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Abstract—We consider the class of piecewise affine optimal
state feedback control laws applied to discrete-time piegése
affine systems, motivated by recent work on the computation
of closed-form MPC controllers. The storage demand and
complexity of these optimal closed-form solutions limit tleir
applicability in most real-life situations. In this paper we present
a novel algorithm to a posteriori reduce the storage demand

strategies12], [6] are required to achieve fast sampling rates
and/or, secondly, in order to cope with the limited storage
and memory of most control devices, a reduction of the
complexity (i.e. mainly the number of defining state space
regions of the controller) or approximation of the optimal
control lookup table is essential.

and complexity of the closed-form controller without losing
closed-loop stability or all time feasibility while guaranteeing a
bounded performance decay compared to the optimal solutian
The algorithm combines simple polyhedral manipulations wih
(multi-parametric) linear programming and the effectiveness of
the algorithm is demonstrated on a large numerical example.

Several authors recently addressed the complexity re-
duction or approximation issue by either modifying the
original CFTOC problem, retrieving a suboptimal solution
of the CFTOC problem, or by post-processing the computed
optimal controller, cf. e.g.13], [14], [15]. However, a direct

Keywords—eonstrained systems, discrete-time systems, piece- guarantee on the reduction of the complexity, closed-loop
wise affine systems, receding horizon control, MPC, closefdrm  stability, or performance decay is mostly neglected.

solution, lookup table, multi-parametric programming, optimal

control, complexity reduction, approximation. In this paper we present a novel algorithm to a posteriori

reduce the storage demand and complexity of the closed-
form control lookup table without losing closed-loop sta-
bility or all time feasibility while guaranteeing a bounded
This work is motivated by the recent developments in thgerformance decay compared to the optimal solution. The
field of controller synthesis for hybrid system$,[[2], [3], algorithm combines simple polyhedral manipulations with
[4], [5], [6]. A significant amount of the research in this field(multi-parametric) linear programming and the effectioss
has focused on solving constrained optimal control probjemof the algorithm is demonstrated on a large numerical exam-
both for continuous-time and discrete-time hybrid systemsple.

I. INTRODUCTION

We consider the class of constrained discrete-fpisee-
wise affingPWA) systems 3] that are obtained by partition-
ing the extended state-input space into polyhedral regions

and associating with each region a different affine state . ) )
update equation. As shown if][ the class of piecewise Piecewise affing(PWA) systems are equivalent to many

affine systems is of rather general nature and equivaleRiher nybrid system classe8][[7] such as mixed logical
to many other hybrid system formalisms reported in thdynamical systemslp], linear complementary systems]{
literature. and max-min-plus-scaling systents/] and thus form a very

general class of linear hybrid systems.

II. CONSTRAINED FINITE TIME OPTIMAL CONTROL OF
PIECEWISE AFFINE SYSTEMS

For piecewise affine systems tlenstrained finite time . ) . . )
optimal control(CFTOC) problem can be solved by means of We consider the class of discrete-time, stabilizable aline
multi-parametric programming], [6], [8] and the resulting hybrid systems that can be described as constrained PWA
closed-form solution is a time-varying PWA state feedbacRYStéms of the following form
control law. If the solution to the CFTOC problem is used
. . . L t+1) = t t
in a receding horizon contro(RHC) (or model predictive 2t +1) = fown(@(?), u(t)
control (MPC)) [9], [10] strategy then the time-varying PWA = Agx(t) + Bau(t) + aq, |if Hgm € Dy, (1)
state feedback control law becomes time-invariant and can
serve as a control ‘lookup table’ on-line, thus enabling RH@vhere ¢ > 0, the domainD := ufivled of fpwa(+,*)
to be used for fast sampled systems. is a non-empty compact set iR"=T"« with Np < oo

However, due to the combinatorial nature of the considerdl® number of system dynamics, a@@d}ffjl denotes a
problem the number of state space regions over which tR@lyhedral partition of the domai®, i.e. the cIoOsure of
control lookup table is defined grows in the worst case expd2d 'S Pa. {[i] € Rm=*m | Do+ Djju < Dy} and
nentially [4], [11]. Therefore, firstly, efficient on-line search 1t(Pa) Nint(D;) = 0 for all d # ;.
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Remark Il.1 (Constraints). Note that linear state con- where |||, with p € {1,000} denotes the standard vector

straints ¢(¢) € X C R™+) and input constrainta(t) € U C
R"«) of the general formC%z + C¥u < CY are naturally
incorporated in the description @,.

The following is assumed throughout this work

Assumption 11.2 (Equilibrium at the origin). The origin

in the extended state-input space is an equilibrium point

of the PWA system %), i.e. 0,,4n, € D and0,, =
fPWA(OnIaOnu)i where0,, := [O 0... O]I € R"”.

The above assumption does not limit the scope of th

1-/oo-norm [1§], [6], and

Problem 1.4 (Constr. LTI system, quadratic cost).

Fowa(z(t), u(t)) := Az(t) + Bu(t), if [jjgg} €D, (4a)
Lz(t),u(t)) :== 2(t) Qu(t) + u(t) Ru(t), (4b)
Lr(z(T)) := (T) Px(T). (4c)

In both CFTOC Probleml.3 and 1.4 the solution is a
time-varying PWA state feedback control law defined over a
Bolyhedral partition, which is stated in the following them

work, i.e. the presented results also hold for any non-zeﬁpd proved in e.g.1d, [4].

equilibrium point.

Theorem I1.5 (Solution to CFTOC). The solution to the

The flexibility of this modeling framework and the recentOPtimal control problemZg—(2b), restricted to Probleri.3
technological advances in the fields of optimization and-cor?" !-4, is a time-varying PWA function of the initial state
trol theory have lead to a considerable interest in acadenita0)
and. |ndu.stry in PWA systems; not to mention that many ppwa(z(0),8) = Kp_y i 2(0) + Ly_es,  if 2(0) € P;
engineering systems naturally express themselves or can be

approximated nicely by PWA systems.

A. Constrained Finite Time Optimal Control

We define for the aforementioned PWA systed) the
constrained finite time optimal contr¢CFTOC) problem

J7(2(0)) :=min Jr(x(0), Ur) (2a)
w{ e e
where
T-1
Jr(x(0),Ur) := Lp(z(T)) + Y L(x(t),u(t)  (2c)

t=0

is the cost function £(-, -) the stage costlr(+) the final
penalty function Ur is the optimization variabledefined
as the input sequendér, := {u(t)}tT;Ol, T < oo is the
prediction horizonand X/ is a compacterminal target set

with u*(t) = ppwa(z(0),t), wheret = 0,...,7 — 1, and
{731-}1.]\2’1 is a polyhedral partition of the set of feasible states
z(0), Xr = UNAP;, with the closure ofP; given by P; =
{x € R"= | PPz < P?}. ]

In the case that eeceding horizorfRH) control policy or a
model predictive controllefMPC) [9], [10] is used in closed-
loop, the control is given as a time-invariant state feedlbac
control law of the form

/LRH(CC(t)) =K, x(t) + L, if .”L'(t) € P,
wherei =1, ..., Np andu(t) = pru(z(t)) for t > 0.

Definition 11.6 (Feasibility for all time). A CFTOC prob-
lem is calledfeasible at time if there exists a control action
at timet for the measured state, =: 2:(0), which satisfies
the state and input constraints over the considered predict
horizonT. A RHC problem is calledeasible for all timeif

it is feasible for allt > 0. O

(5)

in R+, With a slight abuse of notation, when the CFTOCAssumption 1.7 (Stability, feasibility). Note that in the
problem @a—(2b) has multiple solutions, i.e. when thefollowing it is assumed that the parametef$Q), R, P,

optimizer is not uniquel/;(z(0)) := {u*(¢) tT;Ol denotes

and X/ are chosen in such a way thd) (is closed-loop

one (arbitrarily chosen) realization from the set of padssib stabilizing, feasible for all time and that a polyhedral PWA

optimizers.

The CFTOC problem2a—(2b) implicitly defines the set
of feasible initial statestr C R"= (x(0) € Xr) and the set

of feasible inputd/r_; C R™ (u(t) € Up_,t =0,...,T—

1). In the context of this paper, the goal in this section is to

give an explicit (closed-form) expression fof(t) : Xy —
Ur_¢, t=0,...,T —1.

Lyapunov function 20], [2]] of the form

V(z) =Viz+ V2, if xeP,
wherei =1, ..., Np, for the closed-loop system
2(t+1) = [ (x(t) == fewa(z(t), pru(z(1)),  (6)
x(t) € Xp, exists and is given. O

Consider the two following restrictions to the CFTOCtis is ysually not a restricting requirement but rather the

problem
Problem 11.3 (PWA system, 1-bo-norm based cost).

(1), u(t) = |Qz(t)[lp + [ Ru®)]p, (3a)
tr(x(T)) = [|[Px(T) [, (3b)

aim of most (if not all) control strategies. Furthermore, we
remark that if the parameters are chosen according to e.g.
[9], [22), or [6] one can simply takd/ (+) = J&.(+).

In the course of this paper our focus lies on the reduction
of the complexity of the closed-form control laygrn(+)



without losing closed-loop stability nor feasibility fordla that the impact ofsmall’ regions (i.e. regions with either
time. a small Chebyshev radiu9], small volume, or small
Lyapunov decayA V') havein practicelittle influence on the
I1l. COMPLEXITY REDUCTION closed-loop stability and performance of the overall syste
when perturbing or approximating the control law inside of
As the system dimension, and control dimensiom., are  these regions. Other factors reducing the importance ollsma
fixed, the storage demand (or complexity) of a closed-forfegions are for example: due to real measurement noise it is
control law ©) is influenced solely by the defining polyhedralypjikely that the measured state lies in or enters such msgio
partition, i.e. the numbeN7 of defining state space polyhe- anq, furthermore, these regions tend to often occur in areas
dral regionsP; and the number of their respective fac&@8|[  of the state space away from a neighborhood around the

Unfortunately, depending on the structure and paramefers gyyilibrium point and thus the time that the system trajscto
the underlying system and optimization problem, one of th@pends’ in these areas is minimal.

main drawbacks with optimal closed-form control laus )

is the possible worst case exponential ‘explosiafj; [1]]

in the number of regionéVp. But even in an average case
the numbeV, tends to be very large and above the storag
limit of most control devices. Therefore, it is often essant
for a real-life implementation of the closed-form solution
to find an appropriate approximation of the controller or e£21]'

controller with reduced complexity. Theorem l1Il.1 (Asymptotic/exponential stability). Let

As mentioned in the introduction, several authors recentifr be @ bounded positively invariant set &'+ for the
addressed the issue of complexity reduction or approxamati 2utonomous (closed-loop) syster6) @and leta(-), a(-),
by either modifying the original CFTOC problem, retrieving@"d (+) be K-class functions 70]. If there exists a
a suboptimal solution of the CFTOC problem, or by postlon-negative functiod” : Xr — Rxo with V/(0,,) = 0
processing the computed optimal controller. The authors #Hch that
[14], [24], for example, aim at computing a minimal polyhe-

In order to present Algorithril.3 for the safe elimination
of regions the two core ideas behind the algorithm need to
Qe explained. The first idea is based on the inherent freedom
of the Lyapunov decay inequality7€) of Theoremlll.1,
repeated for completeness in the following and proved in

dral representation of the original controller partitioroirder V(@) 2 a(ll«l), (7a)
to reduce storage complexity. However, the computation is V(x) <a(|z]), (7b)
‘practically’ limited to a small number of regions with a AV (z) := V(f(z)) — V(z) < =3(||z|), (7c)

small number of facets, since the computation time grows

exponentially. A different proposal is given ihd], where the wherex € X, then the following results holds:
original CFTOC problem (for constrained linear systems) is
modified a priori by relaxing the underlying multi-paranmetr (
program in order to find an approximate, hopefully simpler,
solution.

a) The equilibrium pointD,,, is asymptotically stabl¢20]
in the Lyapunov sense iA’r.

(b) If a(llz]) = allz|7, @(l|zl]) = allz|7, andB(||])) :=

bl|z||” for some positive constants a,b,y > 0 then

However, most proposals in the literature lack a guarantee the equilibrium point0,,, is exponentially stablg20]
on the reduction of the complexity, closed-loop stabildy, in the Lyapunov sense iAr. -

maximal performance decay.

The here proposed post-processing strategy aims at a>mPly speaking, if all the prerequisites of Theoréirl
direct reduction of the controller complexity by a ‘safe’are fulfilled with a given controlleri(+), the resulting
elimination (i.e. removal) of ‘small’ regions, whereby st- bghawor of the close_d—loop system is stabilizing. If, foet
loop stability and all time feasibility is not lost and a balea ~ 9iven Lyapunov functio/(-), 5(+) is now relaxed, one can
performance decay (compared to the optimal solution) cdRossibly) find as_e_t _of controllers_ that will render the elds
be guaranteed. The resulting controller partition will dav |00P System stabilizing and feasible. (Note, that setfifg)
‘holes’ in the feasible state spacer. Then in the on-line closg.to the zero-function is sufficient for pure asymptotic
control procedure (SectiolV) a fast alternative strategy is Stability.)
implemented for the case that the measured state lies in aFor the considered class of PWA systems, PWA control
safely eliminated region. This leads to a direct reductiofaws, and PWA Lyapunov functions with(-) consisting of
of the storage requirements and on-line computation of thesum of weighted vectar-/co-norms, the Lyapunov decay
approximate controller. inequality (7¢) describes a collection of polytopic sets. This

The algorithm and derivation is detailed in the following.enables a stability test for altered PWA control laws with

simple feasibility LPs. Thus the idea, originally motivete
A. Safe Region Elimination by continuity arguments, is to test if a control functipte)

of a ‘close by state space area, evaluated at the local state
Simulations (and in the case of constrained linear systemstill fulfills the Lyapunov decay inequality7€) and thus
also continuity of the respective functions) seem to inica stabilizes the overall closed-loop system.



to z. In the followingG will be called theminimal-violation
partition of P with respect to{Pi}ij\;ﬁ. Refer to Figurel for
an example.

This measure enables the detection of the ‘closest’ neigh-
boring regions and respective controllers in the on-line
controller evaluation without the need to additionallyvsol
on-line optimization problems, cf. Sectidw .

This leads to the following overall post-processing Algo-
rithm 111.3:

Fig. 1: Example of a minimal-violation partitior![gj};*:1 of P in R"= ) ) o
with respect to{ ; }_, . The corresponding index functidtiz) is indicated Algorithm 111.3 (Safe region elimination)

by the corresponding coloring of the regions. N
INPUT  fewa(z,u), pru(2), V (), X, {Pi}; 5
OUTPUT firH(z), {Pi}z
This leads to the second idea which is based on a new, . ¢ Tweep— {1,..., Np}
distance concept callethinimal-violation distancedefined

: : FOR EACH i L,...,N
in the following. iremove € {1,..., Np}

FOR EACH j € ZremoveU “remove

Definition 111.2 (Minimgl—violatloanistance).NLet the col- (a) Compute the minimal-violation partitiofg; kNji
lection P be the setP := {P;},7} whereP; = {z €
R"= | Prz < PO} are full-dimensional polyhedtan R"-.
The minimal-violation distancelyy of x to P is given by

and corresponding closest index SEé,i}]ij{ for
regionj with respect taZieep \ remove

(b) Check for allk =1, ..., Ng; if the control law

dwv (z, P) := Iniin {af (z)}4, where (8a) of the closest regiow, is valid for all z € G/, i.e.
af(x) = min {a; €R | Pfo < P +a;1}, (8b) py (x) = Kp e+ Ly €0, (11a)
foralli=1,...,Nzandl:=[11 ... 1]. m fewa(, pyy (7)) € Xr, (11b)
. . J _ < —
If = € P, where P is some polytope, one obtains V(fewalz, py (2))) = V() < =B(|l2]) (11c)
that dwv (+,P) is a (possibly non-convex) polyhedral PWA IF all in (b) arevalid THEN
function of the form Tieep Zieep\ fremove
~ - 0 . 7, — 7 Ui
dMV (I, P) — dJZC _"_ d], If = gj7 (9) ENIDI'emOVQ remove remove
wheregG = {gj};vjl is a polyhedral partition of°. (Note, END

that Ng can be large, however, the partitighis only used = END

during the post-processing step and has no influence on thgry(z) :== Kr ;2 + Ly, if z€P;, and i € Zkeep
on-line controller evaluation, cf. Algorithril.3 andIV.1.)

The PWA function §) can be obtained by, for example, first

solving the single multi-parametric linear progradj [

Note that the test in1(1) can be solved by simple feasi-
min vajl a; (10a) bility LPs. Moreover, the minimal-violation partition irte
subj. to 75556 < 75? +oil, Vi=1,..., N3, (10b) (a) only needs to be recomputeql if tr}Ve _region to be removed
ceP (100) is contained in the index sefl/ '}, % '. Additionally,

‘ various heuristics to speed up and enhance the algorithm
Within each critical region4] of (10), the functionsa?(z) can be applied such as, for example, the consideration of
are affine, rather than piecewise affine. It is thereforegtita  only the regions in the outefFOR-loop which are likely
forward to computelyy (z, P) = min;{a (z)}; within each to pass the test in (b) (i.e. for example regions with a
critical region by determining the irredundant inequadti Small Chebyshev radius, a small volume, or a large number
[23] of the convex polytope(d, =) | d < o (x), Vi}. of facets) or to modify the strict iterative behavior of the
algorithm by applying and testing the innEOR-loop on
batches of regions at once.

l(z) :={ie{l,....Np} | dwv (2, P) = aj ()}, Furthermore, we point out that the algorithm operates in
a greedy fashion and therefore does not necessarily remove
the maximal number of regions. An optional procedure is
certainly possible by the addition of a backtracking praged

l\Wwe assume tha?ixx(t) < }520 is in the Hessian normal form, i.e. each in Order to f|nd the Optlmal remOVaI Ol‘der, although th|S iS
row [P¥], of P is normalized with||[P¥], 2 = 1. unlikely to be computationally feasible in practice.

The ‘closest’ index function

z € P, is constant for all points: € G; and indicates the
index of P; which is ‘closest(i.e. has the smallest violation)



B. Additional Performance Constraint IV. ON-LINE CONTROL EVALUATION

As mentioned before, if the Lyapunov decay ratg) in  AS mentioned above, in an on-line application the control
inequality (L1c) of Algorithm 111.3 is chosen to be close actionu(t) = pru(z(t)) € R is defined by

to the zero-function, i.e. for examplé(fCt(x)) — V(x) < firn(z(t)) == Kraa(t) + Lra, i a(t) € P;

— Bz~ With 0 < 8 < 1, one guarantees an asymptotically

stabilizing closed-loop system. wherei € Tieep

However, with th%OChO'Ce of(+) a detuning of thelosed- |y orer to evaluate the control actiarit) one needs to
loop performance_,—, £(z(t), u(t)), with some control law jqentity the state space regidh;, at the sampling instance
u(t) = p(z(t)), compared to the optimal RHC solution; i which the measured staté?) lies. In the case that(t)
pri(+) can be performed. Thus one can, for examplgs i one of the ‘small’ state space regioRs, j € Zremoved
try to remove ‘small’ regions without losing closed-loopih4t were safely removed during the po'st—processing step

stability, all time feasibility, while still guaranteeirggiven, (ajgorithm 111.3), the control law of the ‘closest’ neighboring
bounded performance decay 9f. How ((-) in step 3(C) non.removed region is evaluated &), as outlined in the
of Algorithm I11.3 needs to be modified is elaborated in thefollowing algorithm.

following.

Theorem Ill.4 (Performance bound, [6]). Let V(-) be a
Lyapunov function for the closed-loop systen(t + 1) =
f(z(), p(z(t))), = € X, under the stabilizing control

Algorithm V.1 (Control evaluation)

1. Measure the state(t) at time instance
2. IF z(t) € Xr THEN

u(t) = p(x(t)) € U and let the prerequisites of Theorem i* =argmin {o;},.37, where (15a)
1.1 be fulfiled. Furthermore, let/(x,u) be a K-class i .
function determining the stage cost. Then every control law o; i=max Pfa(t) — P, Vi€ Leep (15b)
u(t) = p(x(t)) Wi_th x(t) € X (alsoanysequence of control IF |i*] > 1 THEN pick one element*
samplesu(t)) fulfilling ELSE

i(z) €U, (12a) problem is infeasiblesToP

END
; (12b) 3. Apply u(t) = Kr1j:2(t) + L.+ to the system
V(f(z, () = V(z) < =Bz, a(x)), (12c)

fordall x € X with f > ? [S(’)tabci;iTES the (;Iosed-loc_)p System Note that Definition {5) of ‘closest’ neighboring region
and guarantees a level olosed-loop performancgiven by ¢ iy 4ccordance to Definitiohil.2 and allows a very simple
0o ~ on-line search operation where an additional on-line opti-
1)) <41 : 13 M . .
2= Hx(®), il(z(}))) < 5V (2 (0) (13) mization is not required. Moreover, if(t) € P;- for some
i* € ZIieep then the constraint violatiom;~ will be non-
Proof. See B, Ch. 10]. B positive and thus the iteration irl%b) can be prematurely

We remark, that fromi(3) it follows that theperformance interrupted, while guaranteeing that regidrwill be chosen
decayr [in %] with respect toV/ ((0)) is related tog > 0 correctly.

O

via 3(n) = (1 + %) : V. NUMERICAL EXAMPLE
In the case that theconstrained infinite time optimal
control (CITOC) problem §] for PWA systems is solved,
i.e. (roughly speaking) considering the CFTOC problén (
with 7' — oo, one obtainghe optimal solutiong’_(+) with
corresponding value functioff, (). It was proved in§] that
J% (+) is a Lyapunov function for the closed-loop system.

Consider the ‘Car on a PWA Hill' example described in detail
in [6, Part 1], in which a frictionless car with mass = 1 is
moving horizontally on a piecewise affine ‘environment’, cf
Figure2. The goal of the car is to climb to the top of a steep
hill and then to maintain its position at the top (the origin)
without falling from the piecewise affine environment.
Corollary 111.5 (Performance bound). Assume V(:) =
JZ (+). Then every control law(t) = p(xz(t)) with z(t) €
X (alsoany sequence of control sample$t)) fulfilling the

The discrete-time model is given by the following con-
strained and discontinuous PWA system

conditions of Theorentll.4 guarantees z(t+1) = [(1) lﬂ x(t) + Fﬂ u(t) + a(z(t))
1/9 ’
T @(0) £ 3 ta®).fe(0) < 3T (a(0). (14) Vhere |
P 02, it [10x(t) € D,
—1gsin(20-=) 1 i T
and0 < < 1. o alen) =1 o Paillal H 8&8 : %Z
Proof. See B, Ch. 10]. ] —2gsin(-5:%5) 3], if [10]z(t) € @,



T 1

| |

T T
,1/2 0 1
|

1

— @ —= @ 1 ©

@ —

Fig. 2: Frictionless car moving on a piecewise affine hill.

g is the gravitational constant, the first coordinatexofi.e.
x1, is the horizontal position of the car, and the secand,
is its horizontal velocity. Moreover, the control actione(i
force F = mu acting on the car) is constrained hy(t)| < 2

and|u(t+1) —u(t)| < 40 which prohibits the car to directly

climbing up the steep hill iy € [-2, —1].

The CFTOC Problenil.3 was solved fopp =1, T = 9,
Q = diag([100, 1]’), and R = 5. || Pz||; with P € R?*2

and X/ were obtained with the algorithm described in
[6, Ch. 8] in order to guarantee closed-loop stability. The

optimal closed-form RHC solutiom(t) = urn(x(t)) was
computed using the Multi-Parametric Toolbox (MPD[

for MATLAB® and comprisesVp = 2083 polyhedral state

space regions.

(3]

(4]

(5]

(6]

(7]

(8]

9
The distribution of the Chebyshev radius, i.e. the ‘small—[ ]
ness’, of the regions of the optimal solution is depicted in

the histogram in Figur@. Note that more than 91 % of all 10

regions in the partition have a Chebyshev radius of 0.05 ¢ry)

smaller.

Using the proposed Algorithnill.3, it was possible to [12]
remove 1061 of 2083 regions safely, which constitutes a
significant reduction of 50%. While further simplification ;3
is possible, the computation was terminated after 16 hours,

which is roughly twice the time required to compute the op-
timal controller. Note that no significant effort was invexbt

[14]

in implementing the algorithm in an efficient manner and as

such it is expected that a large reduction in the computati
time is possible through the use of various heuristics a

i

the combination with other post-processing simplification

methods available in the literature.
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