, pre-defined
vector of metrics describing the workload characteristicsl the
VM’s current resource utilization. To enable the cache igusk
DejaVu automatically constructs a classifier that usestafshelf
machine learning techniques. The classifier operates okleat
clusters that are determined after an initial learning phB®jaVu
clustering has a positive effect on reducing the overalbuese
management effort and overhead, because it reduces theenumb
of invocations of the tuning process (one per cluster).

The resource manager can use the output of DejaVu to quickly
reallocate resources. The manager only needs to resomnts ti
consuming modeling, sandboxed experimentation, or an-dix-
perimentation when no previous workload exercises thectfte
VMs in the same way. When the manager does have to produce
new optimized resource allocation using one of these msthod
stores the allocation into the DejaVu cache for later use.

Like any other cache, DejaVu is most useful when its cached
allocations can be repeatedly reused. Although DejaVu earsbd
successfully in a variety of environments, in this paper @@i§ on
cloud computing providers that run collections of netwagkvices
(these are also known as Web hosting providers). Previoukswo
and our own experience suggest that DejaVu should achigfe hi
“hit rates” in this environment. For example, it is well-kmio that
the load intensity of network services follows a repeatiatydat-
tern, with lower request rates on weekend days. In additlwse
services use multiple VMs that implement the same functigna
and experience roughly the same workload (e.g., all theegifuin
servers of a 3-tier network service).

Our approach to dealing with performance interference en th
virtualized hosting platform recognizes the difficulty @fpointing
the cause of interference, and the inability of cloud usechange
the hosting platform itself to eliminate interference. ®éj uses a
pragmatic approach in which it probes for interference atjdsts
to it by provisioning the service with more resources.

The contributions of this paper are as follows:

1. We propose DejaVu, a framework for learning and reusing
optimized VM resource allocations.

2. We describe a technique for automatically profiling, wisg,
and classifying workloads. Clustering reduces the numlber o
tuning instances and thus reduces the overall resourcegeana

ment overhead.

. We evaluate DejaVu using realistic network services aad r
world MSN messenger and HotMail traces. Our results show
that DejaVu achieves more than 10x speedup in adaptati@n tim
for each workload change, relative to the state-of-theFart-
ther, DejaVu saves between 35-45% and 55-60% of the pro-
visioning cost when scaling up and scaling out, respegtivel

a

2. Background and Motivation

In this section, we briefly describe the background for ourkwo
and demonstrate the need for DejaVu.

2.1 Background

We assume that the usesf the virtualized environment deploys
her service across a pool of virtualized servers. We useettm t
application to denote a standalone application or a sengogpo-
nent running within a guest operating system in a virtual mrae
(VM). The service itself is mapped to a number of VMs. A typi-
cal example would be a 3-tier architecture which consiseswéb
server, an application server, and a database server cemipail
VMs reserved for a particular component can be hosted bygiesin
physical server, or distributed across a number of them.uBee
and the provider agree on the Service Level Objective (SloD) f
the deployed service.

While DejaVu is not restricted to any particular virtualizelat-
form, we evaluate it using Amazon’s Elastic Computing Cloud
(EC2) platform. EC2 offers two mechanisms for dynamic reseu
provisioning, namelyhorizontal and vertical scaling. While hori-
zontal scaling (scaling out) lets users quickly extendrtbapaci-
ties with new virtual instances, vertical scaling (scaliqm varies
resources assigned to a single VM. EC2 provides many seawver i
stance types, from small to extra large, which differ in mlae
computing units, memory and 1/O performance. We evaluate De
jaVu with both provisioning schemes in mind.

2.2 The Case for DejaVu

The key issue in resource provisioning is to come up with the s
ficient, but not wasteful, set of virtualized resources.(engmber

of virtual CPU cores and memory size) that enable the applica
tion to meet its SLO. Resource provisioning is challenging tb:

(1) workload dynamics, (2) the difficulty and overhead ofidieg

the resource allocation for each workload, and (3) the diffycin
enforcing the resource planning decisions due to intemfereAs

a result, it is difficult to determine the resource allocatibat will
achieve the desired performance while minimizing the carsbdth

the cloud provider and the user.

The most important problem is that the search space of allo-
cation parameters is very large and makes the optimal coafigu
tion hard-to-find. Moreover, the workload can change andleen
this computed setting sub-optimal. This in turn results maer-
performing services or resource waste.

Once they detect changes in the workload, the existing
proaches for dynamic resource allocation re-run time-ganiisg
modeling and validation, sandboxed experimentation, eliren
experimentation to evaluate different resource allocatioMore-
over, on-line experimentation approaches (includinglieet con-
trol) adjust the resource allocation incrementally, whieads to

ap-

as compared to the approach that always overprovisions thelong convergence times. The convergence problem beconess ev
service to ensure the SLO is met. The DejaVu-achieved sav- worse when new servers are added to or removed from the servic

ings translate to about $250,000 per year for 100 large EC2
instances.

We conclude that deploying DejaVu in the field would have
two key benefits. First, it would enable cloud providers toetme
their SLOs more efficiently as workloads change. It wouldals
enable providers to lower their energy costs (e.g., by datetong

workloads on fewer machines, more machines can enter a low-

power state [8, 22, 39]). Second, the more efficient adayptat
workload changes would enable users to purchase fewerroesou
from the provider. In addition, the lower provider costs \eblikely
translate into savings for users as well.

Adding servers involves long boot and warm-up times, wherea
moving servers may cause other servers to spend significaat t
rebalancing load (as in Casandra [1]).

The impact of the state-of-the-art online adaptation orfigoer
mance is illustrated by our experiment using RUBIS [6] (aragB
clone) in which we change the workload volume every 10 miswte
Further, to approximate the diurnal variation of load in tadan-
ter, we vary the load according to a sine-wave. As shown inreig
1, even if the workload follows a recurring pattern, the BR@
approaches are forced to repeatedly run the tuning protess s

1We use the terms “user” and “tenant” interchangeably. Wervesthe term
“client” for the client of the deployed service itself.

500 — ‘ ‘ ‘ 250
i Workload volume e
| i ' Average latency -------- | @
g % 400 - \ SLO latency ----- | 200 E
5.0 ' ! >
== H | o
g% 300 | i bad perf%rmance i 1150 g
°© H H =
S : ; °
£3 200 e oohee 100 g
S5 i over charg%a* ©
=E 100 | LN 15 ¢
A~/ VA ol l\ﬂgv—“ <
O Il Il Il Il Il Il Il O
0 10 20 30 40 50 60 70 80

Time (min)

Figure 1. Every time the workload changes, the state-of-the-art
approaches spend a considerable amount of time in perfeéenan

retuning. During this time, the service can deliver insigfit per-
formance due to a lack of resources. Alternatively, theisergan
be overprovisioned, and ultimately waste resources.

they cannot detect the similarity in the workload they areoem-

tering. Unfortunately, this means that the hosted sendcepeat-
edly running for long periods of time under a suboptimal tese
allocation. Such magnitude of response latency incred3@ rfis)
has substantial impact on the revenue of the service [1B4llyj

computing the optimal resource allocation is an expensisk. t

When faced with such long periods of unsatisfactory perfor-
mance, the users might have to resort to overprovisionity, e
by using a large resource cap that can ensure satisfactdigrpe
mance at foreseeable peaks in the demand. For the user, stoing

incurs unnecessarily high deployment costs. For the peoyitiis
causes high operating cost (e.g., due to excess energyrfioingl
and cooling the system). In summary, overprovisioning tesgane
of the primary reasons for the attractiveness of virtualizervices
for both users and providers.

Another problem with existing resource allocation apphesc
is that virtualization platforms do not provide ideal perfance
isolation, especially in the context of hardware cached/&hdr his
implies that application performance may suffer due to tit&via
ties of the other virtual machines co-located on the samsipaly
server. For instance, previous works and our own experisage
gest that, due to the interference, even virtual instantdesame
type might have very different performance over time.

3. Approach

In this section, we describe the DejaVu framework, stanitd its
high-level overview.

3.1 Overview

DejaVu operates alongside the services deployed in thealized
environment of a cloud provider. Although other organizasi are
conceivable, we assume that the cloud provider itself gespémd

operates DejaVu. Figure 2 highlights DejaVu's main compase

and the way they integrate with the cloud provider, whileuré&g3
illustrates its operation. DejaVu accelerates the managéof vir-
tualized resources in datacenters by caching the resuftasifre-
source allocation decisions and quickly reusing them onfaeeées
the same or a similar workload. For DejaVu to be effectivegald
ing with dynamic workloads, it first needs to learn about vieakis
and their associated resource allocations (e.g., the nuanigesize
of the required virtualized instances on EC2) during thenieg
phase (e.g., a week of service use).

To profile a workload, DejaVu deploys a proxy that duplicates

the client requests directed to selected service VM ingmie the

Service C
Service B

Service A

DejaVu Profilers —

DejaVu Proxy Workload classification

DejaVu Proxy DejaVu Proxy

Figure 2. High-level overview of the way DejaVu’s integrates with
the service running in the cloud.

DejaVu profiler. DejaVu then uses a dedicated profiling nmaehi
to compute avorkload signaturefor each encountered workload.
The workload signature itself is a set of automatically e@mokow-
level metrics. Further, DejaVtlustersthe encountered workloads,
and by doing so it reduces the resource management overead,
well as the number of potentially time-consuming serviasore
figurations to accommodate more or fewer virtual machinég T
Tunermaps the clusters to the available virtualized resources, a
populates the resource allocation repository.

After the initial learning phase, DejaVu profiles the wowrdb
periodically or on-demand (e.g., upon a violation of an Su€ihg
its proxy. It then uses each computed workload signatureito-a
matically classifythe encountered workload. If the classifier points
to a previously seen workload (cache hit), DejaVu quicklyses
the previously computed resource allocation. In case offardit
resource allocation, DejaVu instructs the service to régare it-
self. In case of a failure to classify the workload (e.g., thuan un-
foreseen increase in service volume), DejaVu can eithevoke
the Tuner, or instruct the service to deploy its full capacion-
figuration. Compared to the state-of-the-art, DejaVu dcaby re-
duces the time during which the service is running with irp@dte
resources. This translates to fewer and shorter SLO wiolatias
well as significant cost reduction for running the serviselit

To deal with interference from co-located workloads, DejaV
computes arnterference indey contrasting the performance of
the service on the DejaVu profiler with that in the productem
vironment. It then stores this information in the resourtecation
repository. Simply put, this information tells DejaVu howany
more resources it needs to request to have a better praciiahili
guarantee on the service performance. Using the histhyical-
lected interference information once again allows Dejadud-
duce the tuning overhead relative to the interferencevatis case
(state-of-the-art).

3.2 Workload Dispatching and Profiling

At a high level (Figure 2), DejaVu consists of two main compo-
nents: proxy and workload profiler To profile workloads under
real-world conditions and traces, we introduce a proxy keetwthe
clients and the hosted services. The proxy forwards thetctiz
quest to the system in production, but also duplicates andsse
a certain fraction of the requests to the profiling environtrfer
workload characterization.

DejaVu profiling
and clustering

Metric 1

R

&

Resource allocation

EERVCIN Workload Interference Resource
tuning signature index allocation
M1,M2, ... 1 &
M1,M2, ... 1 2
M1,M2, ... 1 1

Workload volume/type

Training

Reuse (periodic/on-demand)

Workload volume/type

Time

Metric 2

DejaVu online workload
classification

DejaVu reuse of
resource allocation
decisions

s 0
s oo
TT1ITT]

Time

Virtualized
resources

Figure 3. High-level overview of DejaVu’s operation. It first profiles

d clusters a dynamic workload during the learning phatsge f-

the-art performance tuning then maps the clusters to Vizearesources. Finally, DejaVu profiles workloads at imetand reuses previous
resource allocation decisions to allow the service to duiaklapt to workload changes.

3.2.1 DejaVu Proxy

The proxy needs to be careful when selecting the requestsder
filing. In the case of Internet services, the sampling is danie
granularity of the client session to avoid issues with ngistent
web cookies that might cause workload anomalies. Otheistgpe
applications may require more sophisticated approachase¥x
ample, a distributed key-value storage system (e.g., Gdss§l])
requires sampling where the dispatching needs to be awdhe of
node partitioning scheme, and duplicate only the requeitiiseys
that belong to the particular server instance used for warkchar-
acterization.

Having a proxy between the service in production and the test
ing environment (in our case the profiling environment) hasrb
addressed before [42]. The authors typically propose egujin
protocol-aware proxies, ending up with numerous imple@tms
that understand HTTP, mod-jk, jdbc, etc. In contrast, ourkioad
characterization targets an arbitrary service; this im fposes a
need for a general proxy that can work with any service. Hence
we propose a novel proxy which which sits between the applica
tion and transport layers.

The proxy duplicates incoming network traffic (all the resjisg
of the server instance that DejaVu intends to profile, anddods it
to the clone. By doing so, DejaVu ensures that the clone VMeser
the same requests as the profiled instance, resulting irathe sr
similar behavior. Finally, to make the profiling processsjparent
to the other nodes in the cluster, the clone’s replies anppdrd by
the profiler. To avoid instrumentation of the service (ecbanging
the listening ports), we transparently redirect incomiadfic to the
DejaVu proxy using iptables routines [19].

It is particularly hard to make the profiler behave just like t
production instance in multi-tier services. For examplensider
a three-tier architecture. In this architecture, it is coonnfior the
front-end web server to invoke the application server whiwn
talks to the database server before replying back to the-&od.

In this case, if DejaVu is instructed to profile only the apgation
server (the middle tier), it is obvious that we need to dedhhe
absence of the database server.

DejaVu addresses this challenge by having its proxy cache re
cent answers from the database such that they can be re-ysed b
the profiler. Requests coming from the clone are also sertteto t

proxy. Upon receiving a request from the profiler, the promyne
putes its hash and mimics the existence of the database kindpo
up the most recent answer for the given hash. Note that theg’pro
lookup table exhibits good locality since both the produttand
the profiler deal with the same requests, only slightly ekifh time
as one of these two might be running faster. This cachingnsehe
does not necessarily produce the exact same behavior aspneh
duction system because the proxy can: (1) miss some answers d
to minor request permutations (i.e. the profiler and the petidn
instance generate different timestamps), or (2) feed thidgrwith
obsolete data. However, the scheme still generates theolodue
profiler that is similar to that of the production system &iéthat
DejaVu does not need a verbatim copy of the production system

3.2.2 DejaVu Profiler

During the workload characterization process, DejaVusfifar
serves realistic requests (sent by the proxy) in the prgfiéinvi-
ronment, allowing us to collect all the metrics required iy thar-
acterization process, without interfering with the systamproduc-
tion. DejaVu relies on VM cloning to reconstruct a subseths t
monitored service that can serve the sampled requests, dkgsm
sure that VM clones have different network identities (Hetteat
the clone is running in our private profiling environment). min-
imize the cloning cost, DejaVu profiles only a subset of the se
vice, typically a single server instance (e.g., one VM per)tand
assumes that services balance the load evenly acrossvies ger
stances.

The services with little or no state are quickly brought to
equivalent operational state to that of the system in priboloicin
contrast, replicating a database instance might be timstruing,
and it is important to consider the cloning of the disk ster§ig,
20]. However, our goal is not to exactly capture the sergicem-
plex behavior and resulting performance, but only to labeldur-
rent workload which gives us additional flexibility — our VNboe
does not need to be tightly synchronized with the systemaddyse-
tion. Instead, we envision periodic synchronization arsoreto the
current image, as long as DejaVu manages to identify themaihi
set of resources that enable the service to meet its SLO.

To avoid the VM cloning and DejaVu overhead altogether, one
can perform profiling on-line, without cloning the monitdrgM.

an

50 80 _30
s
=70 " 225

40 * + SPECweb2009 S 60 + RUBIS x . « Cassandra
S Banking = Browsing 220 . (50% read,
; 30 + > 50 & .8 : 50% update)
= ® 40 " J1s5 A7
220 ¢ SPECWeh2009 € 0 . RuBis 3 TR
E) : a (IR Bidding @ [Is d
o . Support <50 H s + 10 t assandra

10 . N . H $ < . S (5% read,

10 s ¢ g 5 n 95% update)
0 0 v - ﬁ 0 -
0 200 400 600 0 200 400 600 800 0 5000 10000 15000
Workload volume [clients] Workload volume [clients] Worklod volume [clients]

(a) SPECweb2009

(b) RUBIS

(c) Cassandra

Figure 4. Low-level metrics can serve as a signature which reliatéyidies workloads that differ either in their type (i.e adéwrite ratio)

or intensity.

This again comes with two major obstacles. First, some o®etri
might be disturbed by co-located tenants during the sammex
riod; hence one would need to carefully identify the sigratu
forming metrics that are immune to interference. The seaind
stacle is that the cloud provider would need to make all level
metrics available for our profiling.

3.3 Choosing the Workload Signature

For any metric-based workload recognition, it is cruciaitttihe set
of metrics chosen as theorkload signaturecan uniquely identify
all types of workload behaviors. Before going into the dstaf our
workload signature selection process, we discuss how wectol
the workload-describing metrics.

The DejaVu framework relies on itdonitor to periodically or
on-demand (e.g., upon a violation of an SLO) collect the ‘ezt
signatures. The design of the Monitor includes several key-c
lenges:

¢ Non-intrusive monitoringGiven the diverse set of applications
that might run in the cloud, DejaVu cannot rely on any prior se
vice knowledge, semantics, implementation details, ohliig
specific logs. Further, DejaVu assumes that it has to work wel
without having any control over the guest VMs or applicagion
running inside them. This is a desirable constraint givemwe
target hosting environments like Amazon's EC2 that provide
only a “bare-bones” virtual server.

Isolation. Because the DejaVu profiler (possibly running on a
single machine) might be in charge of characterizing midtip
services, we need to make sure that the obtained signatgres a
not disturbed by other profiling processes running on theesam
profiler.

Small overheadSince DejaVu might be running all the time, its
proxy must induce negligible overhead while duplicatingmi
requests, to avoid an impact on application performance.

Using low-level metrics to capture the workload behavior is
attractive as it allows us to uniquely identify different klmads
without requiring knowledge about the deployed services Vin-
tualization platforms are already equipped with variousitosing
tools that are useful to us. For instance, Xetent op command
reports individual VM resource consumption (CPU, memong a
1/0). Further, modern processors usually have a set of spegjis-
ters that allow monitoring of performance counters withaffict-
ing the code that is currently running. It has been shownttieste
Hardware Performance Counters (HP€an be used for workload
anomaly detection [17] and online request recognition.[R9hd-
dition, the HPC statistics can conveniently be obtainediouit in-
strumenting the guest VM. We only read a hardware countereval
before a VM is scheduled, and right after it is preempted. difie

ference between the two gives us the exact number of events fo
which the VM should be “charged”. Tools suchXsnopr of al-
ready provide this functionality with passive sampling.

Leveraging low-level metrics brings another practicalsiios:
given the complexity of the hosted services, can we rely eseh
metrics as a reliable signature to distinguish differentkiaads?
We assume that as long as a relevant counter value lies inarcer
interval, the current workload belongs to the class astatiaith
the interval.

To validate this assumption in practice, we run experimetitts
realistic applications. In particular, we run typical atbbench-
marks under different load volumes, with 5 trials for eachuxee.
Figures 4(a) - 4(c) present the results with each point sgpting
a different trial. In the most obvious example, Figure 4(apdy
shows that the hardware metric (Flops rate in this case) eian r
ably differentiate the incoming workloads. Moreover, tasults for
each load volume are very close. Once we change either veatklo
type (e.g., read/write ratio) or intensity, a large gap lestwcounter
values appear. Similar trends are seen in the other benkbraar
well, but with a bit more noise. Nevertheless, the remainiegrics
that belong to the signature (we are plotting only a singlenter
for each benchmark) typically eliminate the impact of noise

While we can choose an arbitrary number of xentop-reported
metrics to serve as the workload signature, the number of-HPC
based metrics is limited in practice — for instance, our fingfi
server, Intel Xeon X5472, has only four registers that alioan-
itoring of HPCs, with up to 60 different events that can be mon
itored. It is possible to monitor a large number of eventgsi
time-division multiplexing, but this causes a loss in aecyr[16].
Moreover, many of these events are not very useful for waklo
characterization, as they provide little or no value whemgaring
workloads. Finally, we can reduce the dimensionality ofe¢hsu-
ing classification problem and significantly speed up thegss by
selecting only a subset of relevant events.

The task at hand is a typical feature selection process,hwhic
evaluates the effect of selected features on classificatoaracy.
The problem has been investigated for years, resulting argel
number of machine learning techniques. As our focus is ndb-on
venting new models, we simply apply various mature methoms f
the WEKA machine learning package [13] on our datasets iobdiai
from profiling (Section 3.4). During this phase, we form tlaaset
by collecting all HPC and xentop-reported metric values.

Applying different techniques on our dataset, we note that t
Cf sSubset Eval technique, in collaboration with thér eed-

St epW se search, results in high classification accuracy. The
technique evaluates each attribute individually, but alkserves
the degree of redundancy among them internally to prevedgsin
able overlap. As a result, we derive a set of N representbtiR€s

and xentop-reported metrics, which serve as the worklaathsire
(WS) in the form of an ordered N-tuple:

WS ={m',m? .., m"} (1)

wherem! represents the metric We further analyze the feature
selection process by manually inspecting the chosen cauriter
instance, the HPC counters chosen to serve as the workigiaa-si
ture in case of the RUBIS workload are depicted in Table 1 (the
xentop metrics are excluded from the table). Indeed, theasige
metrics provide performance information related to CPlthea
memory, and the bus queue.

Given that the selection process is data-driven, the nsdtion-
ing the workload signatures aspplication-dependentWe how-
ever do not view this as an issue since tthetric selection process
is fully automatedand transparent to the user.

To ensure that our workload signature is robust to arbitrary
sampling duration, we normalize the values with the sarggime.
This is important as it allows us to generalize our signaa@oss
workloads regardless of how long the sampling takes.

3.4

Given that the majority of network services follow a repegti
daily pattern, DejaVu should achieve high “cache hit raté&it

still a challenge remains. To achieve high hit rates, Dejékat

needs to populate preferred resource allocations for septative
workloads, i.e. those workloads that will most likely reocin the

near future and result in a cache hit.

Note that there is a tradeoff between the overhead of adgsti
resource allocations (tuning) and the achieved hit rate® €an
achieve high hit rates by naively marking every workload &% r
resentative. However, this would cause DejaVu to perforstlgo
tuning for too many workloads. On the other hand, omittinmmeo
important workloads could lead to unacceptable resourceal
tions during certain periods.

DejaVu addresses this tradeoff by automatically identiya
small set of workload classes for a service. First, it mositihe
service for a certain period (e.g., a day or week) until theiaed
istrator decides that DejaVu has seen most, or ideally altkw
loads. During this initial profiling phase, DejaVu colletie low-
level metrics discussed in Section 3.3. Then, it analyzesl#taset
to identify workload signatures, and represent each warklas a
point in N-dimensional space (N is the number of metrics i th
signature). Finally, DejaVu clusters workloads into ckzss

DejaVu leverages a standard clustering technique, sirhple
means, to produce a set of workload classes for which therTune
needs to obtain the resource allocations. The frameworkacan
tomatically determine the number of classes, as we did iregur
periments, but also allows the administrators to expicttike the
appropriate tradeoff between the tuning overhead and tat fes
an example, Figure 5 shows the representative workloadedas
that we obtain from a service after replaying the day-long Mi
crosoft HotMail trace [35]. Each workload is projected otie
two-dimensional space for clarity. DejaVu collected a seR4s
workloads (an instance per hour), and it identified only fdifr
ferent workload classes for which it has to perform the tgnkor
instance, a workload class holding a single workload (tiperigght
corner) stands for the peak hour.

DejaVu assumes that the workload classes obtained in the pro
filing environment are also relevant for the production eystThis
does not mean that the counter values reported by the profiéat
to be comparable to corresponding values seen by the sénvice
production. This would be too strong of an assumption, ag\ej
would then have to make the profiling environment a verbatipyc
of the hosting platform, which is most likely infeasible staad,

Identifying Workload Classes

800

600

400

Metric 2

200

15
Metric 1

Figure 5. Identifying the representative workloads - DejaVu sub-
stantially reduces the tuning overhead by producing onlyodkw
load classes out of 24 initial workloads.

DejaVu only assumes that the relative ordering among weaddo
is preserved between the profiling and the production enmient.
For instance, if workload A is closer to workload B than to tor
load C in the profiling environment, the same also holds irptioe
duction environment. We have verified this assumption eically
using machines of different types in our lab.

After DejaVu identifies the workload classes, it triggerg th
tuning process for a single workload from each workload clas
It typically chooses the instance that is closest to thetetiss
centroid. The Tuner’s job is to determine the sufficient, bat
wasteful, set of virtualized resources (e.g., number ampe tyf
virtual instances) that ensure the application meets it®.SLhe
Tuner can use modeling or experiments for this task. Mongove
it can be manually driven or entirely automated. The choite o
a tuning mechanism is orthogonal to our work. After the Tuner
determines resource allocations for each workload clas@\I
has a table populated with workload signatures along wiir th
preferred resource allocationdhe workload signature repository
—which it can re-use at runtime.

Since our focus is not on the Tuner itself, we resort to a very
simple technique — linear search — in our evaluation. In ndetail,
we replay a sequence of runs of the workload, each time with an
increasing amount of virtual resources. We then choose ithienal
set of resources that fulfill the target SLO. For instances oan
incrementally increase the CPU or memory allocation (byinar
the VMM’s scheduler caps) until the SLO is fulfilled. Sincerou
experiments involve EC2, we can only vary the number of wirtu
instances or instance type. Note that we can acceleratenimgt
process by using more sophisticated methods, as in [30]ede|
this avenue for our future work.

3.5 Quickly Adapting to Workload Changes

Since DejaVu’s goal is to re-use resource allocation dewssiat
runtime, it needs a mechanism to decide to which cluster dynew
encountered workload belongs — the equivalent of the caxdieaip
operation. DejaVu uses the previously identified clustertabel
each workload with the cluster number to which it belongghsu
that it can train alassifierto quickly recognize newly encountered
workloads at runtime. The resulting classifier stands asxpécit
description of the workload classes. We have experimeniéd w
numerous classifier implementations from the WEKA packagk a
observe that both Bayesian models and decision trees wdkfowe
the network services we considered. We use the C4.5 dedigien
in our evaluation, or more precisely its open source Javéeimen-
tation — J48).

Upon a workload change, DejaVu promptly collects the rele-
vant low-level metrics to form the workload signature of tieav
workload and queries the DejaVu repository to find the bedtima

Name Description Name Description

busq_empty| Bus queue is empty cpu_clk_unhalted| Clock cycles when not halted
12_ads Cycles the L2 address bus is in use 12_reject_busq Rejected L2 cache requests
12_st Number of L2 data stores load_block Events pertaining to loads
store_block | Events pertaining to stores page_walks Page table walk events

Table 1. The HPC metrics included in RUBIS’s workload signature.

among the existing signatures. To do this, it uses the pusiyo
defined classification model and outputs the resource dibocaf
the cluster to which the incoming signature belongs. Given the
number of workload classes is typically small and the cfasdion
time practically negligible, DejaVu can adjust to worklaztthnges

seconds), we envision a selection process that choosestande
at which interference is higher than k1% of the probed instances.
This conservative performance estimation would give usobgr
bilistic guarantee on the service performance.

For the time being, DejaVu quantifies the interference impac

on the order of a few or several seconds, as needed by the DejaV and reacts upon it to maintain the SLO. However, we plan to

profiler to collect the workload signatures.

Along with the preferred resource allocations, the repogit
also outputs the certainty level with which the repositesgigned
the new signature to the chosen cluster. If the repositggatedly
outputs low certainty levels, it most likely means that trerkload
has changed over time and that the current clustering ismgelto
relevant. DejaVu can then initiate the clustering and tgiirocess
once again, allowing it to determine new workload classasdact
the necessary experiments (or modeling activities), amthigthe
Repository. Meanwhile, DejaVu configures the service with t
maximum allowed capacity to ensure that the performancetis n
affected when experiencing non-classified workloads.

3.6 Addressing Interference

In the previous subsection, we described how to populateefies-
itory with the smallest (also calledaseling resource allocation
that meets the SLO at the time of tuning. The baseline allacat
however, due to interference, may not guarantee sufficieriobp
mance at all times. DejaVu deals with this problem by estingat
theinterference indexand using it, along with the workload signa-
ture, when determining the preferred resource allocation.

In more detail, after DejaVu deploys the baseline resoukce a
location for the current workload, it monitors the resgdtiperfor-
mance (e.g., service latency). If it observes that the SL&tills
being violated, DejaVu blames interference for the perfonoe
degradation. Workload changes are excluded from the patesa-
sons, because the workload class has just been identifisdlax i
tion. It then proceeds by computing the interference index a

PerformanceLevelyroduction

Interference index=

)

The index contrasts the performance of the service in pitgziuc
after the baseline allocation is deployed with that obtdifrem
the profiler. Note that DejaVu relies on each applicationefporrt
a performance-level metric (e.g., response time, throughphis
metric already needs to be collected and reported when the pe
formance is unsatisfactory. Others have argued for comgukiis
metric [18].

Finally, DejaVu queries the repository for the preferresbiece
allocation for the current workload and the interferenceant. If
the repository does not contain the corresponding entrja\le
triggers the tuning process and sends the obtained reaidisgy
with the estimated index, to the repository for later useeAthis
is done, DejaVu will be able to quickly lookup the best reseur
allocation for this workload given the same amount of irgeghce.

Interference may vary across the VM instances of a ser-
vice, making it hard to select a single instance for profiling
that will uniquely represent the interference across thereen
service. Inspired by typical performance requirementg.(ehe
Xth — percentile of the response time should be lower then

Per formanceLevel;soiation

further investigate this aspect of DejaVu and ensure it iges/
finer information about the interference. Assuming thatdtoaid
provider collects the low-level metrics from its VM instas; it
might compare the metric values imposed by the same workload
class over time to reveal which resource is primarily a#fdcby

the interference (e.g., cache, 1/0).

3.7 Discussion
We now discuss a few interesting questions about DejaVu.

Who should run DejaVu: the cloud provider or a third party?
Although we view this choice as orthogonal to our work, wedye
thatitis more practical for the cloud provider to run DejaVufact,
this is the setup we have assumed so far. This deploymenasaen
eliminates the privacy and network traffic concerns wittpplrig
code (clones of the services’ VMs) and client requests tard th
party.

Nevertheless, it is conceivable that a third party could Den
javu. In this case, users would likely have to explicitly tact
with both the provider and the third party. AlternativelgetDe-
jaVu proxy could be configured to selectively duplicate theoim-
ing traffic such that private information (e.g., e-mailsgraspecific
data) is not dispatched to the profiler. However, having trelthe
service code with the third party would still be a problem.

Regardless of who runs DejaVu, a tenant needs to reveal cer-
tain information about their service. Specifically, thexyrmeeds
to know the port numbers used by the service to communicdte wi
the clients and, internally, among VMs. Finally, to complgtau-
tomate the resource allocation process, DejaVu assumieis tha
enforce a chosen resource allocation policy without néeeisg
user involvement. Amazon EC2, for instance, allows us t@-aut
matically adjust the number of running instances by usisgRIs.

How does DejaVu deal with unforeseen workloads®ejaVu pro-
vides no worse performance than the existing approachen whe
encounters a previously unknown workload (e.g., large arseen
workload volume [4]). In this case, DejaVu has to spend éalutit
time to identify the resource allocation that achieves thsiréd
performance at minimal cost (just like the existing systems try
to avoid an SLO violation by the service, the current versibbe-
jaVu responds to unforeseen workloads by deploying the maixi
resource allocation (full capacity). If the workload ocsunultiple
times, DejaVu invokes the Tuner to compute the minimal se¢of
quired resources and then readjust the resource allocation

What is the scope of DejaVu?Although DejaVu primarily tar-
gets “request-response” Internet services, we believedinain-
terference mechanism can be useful even for long-runnitchba
workloads (e.g., MapReduce/Hadoop jobs). In this casea\Rej
would require the equivalent of an SLO. For example, for Hgdo
map tasks, the SLO could be their user-provided expecteatngn

times (possibly as a function of the input size). Upon an Sii-:O v
olation, DejaVu would run a subset of tasks in isolation ttede
mine the interference index. This computation would alspose
cases in which interference is not significant and the useplgi
mis-estimated the expected running times. We leave the isbu
applying DejaVu to other types of workloads for future work.

4. Evaluation

Our evaluation uses realistic traces and workloads to antvee
following questions. First, can DejaVu produce significeantings
while scaling network services horizontally (scaling caryl verti-
cally (scaling up)? Second, how does DejaVu compare witha (1
time-based controller (called Autopilot) which attemput$average
the re-occurring (e.g., daily) patterns in the workload épeating
the resource allocations determined during the learnirasgtat
appropriate times, and (2) an existing autoscaling platf@uch as
RightScale [24]? Third, is DejaVu capable of detecting artityau-
ing the effect of interference? Finally, can the profilingedwead,
and to what extent, affect the performance of the productis
tem? This section starts by describing our experimentapset

Testbed. Our profiling environment consists of two servers: Intel

application server, and a MySQL database server. In shoiBi®
defines 26 client interactions (e.g., bidding, selling) wédre-
quencies are defined by RUBIS transition tables. Our setgp ha
1,000,000 registered clients and that many stored itemdien t
database, as defined by the RUBIS default property file.

Given that these are widely-used benchmarks, client eonglat
are publicly available for all of them and we use them to gateer
client requests. Each emulator can change the workload liype
varying its “browsing habits”, and also collect numeroLaistics,
including the throughput and response time, which we uséeas t
measure of performance. Finally, all clients run on EC2ansés
to ensure that the clients do not experience network beitlen

Workload traces. To emulate a highly dynamic workload of a real
application, we use real load traces from HotMail (Windovirgel
Mail) and Windows Live Messenger from September, 2009 [35].
Figures 6(a) and 7(a) plot the normalized load from theseeta
Both traces contain measurements at 1-hour incrementsgoioinie
week, aggregated over thousands of servers. We propdiyiona
scale down the load such that the peak load from the traces-cor
sponds to the maximum number of clients that we can sucdbssfu
serve when operating at full capacity (10 virtual instajces

In all our experiments, we use the first day from our traces for

SR1560 Series rack servers with Intel Xeon X5472 processors initial tuning and identification of the workload classediereas

(eight cores at 3 GHz), 8 GB of DRAM, and 6 MB of L2 cache
per every two cores. We use them to collect the low-level icetr
while hosting the clone instances of Internet service carepts.

the remaining 6 days are used to evaluate the performarste/co
benefits when DejaVu is used.

We evaluate the DejaVu framework by running widely-used 41 case Study 1: Scaling Out

benchmarks on Amazon’s EC2 cloud platform. We ran all our

experiments within an EC2 cluster of 20 virtual machinesti{bo
clients and servers were running on EC2). To demonstrat@\VDéy
ability to scale out, we vary the number of active instancesf2 to
10 as the workload intensity changes, but resort only to E@2je
instance type. In contrast, we demonstrate its ability &desap by
varying the instance type from large to extra-large, whiéegping
the number of active instances constant.

Our first set of experiments demonstrates DejaVu’s abiitgtiuce
the service provisioning cost by dynamically adjusting tiaenber
of running instances (scale out) as the workload intensityes
according to our live traces. We show DejaVu’s benefits widis-C
sandra’s update-heavy workload which has 95% of write retgue
and only 5% of read requests.

Figure 6(b) plots how DejaVu varies the number of activeserv

To focus on DejaVu rather than on the idiosyncrasies of EC2, instances as the workload intensity changes accordingetts-

our scale out experiments assume that the VM instances tidaela

senger traces. The initial tuning produces 4 different ‘ozt

to a service have been pre-created and stopped. In our sgale u ¢lasses and ultimately 4 preferred resource allocaticatsatie ob-

experiments, we also pre-create VM instances of both tylpege(
and extra large). Pre-created VMs are ready for instantexaept
for a short warm-up time. In all cases, state managemensscro
VM instances, if needed, is the responsibility of the serviself,
not DejaVu.

Internet services.We evaluate DejaVu for two representative types
of Internet services: (1) a classic multi-tier web site wath SQL

tained using the Tuner. DejaVu collects the workload sigreaev-
ery hour (dictated by the granularity of the available te3cand
classifies the workload to promptly re-use the preferredues
allocation. While the savings compared to the fixed maximim a
location are promising, about 55% over the 6-day period, @exin
to ensure that the desired performance level is maintained.

Figure 6(c) shows the response latency in this case. The SLO
latency is set to 60 ms. Although this is masked by the monitor

database back-end (SPECweb2009), and (2) a NoSQL database iing granularity, we note that Cassandra takes a long timeato s

the form of a key-value storage layer (Cassandra).

bilize (e.g., tens of minutes) after DejaVu adjusts the neindf

SPECweb2009 [32] is a benchmark designed to measure therunning instances. This delay is due to Cassandra’s réipaing;

performance of a web server serving both static and dynaarmie ¢
tent. Further, this benchmark allows us to run 3 workloads: e
commerce, banking, and support. While the first two nameakspe
for themselves, the last workload tests the performanc \ekile
downloading large files.

Cassandra [1] differs significantly from SPECweb2009. & is
distributed storage facility for maintaining large amauof data
spread out across many servers, while providing highlylalves
service without a single point of failure. Cassandra is ubgd
many real Internet services, such as Facebook and Twittereas
the clients to stress-test it are part of the Yahoo! Cloud/iSer
Benchmark [11].

In Section 4.4, we also profile RUBIS [6], a three-tier e-
commerce application (given its similarity to SPECweb20086
do not demonstrate the rest of DejaVu’'s features on thistbenc
mark). RUBIS consists of a front-end Apache web server, acBdm

a well-known problem that is the subject of ongoing optirticza
efforts [11]. Apart from Cassandra’s internal issues, Majkeeps

the latency below 60 ms, except for short periods when the la-
tency is fairly high — about 100 ms. These latency peaks €orre
spond to DejaVu’s adaptation time, around 10 seconds, wikich
needed by the profiler to collect the workload signature aplay

a new preferred resource allocation. Note that this is 18efadhan

the reported figures of about 3 minutes for adaptation to leatk
changes by state-of-the-art experimental tuning [42].

We now conduct a similar set of experiments, but drive the
workload intensities using the HotMail trace. Figures 7&oyd
7(c) visualize the cost (in number of active instances) aehicy
over time, respectively. While the overall savings comgate
the maximum allocation are again similar (60% over the 6-day
period), there are few points to note. First, the initial fiireg
identified 3 workload classes for the HotMail traces, indte&

100

<
= 80
e}
IS
2 60
°©
[0}
N 40
g | | . | |
z : : : : : :
0 I I I I I I
09/07 09/08 09/09 09/10 09/11 09/12 09/13
Date (in 2009)
(a) Windows Live Messenger load trace.
10 ;
DejaVu
8 r _ Autopilot ———----
g OF
3 :
O 4 L
2t ‘ :
-t :
0 Learning Reuse ; ; ;

o

9/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

Date (in 2009)
(b) Number of virtual instances used to accommodate the load

120 : : : : : :
60 ‘ ‘ ‘ : :

0 Learning Reuse - ; ; ;
09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14
Date (in 2009)

(c) Service latency as DejaVu adapts to workload change®.S60 ms.

Latency [ms]

100

80
60
40

Normalized load [%]

0 i i i i i i
09/07 09/08 09/09 09/10 09/11 09/12 09/1309/14
Date (in 2009)
(a) HotMail load trace.

10

Cost
o N M OO

[Learning Reusé
09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

Date (in 2009)
(b) Number of virtual instances used to accommodate the load

120 ‘ ‘ ‘ 3 3 3
) s s i ‘ ‘ s
E 80 [
> SEEOR REREVURO FURPROS) UV IR FUVRUIN [
R S ey |
B 40 poif
-

20 frpy

Learning Reuse ; ; ;

0
09/07 09/08 09/09 09/10 09/11 09/12 09/1309/14

Date (in 2009)
(c) Service latency as DejaVu adapts to workload change®.S60 ms.

Figure 6. Scaling out Cassandra with the Messenger trace.

4 for the Messenger traces. Second, during the 4th day, DejaV
could not classify one workload with the desired confiderseit
differs significantly from the previously defined workloadgsses.
The reason is that the initial profiling had not encounterechs

a workload in the first day of the traces. To avoid performance
penalties, DejaVu decided to use the full capacity to accodate
this workload. If this scenario were to re-occur, DejaVu Vdou
resort to repeating the clustering process.

Comparison with existing approaches.Next, we compare De-
jaVu's behavior with that of two existing approaches. Fegur
6(b) depicts the resource allocation decisions taken byopiut
lot. Specifically, Autopilot simply repeats the hourly resce al-
locations learned during the first day of the trace. The Ailaop
approach leads to suboptimal resource allocations and e a
ciated provisioning cost increases. Due to poor allocatidxu-
topilot violates the SLO at least 28% of the time, in both ésac
These measurements illustrate the difficulty of using paskiwad
information blindly.

Figure 7. Scaling out Cassandra with the Hotmail trace.

We further compare DejaVu with an existing autoscaling-plat
form called RightScale [24]. Because we are not RightScate ¢
tomers, we reproduced their approach based on publiclyaiai
information. The RightScale algorithm reacts to worklohdrges
by running an agreement protocol among the virtual instaniée
the majority of VMs report utilization that is higher tharetpre-
defined threshold, the scale-up action is taken by incrgatia
number of instances (by two at a time, by default). In contrids
the instances agree that the overall utilization is belosvgpeci-
fied threshold, the scaling down is performed (decreasetthwar
of instances by one, by default). To ensure that the congaits
fair, we run the Cassandra benchmark which is CPU and memory
intensive, as assumed by the RightScale default configur§2b].

Figure 8 shows the average adaptation time for DejaVu and
RightScale (assuming its default configuration) for theMt and
Messenger traces. In case of RightScale, we experimenBy(itte
minimum used in [25]) and 15 minutes (the recommended value)
for the “resize calm time” parameter — the minimum time betwe
successive RightScale adjustments. DejaVu’s reactiaaisrabout

10000

— 1000
S
5]
2,
v 100
E I
l_
10
1

DejaVu RightScale DejaVu RightScale
Messenger traces HotMalil traces

Figure 8. DejaVu and RightScale decision times (error bars show
the standard error). RightScale decision times are showithé®
“resize calm time” of 3 and 15 minutes in the middle and on the
right for each trace, respectively.

10 seconds in the case of a “cache hit". Note that this timevaan
depending on the length of the workload signature (e.g.rgeta
number of HPCs may take longer to collect). When a singleeesi
operation is sufficient for RightScale, we record an ingtaabus
adaptation time (zero seconds). However, multiple resjzera
tions are often needed. As a result, RightScale’s adaptétite is
between one and two of orders of magnitude longer than D&aVu
(note the log scale on the Y axis). This is because DejaVu gan a
tomatically jump to the right configuration, rather thandyrally
increase or decrease the number of instances as RightSzzde d
Note that the resize calm time is different in nature from \thé
boot up time and cannot be eliminated for RightScale; RighleS
has to first observe the reconfigured service before it candak
other resizing action.

4.2 Case Study 2: Scaling Up

We next evaluate DejaVu’s ability to reduce the service igion-
ing cost while varying the instance type (scaling up) frongéa
to extra-large or vice versa, as dictated by the workloagnisity.
Toward this end, we monitor the SPECweb service with 5 virtua
instances serving at the front-end, and the same numbeeiorf &t
the back-end layer. We use the support benchmark which ifymos
1/O-intensive and read-only to contrast with the Cassaedzer-
iments which are CPU-, memory-, and write-intensive. Samib
the previous experiments, DejaVu uses the first day for thialin
profiling/clustering, while the remaining days are usedvialate
its benefits.

Figures 9(a) plots the provisioning cost, shown as the rtsta
type used to accommodate the HotMail load over time. Note tha
the smaller instance was capable of accommodating the laatl m
of the time. Only during the peak load (two hours per day in
the worst case), DejaVu deploys the full capacity configanato
fulfill the SLO. In monetary terms, DejaVu produces savings o
roughly 45%, relative to the scheme that has to overpraviatall
times with the peak load in mind. Figure 9(b) demonstratastttie
savings come with a negligible effect on the performancelfethe
quality of service (QoS, measured as the data transfer ghpout)
is always above the target that is specified by the SPECw&b200
standard. The standard requires that at least 95% of theldads
meet a minimum 0.99Mbps rate in the support benchmark fona ru
to be considered compliant.

We perform a similar set of experiments with the Messenger
trace. In this case, Figures 10(a) and 10(b) show the pomiigj
cost and performance levels, respectively. The savingsisncase
are about 35% over the 6-day period. Excluding a few secditels a

Cost

L]

Learning Reusé i i i

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

Date (in 2009)
(a) Virtual instance types used to accommodate the load.

100

95

90

QoS [%]

85

Learning Reusé
09/07 09/08 09/09 09/10 09/11 09/12 09/1309/14

Date (in 2009)
(b) Service latency as DejaVu adapts to workload changeS. €@56%.

80

Figure 9. Scaling up SPECweb with the Hotmail trace.

each workload change spent on profiling, QoS is as desiredgab
95%.

4.3 Case Study 3: Addressing Interference

Our next experiments demonstrate how DejaVu detects and mit
igates the effects of interference. We mimic the existenica o
co-located tenant for each virtual instance by injecting i@ach
VM a microbenchmark which occupies a varying amount (either
10% or 20%) of the VM’s CPU and memory over time. The mi-
crobenchmark iterates over its working set and performgiphidl
cation while enforcing the set limit. These amounts of if@ence
mimic the amount of performance degradation reported irlaim
settings [44].

Figure 11(a) contrasts DejaVu with an alternative in whitsh i
interference detection is disabled. Without interferedegection,
one can see that the service exhibits unacceptable pericema
most of the time. Recall that the SLO is 60 ms. In contrastaie]
relies on its online feedback to quickly estimate the impaifct
interference and lookup the resource allocation that spoeds
to the interference condition such that the SLO is met airaks.
Figure 11(b) shows that DejaVu indeed provisions the semnwith
more resources to compensate for interference.

4.4 Measuring DejaVu’s Overhead

DejaVu requires only one or a few machines to host the prdfilin
instances of the services that it manages. Its network eagrbor-
responds to the amount of traffic that it sends to the profiting-
ronment. This overhead is roughly equallton of the incoming
network traffic, wheren is the number of service instances, as-
suming the worst case in which the DejaVu proxy is continlous
duplicating network traffic and sending it to the DejaVu pegfi
Given that the inbound traffic (client requests) is only acfi@n

of the outbound traffic (service responses) for typical ises; the

XL |

Cost

Learnlmg ReUiSE H H ;

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

Date (in 2009)
(a) Virtual instance types used to accommodate the load.

100 7
SLO .|

[<e]
&

QoS [%]
8

[00]
ol

Learnlng Reuse
80 I 1

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

Date (in 2009)
(b) Service latency as DejaVu adapts to workload changeS.<@b6%.

120

100 [)ejaVuj interférence jdetectij n di
Py :
I o W ;
T 40 [b i
— : : : s
20 prp
0 Learning Reuse ; ; ;
09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14
Date (in 2009)
(a) Service latency as DejaVu adapts to workload changes.
10
8 -
g OF
o
O 4t
27 : :
0 Learning Reusé | ; ; i
09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

Date (in 2009)
(b) Number of virtual instances used to accommodate the load

Figure 10. Scaling up SPECweb with the Messenger trace.

network overhead is likely to be negligible. For exampleydtuld
be 0.1% of the overall network traffic for a service that use@ 1
instances, assuming a 1:10 inbound/outbound traffic rat is
typically used for home broadband connections.

We now turn our attention to a more important question: To
what extent does the DejaVu proxy affect the performancéef t
system in production, as it duplicates the traffic of a sirsglevice
instance? To answer this question, we run a set of experameétit
the RUBIS benchmark, while profiling its database servdaims.
We compare the service latency under a setup where the pgofili
is disabled against a setup with continuous profiling. Tar@sge
different workload volumes, we vary the number of clientst ire
generating the requests from 100 to 500. Our measurememis sh
that the presence of our proxy degrades response time by abou
ms on average.

4.5 Summary

To summarize, our evaluation shows that DejaVu maps maltipl
workload levels to a few relevant clusters. It uses thisrimfation
at runtime to quickly adapt to workload changes. The adeptat

is short (about 10 seconds) and more than 10 times faster than

the state-of-the-art. Having such quick adaptation tinfliesgvely
enables online matching of resources to the offered loadiisyit
of cost savings.

Figure 11. Scaling out Cassandra with the Messenger trace under
interference. The amount of interference varies, and igsgther
10% or 20%.

DejaVu successfully manages interference by recognizieg t
existence of interference and pragmatically using moreuees
to compensate for it.

The DejaVu-achieved savings translate to more than $260,00
and $2.5 Million per year for 100 and 1,000 instances, resmy
(assuming $0.34/hour for a large instance on EC2 and $&68/h
for extra large as of July 2011). We draw these service sizes f
the available data: the Reddit aggregation web site reglgrte
uses about one hundred EC2 instances (218 virtual CPUs) [23]
whereas the Animoto video creation site uses a few thous@#l E
instances [26].

In terms of overheads, we argue that the network traffic iaduc
by DejaVu is negligible, while our final experiments demoatst
that DejaVu’s impact on the performance of the system in peced
tion is also practically negligible.

5. Related Work

There has been a large body of recent work on various aspects o
data center resource management.

Automated resource management in virtualized data centers
Industrial efforts such as Rightscale [24] use a load-b#sedhold

We demonstrate provisioning cost savings of 35-60% (com- g gutomatically trigger creation of a previously configlireimber

pared to a fixed, maximum allocation) using realistic tram@stwo

disparate and representative Internet services: a keygabre and
a 3-tier web service. The savings are higher (50-60% vs.585)4
when scaling out (varying the number of machines) vs. sgalim

(varying the performance of machines) because of the firsengr
larity of possible resource allocations. The scaling ug ¢l only
two choices of instances (large and extra-large) with a finedber

of instances vs. 1-10 identical instances when scaling out.

of new virtual instances in a matter of minutes. This appnoac
uses an additive-increase controller, and as such may daketod
converge.

Applying modeling and machine learning to resource manage-
ment in data centers.Urgaonkaret al.[37] propose a closed queu-
ing network model along with Mean Value Analysis (MVA) algo-
rithm for multi-tier applications. Watsoet al. [40] follow a simi-

lar approach, and develop queuing-based performance mfmiel
enterprise applications, but with emphasis on the virzealienvi-
ronment. Another example of explicitly using models to erdea
coordinated provisioning of various computer resources pra-
sented in [12]. Stewast al.[33] significantly enhance the accuracy
of models by explicitly modeling a non-stationary trangatmix;
their main point is that the workload type (as in a differemtet of
incoming requests to a service) is equally important as tbekw
load volume itself. In general, these efforts work well floe tvork-
loads used during parameter calibration, but may requien(ral)
adjustment when the workload changes. Further, achievigtyeh
accuracy requires highly skilled labor, along with a deeparn
standing of the application.

Running actual experiments instead of using modelsZhenget
al. [42] advocated running actual experiments for resourceagen
ment in a virtualized environment. Relative to this work j@&i
quickly characterizes the workloads at runtime to avoiduraing
experiments. In doing so, it dramatically reduces the arhofin
time the service is running with suboptimal parameters.

Performance counters and workload characterization. Re-
cently, HPCs have been extensively used to characterizatiast
within the entire system for various purposes. For instakiezkel

et al. [17] leverage HPCs to predict task energy consumptions.
Using these predictions, a scheduler can get the maximufarper
mance out of a multiprocessor system, and still avoid o\atihg

of system components. Sweergtyal.[34] demonstrate that HPCs
are also useful in understanding the behavior of Java atjaits.
Namely, their tool is effective in identifying performanaaoma-
lies and can help in pinpointing their cause. Finally, Séeal. [29]
argue that the HPCs might be used for on-the-fly predictichet
request granularity, thus enabling online system adajptat\l-
though related, our work is fundamentally different as weam-

ing at workload classification, rather than fine-granwarécogni-
tion. For instance, our monitoring module could providedfasck
such as “workload volume is medium, and the requests ardymost
read requests”.

Even earlier, sample-based profiling was used to identffgrdi
ent activities running within the system (e.g., Magpie [BH&in-
point [9]). For instance, Magpie uses clustering to clyssfjuests
and produce a workload model. Although such tools can bailisef
for post-execution decisions, they do not provide onlirentdica-
tion and the ability to react during execution. This abilgycrucial
for our framework to quickly adapt to workload changes.

Automatic benchmarking. Developers devote considerable time
to benchmarking to obtain insight into the performancegrifayer
interactions, and most important for our work, workload refca
terization. There have been a few works that automate thiwila
ous task [30, 43]. Although this is orthogonal to our apphoawir
framework would greatly benefit from the existence of a tbaltt
determines the most representative workloads to benchmark

Automatic VM configuration and performance crisis detectian.
Sororet al.[31] address the problem of automatically configuring
a database management system (DBMS) by adjusting the cenfigu
rations of the VM in which they run. They use information abou
the anticipated workload and then compute the workloadifipe
configuration. However, their framework assumes help from t
DBMS which describes a workload in the form of a set of SQL
statements. In contrast, DejaVu does not require any irdton
from the guest OS (VM), and very little information from thp-a
plication running inside it.

Bodik et al. [5] propose a methodology for automatic classi-
fication and identification of performance crises, and intipas

lar for detecting whether a given crisis has been seen hefore
that a known solution may be immediately applied. As opposed
to DejaVu, the focus of the work is mostly on (1) identifyingrp
formance anomalies due to bugs or unexpected behaviorg2and
speeding up the stabilization. In contrast, DejaVu acesdsrthe
management of virtualized resource allocations under lvack
changes.

Cost-aware elasticity.Sharmaet al.[27] propose Kingfisher, a sys-
tem that tries to minimize the cloud tenant’s deployment,agkile
being elastic to workload changes. Kingfisher takes intmat
the cost of each VM instance, the possibilities of scalingand
scaling out, as well as the transition time from one confitjonao
another. It then solves an integer linear program to dehieatin-
imum cost configuration under each workload change. Kingfish
and DejaVu are orthogonal and can benefit from one anotheg-Ki
fisher assumes a perfect workload predictor, and it woulcfiten
from storing its resource allocation decisions in the Dejadche
(and avoid re-running the ILP solver every time a workloadraye
dictates a configuration change). DejaVu could simply usegKi
fisher as its Tuner.

6. Conclusion

The problem of resource allocation is challenging in theid|aas
the co-located workloads constantly evolve. The resuhas sys-
tem administrators find it difficult to properly manage theaerces
allocated to the different virtual machines, leading tocpitmal
service performance or wasted resources for significamgeof
the time.

In this paper we described the design and implementatioreef D
javu, a framework that quickly and automatically reacts trkw
load changes by learning the preferred virtual resouraeations
from past experience. DejaVu also detects performancefente
ence across virtual machines and adjusts the resourcatitiodo
counter it.

Though this work provides a solid foundation, there are iplelit
challenging directions that we want to pursue in the futéer.
example, we demonstrated that an application can significan
benefit from its own resource allocation experience. Howeve
believe that it can benefit from the experience of other ctendnts
as well, and we plan to further explore this potential.

Acknowledgments

This research is funded by the Swiss NSF (grant FNS 200021-
130265). Dejan Novakotiis also supported by the Swiss NSF
(grant FNS 200021-125140). We thank the anonymous review-
ers for their valuable feedback. We are grateful to Eno Tdiexe
Austin Donnelly, and Dushyanth Narayanan for providing ithw
their HotMail and Messenger traces.

References

[1] Apache Foundation. The Apache Cassandra Projdat.t p: //
cassandra. apache. org/ .

[2] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reseraemech-
anism for resource management in cluster-based netwovkrserin
SIGMETRICS$2000.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Usinagpie for
request extraction and workload modelling. DI, 2004.

[4] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Rason.
Characterizing, modeling, and generating workload spigestateful
services. IrSymposium on Cloud Computjrizp10.

[5] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Amslen.
Fingerprinting the datacenter: automated classificatignedormance
crises. InEuroSys2010.

[6] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Perfoomaand
scalability of ejb applicationsSIGPLAN Not.2002.

[7] E. Cecchet, R. Singh, U. Sharma, and P. Shenoy. Dolljuafization-
driven database provisioning for the cloud MEE, 2011.

[8] J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vahélainag-
ing energy and server resources in hosting centerSOSPR 2001.

[9] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Breweinpoint:
Problem determination in large, dynamic internet servicesDSN
2002.

[10] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, ldnGau-
tam. Managing server energy and operational costs in lgpsénters.
In SIGMETRICS2005.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnamt BR. Sears.
Benchmarking cloud serving systems with YCSB.SoCC 2010.

[12] R. P.Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahkladel-
based resource provisioning in a web service utilityUBITS 2003.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemaand |. H.
Witten. The weka data mining software: an upde&&GKDD Explor.
Newsl, 11:10-18, November 2009.

[14] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jalarid,R. Bian-
chini. Mercury and freon: temperature emulation and mamesg for
server systems. IASPLO$2006.

[15] G. Linden. Make Data Useful. https://sites. googl e.
coni si te/ glinden/ Horme/ St anf or dDat aM ni ng.
2006- 11- 28. ppt .

[16] W. Mathur and J. Cook. Improved estimation for softwareltiplex-
ing of performance counters. MASCOT$2005.

[17] A. Merkel and F. Bellosa. Balancing power consumptiomiultipro-
cessor systems. BuroSys2006.

[18] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: maging
performance interference effects for gos-aware cloudsEurmSys
2010.

[19] Netffilter. neffilter/iptableshtt p: // www. netfilter.org/.

[20] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini, R. Martin,
and T. D. Nguyen. Understanding and validating databastersys
administration. INUSENIX 2006.

[21] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. SirlghaMer-
chant, and K. Salem. Adaptive control of virtualized resesrin util-
ity computing environments. |1BuroSys2007.

[22] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heatbal balancing
and unbalancing for power and performance. Phoceedings of the
Workshop on Compilers and Operating Systems for Low PQ@&r1.

[23] Reddit. http://ww. reddit.conr/| AmA/ comment s/
a2ztel/i_run_reddits_servers_and_do_a_bunch_of _

ot her/.
[24] RightScale.htt p: // ww. ri ght scal e. con .
[25] RightScale. http://support.rightscal e.cont

12- Gui des/ Li f ecycl e_Managenent/ 03_- _
Under st andi ng_Key_Concept s/ Ri ght Scal e_

Al ert_System Al erts_based_on_Voting_Tags/
Under st andi ng_t he_Vot i ng_Process.

[26] RightScale. Animoto’s facebook scale-up. http:
/1bl og.rightscal e. com 2008/ 04/ 23/
ani not o- f acebook- scal e- up/ .

[27] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A costeaelasticity
provisioning system for the cloud. Distributed Computing Systems
(ICDCS), 2011 31st International Conference, rages 559 —570,
june 2011.

[28] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated reseuman-
agement for cluster-based internet servic®&OPS Oper. Syst. Rev.
2002.

[29] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and&Kang.
Hardware counter driven on-the-fly request signature&SPLOS
2008.

[30] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, anBaBu.
Cutting corners: workbench automation for server benckimgr In
USENIX 2008.

[31] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Ksidlis,
and S. Kamath. Automatic virtual machine configuration fatatbase
workloads. InSIGMOD, 2008.

[32] SPECweb200%ht t p: / / ww. spec. or g/ web2009/ .

[33] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstatarity for
performance prediction. IBEuroSys2007.

[34] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwa
D. Grove, and M. Hind. Using hardware performance monitors t
understand the behavior of java applicationsVM, 2004.

[35] E. Thereska, A. Donnelly, and D. Narayanan. Sierractizal power-
proportionality for data center storage. BaroSys2011.

[36] R. Thonangi, V. Thummala, and S. Babu. Finding good cpméitions
in high-dimensional spaces: Doing more with lessPmceedings of
the International Symposium on Modeling, Analysis, andugition
of Computer and Telecomunication SysteR@98.

[37] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, anda@ntawi. An
analytical model for multi-tier internet services and igpbcations. In
SIGMETRICS2005.

[38] B. Urgaonkar, P. J. Shenoy, and T. Roscoe. Resourcéaoking and
application profiling in shared hosting platforms.@$D|, 2002.

[39] N. Vasic, M. Barisits, V. Salzgeber, and D. Kasti Making Cluster
Applications Energy-Aware. IACDC, 2009.

[40] B.J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Arlitt, addWang.
Probabilistic performance modeling of virtualized resmuallocation.
In ICAC, 2010.

[41] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif.dRKpox and
gray-box strategies for virtual machine migration.N8D|, 2007.

[42] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Saitod,Y. Turner.
Justrunit: Experiment-based management of virtualized danters.
In USENIX 2009.

[43] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic cgnfiation
of internet services. IEuroSys2007.

[44] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addmgshared re-

source contention in multicore processors via schedulmgSPLOS
2010.

