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Abstract— We consider the class of piecewise affine optimal
state feedback control laws applied to discrete-time piecewise
affine systems, motivated by recent work on the computation
of closed-form MPC controllers. The storage demand and
complexity of these optimal closed-form solutions limit their
applicability in most real-life situations. In this paper we present
a novel algorithm to a posteriori reduce the storage demand
and complexity of the closed-form controller without losing
closed-loop stability or all time feasibility while guaranteeing a
bounded performance decay compared to the optimal solution.
The algorithm combines simple polyhedral manipulations with
(multi-parametric) linear programming and the effectiveness of
the algorithm is demonstrated on a large numerical example.

Keywords—constrained systems, discrete-time systems, piece-
wise affine systems, receding horizon control, MPC, closed-form
solution, lookup table, multi-parametric programming, optimal
control, complexity reduction, approximation.

I. I NTRODUCTION

This work is motivated by the recent developments in the
field of controller synthesis for hybrid systems [1], [2], [3],
[4], [5], [6]. A significant amount of the research in this field
has focused on solving constrained optimal control problems,
both for continuous-time and discrete-time hybrid systems.

We consider the class of constrained discrete-timepiece-
wise affine(PWA) systems [3] that are obtained by partition-
ing the extended state-input space into polyhedral regions
and associating with each region a different affine state
update equation. As shown in [7], the class of piecewise
affine systems is of rather general nature and equivalent
to many other hybrid system formalisms reported in the
literature.

For piecewise affine systems theconstrained finite time
optimal control(CFTOC) problem can be solved by means of
multi-parametric programming [4], [6], [8] and the resulting
closed-form solution is a time-varying PWA state feedback
control law. If the solution to the CFTOC problem is used
in a receding horizon control(RHC) (or model predictive
control (MPC)) [9], [10] strategy then the time-varying PWA
state feedback control law becomes time-invariant and can
serve as a control ‘lookup table’ on-line, thus enabling RHC
to be used for fast sampled systems.

However, due to the combinatorial nature of the considered
problem the number of state space regions over which the
control lookup table is defined grows in the worst case expo-
nentially [4], [11]. Therefore, firstly, efficient on-line search

strategies [12], [6] are required to achieve fast sampling rates
and/or, secondly, in order to cope with the limited storage
and memory of most control devices, a reduction of the
complexity (i.e. mainly the number of defining state space
regions of the controller) or approximation of the optimal
control lookup table is essential.

Several authors recently addressed the complexity re-
duction or approximation issue by either modifying the
original CFTOC problem, retrieving a suboptimal solution
of the CFTOC problem, or by post-processing the computed
optimal controller, cf. e.g. [13], [14], [15]. However, a direct
guarantee on the reduction of the complexity, closed-loop
stability, or performance decay is mostly neglected.

In this paper we present a novel algorithm to a posteriori
reduce the storage demand and complexity of the closed-
form control lookup table without losing closed-loop sta-
bility or all time feasibility while guaranteeing a bounded
performance decay compared to the optimal solution. The
algorithm combines simple polyhedral manipulations with
(multi-parametric) linear programming and the effectiveness
of the algorithm is demonstrated on a large numerical exam-
ple.

II. CONSTRAINED FINITE TIME OPTIMAL CONTROL OF

PIECEWISE AFFINE SYSTEMS

Piecewise affine(PWA) systems are equivalent to many
other hybrid system classes [3], [7] such as mixed logical
dynamical systems [16], linear complementary systems [2],
and max-min-plus-scaling systems [17] and thus form a very
general class of linear hybrid systems.

We consider the class of discrete-time, stabilizable, linear
hybrid systems that can be described as constrained PWA
systems of the following form

x(t + 1) = fPWA(x(t), u(t))

:= Adx(t) + Bdu(t) + ad, if
[

x(t)
u(t)

]
∈ Dd, (1)

where t ≥ 0, the domainD := ∪ND

d=1Dd of fPWA(·, ·)
is a non-empty compact set inRnx+nu with ND < ∞
the number of system dynamics, and{Dd}

ND

d=1 denotes a
polyhedral partition of the domainD, i.e. the closure of
Dd is D̄d :=

{
[ x
u ] ∈ R

nx+nu | Dx
dx + Du

du ≤ D0
d

}
and

int(Dd) ∩ int(Dj) = ∅ for all d 6= j.
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Remark II.1 (Constraints). Note that linear state con-
straints (x(t) ∈ X ⊆ R

nx) and input constraints (u(t) ∈ U ⊆
R

nu) of the general formCxx + Cuu ≤ C0 are naturally
incorporated in the description ofDd. �

The following is assumed throughout this work

Assumption II.2 (Equilibrium at the origin). The origin
in the extended state-input space is an equilibrium point
of the PWA system (1), i.e. 0nx+nu

∈ D and 0nx
=

fPWA(0nx
, 0nu

), where0n := [0 0 . . . 0]′ ∈ R
n. �

The above assumption does not limit the scope of this
work, i.e. the presented results also hold for any non-zero
equilibrium point.

The flexibility of this modeling framework and the recent
technological advances in the fields of optimization and con-
trol theory have lead to a considerable interest in academia
and industry in PWA systems; not to mention that many
engineering systems naturally express themselves or can be
approximated nicely by PWA systems.

A. Constrained Finite Time Optimal Control

We define for the aforementioned PWA system (1) the
constrained finite time optimal control(CFTOC) problem

J∗
T (x(0)) :=min

UT

JT (x(0), UT ) (2a)

s.t.

{
x(t + 1) = fPWA(x(t), u(t))
x(T ) ∈ X f ,

(2b)

where

JT (x(0), UT ) := `T (x(T )) +

T−1∑

t=0

`(x(t), u(t)) (2c)

is the cost function, `(·, ·) the stage cost, `T (·) the final
penalty function, UT is the optimization variabledefined
as the input sequenceUT := {u(t)}

T−1
t=0 , T < ∞ is the

prediction horizon, andX f is a compactterminal target set
in R

nx . With a slight abuse of notation, when the CFTOC
problem (2a)–(2b) has multiple solutions, i.e. when the
optimizer is not unique,U∗

T (x(0)) := {u∗(t)}
T−1
t=0 denotes

one (arbitrarily chosen) realization from the set of possible
optimizers.

The CFTOC problem (2a)–(2b) implicitly defines the set
of feasible initial statesXT ⊂ R

nx (x(0) ∈ XT ) and the set
of feasible inputsUT−t ⊂ R

nu (u(t) ∈ UT−t, t = 0, . . . , T−
1). In the context of this paper, the goal in this section is to
give an explicit (closed-form) expression foru∗(t) : XT →
UT−t, t = 0, . . . , T − 1.

Consider the two following restrictions to the CFTOC
problem

Problem II.3 (PWA system, 1-/∞-norm based cost).

`(x(t), u(t)) := ‖Qx(t)‖p + ‖Ru(t)‖p, (3a)

`T (x(T )) := ‖Px(T )‖p, (3b)

where ‖·‖p with p ∈ {1,∞} denotes the standard vector
1-/∞-norm [18], [6], and

Problem II.4 (Constr. LTI system, quadratic cost).

fPWA(x(t), u(t)) := Ax(t) + Bu(t), if
[

x(t)
u(t)

]
∈ D, (4a)

`(x(t), u(t)) := x(t)′Qx(t) + u(t)′Ru(t), (4b)

`T (x(T )) := x(T )′Px(T ). (4c)

In both CFTOC ProblemII.3 and II.4 the solution is a
time-varying PWA state feedback control law defined over a
polyhedral partition, which is stated in the following theorem
and proved in e.g. [19], [4].

Theorem II.5 (Solution to CFTOC). The solution to the
optimal control problem (2a)–(2b), restricted to ProblemII.3
or II.4, is a time-varying PWA function of the initial state
x(0)

µPWA(x(0), t) = KT−t,i x(0) + LT−t,i, if x(0) ∈ Pi

with u∗(t) = µPWA(x(0), t), wheret = 0, . . . , T − 1, and
{Pi}

NP

i=1 is a polyhedral partition of the set of feasible states
x(0), XT = ∪NP

i=1Pi, with the closure ofPi given by P̄i =
{x ∈ R

nx | P x
i x ≤ P 0

i }. �

In the case that areceding horizon(RH) control policy or a
model predictive controller(MPC) [9], [10] is used in closed-
loop, the control is given as a time-invariant state feedback
control law of the form

µRH(x(t)) := KT,i x(t) + LT,i, if x(t) ∈ Pi, (5)

wherei = 1, . . . , NP andu(t) = µRH(x(t)) for t ≥ 0.

Definition II.6 (Feasibility for all time). A CFTOC prob-
lem is calledfeasible at timet if there exists a control action
at time t for the measured statext =: x(0), which satisfies
the state and input constraints over the considered prediction
horizonT . A RHC problem is calledfeasible for all timeif
it is feasible for allt ≥ 0. �

Assumption II.7 (Stability, feasibility). Note that in the
following it is assumed that the parametersT, Q, R, P ,
and X f are chosen in such a way that (5) is closed-loop
stabilizing, feasible for all time and that a polyhedral PWA
Lyapunov function [20], [21] of the form

V (x) = V x
i x + V 0

i , if x ∈ Pi,

wherei = 1, . . . , NP , for the closed-loop system

x(t + 1) = fCL(x(t)) := fPWA(x(t), µRH(x(t))), (6)

x(t) ∈ XT , exists and is given. �

This is usually not a restricting requirement but rather the
aim of most (if not all) control strategies. Furthermore, we
remark that if the parameters are chosen according to e.g.
[9], [22], or [6] one can simply takeV (·) = J∗

T (·).
In the course of this paper our focus lies on the reduction

of the complexity of the closed-form control lawµRH(·)



without losing closed-loop stability nor feasibility for all
time.

III. C OMPLEXITY REDUCTION

As the system dimensionnx and control dimensionnu are
fixed, the storage demand (or complexity) of a closed-form
control law (5) is influenced solely by the defining polyhedral
partition, i.e. the numberNP of defining state space polyhe-
dral regionsPi and the number of their respective facets [23].
Unfortunately, depending on the structure and parameters of
the underlying system and optimization problem, one of the
main drawbacks with optimal closed-form control lawsµ(·)
is the possible worst case exponential ‘explosion’ [4], [11]
in the number of regionsNP . But even in an average case
the numberNP tends to be very large and above the storage
limit of most control devices. Therefore, it is often essential
for a real-life implementation of the closed-form solution
to find an appropriate approximation of the controller or a
controller with reduced complexity.

As mentioned in the introduction, several authors recently
addressed the issue of complexity reduction or approximation
by either modifying the original CFTOC problem, retrieving
a suboptimal solution of the CFTOC problem, or by post-
processing the computed optimal controller. The authors in
[14], [24], for example, aim at computing a minimal polyhe-
dral representation of the original controller partition in order
to reduce storage complexity. However, the computation is
‘practically’ limited to a small number of regions with a
small number of facets, since the computation time grows
exponentially. A different proposal is given in [13], where the
original CFTOC problem (for constrained linear systems) is
modified a priori by relaxing the underlying multi-parametric
program in order to find an approximate, hopefully simpler,
solution.

However, most proposals in the literature lack a guarantee
on the reduction of the complexity, closed-loop stability,or
maximal performance decay.

The here proposed post-processing strategy aims at a
direct reduction of the controller complexity by a ‘safe’
elimination (i.e. removal) of ‘small’ regions, whereby closed-
loop stability and all time feasibility is not lost and a bounded
performance decay (compared to the optimal solution) can
be guaranteed. The resulting controller partition will have
‘holes’ in the feasible state spaceXT . Then in the on-line
control procedure (SectionIV) a fast alternative strategy is
implemented for the case that the measured state lies in a
safely eliminated region. This leads to a direct reduction
of the storage requirements and on-line computation of the
approximate controller.

The algorithm and derivation is detailed in the following.

A. Safe Region Elimination

Simulations (and in the case of constrained linear system
also continuity of the respective functions) seem to indicate

that the impact of‘small’ regions (i.e. regions with either
a small Chebyshev radius [25], small volume, or small
Lyapunov decay∆V ) havein practicelittle influence on the
closed-loop stability and performance of the overall system,
when perturbing or approximating the control law inside of
these regions. Other factors reducing the importance of small
regions are for example: due to real measurement noise it is
unlikely that the measured state lies in or enters such regions
and, furthermore, these regions tend to often occur in areas
of the state space away from a neighborhood around the
equilibrium point and thus the time that the system trajectory
‘spends’ in these areas is minimal.

In order to present AlgorithmIII.3 for thesafe elimination
of regions, the two core ideas behind the algorithm need to
be explained. The first idea is based on the inherent freedom
of the Lyapunov decay inequality (7c) of TheoremIII.1,
repeated for completeness in the following and proved in
[21].

Theorem III.1 (Asymptotic/exponential stability). Let
XT be a bounded positively invariant set inRnx for the
autonomous (closed-loop) system (6) and let α(·), α(·),
and β(·) be K-class functions [20]. If there exists a
non-negative functionV : XT → R≥0 with V (0nx

) = 0
such that

V (x) ≥ α(‖x‖), (7a)

V (x) ≤ α(‖x‖), (7b)

∆V (x) := V (fCL(x)) − V (x) ≤ −β(‖x‖), (7c)

wherex ∈ XT , then the following results holds:

(a) The equilibrium point0nx
is asymptotically stable[20]

in the Lyapunov sense inXT .
(b) If α(‖x‖) := a‖x‖γ , α(‖x‖) := a‖x‖γ , andβ(‖x‖) :=

b‖x‖γ for some positive constantsa, a, b, γ > 0 then
the equilibrium point0nx

is exponentially stable[20]
in the Lyapunov sense inXT . �

Simply speaking, if all the prerequisites of TheoremIII.1
are fulfilled with a given controllerµRH(·), the resulting
behavior of the closed-loop system is stabilizing. If, for the
given Lyapunov functionV (·), β(·) is now relaxed, one can
(possibly) find a set of controllers that will render the closed-
loop system stabilizing and feasible. (Note, that settingβ(·)
close to the zero-function is sufficient for pure asymptotic
stability.)

For the considered class of PWA systems, PWA control
laws, and PWA Lyapunov functions withβ(·) consisting of
a sum of weighted vector1-/∞-norms, the Lyapunov decay
inequality (7c) describes a collection of polytopic sets. This
enables a stability test for altered PWA control laws with
simple feasibility LPs. Thus the idea, originally motivated
by continuity arguments, is to test if a control functionµ̃(·)
of a ‘close by’ state space area, evaluated at the local state
x still fulfills the Lyapunov decay inequality (7c) and thus
stabilizes the overall closed-loop system.
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Fig. 1: Example of a minimal-violation partition{Gj}4

j=1
of P in R

nx

with respect to{P̃i}4

i=1
. The corresponding index functionl(x) is indicated

by the corresponding coloring of the regions.

This leads to the second idea which is based on a new
distance concept calledminimal-violation distancedefined
in the following.

Definition III.2 (Minimal-violation distance). Let the col-
lection P̃ be the setP̃ := {P̃i}

N
P̃

i=1 where P̃i := {x ∈

R
nx | P̃x

i x ≤ P̃0
i } are full-dimensional polyhedra1 in R

nx .
The minimal-violation distancedMV of x to P̃ is given by

dMV (x, P̃) := min
i
{α∗

i (x)}i, where (8a)

α∗
i (x) = min {αi ∈ R | P̃x

i x ≤ P̃0
i + αi1}, (8b)

for all i = 1, . . . , N
P̃

and1 := [1 1 . . . 1]′. �

If x ∈ P , where P is some polytope, one obtains
that dMV (·, P̃) is a (possibly non-convex) polyhedral PWA
function of the form

dMV (x, P̃) = dx
j x + d0

j , if x ∈ Gj , (9)

whereG := {Gj}
NG

j=1 is a polyhedral partition ofP . (Note,
that NG can be large, however, the partitionG is only used
during the post-processing step and has no influence on the
on-line controller evaluation, cf. AlgorithmIII.3 and IV.1.)
The PWA function (9) can be obtained by, for example, first
solving the single multi-parametric linear program [4]

min
∑N

P̃

i=1 αi (10a)

subj. to P̃x
i x ≤ P̃0

i + αi1, ∀ i = 1, . . . , N
P̃

, (10b)

x ∈ P . (10c)

Within each critical region [4] of (10), the functionsα∗
i (x)

are affine, rather than piecewise affine. It is therefore straight-
forward to computedMV (x, P̃) = mini{α

∗
i (x)}i within each

critical region by determining the irredundant inequalities
[23] of the convex polytope{(d, x) | d ≤ α∗

i (x), ∀i}.

The ‘closest’ index function

l(x) :=
{
i ∈ {1, . . . , N

P̃
} | dMV (x, P̃) = α∗

i (x)
}
,

x ∈ P , is constant for all pointsx ∈ Gj and indicates the
index ofP̃i which is ‘closest’ (i.e. has the smallest violation)

1We assume that̃P x
i

x(t) ≤ P̃ 0

i
is in the Hessian normal form, i.e. each

row [P̃ x
i ]r of P̃ x

i is normalized with‖[P̃ x
i ]r‖2 = 1.

to x. In the followingG will be called theminimal-violation
partition of P with respect to{P̃i}

N
P̃

i=1. Refer to Figure1 for
an example.

This measure enables the detection of the ‘closest’ neigh-
boring regions and respective controllers in the on-line
controller evaluation without the need to additionally solve
on-line optimization problems, cf. SectionIV.

This leads to the following overall post-processing Algo-
rithm III.3:

Algorithm III.3 (Safe region elimination)

INPUT fPWA(x, u), µRH(x), V (x), XT , {Pi}
NP

i=1

OUTPUT µ̃RH(x), {Pi}Ĩ

Iremove← ∅, Ikeep← {1, . . . , NP}

FOR EACH iremove∈ {1, . . . , NP}
FOR EACH j ∈ Iremove∪ iremove

(a) Compute the minimal-violation partition{Gj
k}

N
Gj

k=1

and corresponding closest index set{ljk}
N

Gj

k=1 for
regionj with respect toIkeep\ iremove

(b) Check for allk = 1, . . . , NGj if the control law
of the closest regionljk is valid for all x ∈ Gj

k, i.e.

µlj
k

(x) := KT,lj
k

x + LT,lj
k

∈ U, (11a)

fPWA(x, µlj
k

(x)) ∈ XT , (11b)

V (fPWA(x, µlj
k

(x))) − V (x) ≤ −β(‖x‖) (11c)

IF all in (b) arevalid THEN
Ikeep ← Ikeep\ iremove

Iremove ← Iremove∪ iremove

END
END

END

µ̃RH(x) := KT,i x + LT,i, if x ∈ Pi, and i ∈ Ikeep

Note that the test in (11) can be solved by simple feasi-
bility LPs. Moreover, the minimal-violation partition in step
(a) only needs to be recomputed if the region to be removed
is contained in the index set{lj−1

k }
N

Gj−1

k=1 . Additionally,
various heuristics to speed up and enhance the algorithm
can be applied such as, for example, the consideration of
only the regions in the outerFOR-loop which are likely
to pass the test in (b) (i.e. for example regions with a
small Chebyshev radius, a small volume, or a large number
of facets) or to modify the strict iterative behavior of the
algorithm by applying and testing the innerFOR-loop on
batches of regions at once.

Furthermore, we point out that the algorithm operates in
a greedy fashion and therefore does not necessarily remove
the maximal number of regions. An optional procedure is
certainly possible by the addition of a backtracking procedure
in order to find the optimal removal order, although this is
unlikely to be computationally feasible in practice.



B. Additional Performance Constraint

As mentioned before, if the Lyapunov decay rateβ(·) in
inequality (11c) of Algorithm III.3 is chosen to be close
to the zero-function, i.e. for exampleV (fCL(x)) − V (x) ≤
−β‖x‖∞ with 0 < β � 1, one guarantees an asymptotically
stabilizing closed-loop system.

However, with the choice ofβ(·) a detuning of theclosed-
loop performance

∑∞
t=0 `(x(t), u(t)), with some control law

u(t) = µ̃(x(t)), compared to the optimal RHC solution
µRH(·) can be performed. Thus one can, for example,
try to remove ‘small’ regions without losing closed-loop
stability, all time feasibility, while still guaranteeinga given,
bounded performance decay ofη %. How β(·) in step 3(c)
of Algorithm III.3 needs to be modified is elaborated in the
following.

Theorem III.4 (Performance bound, [6]). Let V (·) be a
Lyapunov function for the closed-loop systemx(t + 1) =
f(x(t), µ(x(t))), x ∈ X , under the stabilizing control
u(t) = µ(x(t)) ∈ U and let the prerequisites of Theorem
III.1 be fulfilled. Furthermore, let̀ (x, u) be a K-class
function determining the stage cost. Then every control law
u(t) = µ̃(x(t)) with x(t) ∈ X (alsoanysequence of control
samplesu(t)) fulfilling

µ̃(x) ∈ U, (12a)

f(x, µ̃(x)) ∈ X , (12b)

V (f(x, µ̃(x))) − V (x) ≤ −β`(x, µ̃(x)), (12c)

for all x ∈ X with β > 0, stabilizes the closed-loop system
and guarantees a level ofclosed-loop performancegiven by

∑∞
t=0 `(x(t), µ̃(x(t))) ≤ 1

β V (x(0)). (13)
�

Proof. See [6, Ch. 10]. �

We remark, that from (13) it follows that theperformance
decayη [in %] with respect toV (x(0)) is related toβ > 0

via β(η) =
(
1 + η [in %]

100

)−1

.

In the case that theconstrained infinite time optimal
control (CITOC) problem [6] for PWA systems is solved,
i.e. (roughly speaking) considering the CFTOC problem (2)
with T → ∞, one obtainsthe optimal solutionµ∗

∞(·) with
corresponding value functionJ∗

∞(·). It was proved in [6] that
J∗
∞(·) is a Lyapunov function for the closed-loop system.

Corollary III.5 (Performance bound). Assume V (·) =
J∗
∞(·). Then every control lawu(t) = µ̃(x(t)) with x(t) ∈
X (alsoany sequence of control samplesu(t)) fulfilling the
conditions of TheoremIII.4 guarantees

J∗
∞(x(0)) ≤

∞∑

t=0

`(x(t), µ̃(x(t))) ≤
1

β
J∗
∞(x(0)), (14)

and0 < β ≤ 1. �

Proof. See [6, Ch. 10]. �

IV. ON-LINE CONTROL EVALUATION

As mentioned above, in an on-line application the control
actionu(t) = µ̃RH(x(t)) ∈ R

nu is defined by

µ̃RH(x(t)) := KT,ix(t) + LT,i, if x(t) ∈ Pi,

wherei ∈ Ikeep.

In order to evaluate the control actionu(t) one needs to
identify the state space regionPi, at the sampling instance
t, in which the measured statex(t) lies. In the case thatx(t)
is in one of the ‘small’ state space regionsPj , j ∈ Iremoved,
that were safely removed during the post-processing step
(Algorithm III.3), the control law of the ‘closest’ neighboring
non-removed region is evaluated atx(t), as outlined in the
following algorithm.

Algorithm IV.1 (Control evaluation)

1. Measure the statex(t) at time instancet
2. IF x(t) ∈ XT THEN

i? = argmin
i

{αi}i∈Ĩ
, where (15a)

αi := max P x
i x(t)− P 0

i , ∀ i ∈ Ikeep (15b)

IF |i?| ≥ 1 THEN pick one elementi?

ELSE
problem is infeasibleSTOP

END
3. Apply u(t) = KT,i?x(t) + LT,i? to the system

Note that Definition (15) of ‘closest’ neighboring region
is in accordance to DefinitionIII.2 and allows a very simple
on-line search operation where an additional on-line opti-
mization is not required. Moreover, ifx(t) ∈ Pi? for some
i? ∈ Ikeep then the constraint violationαi? will be non-
positive and thus the iteration in (15b) can be prematurely
interrupted, while guaranteeing that regioni? will be chosen
correctly.

V. NUMERICAL EXAMPLE

Consider the ‘Car on a PWA Hill’ example described in detail
in [6, Part II], in which a frictionless car with massm = 1 is
moving horizontally on a piecewise affine ‘environment’, cf.
Figure2. The goal of the car is to climb to the top of a steep
hill and then to maintain its position at the top (the origin),
without falling from the piecewise affine environment.

The discrete-time model is given by the following con-
strained and discontinuous PWA system

x(t + 1) =

[
1 1/2

0 1

]
x(t) +

[
1/8

1/2

]
u(t) + a(x(t)),

where

a(x(t)) =





02, if [1 0]x(t) ∈ ©1 ,
− 1

4g sin(20 π
180 ) [ 1

2 ] , if [1 0]x(t) ∈ ©2 ,02, if [1 0]x(t) ∈ ©3 ,
− 1

4g sin(−5 π
180 ) [ 1

2 ] , if [1 0]x(t) ∈ ©4 ,



g

mg
−mg sin(αi)

m

mu = F

x1

−4 −3 −2 −1/2 0 1

αi

©1©2©3©4

Fig. 2: Frictionless car moving on a piecewise affine hill.

g is the gravitational constant, the first coordinate ofx, i.e.
x1, is the horizontal position of the car, and the second,x2,
is its horizontal velocity. Moreover, the control action (i.e.
forceF = mu acting on the car) is constrained by|u(t)| ≤ 2
and|u(t+1)−u(t)| ≤ 40 which prohibits the car to directly
climbing up the steep hill inx1 ∈ [−2, − 1

2 ].

The CFTOC ProblemII.3 was solved forp = 1, T = 9,
Q = diag([100, 1]′), andR = 5. ‖Px‖1 with P ∈ R

2×2

and X f were obtained with the algorithm described in
[6, Ch. 8] in order to guarantee closed-loop stability. The
optimal closed-form RHC solutionu(t) = µRH(x(t)) was
computed using the Multi-Parametric Toolbox (MPT) [26]
for MATLAB R© and comprisesNP = 2083 polyhedral state
space regions.

The distribution of the Chebyshev radius, i.e. the ‘small-
ness’, of the regions of the optimal solution is depicted in
the histogram in Figure3. Note that more than 91 % of all
regions in the partition have a Chebyshev radius of 0.05 or
smaller.

Using the proposed AlgorithmIII.3, it was possible to
remove 1061 of 2083 regions safely, which constitutes a
significant reduction of 50%. While further simplification
is possible, the computation was terminated after 16 hours,
which is roughly twice the time required to compute the op-
timal controller. Note that no significant effort was invested
in implementing the algorithm in an efficient manner and as
such it is expected that a large reduction in the computation
time is possible through the use of various heuristics and
the combination with other post-processing simplification
methods available in the literature.
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