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Abstract— A standard model predictive controller (MPC)
can be written as a parametric optimization problem whose
solution is a piecewise affine (PWA) map from the measured
state to the optimal control input. The primary limitation
of this optimal ‘explicit solution’ is that the complexity can
grow quickly with problem size, and so in this paper we seek
to compute approximate explicit control laws that can trade-
off complexity for approximation error. This computation is
accomplished in a two-phase process: First, inner and outer
polyhedral approximations of the the convex cost function of the
parametric problem are computed with an algorithm based on
an extension to the classic double-description method; a convex
hull approach. The proposed method has two main advantages
from a control point of view: it is an incremental approach,
meaning that an approximation of any specified complexity can
be produced and it operates on implicitly-defined convex sets,
meaning that the optimal solution of the parametric problem
is not required. In the second phase of the algorithm, a feasible
approximate control law is computed that has the cost function
derived in the first phase. For this purpose, a new interpolation
method is introduced based on recent work on barycentric
interpolation. The resulting control law is continuous, although
non-linear and defined over a non-simplical polytopic partition
of the state space. The non-simplical nature of the partition
generates significantly simpler approximate control laws than
current competing methods, as demonstrated on computational
examples.

I. INTRODUCTION

Implementing a model predictive controller (MPC) gen-
erally requires the solution of an optimization problem on–
line at each sampling instant. In recent years, it has become
well-known that this optimization problem can be posed
parametrically, with the measured state as the parameter.
For the case of linear systems subject to linear constraints
with the goal of minimizing a polytopic norm, the result is
a (multi)parametric linear program (pLP)

J�(x) := min
{

gT u |Gu ≤ Ex+w
}

, (1)

where x is the state, u is the control input and appropriate
slack variables and the cost function J � is a convex piecewise
affine function (PWA). Solving this parametric problem off–
line results in a PWA function u�(x) mapping the measured
state to the optimal system input [1]–[3]. If this PWA
function is available, the on–line calculation of the control
input then becomes one of evaluating u�(x) at the current
measured state x, which can decrease the required online
computation time by orders of magnitude for some systems.
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The primary limitation of this approach is the complexity
of the PWA control law (i.e. the number of ‘pieces’), which
can grow quickly with problem size. In this paper, we
propose a new algorithm for computing inner and outer
polyhedral approximations of arbitrary convex sets, which
we then put to work approximating the epigraph of the
optimal cost function epi J�. The approach is based on the
well established double description method [4], [5], which
is an incremental algorithm for computing convex hulls. We
extend this method so that it can work on implicitly defined
convex bodies, such as the unknown cost function of a con-
vex parametric program (i.e. we compute the approximation
without first computing the optimal solution J �).

The incremental nature of the approach has a very useful
benefit from the explicit MPC point of view. Specifically, the
common reason for such an approximation is to generate a
control law that can be evaluated in a given amount of time,
or be stored in a given amount of space. Because the double
description algorithm is incremental, it can simply be run
until the complexity of the approximation has reached the
physical time or storage limits of the on–line computational
platform.

Several authors have proposed approximation algorithms
that can produce simpler PWA control laws at the cost
of optimality. These approaches operate in a two–stage
procedure: first the epigraph of the optimal cost function J � is
approximated with a simpler polyhedron J̃, which determines
the stability and performance properties of the approximate
controller and then second, a control law ũ is computed
such that gT ũ = J̃. However, generating such a feasible
control law ũ is not immediate. Existing proposals either
produce a triangulation and then interpolate the optimal
control law at the vertices [6], [7], have a post-processing
step in which an exact parametric program is calculated
based on the approximate cost [8], [9] or compute control
laws based on sub-divisions of hypercubes [10]. In all cases,
the requirement of computing a control law that can generate
the approximate cost places restrictions on the structure of
the cost approximation and generally causes a significant
increase in the achievable complexity.

In this paper, we introduce a new method of post-
processing an approximate polyhedral cost J̃ based on
barycentric interpolation, in order to compute a feasible
non–linear control law ũ so that gT ũ = J̃. This allows us
to derive a control law from any polyhedral approximate
cost. The main benefit of this is that we do not have to
restrict ourselves to considering approximation approaches
that generate triangulations, and hence can directly compute
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a control law ũ for the non–simplical regions produced by
the double–description algorithm, which we will see often
produces much simpler approximations.

The remainder of the paper is organized as follows.
Section II outlines the general problem of approximation for
convex and compact sets. Section III provides background
on the double description method and the following section
generalizes this so that it can operate on implicitly defined
convex sets based on two oracles that need to be specified
for the structure of the set in question and Section V then
defines these two oracles for the specific case of linear MPC.
Section V-A introduces barycentric interpolation, which al-
lows the computation of a control law from the approximate
cost and finally Section VI provides some computational
examples.

NOTATION

A polyhedron is the intersection of a finite number of
halfspaces and a polytope is a bounded polyhedron. If A is a
subset of R

d , then P(A) is the set {x | 〈a, x〉 ≤ 1, ∀a ∈ A},
which is a polyhedron if A is finite. If V is a subset of R

d ,
then the convex hull of V , conv(V ) is the intersection of all
convex sets containing V . If V = {v0, . . . ,vn} is a finite set,
then conv(V ) = {∑n

i=0 viλi |λi ≥ 0, ∑λi = 1}.
Let S and C be convex and compact sets, then the

Hausdorff distance ρ (S,C) is

ρ (S,C) := max

{
sup
x∈S

inf
y∈C

‖x− y‖2 , sup
y∈C

inf
x∈S

‖y− x‖2

}

II. PROBLEM STATEMENT AND PRELIMINARIES

Our goal is to find a polytope S that approximates to within
a given tolerance a convex and compact (closed and bounded)
set C ⊂ R

d .
Definition 1 (ε-approximation): Let C ⊂ R

d be a com-
pact and convex set that contains the origin and is full–
dimensional dimC = d. If ε is a strictly positive real number,
then the polytope S is called an ε-approximation of C if
ρ (S,C) ≤ ε , where ρ (·, ·) is the Hausdorff distance. S is
called an outer (inner) ε−approximation if C ⊆ S (S ⊆C).

The following theorem states that searching for a polytopic
approximation to a convex set is well-founded.

Theorem 1 ( [11], [12]): If C ⊂R
d is a convex and com-

pact set, then for every ε > 0, there exists a finitely generated
polytope S such that ρ (S,C) < ε .

The specific goal of this paper is to approximate the
convex sets that arise in the computation of explicit MPC
control laws. In this case a description of the convex set C,
the epigraph of the optimal cost function, is generally not
known explicitly, but rather only implicitly in terms of an
optimization problem. While it is possible in some cases to
generate an explicit representation of the set C, it is often
computationally prohibitive and we seek to avoid it here.
For this reason, we don’t assume that a description of the
set C is available, but only that we can evaluate its support
function, which is defined as

δ �(a | C) := sup{〈a, x〉 |x ∈C} .

In turn, the support function allows us to define two
optimization problems that will be required. First, given a
vector a defining a direction, we must be able to find an
extreme point that maximizes the linear function 〈a, x〉 over
the set C.

extr(a | C) ∈ {x ∈C | 〈a, x〉 = δ �(a | C)} (2)

Second, given a point x �∈ C, the function maxsep(x | C)
returns a vector a defining a hyperplane that maximally
separates x from C: 〈a, x〉 ≥ 1 and C ⊂ {x | 〈a, x〉 ≤ 1}.

maxsep(x | C) ∈ argmax{〈a, x〉− δ �(a | C) |‖a‖2 = 1}
(3)

The next section gives a generic overview of the classic
double description method as applied to polytopes. The
section following then generalizes the method using the
above two functions so that it can be used to compute
an ε−approximation of an implicitly defined convex and
compact set. The final section defines the functions maxsep
and extr for the specific case of linear MPC and gives some
computational examples.

III. CLASSIC DOUBLE DESCRIPTION METHOD

The Minkowski-Weyl theorem states that every polytope
can be represented either as a convex combination of a finite
number of points, or as the intersection of a finite number of
halfspaces. This naturally leads to the following definition.

Definition 2 ( [4], [5]): A pair (A,V ) of finite sets A,V ⊂
R

d is called a double description (DD) if the following
relationship holds:

x ∈ P(A) if and only if x ∈ conv(V )

The classic double description method takes as input a
description of a polytope in terms of a finite set A and
the goal is to compute all of the vertices of P(A ). This
is accomplished in an incremental fashion, beginning with
a small subset A ⊂ A for which the vertices V of P(A)
can be directly computed, i.e. so that (A,V ) is a DD-pair.
During each iteration the set A′ = A ∪ {a} is created by
adding one vector a∈A , or equivalently by intersecting the
polytope P(A) with the halfspace {x | 〈a, x〉 ≤ 1} and the set
of vertices V is updated so that (A′,V ′) remains a DD pair.
This procedure continues until all of A has been inserted,
at which point we have the DD pair (A ,V ) and the vertices
V of the polytope P(A ) have been enumerated.

The main operation of the algorithm is the updating of
the set of vertices V so that (A′,V ′) is a double description
pair, which can be accomplished by a direct application of
the following Lemma.

Lemma 1 (DD Lemma [4]): Let A,V ⊂ R
d be finite sets

such that (A,V ) is a DD pair and dimP(A) = d. Let a be a
vector in R

d and partition V into three sets

V + := {v | 〈a, v〉 < 1}
V = := {v | 〈a, v〉 = 1}
V− := {v | 〈a, v〉 > 1}



If A′ := A∪{a}, then the pair (A′,V ′) is a DD pair, where
V ′ = V+∪V=∪V new

V new :=

{
f (v+,v−)

∣∣∣∣∣ (v+,v−) ∈V+ ×V−,

v+ and v− are adjacent in P(A)

}
,

where

f (v+,v−) :=
(1−〈a, v−〉)v+ − (1−〈a, v+〉)v−

〈a, v+− v−〉 .

Furthermore, if V is a set of minimal extreme points for
P(A), then V ′ is minimal for P(A′).

With Lemma 1 in hand, we can now state the double
description method as shown in Algorithm 1.

Algorithm 1 Classic Double Description Method

Require: A finite set A := {a1, . . . ,aN} ⊂ R
d , such that

dimP(A ) = d
Ensure: A minimal set V ⊂ R

d , such that P(A ) = conv(V )
1: Obtain a DD pair ({ai | i ∈ K } ,V ), for some set K ⊂{1, . . . ,N}

such that V is minimal
2: while K �= {1, . . . ,N} do
3: Select any index j from {1, . . . ,N}\K
4: Construct a DD pair ({ai | i ∈ K ∪{ j}} ,V ′) using Lemma 1
5: K := K∪{ j}, V := V ′
6: end while

IV. IMPLICIT DOUBLE DESCRIPTION

Every convex and compact set C can be described as
the intersection of a possibly infinite set of halfspaces or
as the convex hull of a set of points [13, Thm. 11.5]; C =
P(A ) = conv(V ) for some sets A and V ⊂R

d . Computing
a polytopic outer ε−approximation can then be stated as
finding a finite subset A of A such that ρ (P(A) ,C) ≤ ε .
Equivalently, an inner approximation consists of a finite
subset V ⊆ V such that ρ (conv(V ) ,C) ≤ ε .

The ideal would be to determine a set A ⊂ A of minimal
cardinality. Computing such a set, however, is known to be
NP-hard even in the simplest case when C is a polytope
and the set A is finite and known [14]. Therefore, we here
adopt an heuristic and incremental approach based on the
double description algorithm which nonetheless has very
useful properties.

At a given stage of the proposed implicit DD algorithm,
two DD pairs (AO,VO) and (VI,AI) are maintained such that
conv(VI) is an inner ε̂−approximation of C and P(AO) an
outer for some ε̂ > ε . We proceed with the DD algorithm
as in the previous section, alternatingly improving either the
inner or the outer approximation in each iteration by adding
either a halfspace to the outer approximation P(AO) or a
vertex to the inner conv(VI). The next section demonstrates
how we choose an element of A such that the outer
approximation improves and the section following discusses
how we utilize the DD algorithm to likewise improve the
inner approximation.

A. Improvement of the Outer Approximation

Let us first assume that we are improving the outer
approximation, and hence our task is to choose a vector
a� ∈ A so that the approximation error decreases

ρ (C,P (AO ∪{a�})) ≤ ρ (C,P(AO)) .

The procedure that we will use is to first locate the vertex v�

of P(AO) that is a maximum distance from C and hence
is defining the current approximation error. We will then
remove this vertex from the approximation by computing
the halfspace a� that maximally separates v� from C.

The current approximation error ε̂ is given by the Haus-
dorff distance between P(AO) and C

ρ (C,P(AO)) = max
y∈P(AO)

min
x∈C

‖x− y‖2 , (4)

where we need only take the max over P(AO) and min over
C and not vice versa because C is a subset of P(AO). We
now seek to evaluate (4) in order to determine the point of
P(AO) that is farthest from C. However, by assumption we
cannot do direct computations on C, but can only evaluate
the support function, which leads us to the following well-
known lemma.

Lemma 2: If C ⊂ R
d is a convex, compact and full–

dimensional set containing the origin and S is a polytope
such that C ⊆ S, then

ρ (S,C)2 = max

{
〈a, v〉− δ �(a | C)

∣∣∣∣∣ v ∈ extr(S)
a = maxsep(v | C)

}
,

where extr(S) are the vertices of S.
Proof: The Hausdorff distance is given by ρ (C,S) =

max{J(y) |y ∈ S}, where J(y) := min{‖x− y‖2 |x ∈C}.
The function J(·) is convex and therefore the maximum
is obtained at an extreme point of S [13, Thm. 32.2];
ρ (C,S)= max{J(v) |v ∈ extr(S)}. For a given extreme point
v ∈ extr(S), the minimum distance J(v) is given by the
maxsep function (3).

Remark 1: Because the vertices VO are computed in an
incremental fashion, it is not necessary to evaluate maxsep
in Lemma 2 for each v in VO in each iteration, but only those
newly created in Lemma 1, V new.

With Lemma 2 and the DD pair (AO,VO) in hand, we can
now determine the set V � ⊂ VO of vertices that define the
current approximation error; i.e. ρ ({v} ,C) = ρ (P(AO) ,C)
for all v ∈ V �. We proceed to choose a vertex v� ∈ V � and
compute the halfspace P({a�}) that maximally separates v�

from C. The classic double description algorithm from the
previous section then provides a mechanism to compute V ′

O
so that (AO ∪{a�} ,V ′

O) is a DD pair.
1) Approximation of the Hausdorff Distance: From

Lemma 2 we see that evaluating the current approximation
error between P(AO) and C requires the evaluation of the
maxsep function up to |VO| times. In many cases, the
evaluation of maxsep is very expensive and so we wish to
avoid or reduce this if possible. In this section, we provide a
method of bounding the Hausdorff distance without making
any evaluations of the function maxsep.



We have available both an inner and an outer approxima-
tion of the set C, which together give us an upper bound on
the error between P(AO) and C:

ρ (P(AO) ,C) ≤ ρ (P(AO) ,conv(VI)) , (5)

which holds because conv(VI) ⊆C.
Since both the inner and outer approximations are avail-

able as the DD pairs (VI,AI) and (AO,VO) respectively, it is
relatively simple to compute the Hausdorff distance between
them1.

ρ (P(AO) ,conv(VI)) = max
v∈VO

min
x∈P(AI)

‖x− y‖2 (6)

Equation 6 requires the solution of one QP of size |AI| per
vertex of the outer approximation VO. In each iteration of
the algorithm, the majority of these QPs will not change
since the double description method modifies the inner and
outer approximations only locally. Those that do require
re-computation are exactly those that depend on the new
vertices V new created in Lemma 1.

B. Improvement of the Inner Approximation

All polytopes can be expressed either as the convex
combination of their vertices, or as the intersection of a finite
number of halfspaces. This duality has lead to a number of
algorithms that can operate on both representations equally
well, and the double description algorithm is one such.
The dual version is generally called the Beneath/Beyond
algorithm and takes as input a finite set of points and returns
the list of halfspaces representing the convex hull [15], [16].

Lemma 3 gives a useful and well-known result which
allows the double-description algorithm to be used to com-
pute an inequality description of a polytope as readily as it
computes a vertex representation.

Lemma 3 (e.g. [4]): The finite sets A,V ⊂R
d form a DD

pair (A,V ) if and only if (V,A) is a DD pair.
This basic duality result can be used in order to augment

the double description algorithm of the previous section,
which computes outer approximations, in order to calculate
an inner approximation by reversing the roles of vertices and
halfspaces in the approach. In other words, assume (AI,VI) is
a DD pair representing the polytope P(AI) = conv(VI) and
we wish to compute the set A′

I so that (A′
I ,VI ∪ {v}) is a

DD pair for some v. The double description Lemma 1 can
be used for this purpose by simply passing it the DD pair
(VI ∪{v} ,A′

I).
We can now make use of the double description mecha-

nism in order to iteratively construct an inner approximation
of the set by inserting one extreme point v� of C at a time.
The choice of the point v� to insert in each iteration of the
algorithm is made in an analogous fashion to the previous
section. Instead of computing the maximal separating halfs-
pace for each vertex v of VO, we compute the extreme point
v� of C that is a maximal distance from each hyperplane of
the inner approximation using the extr function.

1Private communication with S.V. Raković.

Remark 2: The approach presented here for computing
inner approximations is similar to that in [6] where we
proposed an implicit approach for polyhedral projection
based on the beneath/beyond procedure. We here extend
this method to the computation of simultaneous inner and
outer polytopic approximations for generic convex and com-
pact sets. This simultaneous inner/outer approximation also
provides the significant benefit of much simpler calculation
of the current approximation error, as was discussed in the
previous section.

The proposed method is shown as Algorithm 2. One can
see that each iteration involves one improvement of the outer
and one of the inner approximation (Lines 3 to 8 and 10 to 15

respectively). For the outer improvement, the algorithm first
approximates the Hausdorff distance between P(AO) and C
using (5) or (6) in order to select a vertex v ∈VO to ‘cut off’
from the polytope. It then computes the hyperplane a � that
maximally separates v from C on line 5, which also gives
the true distance between v and C as 〈a�, v〉−δ �(a� | C). If
this distance is larger than the desired approximation, then
the DD pair is updated to (AO ∪{a�} ,V ′

O) using Lemma 1.
These steps are then repeated on the inner approximation
DD pair (VI,AI) until the approximation error is below that
desired.

Algorithm 2 Implicit Double Description Method
Require: The functions maxsep and extr for some convex and

compact set C and a desired approximation error ε > 0.

Ensure: DD pairs (AO,VO) and (AI ,VI) such that conv(VI)⊆C ⊆
P(AO) and ρ (P(AO) ,conv(VI)) ≤ ε .

1: Obtain DD pairs (AO,VO) and (VI ,AI), such that conv(VI) ⊆
C ⊆ P(AO)

2: while ρ (P(AO) ,conv(VI)) ≥ ε do Equation 6

3: // Improve outer approximation
4: Compute v ∈VO farthest from P(AI) §IV-A.1
5: Separate v from C : a� := maxsep(v | C)
6: if ρ (v,C) > ε then
7: AO := AO ∪{a�}
8: Compute VO s.t. (AO,VO) is a DD pair Lemma 1
9: end if

10: // Improve inner approximation
11: Compute a ∈ AI farthest from conv(VO) §IV-A.1
12: Compute point v� beyond a : v� := extr(a | C)
13: if ρ (v�,conv(VI)) > ε then
14: VI := VI ∪{v�}
15: Compute AI s.t. (VI ,AI) is a DD pair Lemma 1
16: end if
17: end while

V. APPLICATION TO MODEL PREDICTIVE CONTROL

The recent interest in parametric programming in the
control community has arisen from the ability to pose certain
optimal control problems as parametric programs and thereby
pre–compute the optimal control law offline. In this paper,



we are specifically interested in the following standard semi-
infinite horizon optimal control problem for a linear time-
invariant system:

J�(x) = min
{u0,...,uN−1}

VN(xN)+
N−1

∑
i=0

l(xi,ui) (7)

s. t. xi+1 = Axi +Bui, ∀i = 0, . . . ,N −1
(xi,ui) ∈ X ×U , ∀i = 0, . . . ,N −1
xN ∈ XF ,
x0 = x

where X , U and XF are polytopic constraints on the states
and inputs and the stage cost l is defined as l(xi,ui) :=
‖Qxi‖p + ‖Rui‖p, for some weighting matrix R and Q of
appropriate size. Under the standard assumptions that XF ⊆
X is an invariant set, VN is a Lyapunov function and that
the decay rate of VN is greater than the stage cost within the
set XF , the problem (7) generates a stabilizing control law
when applied in a receding horizon fashion [17]. If the norm
is taken to be the one or infinity norm, then we get a pLP
of the form:

u�(x) = argmin
u

{
gT u |Gu ≤ Fx+w

}
, (8)

where u is a vector containing the sequence of inputs
u0, . . . ,uN−1 and appropriate slack variables. The system
input is then given in a receding horizon fashion by κ(u) :=
u0. See [18] for details on the computation of the matricies
G, F and the vectors g and w for the MPC problem (7).

‘Solving’ the pLP (7) means to compute the optimizer
u�(x) of pLP (8) for every feasible value of the state. In this
section the goal is to compute an approximate solution ũ(x)
that maps from the measured state to a feasible solution of
pLP (8). We do this by approximating the epigraph of the
optimal cost function J�(x), which is a polyhedron defined
implicitly through a projection operation [19]

epi(J�) =
{

(x,J) ∈ R
d ×R

∣∣∃u, Gu ≤ Fx+w, J ≥ gT u
}

.

(9)

The method proposed in this paper can be used to compute
an upper or lower approximate polyhedral cost function
J̃ within a given error bound of the optimal epigraph
ρ

(
epi(J̃),epi(J�)

) ≤ ε .
Approximating the optimal epigraph has been proposed in

the literature, and conditions have been given for which both
inner [20] and outer [8], [9] polyhedral approximations of
the optimal cost function J�(x) are also Lyapunov functions
for the system under the control law κ(ũ(x)), where J̃(x) =
gT ũ(x), for some feasible ũ(x). These conditions can be re-
duced to essentially a minimum weighted Hausdorff distance
requirement between the epigraph of the approximate cost
function J̃ and the optimal J�. Due to space limitations we
do not re-state these conditions here, but instead direct the
interested reader to the aforementioned references.

Remark 3: Note that because the epigraph of the optimal
J� and approximate J̃ cost functions is unbounded, the
methods in this paper cannot be applied directly. The reader
is refered to [6] for details on how to homogenize and

bound the epigraphs converting the problem to a polytopic
approximation.

The application of the approach proposed in this paper
to approximate explicit MPC for linear norms requires the
definition of the two functions maxsep and extr that operate
on implicitly defined polytopes such as epi J �. If S :=
{x |∃u, Dx+Eu ≤ b} is a polytope, then a linear program
that computes the function extr can be written directly from
the definition (2)

extr(a | S) := argmax
x,u

{
aT x |Dx+Eu ≤ b

}
. (10)

The function maxsep(v | S) is to return a vector a� such
that P(a�) contains S and is a maximal distance from the
point v. The following lemma allows us to describe the set
of halfspaces that contains the polytope S.

Lemma 4 (Projection Lemma [21], [22]): Let
S := {x |∃u, Dx+Eu≤ b} be a polyhedron. Then the
halfspace αT x ≤ β contains S if and only if there exists a
positive vector λ such that

α = DT λ , β = bT λ , ET λ = 0 .

We follow an approach similar to that used for support
vector machines in order to compute the maximal separating
hyperplane by solving a quadratic program.

Theorem 2: Let S := {x |∃u, Dx+Eu ≤ b} be an im-
plicitly defined polytope and v �∈ S be a vector. Then
maxsep(v | S) = DT λ �/(bT λ �), where λ � is the optimizer
of the following quadratic program

λ � := argmin
λ

aT a

subject to λ ≥ 0

DT λ = a

bT λ = aT v−1

ET λ = 0
Proof: We define two halfspaces h0 :=

{
x

∣∣aT x ≤ c
}

and h1 :=
{

x
∣∣aT x ≥ c+ 1

}
such that h0 contains S and h1

contains v. The goal can then be re-stated as maximizing the
distance between h0 and h1. If x0 is the point in h0 that is
closest to v, then we can write v− x0 = a‖v− x0‖2 /‖a‖2.
Taking the inner product of v−x0 and a gives aT v−aT x0 =
c+ 1− c = 1 = ‖v− x0‖2 aT a/‖a‖2 = ‖v− x0‖2 ‖a‖2, which
shows that the distance ‖v− x0‖2 is equal to 1/‖a‖2 and
therefore maximizing ‖v− x0‖2 is equivalent to minimizing
the norm of a. The constraints given in the QP then simply
require that v ∈ h1 and, from Lemma 4, that h0 contains S.

Finally, we have that P(a�) = h0 =
{

x
∣∣DT λ �x ≤ bT λ �

}
={

x
∣∣DT λ �/(bT λ �)x ≤ 1

}
.

A. Recovery of Control Input : Barycentric Coordinates

In the previous section we discussed how an approximate
cost function J̃ for the parametric problem can be computed
using the convex set approximation method proposed in this
paper. However, from the MPC point of view, the point of
approximating a pLP is to calculate a control law. In this
section we will discuss a new method of recovering such an



approximate control law from a piecewise affine sub-optimal
cost function.

Let J̃ be the piecewise affine function

J̃(x) := bix+ ci, if x ∈ Ri (11)

where the polytopes Ri form a partition: R = ∪Ri is convex
and intRi ∩ intRj = /0 for all i �= j. Our goal is to find any
function ũ(x) such that

gT ũ(x) = J̃(x) (12a)

Gũ(x) ≤ Fx+w for all x ∈ R (12b)

The authors are aware of three proposals in the literature
to tackle the problem of computing a function ũ(·) from an
approximate cost J̃(·), all of which potentially generate an
approximate control law that is significantly more complex
than the approximate cost function. The first is simply to
compute a tesselation of each polytopic region Ri. One
can then interpolate uniquely amongst the vertices of each
simplical region of the tesselation, which results in a feasible
piecewise affine function [6], [7]. While this approach is
easily stated and implemented, it has a significant downside
in that such a tesselation can have exponentially more
simplices than there were regions Ri. In [7] it was suggested
that an affine function be fit in a least-squares fashion to
the optimizers u�(v) at the vertices v of each region Ri.
However, if a region Ri is not a simplex, then there is no
guarantee that the fitted function will be everywhere feasible.
The third approach [8], [9] computes an approximate cost for
the optimal control problem (7) in a recursive fashion. After a
sufficient number of iterations, the approximate cost function
is used as a ‘cost-to-go’ while the exact solution is computed
in the last phase, which then provides the approximate
control law. However, this last exact iteration can contain
a much larger number of regions than the approximate cost
function.

In this section we propose a new method of computing a
feasible control law based on Barycentric coordinates, which
does not generate any new regions.

Definition 3 (Barycentric function): Let S :=
conv({v1, . . . ,vn}) ⊂ R

d be a polytope. The function
w(x |v) is called barycentric if three conditions hold for all
x ∈ S and v ∈ extr(S)

w(x |v) ≥ 0 , positivity (13a)

∑
v∈extr(S)

w(x |v) = 1 , partition of unity (13b)

∑
v∈extr(S)

vw(x |v) = x , linear precision (13c)

For each vertex v∈ extr(Ri) and region Ri, we assume the
availability of a vector uv that is feasible for pLP (8) and
equals the approximate cost function at v.

gT uv = J̃(v) , Guv ≤ Fv+w .

Such points uv can be computed by solving a series of linear
programs. If a barycentric function wi is available for each

region Ri in (12), then we can define an approximate control
law ũ(x) by interpolating amongst these points.

ũ(x) := ∑
v∈extr(Ri)

uvwi(x |v) , if x ∈ Ri . (14)

The following theorem demonstrates that if such a barycen-
tric function is available, then ũ(x) satisfies conditions (12)
and therefore is a feasible control law.

Theorem 3: If J̃ is the piecewise affine function defined
in (11) and ũ is as defined in (14), then ũ and J̃ satisfy (12).

Proof: Let S be the polytopic constraints of the pLP (8).
By definition, (v,uv) ∈ S for all v ∈ extr(Ri) and all Ri. For
any x ∈ Ri, we have that (x, ũ(x)) = ∑v(v,uv)wi(x |v) is in S
by convexity, since wi(x |v) ≥ 0 and ∑v wi(x |v) = 1.

We now show that gT ũ(x) = J̃(x):

gT ũ(x) = gT ∑
v

uvwi(x |v) , x ∈ Ri

= ∑
v

(biv+ ci)wi(x |v) ,

where J̃(x) = bix+ci for x∈Ri (11) and by definition gT uv =
J̃(v).

gT ũ(x) = bi(∑
v

vwi(x |v))+ ci(∑
v

wi(x |v)) (15)

= bix+ ci

= J̃(x) ,

where (15) follows due to the linear precision and the unity
properties of barycentric coordinates (13).

From Theorem 3 we can see that although the barycentric
coordinates define the approximate optimizer ũ(x) through
a non-linear interpolation, the resulting cost function is still
piecewise affine.

Our goal is now to define an easily computable barycentric
function for each polytope Ri in (11). If the polytope Ri is a
simplex, then the barycentric function is unique, linear and
trivially computed and so we focus on the non-simplical case.
In [23] a very elegant method of computing a barycentric
function for arbitrary polytopes was proposed that can be
put to use here.

Lemma 5 (Barycentric coordinates for polytopes [23]):
Let S = conv(V ) ⊂ R

d be a polytope and for each simple
vertex v of S, let bv(x) be the function

bv(x) =
αv

‖v− x‖2

where αv is the area of the polytope P(V −{x}) ∩
{y | 〈v− x, y〉 = 1}; i.e. the area of the facet of the polar dual
of S−{x} corresponding to the vertex v− x. The function
wv(x) := bv(x)/∑v bv(x) is barycentric over the polytope S.

Proof: We provide here a brief sketch of the proof and
refer the reader to [23] for details.

The proof is based on Stokes theorem, which states that
the surface integral over a compact set is zero. Consider
the surface integral of the polar dual of S, the polytope



P(V −{x})∮
P(V−{x})

ydy = ∑
i

αini = ∑
i

αi
vi − x

‖vi − x‖2
= 0 , (16)

where ni is the outward facing normal to the ith facet of the
polytope and αi is the area of the facet. From the definition
of the polar dual, the normal of the ith facet is proportional
to vi−x [24]. With some minor algebraic manipulation, (16)
leads directly to the theorem statement.
The areas of the facets of the polar duals αv can be pre-
computed offline and stored. If there are d +1 facets incident
with the vertex v (i.e. v is simplical), then the area of the
polar facet is det

([
a0 · · · ad+1

])
, where {a0, . . . ,ad+1}

are the normals of the incident facets. If the vertex is not
simplical, then the area can be easily computed by perturbing
the incident facets [23]. Such computation is straightforward
because both the vertices and halfspaces of each region are
available due the double-description representation.

VI. EXAMPLE

Consider the following four–state system:

x+ =

⎡
⎢⎢⎣

0.7 −0.1 0.0 0.0
0.2 −0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0.0 0.1
0.1 1.0
0.1 0.0
0.0 0.0

⎤
⎥⎥⎦u

States and control inputs are constrained ‖x‖∞ ≤ 5, ‖u‖∞ ≤ 5
and we seek to solve the MPC problem (7) minimizing
the infinity norm where Q and R are the identity and the
prediction horizon is N = 5. Figure 1 shows a plot of
complexity (number of regions) vs the approximation error
for the proposed method. Figure 2 shows a time trajectory of
the closed loop system at various complexities ranging from
7 to 182 regions, which is significantly lower than the optimal
explicit control law, which consists of 12,128 regions.
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Fig. 1. Approximation error of the four-state system of Example VI vs
the approximation complexity (number of polyhedral regions in the PWA
cost function). The optimal solution consists of 12,128 regions. (The noise
in the plot is due to numerical errors.)
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