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Introduction

I Sawtooth oscillation are marked by sudden, periodic
relaxations of the plasma core profiles

I Reconnecting internal kink mode with q = m/n = 1/1 helicity
I Heat, current, momentum, fast particles are redistributed

during reconnection event taking place in 100µs timescale
I Long, quiescent ramp takes place between crashes

I Important for reactor operation, yet not fully understood
I The experiments show somewhat perplexing behavior

I ”Mini-crashes”, snakes, helical states, partial magnetic
reconnection...
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Objectives

I We aim to :

I Improve the understanding of the cyclic behavior of sawteeth
using three dimensional, fully non-linear fluid simulations

I Characterize the steady-state (τη timescale) cyclic regimes of
the internal kink respect to τη, ω∗ to find diamagnetic
thresholds for sawtoothing

I We will attempt to respect some of the experimental
timescales set by plasma heat and current sources
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Why use computer simulations ?

I The analytical theory predicts a multitude of asymptotic limits
I Different regimes depending on pressure, shaping, resistivity,

viscosity, heat transport, diamagnetic flows, kinetic effects...
I Instabilities evolve in different timescales and can drive

magnetic reconnection at different rates
I Linear thresholds could predict the crash onset... Which

branch ?

I Describing a sawtooth cycle (ramp, precursor, crash, ramp)
requires switching between different instabilities and dynamic
timescales at arbitrary mode amplitude

I This behavior is only tractable with numerical simulations !
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Model equations
Equilibrium
Simulation setup
Timescales

The simulations are carried out using the XTOR-2F code
The system evolved is a subset of the Braginskii two-fluid equations

∂tρ = −ρ∇ · v − v · ∇ρ− α∇pi · ∇ × B/B2 +

∇ · D⊥∇ (ρ− ρt=0) , (1)

ρ∂tv = −ρ (v + v∗i ) · ∇v + J× B−∇p + ν∇2v, (2)

∂tp = Γp∇ · v − v · ∇p − αΓ
p

ρ
∇pi · ∇ × B/B2 + (3)

∇ · χ⊥∇⊥ (p − pt=0) +∇ · χ‖∇‖p
∂tB = ∇× (v × B) + α∇×∇‖pe/ρ−∇× ηJ (4)

vi = vE×B + v‖i + v∗i , J = ene(vi − ve),

α = (ωciτa)−1 =
c

aωpi
, v∗ ∝ α

Terms in red are corrections due to ω∗ effects
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Model equations
Equilibrium
Simulation setup
Timescales

Plasma equilibrium
I Equilibrium computed using CHEASE code
I Circular equilibrium, A = ε−1 = 2.7, βp = 0.22, ∂rβp ≈ 0

I Parabolic q profile, q0 = 0.77, qa = 5.2, (ψ/ψs)
1/2
(q=1) ≈ 0.4

I Warning : Initial equilibrium never recovered after first crash
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Model equations
Equilibrium
Simulation setup
Timescales

Simulation setup

I Simulations must be advanced until the cycle period and
amplitude stabilizes or until cycles stop

I Retained toroidal harmonics have n = 0, 1, 2, 3, with
n − 4 ≤ m ≤ n + 7 for n = 1, 2, 3
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Model equations
Equilibrium
Simulation setup
Timescales

Internal kink timescales

I The internal kink cycles are affected by the interplay
between :

I S = τη = 1/η = 106 − 107 (resistive time)
I τη = 30τχ⊥ , χ‖/χ⊥ ≈ 107 (energy diffusion times)
I ω∗’s introduce additional timescale through growth rate of

internal kink (γη ∼ S−1/3 − α), we consider α = 0-0.2

I Pressure dynamics follows magnetic field lines
I Parallel temperature perturbations are strongly damped
∇‖T ≈ 0, so ω∗i ≈ 9ω∗e
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Cyclic regimes in S − ω∗ phase space

Cyclic regimes

Distribution of cyclic regimes in S − ω∗ parameter space :

We now describe briefly each regime...
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Cyclic regimes in S − ω∗ phase space

m/n = 1/1 helical states
I First regime : Equilibrium due to low-shear saturated kink

(axisymmetric boundary and m/n = 1/1 helical core)
[Internal kink : Waelbrock, Phys.Fluids 31, 1217 (1988)]
[Equilibrium state : Cooper, NF 51 072002 (2011)]
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Cyclic regimes in S − ω∗ phase space

Resistive kink cycles (Kadomtsev’s sawteeth)
I Diamagnetic stabilization allows access to cycling regime
I They are characterized by slow, collisional crashes

(τcrash ∼ S−1/2) [Baty et al., Phys.Fluids B 5, 1213 (1993)]
I The ramp is never quiescent, large m/n = 1/1 island present
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Cyclic regimes in S − ω∗ phase space

Sawtooth cycles

I Cycles have quiescent ramps, precursor and postcursor modes

I Fast, collisionless crashes (weak scaling of τcrash vs S)

I Sometimes a ”mini-crash” is observed
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Cyclic regimes in S − ω∗ phase space

Magnetic field cross sections
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Thresholds for cyclic regimes
Timescales of kink cycles
At the crash onset

Diamagnetic thresholds for internal kink cyclic regimes
Critical diamagnetic stabilization thresholds have the form

αcrit,1 = α1S
−0.34

αcrit,2 = α2S
−0.60
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Diamagnetic thresholds for internal kink cyclic regimes

Critical diamagnetic stabilization thresholds have the form

αcrit,1 = α1S
−0.34

αcrit,2 = α2S
−0.60

I Transition at αcrit,1 : Stabilization of resistive branch of
internal kink with γ ∼ S−1/3 − α

I Transition at αcrit,2 : Stabilization of deep-ideal-MHD-stable
branch of internal kink with γ ∼ S−3/5 − α (tearing like)
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Thresholds for cyclic regimes
Timescales of kink cycles
At the crash onset

Diamagnetic thresholds for internal kink cyclic regimes
Instability regimes appear to inhabit different regions of stability
diagram during the ramp :

I Kink cycles have λH/γη ∼ −1, move toward λH = 0
I Sawteeth have more strongly negative λH/γη
I Compare to [Migliuolo, NF 33 (1993) 1721] :
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Thresholds for cyclic regimes
Timescales of kink cycles
At the crash onset

Measuring ramp, precursor, and crash times
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Thresholds for cyclic regimes
Timescales of kink cycles
At the crash onset

Ramp, precursor, crash timescales
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I τramp, τprecursor, τcrash are shown for cases with S = 107
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Thresholds for cyclic regimes
Timescales of kink cycles
At the crash onset

Role of diamagnetic stabilizations at crash onset
Well within the ”sawtooth” regime :
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Thresholds for cyclic regimes
Timescales of kink cycles
At the crash onset

Role of diamagnetic stabilizations at crash onset
Just below the diamagnetic threshold :

I The crash time is increasing, with τcrash + τprecursor ≈ τramp/2

I Rate of energy release accelerates, without any effect on the
crash time

220000 230000 240000 250000

t/τ
a

0.01

0.02

0.03

0.04

P
re

s
s
u

re

s=0

s=0.1

s=0.2

s=0.3

s=0.4

s=0.5

s=0.6

s=0.7

s=0.8

s=0.9

s=1

0.000

0.015

0.030

K
in

et
ic

 e
ne

rg
y

n=0
n=1
n=2
n=3

242500 247500
t/τa

0.01

0.02

0.03

0.04

P
re

ss
ur

e

220000 230000 240000 250000
t/τa

0.000

0.015

0.030

K
in

et
ic

 E
ne

rg
y

p0

F.D. Halpern, H.Lütjens, J.-F. Luciani 21 / 23 Cycling dynamics of the internal kink mode



Introduction
Simulation model and setup

Internal kink mode cyclic regimes
Diamagnetic thresholds

Discussion

Interpretation
Summary

Interpretation of results

I Regime transitions can be described as a competition between
relaxation timescales of pressure, current, reconnection drive,
and ω∗ stabilization

I Ramp : Quiescence is determined by ω∗ stabilization of
m/n = 1/1 mode with γ ∼ S−3/5 (similar to resistive tearing)

I Precursor stage : Competition between resistive tearing
instability and ω∗. If resistive instability is strongly stabilized,
fast crash takes place

I Postcursor stage : Pressure must increase fast enough to
overcome reconnection drive, slow enough not to destabilize
pressure driven flat q mode

I Access to sawtoothing regime requires that all three
conditions are fulfilled
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Summary

I XTOR-2F simulations reveal a pattern of 3 cyclic regimes
I (Non-cyclic) equilibria with m/n = 1/1 helicity component
I Resistive kink cycles (Kadomtsev’s sawteeth)
I Sawtooth cycles

I Established η scaling of critical diamagnetic stabilization :
I αcrit,1 = α1S

−1/3

I αcrit,2 = α2S
−3/5

I In a two-fluid model with realistic S and ω∗, sawtooth cycles
should have a quiescent ramp and a crash in the 100µs scale
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