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Abstract— In some of the recently-developed algorithms for
convex parametric quadratic programs it is implicitly assumed
that the intersection of the closures of two adjacent critical
regions is a facet of both closures; this will be referred to as
the facet-to-facet property. It is shown by an example, whose
solution is unique, that the facet-to-facet property does not hold
in general, and consequently, some existing algorithms cannot
guarantee that the entire parameter space will be explored.
A simple method applicable to several existing algorithms is
presented for the purpose of overcoming this problem.

Index Terms— Parametric programming. Quadratic pro-
gramming. Explicit model predictive control.

I. I NTRODUCTION

Several algorithms for solving a convex parametric
quadratic program (pQP) [1], [2], [3], [4], [5] and a paramet-
ric linear program (pLP) [6] have recently been developed.
The growing interest in parametric programming is due
to the observation that explicit solutions to model predic-
tive control (MPC) problems can be obtained by solving
parametric programs [7], [2], [3]. Parametric linear and
quadratic programs are also used as tools in constrained
control allocation [8], in the computation of non-conservative
penalty weights for the soft constrained linear MPC problem
[9], in prioritized infeasibility handling in MPC [10] and for
solving sub-problems in parametric nonlinear programming
algorithms [11].

The algorithms proposed in [2] and [6] introduce artificial
cuts in the parameter space in the search for the solution,
while in [3] an algorithm based on considering all combina-
tions of constraints is presented. In [1] and [12] the authors
propose a method for exploring the parameter space, which is
conceptually and computationally more efficient than in [2],
[6] and [3]; by stepping a sufficiently small distance over
the boundary of a so-called critical region1 and solving an
LP or QP for the resulting parameter, a new critical region is
defined. This procedure looks promising, but implicitly relies
on the assumption that the facets of the closures of adjacent
critical regions satisfy a certain property, namely that their
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1A critical region is defined as the set of parameters for which some fixed

set of constraints are fulfilled with equality at all solutions of an optimization
problem.

intersection is a facet of both regions. We will refer to this
as the facet-to-facet property.

In [4] and [5] the authors propose a method in which each
facet of the critical region is examined and, depending on
whether the facet ensures feasibility or optimality, the active
set in the neighboring critical region is found by adding
or removing a constraint from the current active set. The
examination of each facet relies on a number of assumptions
and in cases where these assumptions are not satisfied,
the algorithm assumes that the facet-to-facet property holds
when stepping a small distance over a facet to determine the
active set in the adjacent region.

The algorithms presented in [1], [2], [12], [3] and [4] are
applied to strictly convex pQPs and utilized to obtain explicit
solutions to model predictive control problems. We show by
an example that for this problem class a critical region may
have more than one adjacent critical region for each facet.
Consequently, the facet-to-facet property does not generally
hold. Finally, we present a simple and efficient modification
of the algorithm in [4], based on results from [2], such that
it does not rely on the facet-to-facet property.

II. PRELIMINARIES

If A is a matrix or column vector, thenAi denotes
the ith row of A and AI denotes the sub-matrix of the
rows of A corresponding to the index setI. Recall that
the set of affine combinations of points in a setS ⊂ Rn

is called theaffine hull of S, and is denotedaff(S). The
dimension of a setS ⊂ Rn is the dimension ofaff(S),
and is denoteddim(S); if dim(S) = n, then S is said to
be full-dimensional. Theclosureand interior of a setS is
denotedcl(S) and int(S), respectively. Therelative interior
of a setS is the interior relative toaff(S), i.e. relint(S) :=
{x ∈ S |B(x, r) ∩ aff(S) ⊆ S for somer > 0}, where the
ball B(x, r) := {y |‖y − x‖ ≤ r} and ‖ · ‖ is any norm.
A polyhedron is the intersection of a finite number of
closed halfspaces. A non-empty setF is a face of the
polyhedronP ⊂ Rn if there exists a hyperplane{z ∈ Rn |
aT z = b}, wherea ∈ Rn, b ∈ R, such thatF = P ∩ {z ∈
Rn | aT z = b} and aT z ≤ b for all z ∈ P . Given ans-
dimensional polyhedronP ⊂ Rn, wheres ≤ n, the facets
of P are the(s− 1)-dimensional faces ofP .

Consider the following strictly convex parametric
quadratic program:

V ∗(θ) := min
x∈Rn

{

1

2
xT Hx

∣

∣

∣

∣

Ax ≤ b + Sθ

}

, (1)
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whereθ ∈ Rs is theparameterof the optimization problem,
and the vectorx ∈ Rn is to be optimized for all values ofθ ∈
Θ, whereΘ ⊆ Rs is some polyhedral set. Moreover,H =
HT ∈ Rn×n, H > 0, A ∈ Rq×n, b ∈ Rq×1, andS ∈ Rq×s.
For a given parameterθ, the minimizer to (1) is denoted
by x∗(θ). Without loss of generality, the following standing
assumption is made [2], [6]:

Assumption 1:The set of admissible parametersΘ is
full-dimensional, and for allθ ∈ Θ, the set of feasible
pointsX(θ) := {x ∈ Rn | Ax ≤ b + Sθ} is non-empty.

Definition 1 (Optimal active set):Let x be a feasible
point of (1) for a givenθ. The active constraints are the
constraints that fulfillAix−bi−Siθ = 0. The indices of the
constraints that are active at the solutionx∗(θ) is referred to
as theoptimal active setand it is denoted byA∗(θ), i.e.

A∗(θ) := {i ∈ {1, 2, . . . , q} |Aix
∗(θ)− bi − Siθ = 0} .

Definition 2 (Critical region): Given an index setA, the
critical regionΘA associated withA is the set of parameters
for which the optimal active set is equal toA, i.e.

ΘA := {θ ∈ Θ | A∗(θ) = A}.

In the above definition, note that ifA is not an optimal
active set for some parameter, thenΘA is the empty set.
Hence, when referring to a critical regionΘA, we will
assume thatA is an optimal active set for someθ ∈ Θ.

Definition 3 (LICQ): For an index setA, we say that the
linear independence constraint qualification (LICQ) holdsfor
A if the gradients of the set of constraints indexed byA are
linearly independent, i.e.AA has full row rank.

Theorem 1 (Solution properties [2]):Consider the pQP
in (1). The value functionV ∗ : Θ → R is convex and con-
tinuous. The minimizer functionx∗ : Θ→ Rn is continuous
and piecewise affine in the sense that there exists a finite set
of full-dimensional polyhedraR := {R1, . . . , RK} such that
Θ = ∪K

k=1Rk, int(Ri) ∩ int(Rj) = ∅ for all i 6= j and the
restrictionx∗|Rk

: Rk → Rn is affine for allk ∈ {1, . . . ,K}.
A method for computing the expression for the restriction

(affine function) x∗|Rk
and its polyhedral domainRk is

summarized below. The KKT conditions for (1) are:

Hx + AT λ = 0, λ ∈ Rq, (2a)

λi (Aix− bi − Siθ) = 0, ∀i ∈ {1, . . . , q}, (2b)

Ax− b− Sθ ≤ 0, (2c)

λi ≥ 0, ∀i ∈ {1, . . . , q} (2d)

whereλ are the Lagrange multipliers. Assume that an index
setA is given such that it is an optimal active set for some
parameterθ ∈ Θ and letN := {1, 2, . . . , q}\A. If LICQ
holds forA, then the KKT conditions can be manipulated [2]
to obtain the following two affine functions:

x∗
A(θ) := −H−1AT

Aλ∗
A(θ), (3a)

λ∗
A(θ) := −(AAH−1AT

A)−1(bA + SAθ). (3b)

If Rk is the closure of the critical region associated withA,

Algorithm 1 Exploring the parameter space.
Input: Data to problem (1).
Output: Set of closures of full-dimensional critical re-

gionsR.
1: Find aθ ∈ Θ such thatdim

(

cl
(

ΘA∗(θ)

))

= s.
2: R ← {cl

(

ΘA∗(θ)

)

} andU ← {cl
(

ΘA∗(θ)

)

}.
3: while U 6= ∅ do
4: Choose any elementU ∈ U .
5: U ← U\{U}.
6: for all facetsf of U do
7: Find the setS of full-dimensional critical regions

adjacent toU along the facetf .
8: U ← U ∪ (S\R).
9: R← R∪ S.

10: end for
11: end while

i.e.

Rk := cl(ΘA) =

{

θ ∈ Θ

∣

∣

∣

∣

ANx∗
A(θ) ≤ bN + SN θ

λ∗
A(θ) ≥ 0

}

,

(4)
then the restriction of the minimizer functionx∗ to the
polyhedronRk is given byx∗|Rk

(θ) = x∗
A(θ). If LICQ does

not hold, then closure of a critical region associated with an
optimal active set can be found by projecting a polyhedron
in the (x, λ)-space onto the parameter space [2], [5].

In the sequel, the closure of a critical region will be written
in the more compact form

cl(ΘA) =: {θ ∈ Θ |Ciθ ≤ di, i = 1, . . . , J } , (5)

where (5) is obtained from (4) or by projection. An inequal-
ity Ciθ ≤ di in the description ofcl(ΘA) is said to befacet-
definingif {θ |Ciθ = di } equals the affine hull of one of the
facets ofcl(ΘA). If there exists more than one facet-defining
inequality for a given facet, these inequalities are referred to
ascoinciding inequalities. A representation ofcl(ΘA) where
every redundant inequality has been removed is referred to
as an irredundant representation (note that an irredundant
representation does not have any coinciding inequalities).

III. A LGORITHMS FOR EXPLORING THE PARAMETER

SPACE

The goal of most algorithms for solving pQPs is to identify
only the closures of the full-dimensional critical regions[1],
[2], [6], [12], [4], [5]. For this purpose we introduce the
notion of adjacent critical regions.

Definition 4 (Adjacent critical regions):Two full-
dimensional critical regionsΘA and ΘB are said to be
adjacent ifdim (cl(ΘA) ∩ cl(ΘB)) = s− 1.

The framework for studying the various algorithms is
given in Algorithm 1, where the auxiliary setU is defined
as the set of closures of identified regions whose adjacent
regions have not been found. The output of Algorithm 1 is a
collectionR of closures of full-dimensional critical regions
for (1). From this point on, we will letK denote the number
of sets inR. Where it is clear from context,Rk will refer to



Procedure 1 Finding an adjacent full-dimensional critical
region along a given facet.
Input: Irredundant representation of the closure

of a full-dimensional critical region U =:
{θ |Ciθ ≤ di, i = 1, . . . , J } and the indexj whose
corresponding inequality defines facetf .

Output: Closure of a full-dimensional critical regionS
adjacent toU along the facetf .

1: S ← ∅.
2: Choose anŷθ ∈ relint(f).
3: if the facetf is not on the boundary ofΘ then
4: Choose any scalarε > 0 such thatθ := θ̂ + εCT

j ∈ Θ
andθ is in a full-dimensional critical region adjacent
to U .

5: ComputeA∗(θ) by solving the QP (1).
6: S ←

{

cl
(

ΘA∗(θ)

)}

.
7: end if

thekth set inR andRA will refer to the set inR associated
with the optimal active setA.

We will consider the algorithms in [4], [1], [12] and [5]. It
should be noted that, on a conceptual level, these algorithms
differ only in step 7 in Algorithm 1 and that the different
strategies may not always yield a satisfactory result. This
will be addressed in the rest of this section.

A. Identifying adjacent regions from a QP

The procedure used in [1] and [12] as step 7 of Algo-
rithm 1 is given in Procedure 1. This method is also used
in The Multi Parametric Toolbox (MPT) [13]. Note that at
most one adjacent critical region is identified for each facet
of the region under consideration. The implementation of the
procedure will not be discussed.

B. Identifying adjacent regions from inequalities

Let A be a given optimal active set for someθ ∈ Θ.
The objective is to identify a critical region adjacent toΘA

along a given facetf of its closure. Consider the following
conditions [4]:

1) LICQ holds forA.
2) There are no coinciding inequalities for facetf in (4),

where redundant constraints have not yet been re-
moved.

3) There are no weakly active constraints atx∗(θ) for all
θ ∈ cl (ΘA), that is, @ i ∈ A ⇒ λ∗

i (θ) = 0, ∀θ ∈
cl (ΘA).

If these conditions hold, then [4] proves that there is
only one critical region adjacent toΘA along facetf and
that the corresponding optimal active set can be found by
determining what type of inequality that definesf . If the
inequality that definesf is of the typeλi ≥ 0, then i is
removed fromA, henceS =

{

cl
(

ΘA\{i}

)}

. On the other
hand, if the inequality is of the typeAix

∗ (θ) ≤ bi + Siθ,
then i is added toA, henceS =

{

cl
(

ΘA∪{i}

)}

. If the
conditions do not hold, then Procedure 1 is used. Clearly, as
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Fig. 1. Illustration that Algorithm 1 may fail to identify allthe critical
regions if the facet-to-facet property does not hold, the strategies in
Section III-A or III-B are employed at step 7 of Algorithm 1 andno
additional assumptions on the problem are given. The shaded region is
unexplored.

in Section III-A, only one adjacent critical region is identified
for each facet with this strategy.

C. Required solution properties

Consider now the question: What conditions must the
solution to (1) satisfy in order to ensure that the strategies
in Section III-A or III-B guarantee that

⋃K

k=1 Rk = Θ? For
this purpose, we introduce the following definition:

Definition 5 (Facet-to-facet):Let P := {Pi | i ∈ I}
be a finite collection of full-dimensional polyhedra inRs,
whereint(Pi)∩ int(Pj) = ∅ for all (i, j), i 6= j. We say that
the facet-to-facetproperty holds forP if F(i,j) := Pi ∩ Pj

is a facet of bothPi and Pj for all (s − 1)-dimensional
intersectionsF(i,j).

It is clear that the facet-to-facet property is important when
referring to the set of full-dimensional critical regions of (1).
If the set of closures of the full-dimensional critical regions
do not satisfy the facet-to-facet property, then it may be
insufficient to only identify one adjacent region for each
facet, as illustrated in Figure 1.

The following example illustrates that the facet-to-facet
property does not generally hold for strictly convex pQPs.
Hence, the algorithms in [1], [12], [4] and [5] cannot
guarantee that the entire parameter space will be explored.

Example 1:Consider the problem:

V ∗(θ) := min
x∈R3

{

1

2
xT x

∣

∣

∣

∣

x ∈ P(θ)

}

, θ ∈ Θ,

P(θ) :=































x ∈ R3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 − x3 ≤ −1 + θ1

−x1 − x3 ≤ −1− θ1

x2 − x3 ≤ −1− θ2

−x2 − x3 ≤ −1 + θ2
3
4x1 + 16

25x2 − x3 ≤ −1 + θ1

− 3
4x1 −

16
25x2 − x3 ≤ −1− θ1































,

Θ :=
{

θ ∈ R2
∣

∣ − 3
2 ≤ θi ≤ 3

2 , i = 1, 2
}

.

The unique set of full-dimensional critical regions is de-
picted in Figure 2, where we have indexed the criti-
cal regions with the optimal active sets. The critical re-
gions R{1,4,5}, R{1,3,6}, R{2,4,5}, and R{2,3,6} have more
than one adjacent critical region along one of their facets,
hence the facet-to-facet property is violated for the set of
closures of full-dimensional critical regions.
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Fig. 2. Facet-to-facet property violated.

In [14] it is verified analytically that LICQ holds for
all optimal active sets, that the KKT conditions hold
for (x∗(θ), λ∗(θ)) for a parameter in the interior of each
full-dimensional critical region, and numerically verified that
every other combination of active constraints yield empty
or lower-dimensional critical regions. Thus, the violation of
the facet-to-facet property is not a consequence of numerical
inaccuracies. However, there is a lower-dimensional critical
region of particular interest, namely the critical region de-
fined byA = {1, . . . , 6}, which is analytically computed in
[14] as

cl(Θ{1,...,6}) =

{

θ

∣

∣

∣

∣

θ1 = −
64

25
θ2,−

1600

4721
≤ θ2 ≤

1600

4721

}

.

The representations ofR{1,4,5}, R{1,3,6}, R{2,4,5}, R{2,3,6},
R{1,3,5}, and R{2,4,6} obtained from (4) all have three
coinciding inequalities along the lineθ1 = − 64

25θ2. This sug-
gests that, due to the statements in Section III-B, coinciding
inequalities in the description of the critical regions maybe
the reason for the violation of the facet-to-facet property.
Empirical examination also shows that the presented example
is not an isolated incident of the facet-to-facet property being
violated. By letting the constant values on the right hand side
be written as−[1, 1, 1, 1+α, 1+α, 1+α]T , the facet-to-facet
property is violated for anyα ∈ [− 1

10 , 2
5 ].

IV. A NEW EXPLORATION STRATEGY

The algorithm in [2] does not rely on the facet-to-facet
property but, as mentioned in the introduction, introducesa
number of artificial cuts in the parameter space as it searches
for the solution. As a consequence the performance degrades
as the number of critical regions become large. In [4]
the authors propose a more efficient way of exploring the
parameter space, but it relies on the facet-to-facet property.
We aim at modifying the algorithm in [4] in order to
ensure it’s correctness. The proposed method finds all critical
regions adjacent to a critical region along a given facet and
in order to preserve the efficiency of the algorithm in [4]
the modification is to be utilizedonly when the conditions
in Section III-B do not hold. We use the algorithm in [2]
to explore the parameter space in a small polyhedral subset
M ⊂ Θ and discard the artificial cuts once the solution has

Procedure 2Identifying all adjacent full-dimensional critical
regions along a given facet.
Input: Irredundant representation of the closure

of a full-dimensional critical region U =:
{θ |Ciθ ≤ di, i = 1, . . . , J } and the indexj whose
corresponding inequality defines facetf .

Output: Set S of closures of full-dimensional critical re-
gions adjacent toU along the facetf , and setT which
is a subset of the full-dimensional critical regions not
adjacent toU .

1: S ← ∅ andT ← ∅.
2: if the facetf is not on the boundary ofΘ then
3: if the conditions in Section III-B holdthen
4: Find the optimal active set as described in Sec-

tion III-B and let T ← T ∪ cl (ΘA) .

5: else
6: Choose any scalarε > 0 and construct the polyhe-

dron

Mj :=







θ ∈ Θ

∣

∣

∣

∣

∣

∣

Ciθ ≤ di, ∀i ∈ {1, . . . , J}\{j}
Cjθ ≥ dj

Cjθ ≤ dj + ε







.

7: Compute the setC(Mj) by solving the pQP (1) for
all θ ∈Mj using the algorithm in [2].

8: for eachA ∈ C(Mj) do
9: if dim (cl (ΘA) ∩ U) = s− 1 then

10: S ← S∪{cl (ΘA)}. {Adjacent critical region}
11: else
12: T ← T ∪ {cl (ΘA)}.
13: end if
14: end for
15: end if
16: end if

been found. For a given optimal active setA, if the goal is
to identify the critical regions adjacent toΘA along a given
facetf of its closure, then the polyhedronM must be full-
dimensional and satisfy the property:

cl(ΘA) ∩M = f.

For use in the proposed method, the set of optimal active
sets associated with the polyhedronM is defined as:

C(M) := {A ⊆ {1, 2, . . . , q}| dim (M ∩ cl (ΘA)) = s} .

A method for obtaining all adjacent regions is given in
Procedure 2. The choice ofε in step 6 is arbitrary from
a theoretical point of view, but it is important to note that
too small a value will cause numerical problems and too
large a value may result in an unnecessary increase in the
computational effort. This issue will be further discussedin
Section V. Note thatC(Mj) may define additional critical
regions that are not adjacent to the critical region considered
and/or critical regions that have already been discovered.
However, this is not a problem since one can either choose
to keep them as identified regions or discard them. In Pro-
cedure 2 we have chosen to return all those critical regions



R7

R6

R5
R4

R3 R2

R1

R8

R9

R10

R11

R7
R12

(a) Set of critical regions for a pQP

U1

R1R1

U4U3

U2

(b) First iteration (Bemporad et al. (2002b)).

R2

R1R1

U4U3

U2

U5
U6

U7

U8

(c) Second iteration (Bemporad et al. (2002b)).

R2

R1R1

U4U3

U2

U5
U6

R3

U7

U10

U8

U9

(d) Third iteration (Bemporad et al. (2002b)).

R3
R2

R1

M2
M1

(e) First iteration. proposed method

R6

R3
R2

R4
R5

R1

(f) Regions after artificial cuts are discarded

Fig. 3. Illustration of different exploration strategies

which are not adjacent toU and those that have already
been discovered; step 8 of Algorithm 1 can be replaced by
U ← U ∪ (S\R) ∪ (T \R) and step 9 byR ← R∪ S ∪ T .
We illustrate the difference between the exploration strategy
in [2] and the proposed method with an example.

Example 2:Assume that the set of closures of full-
dimensional critical regions for a pQP is as depicted in
Figure 3(a). The first step of the algorithm in [2] is to
find an initial critical regionR1 and then partition the rest
of the parameter space into a set of unexplored polyhedra
U , see Figure 3(b). It then continues by exploring one of
these polyhedra, for instanceU1, finds a new regionR2 and
partitions the space again, see Figure 3(c). A possible third
iteration is depicted in Figure 3(d). In Figure 3(e) we have
shown a possible first iteration of the proposed method. Note
that for two facets ofR1 the conditions in Section III-B do
not hold, and hence, the setsM1 and M2 are constructed.
After identifying the optimal active sets inMj , the set of
critical regions is as illustrated in Figure 3(f).

The two key issues we want to illustrate with the above
example is thati) for the algorithm in [2] the artificial cuts
affect the exploration strategy in parts of the parameter space
where the cuts are unnecessary, causing the performance to
degrade for largeK, and ii) the proposed method discards
the artificial partitioning once a setMj has been fully
explored. Since the number of regions intersectingM is
expected to be small, the algorithm in [2] is well suited to
explore insideMj .

The efficiency of the algorithm in [4] compared to the
one in [2] is well documented, so the performance of the
proposed procedure relies on how often the conditions in
Section III-B do not hold. Numerical results will be given in
the next section. The correctness of the proposed algorithm

is proven in Theorem 2.
Theorem 2 (Correctness of the Algorithm):Algorithm 1

combined with Procedure 2 ensures that∪K
k=1Rk = Θ.

Proof: Let (P,R) be a partition of

{cl (ΘA) |dim (ΘA) = s for (1)} ,

and MR
j denote the set in Procedure 2 associated with the

jth facet ofR ∈ R. Moreover, assume the proposed method
terminates with∪R∈RR ⊂ Θ. By the correctness of the
algorithm in [2] and the fact thatdim

(

cl (ΘA) ∩MR
j

)

= s

if R and ΘA are adjacent along thejth facet of R, all
full-dimensional critical regions adjacent toR have been
identified. Hence, for any pair(R,P ) ∈ R×P we must have
dim (R ∩ P ) < s−1, otherwiseP would be a member ofR.
Moreover, we haveΘ = (∪R∈RR)

⋃

(∪P∈PP ). Hence, by
Lemma 1 in [14], a contradiction is reached sinceΘ cannot
be convex when the dimension of the intersection of∪R∈RR

and∪P∈PP is less thans− 1.

V. NUMERICAL EXAMPLE

In this section we make a quantitative comparison of the
following exploration strategies: (i) the algorithm in [2], and
(ii) the proposed algorithm of combining Algorithm 1 and
Procedure 2. The algorithms are tested on an MPC problem
for a linear time invariant system

z(k + 1) = Φz(k) + Γu(k), z(0) = z0, (6)

wherez(k) ∈ R4 and u(k) ∈ R2 are the state and input at
time k, respectively, andΦ andΓ are matrices with suitable
dimensions. The objective is to minimize the following cost
function

J(z0) :=

N
∑

k=1

(

z(k)T Qz(k) + u(k − 1)T Ru(k − 1)
)



LP1 LP2 QP Times found
ε = 10

−4
5.7 · 104

4.5 · 103
1.8 · 103

7.6

ε = 10
−2

7.9 · 104
5.8 · 103

2.4 · 103
8.3

ε = 0.5 2.5 · 105
1.4 · 104

6.6 · 103
9.9

Bemporad et al. 2.8 · 105
3.7 · 104

6.8 · 103
17.2

TABLE I

SIMULATION RESULT FOR RANDOM DATA.

whereQ = QT ≥ 0 andR = RT > 0, subject to the system
equation (6), state constraintsz ∈ Z := {z |z ≤ z ≤ z }, and
input constraintsu ∈ U := {u |u ≤ u ≤ u}. This problem
is recast as a pQP as described in [2] and the algorithms
are tested on 80 random instances of(Φ,Γ, Q,R,Z,U)
with a prediction horizonN ∈ [3, 5]. For simplicity, all
systems are stable, controllable and observable. The results
are given in Table I, where we have also tried different values
for ε, and used the following abbreviations: LP1: Average
number of LPs solved to obtain irredundant representations
of polyhedra, LP2: Average number of LPs solved to find an
interior-point of a polyhedron, QP: Average number of QPs
solved obtain optimal active sets, and Times found: Average
number of times a critical region is discovered. The solutions
have an average of 317 critical regions. In Figure 4 the total
number of optimization problems solved by the algorithms
are compared.
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Fig. 4. Comparison of the number of optimization problems solvedby the
algorithm, that is, the sum of LP1, LP2 and QP.

As expected, the computational effort used to find an
explicit solution is on average lowest for alternative(ii). This
shows that alternative(ii) is preferable also in practice. Note
that although the performance of the proposed method relies
on the choice ofε, it is not difficult to chose a value such
that the proposed method is more efficient than the algorithm
in [2]. Even for the inappropriate choice ofε = 0.5, the
computational effort is lower. Also, from Figure 4 it is
apparent that the difference in the computational effort is
expected to grow asK increases.

VI. CONCLUSION

It has been shown by an example that, for strictly convex
parametric quadratic programs, a critical region may have
more than one adjacent critical region for each facet. This
renders some of the recently developed algorithms for this
problem class without guarantees that the entire parameter
space will be explored. A simple and efficient method based
on the algorithms in [2] and [4] was proposed such that
the completeness of the exploration strategy is guaranteed.
Numerical results also show that the proposed method is
computationally more efficient than the algorithm in [2].

VII. A CKNOWLEDGEMENTS

This research is part of the Strategic University Program
on Computational Methods for Nonlinear Motion Control
funded by the Research Council of Norway. The second au-
thor would like to thank the Royal Academy of Engineering,
UK, and the fourth author would like to thank the Research
Council of Norway for their support.

REFERENCES
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