Simulation of tokamak SOL turbulence

SOL

Objective

Drift-reduce

Example of drift-reduced

Example of turbulence

RB and DV

 $a - L_n/R$

Non-linear R

Non-linear

Conclusions

Simulation of tokamak SOL turbulence

Annamaria Mosetto, Federico Halpern, Paolo Ricci

CRPP, EPFL, Lausanne

Scrape Off Layer (SOL)

Simulation of tokamak SOL turbulence

SOL

Objectiv

Drift-reduced

Example of a drift-reduced equation

Example of turbulence

RB and D\

 $q - L_n/F$

Non-linear R

Non-linear

Conclusio

- open magnetic field lines
- low temperatures
- collisional plasma
- atomic physics

Objectives

Swiss Physical Society, Joint Annual Meeting

Simulation of tokamak SOL turbulence

SOL

Objectives

Drift-reduced

Example of a drift-reduced equation

Example of turbulence

RB and D\ instabilities

 $q - L_n/R$

Non-linear RE

Non-lin

onclusion

Objectives:

- properties of the SOL turbulence
- instabilities and drives
- non-linear saturation mechanism

How?

- simple geometry : toroidal limiter
- global self-consistent code

Objectives

Swiss Physical Society, Joint Annual Meeting

Simulation of tokamak SOL turbulence

SOL

Objectives

Drift-reduced equations

Example of a drift-reduced equation

Example of turbulence

RB and D\ instabilities

 $q - L_n/R$

Non-linear RE

Non-li DW

onclusion

Objectives :

- properties of the SOL turbulence
- instabilities and drives
- non-linear saturation mechanism

How?

- simple geometry : toroidal limiter
- global self-consistent code

Objectives

Swiss Physical Society, Joint Annual Meeting

Simulation of tokamak SOL turbulence

SOL

Objectives

Drift-reduce equations

Example of a drift-reduced equation

Example of turbulence

RB and D\ instabilities

 $q - L_n/R$

Non-linear Rt

DW

onclusion

Objectives :

- properties of the SOL turbulence
- instabilities and drives
- non-linear saturation mechanism

How?

- simple geometry : toroidal limiter
- global self-consistent code

The drift-reduced Braginkii equations

Simulation of tokamak SOL

SOI

Objectives

Drift-reduced equations

Example of drift-reduced

Example o

RB and D

 $q - L_n/R$

Non-linear R

Non-linear

onclusions

collisional plasma : Braginskii two fluid model (e-i) equations : density, velocity and temperature

- separation of perpendicular and parallel dynamics
- elimination of the fast gyromotion from the description
- only the drift velocities are retained

Electrostatic drift reduced Braginskii equations

Continuity equation for the electrons

Simulation of tokamak SOL turbulence

SOL

Objectiv

Drift-reduce equations

Example of a drift-reduced equation

Example o turbulence movie

RB and DW

$$q - L_n/R$$

Non-linear RE

Non-linea DW

$$\frac{\partial n}{\partial t} = \frac{c}{B} \left[\Phi, n \right] + \frac{2c}{eRB} \left(\frac{\partial p_e}{\partial y} - en \frac{\partial \Phi}{\partial y} \right) - \frac{\partial \left(nV_{||e} \right)}{\partial z}$$

- VFxB convection
- *v_{de}* convection
- compressibility due to curvature
- $\mathbf{v}_{||e}$ convection

Example of turbulence movie

Simulation of tokamak SOL

SOL

Obiective:

Drift-reduced

Example of a drift-reduced

Example of turbulence movie

RB and DV

 $a - L_n/F$

Non-linear RE

Non-linea

Simulation of tokamak SOL turbulence

SOL

Objectiv

Drift-reduce equations

Example of a drift-reduced equation

Example o turbulence movie

RB and DW instabilities

 $q - L_n/R$

Non-linear R

Non-linea DW

	Resistive Ballooning (RB)	Drift wave (DW)
drive	$V_d \& \nabla p \& R$	$\mid \mathbf{E} \times \mathbf{B} \& \nabla p$
growth rate	$\sim c_s \sqrt{\frac{2}{RL_n}}$	$\sim \frac{c_s}{L_n}$
parallel dy- namics	$k_{ } \sim rac{1}{qR}$	$k_{ } \neq 0$
perpendicular dynamics	$k_{min} < k_y < k_{max}$	$k_y ho_s pprox 1$
physical pro- perties	destabilized by resistivity (non adiabatic)	destabilized by resistivity or electron inertia (non adiabatic)

$\overline{q-L_n/R}$ linear phase space

Simulation of tokamak SOL turbulence

SOL

Objectiv

Drift-reduce

Example of drift-reduce

Example o turbulence

RB and D

 $q - L_n/R$

Non-linear RF

Non-line DW

Simulation of tokamak SOL turbulence

SOI

Objectiv

Drift-reduce

Example of drift-reduce

Example o turbulence

RB and D

 $q - L_n/R$

Non-linear RE

Non-linear

$\overline{q-L_n/R}$ linear phase space

Simulation of tokamak SOL turbulence

SOL

Objectiv

Drift-reduce

Example of drift-reduce

Example of turbulence

RB and D

 $q - L_n/R$

Non linear RE

Non-line

Non-linear simulation for the RB instability

Simulation of tokamak SOL

SOL

Objectives

Drift-reduced equations

Example of a drift-reduced equation

Example of turbulence movie

instabilities

 $q - L_n/R$

Non-linear RB

Non-linear DW

onclusion

■ $Ln/R \approx 0.16$ (computed parameter)

Electric potential, Resistive Ballooning

Non-linear simulation for the DW instability

Simulation of tokamak SOL

SOI

Objective

Drift-reduced

Example of a drift-reduced equation

Example of turbulence movie

instabilities

 $q - L_n/R$

Non-linear R

^___l...i...

DW

q = 4 (simulation parameter)

■ $Ln/R \approx 0.09$ (computed parameter)

Electric potential, Drift Wave

Simulation of tokamak SOL turbulence

SOL

Objectives

Drift-reduced equations

Example of a drift-reduced equation

Example of turbulence movie

RB and DV instabilities

 $q - L_n/F$

Non-linear RE

DW

- simulation of the self-consistent SOL turbulence dynamics
- two instabilities regime : DW and RB. Good agreement with the linear studies
- linear study, easy-to-use method to interpret the non-linear results :
 - DW : small Ln/R ratio, small q, high toroidal mode number
 - RB : high Ln/R ratio, high q, small toroidal mode number
- Work in progress and envisaged :
 - magnetic shear
 - electromagnetic effects
 - ion temperature
 - divertor geometry