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Introduction

» Sawtooth oscillation are marked by sudden, periodic
relaxations of the plasma core profiles

» Reconnecting internal kink mode with g = m/n = 1/1 helicity

» Heat, current, momentum, fast particles are redistributed
during reconnection event taking place in 100us timescale

» Long, quiescent ramp takes place between crashes
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Introduction

» Sawtooth oscillation are marked by sudden, periodic
relaxations of the plasma core profiles
» Reconnecting internal kink mode with g = m/n = 1/1 helicity
» Heat, current, momentum, fast particles are redistributed
during reconnection event taking place in 100us timescale
» Long, quiescent ramp takes place between crashes

» Important for reactor operation, yet not fully understood
» The experiments show somewhat perplexing behavior

» "Mini-crashes”, snakes, helical states, partial magnetic
reconnection...
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» We aim to :

» Improve the understanding of the cyclic behavior of sawteeth
using three dimensional, fully non-linear fluid simulations

F.D. Halpern, H.Liitjens, J.-F. Luciani 3/23 Cycling dynamics of the internal kink mode



Introduction

ECOLE
POLYTECHNIQUE
Pari<Tech

Objectives

» We aim to :
» Improve the understanding of the cyclic behavior of sawteeth
using three dimensional, fully non-linear fluid simulations
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Objectives

» We aim to :
» Improve the understanding of the cyclic behavior of sawteeth
using three dimensional, fully non-linear fluid simulations
» Characterize the steady-state (7, timescale) cyclic regimes of
the internal kink respect to 7, w, to find diamagnetic
thresholds for sawtoothing

» We will attempt to respect some of the experimental
timescales set by plasma heat and current sources
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Why use computer simulations ?

» The analytical theory predicts a multitude of asymptotic limits

» Different regimes depending on pressure, shaping, resistivity,
viscosity, heat transport, diamagnetic flows, kinetic effects...
> Instabilities evolve in different timescales and can drive
magnetic reconnection at different rates
> Linear thresholds could predict the crash onset... Which
branch ?
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Why use computer simulations ?

» The analytical theory predicts a multitude of asymptotic limits
» Different regimes depending on pressure, shaping, resistivity,
viscosity, heat transport, diamagnetic flows, kinetic effects...
> Instabilities evolve in different timescales and can drive
magnetic reconnection at different rates
> Linear thresholds could predict the crash onset... Which
branch ?
» Describing a sawtooth cycle (ramp, precursor, crash, ramp)
requires switching between different instabilities and dynamic
timescales at arbitrary mode amplitude
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Why use computer simulations ?

» The analytical theory predicts a multitude of asymptotic limits
» Different regimes depending on pressure, shaping, resistivity,
viscosity, heat transport, diamagnetic flows, kinetic effects...
> Instabilities evolve in different timescales and can drive
magnetic reconnection at different rates
> Linear thresholds could predict the crash onset... Which
branch ?
» Describing a sawtooth cycle (ramp, precursor, crash, ramp)
requires switching between different instabilities and dynamic
timescales at arbitrary mode amplitude

> This behavior is only tractable with numerical simulations !
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Internal kink mode cyclic regimes
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Simulation model and setup

Internal kink mode cyclic regimes
Cyclic regimes in S — w, phase space

Diamagnetic thresholds
Thresholds for cyclic regimes

Discussion
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The simulations are carried out using the XTOR-2F code
The system evolved is a subset of the Braginskii two-fluid equations

op = —pV-v—v-Vp—aVp; -V xB/B*>+
VD1V (p— pt=o) (1)
pov = —p(v4v,)-Vv+JxB—Vp+ vV, (2)

Op = rpv-v—v-vp—argvp,--vXB/B2+ (3)

V-x1Vi(p—pt=0) +V x| V|p

0B = Vx(vxB)+aV xVp/p—V xnd (4)
Vi = VExB + V| + Vi, J = ene(vi — ve),
a = (wC;Ta)fl = L,v* X o
pi

Terms in red are corrections due to w, effects
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Plasma equilibrium

» Equilibrium computed using CHEASE code
» Circular equilibrium, A= ¢ =27, 8, =0.22, 9,3, ~ 0
» Parabolic g profile, go = 0.77, g, = 5.2, (@b/@bs)zil) ~ 0.4
» Warning : Initial equilibrium never recovered after first crash
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Simulation setup

» Simulations must be advanced until the cycle period and
amplitude stabilizes or until cycles stop

» Retained toroidal harmonics have n = 0,1, 2,3, with
n—4<m<n+7forn=1,2,3
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Internal kink timescales

» The internal kink cycles are affected by the interplay
between :
» S=1,=1/n=10°— 107 (resistive time)
» 7, =307y, X||/xL ~ 107 (energy diffusion times)
» w,'s introduce additional timescale through growth rate of
internal kink (7, ~ S™Y/3 — @), we consider a = 0-0.2

F.D. Halpern, H.Liitjens, J.-F. Luciani 9/23 Cycling dynamics of the internal kink mode



Model equations
Equilibrium
Simulation setup

i ECOLE
Timescales POLYTECHNIQUE
Pari<Tech

Simulation model and setup

Internal kink timescales

» The internal kink cycles are affected by the interplay
between :
» S=1,=1/n=10°— 107 (resistive time)
» 7, =307y, X||/xL ~ 107 (energy diffusion times)
» w,'s introduce additional timescale through growth rate of
internal kink (7, ~ S™Y/3 — @), we consider a = 0-0.2
> Pressure dynamics follows magnetic field lines
» Parallel temperature perturbations are strongly damped
V” T =~ 0, 50 wy; ~ wye
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Cyclic regimes

Distribution of cyclic regimes in S — w, parameter space :

T 4 Sawtooth cycling
e Kink cycling
) * Helical state
N 7
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m/n = 1/1 helical states

» First regime : Equilibrium due to low-shear saturated kink
(axisymmetric boundary and m/n = 1/1 helical core)
[Internal kink : Waelbrock, Phys.Fluids 31, 1217 (1988)]
[Equilibrium state : Cooper, NF 51 072002 (2011)]

0.04
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Resistive kink cycles (Kadomtsev's sawteeth)

» Diamagpnetic stabilization allows access to cycling regime

> They are characterized by slow, collisional crashes
(Terash ~ S~1/2) [Baty et al., Phys.Fluids B 5, 1213 (1993)]
» The ramp is never quiescent, large m/n = 1/1 island present
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Sawtooth cycles

ECOLE
POLYTECHNIQUE
Pari<Tech

» Cycles have quiescent ramps, precursor and postcursor modes

» Fast, collisionless crashes (weak scaling of Tcash Vs S)

» Sometimes a "mini-crash” is observed
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Magnetic field cross sections
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Diamagnetic thresholds for internal kink cyclic regimes
Critical diamagnetic stabilization thresholds have the form

—0.34
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Diamagnetic thresholds for internal kink cyclic regimes

Critical diamagnetic stabilization thresholds have the form

—0.34
Qait,l = 1S

~0.60
Qait2 = 25
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Diamagnetic thresholds for internal kink cyclic regimes

Critical diamagnetic stabilization thresholds have the form

—0.34
Qait,l = 1S

~0.60
Qait2 = 25

> Transition at ouit,1 : Stabilization of resistive branch of

internal kink with y ~ S71/3 —

F.D. Halpern, H.Liitjens, J.-F. Luciani 16 /23 Cycling dynamics of the internal kink mode



Diamagnetic thresholds

ECOLE
POLYTECHNIQUE
Pari<Tech

Diamagnetic thresholds for internal kink cyclic regimes

Critical diamagnetic stabilization thresholds have the form

—0.34
Qait,l = 1S

~0.60
Qait2 = 25

> Transition at ouit,1 : Stabilization of resistive branch of
internal kink with y ~ S71/3 —

» Transition at acrit,2 : Stabilization of deep-ideal-MHD-stable
branch of internal kink with v ~ S73/> — o (tearing like)
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Diamagnetic thresholds for internal kink cyclic regimes

Instability regimes appear to inhabit different regions of stability
diagram during the ramp :
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Diamagnetic thresholds for internal kink cyclic regimes
Instability regimes appear to inhabit different regions of stability
diagram during the ramp :

» Kink cycles have Ay /v, ~ —1, move toward Ay =0
» Sawteeth have more strongly negative A\yy/v,
» Compare to [Migliuolo, NF 33 (1993) 1721] :
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Measuring ramp, precursor, and crash times
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Ramp, precursor, crash timescales

Kink cycling <—=—> Sawtooth cycling

Time (t/t

Precursor

.
o

Olerit,2
0.125
0.15

o

> Tramp: Tprecursors Terash are shown for cases with S = 107
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Role of diamagnetic stabilizations at crash onset
Well within the "sawtooth” regime :

~--05dInK_/dt

V\//r
X

I 'max
Fog=tat 1:2.856x105za W

0955 256

. . . .
257 258 259 26
v,

. . .
261 262 263 264

x10°
F.D. Halpern, jens, J.-F. Luciani

Cycling dynamics of the internal kink mode



]
k(g
Diamagnetic thresholds ECOLE

POLYTECHNIQUE

Pari<Tech

Role of diamagnetic stabilizations at crash onset
Just below the diamagnetic threshold :
» The crash time is increasing, with Terash + Tprecursor & Tramp/2

» Rate of energy release accelerates, without any effect on the
crash time
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Interpretation of results

» Regime transitions can be described as a competition between
relaxation timescales of pressure, current, reconnection drive,
and w, stabilization
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Discussion

Interpretation of results

» Regime transitions can be described as a competition between
relaxation timescales of pressure, current, reconnection drive,
and w, stabilization

» Ramp : Quiescence is determined by w, stabilization of
m/n = 1/1 mode with v ~ S3/5 (similar to resistive tearing)
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Interpretation of results

» Regime transitions can be described as a competition between
relaxation timescales of pressure, current, reconnection drive,
and w, stabilization

» Ramp : Quiescence is determined by w, stabilization of
m/n = 1/1 mode with v ~ S3/5 (similar to resistive tearing)
» Precursor stage : Competition between resistive tearing
instability and w. If resistive instability is strongly stabilized,
fast crash takes place
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Interpretation of results

» Regime transitions can be described as a competition between
relaxation timescales of pressure, current, reconnection drive,
and w, stabilization

» Ramp : Quiescence is determined by w, stabilization of
m/n = 1/1 mode with v ~ S3/5 (similar to resistive tearing)

» Precursor stage : Competition between resistive tearing
instability and w. If resistive instability is strongly stabilized,
fast crash takes place

» Postcursor stage : Pressure must increase fast enough to
overcome reconnection drive, slow enough not to destabilize
pressure driven flat g mode
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Discussion

Interpretation of results

» Regime transitions can be described as a competition between
relaxation timescales of pressure, current, reconnection drive,
and w, stabilization

» Ramp : Quiescence is determined by w, stabilization of
m/n = 1/1 mode with 7 ~ S73/5 (similar to resistive tearing)

» Precursor stage : Competition between resistive tearing
instability and w. If resistive instability is strongly stabilized,
fast crash takes place

» Postcursor stage : Pressure must increase fast enough to
overcome reconnection drive, slow enough not to destabilize
pressure driven flat g mode

» Access to sawtoothing regime requires that all three
conditions are fulfilled

tjens, J.-F. Luciani Cycling dynamics of the internal kink mode



Interpretation

Summary

ECOLE
POLYTECHNIQUE

Discussion Pari<Tech

Summary

Luciani Cycling dynamics of the internal kink mode



Interpretation

Summary

ECOLE
POLYTECHNIQUE

Discussion Pari<Tech

Summary

» XTOR-2F simulations reveal a pattern of 3 cyclic regimes
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» XTOR-2F simulations reveal a pattern of 3 cyclic regimes
» (Non-cyclic) equilibria with m/n = 1/1 helicity component
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Summary

» XTOR-2F simulations reveal a pattern of 3 cyclic regimes
» (Non-cyclic) equilibria with m/n = 1/1 helicity component
» Resistive kink cycles (Kadomtsev's sawteeth)
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Summary

» XTOR-2F simulations reveal a pattern of 3 cyclic regimes
» (Non-cyclic) equilibria with m/n = 1/1 helicity component
» Resistive kink cycles (Kadomtsev's sawteeth)
» Sawtooth cycles
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Summary

» XTOR-2F simulations reveal a pattern of 3 cyclic regimes
» (Non-cyclic) equilibria with m/n = 1/1 helicity component
» Resistive kink cycles (Kadomtsev's sawteeth)
» Sawtooth cycles

» Established n scaling of critical diamagnetic stabilization :
> Qg = a STY/3
> Ot = aS73/°
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Summary

» XTOR-2F simulations reveal a pattern of 3 cyclic regimes
» (Non-cyclic) equilibria with m/n = 1/1 helicity component
» Resistive kink cycles (Kadomtsev's sawteeth)
» Sawtooth cycles

» Established n scaling of critical diamagnetic stabilization :
> Qg = a STY/3
> Ot = aS73/°
> In a two-fluid model with realistic S and w,, sawtooth cycles
should have a quiescent ramp and a crash in the 100us scale
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