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m open magnetic field lines

m low temperatures

m collisional plasma

m atomic physics
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Drift-reduced
equations

The drift-reduced Braginkii equations

collisional plasma : p

Braginskii two fluid p= B2 /210 <1
model (e-i) equations : 5
density, velocity and = ;
temperature Ot <9

Ne = N;

m separation of perpendicular and
parallel dynamics

m elimination of the fast gyromotion
from the description

m only the drift velocities are retained

Electrostatic drift reduced Braginskii equa-
tions
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Example of a

drift-reduced
equation

VExB convection
Vgde CONvection

compressibility due to curvature

V||e convection
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movie

Example of turbulence movie




Swiss Physical
Society, Joint
Annual
Meeting

RB and DW
instabilities

Main instabilities

Resistive Ballooning | Drift wave (DW)
(RB)
| drive | Vg & Vp &R | ExB & Vp
rowth rate c 2 G
& *\| RL, L,
1
parallel dy- | k| ~ — k| #0
namics gR
perpendicular| ki, < k, < kpmax kyps =1
dynamics

physical pro-
perties

destabilized by resisti-
vity (non adiabatic)

destabilized by resisti-
vity or electron inertia
(non adiabatic)
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m g = 16 (simulation
parameter)

m Ln/R ~ 0.16 (computed
parameter)

- : P
Electric potential, Resistive Ballooning q

Non-linear RB



Swiss Physical

E Non-linear simulation for the DW instability

Annual
Meeting

m g = 4 (simulation
parameter)

m Ln/R ~0.09 (computed
parameter)

q
Electric potential, Drift Wave

Non-linear
DW
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m simulation of the self-consistent SOL turbulence dynamics

m two instabilities regime : DW and RB. Good agreement
with the linear studies
m linear study, easy-to-use method to interpret the non-linear
results :
m DW : small Ln/R ratio, small g, high toroidal mode number
m RB : high Ln/R ratio, high q, small toroidal mode number
m Work in progress and envisaged :

m magnetic shear

m electromagnetic effects
m ion temperature

m divertor geometry

Conclusions
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