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Abstract—The application of nuclear norm regularization ~a desired accuracy and then poses a convex optimization
to system identification was recently shown to be a useful problem to find the lowest order model that achieves it,
method for identifying low order linear models. In this paper,  (ather than iteratively tuning the order of the model, as

we consider nuclear norm regularization for identification of . . R
LTI systems from data sets with missing entries under a 'S COMmon practice. Nuclear norm regularization has been

total squared error constraint. The missing data problem is recently suggested by [2], [6] as a way to promote the
of ongoing interest because the need to analyze incomplete identification of low order models out @omplete data sets

data sets arises frequently in diverse fields such as chemistry, This work shows how the nuclear norm regularization is

%Sgrilﬂ‘?cn;t?éréczsag%oi?/teejiée tiimiigt?gr} E%blc:rf]“”nguctlgir snyosrtr%m specially attractive, when the data sets have missing entries,
B b y i.e. for the missing data problem.

regularization can be applied to identify the system in one step, L ) : e . .
i.e., without imputation of the missing data.” Our exploratory A sensitivity analysis of the identification algorithm is
work makes use of experimental data sets taken from an performed on different structures of missing data in the
openo sy;tergtﬁ%%ntlﬂcatl%n Ndatlaél)oatze’thDal?y’ dtO dCC;mF;]ar_e tge outputs: structured missing data and randomly distributed
proposed m named Nuc e standard techniques icei ;
N4SID, prediction error minimization and expectation con- missing data. The pl’olposeddmethr?ddls ?Omgareg un'der thehse
ditional maximization via linear regression. NuclD is found SC€narios to commonly used methods for identification wit
to consistently identify systems with missing data within the MISSING data and several case studies are performed on
imposed error tolerance, a task at which the standard methods experimental data sets taken from the DalSy Database [9].
sometimes fail, and to be particularly effective when the data NucID is found to consistently identify systems from
is missing with patterns, e.g., on multi-rate systems, where it complete data sets or data missin t d ithin th
learl f o _ comp g at random within the
clearly outperforms existing procedures imposed error tolerance, a task at which the standard methods
. INTRODUCTION sometimes fail. In the case of structured missing data,

NuclD is shown to be particularly effective and clearly

The negd to identifyadynamjc system from an incomplet tperform existing procedures. This poses NuclD as an
data set is a rather common situation in practice. There a %ractive tool for the identification of multi-rate sampled-

different reasons that lead to missing entries in the da
sets available for identification, such as: Sensor failures ta systems. . . e
! ' ' The paper is organized as follows: The general identifi-

outliers or plant shutdowns, which generate missing entries tion problem and the identification broblem with missin

in the data set at random and multi-rate sampling or period ta ar% defined in Section Il and IVpres ectivel Sectiogn
disturbances that create patterns of missing data. Over t describes the nuclear norm regule{rizatir()) n Thg.metho ds
last three decades a number of researchers from various fie comparison and the results of the identification of exper-

have recognized the need for systematic methods to expl . ;
incomplete data sets for system identification and it is sti ental data sets are presented in Sections V and V1.

{e]cognized as a big and open challenge in process industry Il. PROBLEM FORMULATION
1]. '

The goal of this paper is to present a recently developed The identification problem is first formulated for the
method for system identification from noise-corrupted datease where no data is missing in the outputs, before being
with missing entries in the outputs. The proposed methoektended in section IV to the general case of missing data.
is applicable to SISO and MIMO systems, identifies a non- The goal is to identify a discrete-time linear time-invariant
parametric linear model and incorporates the minimization ahodel of the lowest possible order that can explain a
the order of the identified system in a natural and transparesg¢quence of input.(t) € R™ and output measurements
way by approximating it with the nuclear norm, i.e., byy™°**(¢t) € R? over an observation window= 0, ..., N—1.
the sum of the singular values, of the Hankel matrix builiVe use the shorthand matrix notation for inpltss RV <™
from finite impulse response (FIR) coefficients. The resultingnd outputy”™¢as ¢ RV P py stacking the vectorg™***(t)
nuclear norm regularization for the rank of a matrix is theindw(t) rowwise. No assumptions on the specific structure
analogue to thé, regularization for vector cardinality, which or order of the model are made and the outpudt time
is a well-known heuristic that produces sparse solutionmstancet, i.e., y;(t), is represented as a linear combination
These regularization methods have been studied in detail bypfthe impulse responses of the inpyts= 1,...,m, i.e.,
number of researchers and set the foundation of the recentlyough a finite impulse response (FIR) model
developed compressed sensing frameworks for measurement,

coding and signal estimation [2], [3], [4]. U .

The proposed technique minimizes the nuclear norm of¥i(t) = Z Z hij(t = m)uy(T) +oi(t) i=1,....p
the Hankel matrix of FIR coefficients while constraining j=lr=t=r
the fitting error between model and data to a desired level @)

of accuracy. This method allows one to directly choose |4 valuesh;; are the FIR coefficients from input to
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which is a parameter that must be chosen large enough ftom the singular values ofi. As a result, minimizing the

describe the dynamics of the system to be identified. nuclear norm (6) will lead to sparsity in the vector of singular
The total squared error in the identification procedute values, or equivalently to a low-rank matrik.

can be quantified by the sum of the squared differences be-We now turn to the optimization problem (4) and relax

tween the measuremerits<*s and the outputy” predicted the non-convex rank to a nuclear norm minimization:

by model (1) over theV samples:

min || Hpl|« (7)
N h
en = D (Y™ () —y)? = Y™ Y |E L () S I
=0 The above optimization problem can be re-cast as a semi-
where|| - ||z is the Frobenius norm. definite program (SDP) [5]
The FIR coefficients;; (¢) for ¢ = 0,...,r of each of the .
i-j channels of model (1) are the variables to be estimated in min  tr (V1) + tr (V2) (8)
order to describe the set of data™<*s within a given error Vi HT
bounde < ~. The order of the resulting model is given by s.t. {Hl Vh] =0
the rank of the Hankel matri%{;, formed from the impulse h 2
response coefficients;, [Y™eas — Y||35 < v
h(0) h(1) h(r —ng) where we introduce the symmetric matricés, 1V, <
h(1) h(2) co h(r—ng+1) RmaPxnHP g5 decision variables. Optimization problem (8)
M, = h(2) h(3) <o h(r—ng+2) 3) can therefore be posed and solved using standard SDP

software (e.g., [8]).
: : : Computational complexityThe SDP (8) has a large
h(nyg) hing +1) - h(r) number of variables due to the introduction of the matrices
. o m . V1 and V5, which limits the scale of problems that can be
where each entryi(t) is a matrix inR”*™ containing the gojved. In [6] a custom interior point solver for a related
coefficientsh;;(¢) of all qhannels for the corresponding time 555 of SDPs was proposed that offers speed improvements
stept, ny :=r/2 andr is assumed to be even. Note that agf orders of magnitude over previous algorithms and should
long asr is long gnoug_h compared to the system dyna}mIC%e applicable to the SDP (8) with minor maodification.
the order of the identified model has nothing to do with The method [6] was used for system identification without
The order of model (1) can be understood as the number gfissing data, but the technique is based on minimizing the
states of the corresponding state-space model. nuclear norm ofY™ees{/L which requires a significantly

The search for a model of the lowest order that satisfiggrger number of optimization variables than the proposed
the error boundey < ~ can be posed as the following cost || Hp]|..

optimization problem:

. IV. SYSTEM ID WITH MISSING DATA
min rank (Hp,) (4)

A. Problem formulation with missing data

st [y™mees — Y% <~y We assume that all inputs have been sampled at a constant
; ; rate and that they are all available, i.e., we havenputs
Alternatively, problem (4) can be written as u(t) fort =0,..., N —1 that, as before, can be collected in
min ||V — Y'||2 4+ acrank (Hy,) (5) amatrixU € R¥*™, Given the FIR modeh, we can then
h write a linear function ofy andU (1) to compute the matrix
in which the trade-off between the quality of fit and theY” ¢ RV*?, which is thepredictedoutput of the model at
order of the model is made explicit i.e., a Pareto curve caall sample pointg =0,..., N — 1.
be obtained by varying.. In the case of missing data not all samplg&-**(¢) will
U1, MINIMUM-RANK MODELS VIA NUCLEAR be measured. The available outputs are recorded rowwise
’ NORM MINIMIZATION in a measuremenbutput matrix Y™¢?* ¢ RN*P, Note

Minimizing th K of il € RPX7 | that Y™"¢%* contains fewer entries thaki, i.e., N < N,
INimizing the rank of a matrixi € IS @ NONCONVEX " hacayse only the points in time with available measurements
problem and is in general NP-hard. Thaclear normis a

heuristic f K minimizadi h f the predictionsY” are stored inY™<*s. In order to make
convex heuristic for rank minimization that was proposeghege two matrices comparable, we define a measurement
in [5] and shown in [2] to be theonvex envelopeor the matrix M € R¥*N that maps the predictions onto the space
closest convex function to the rank operation: . P pN s P
of available measurementd/ : RV*? — RY*P, In the
case where all measurements are availables simply the
JA[l o= oi(A) (6)  identity matrix 1.
i=1 As before, the erroe,; p under missing data is defined as
whereo;(A) is theit" singular value ofA. In the last few the sum of the squared differences between the predictions
years, minimization of thé, norm has been used as a convexY" at the points in time where data is available, and the
approximation of cardinality minimization, or to promoteMmeasurementg ™
sparsity in the decision vector of optimization problems, — [[y™eas _ A ry |12 9
in fields ranging from statistics [7] to communications [4]. emp = | I - ©)
Since the singular values of a matrix are all positive, the nustandard approaches for fitting models with missing data
clear norm ofA is equal to the; norm of the vector formed first generate the missing measurements by interpolating the



available dataY™<** and then use regular model identi-with standard toolboxes available in MATLAB. Real exper-
fication techniques. The limitation of these approaches imental data from the DalSy Database [9] was used for the
that they must make an assumption on how this data is following identification experiments:
be interpolated. Here, we make no such assumptions an
consider fitting the data only at the measured points. T
minimization of the nuclear norm can then be thought o
as an interpolation method for the missing data where tl
interpolation is done by fitting a function in the class o
low-rank dynamic systems.

Identifying a low-order model of the form (1) within a

No missing data. The complete data sets were used to
identify a linear dynamic model.

Structured missing data. The outputs are sampled at a
f lower rate than the inputs.

3) Random missing data. Some percentdg®., from the
output measurements is lost at random.

given error boundy,,p from the incomplete data sét and The outputs from the data sets were removed according
y™mees can now be cast as the convex optimization problefy the pattern chosen for each experiment and are specified
. in h .
min ([ (10) each case
st [[Y™e® — MY |% < yup A. Benchmark methods

A sensitivity analysis was carried out on problem (10) Three different identification techniques were chosen for

to investigate the effect on the identified dynamical modaiomparison with NuclD. The corresponding MATLAB tool-

of different measurement matricésg, i.e., different patterns box is given in brackets.

and amounts of output missing data. Two cases were investi- . _

gated: (a) The missing output entries repeat themselves with N4SID: Estimate a state-space model using subspace
the same pattern along the output mati%**s and, (b) identification techniques. (n4sid) _ o
The missing output entries are randomly distributed along) PEM: Estimate a state-space model using an iterative
the output matrixY <25, In both cases we assume that all__Prediction-error minimization method. (pem)

inputs are available. 3) Expectation Conditional Maximization using Linear Re-
Remark 1:The measurement matrix/ as defined above ~ gression (LR): Estimate a FIR model using multivariate
assumes that all the outputs= 1, ..., p will be missing at linear regression with missing data. (ecmmvnrmle)

the same time instande. This rather restrictive and unreal-  a this point it is important to note the way these methods
istic assumption can be dropped in a straightforward way byre ysed when data is missing. In principle, there are two

defining a measurement matrid; for each output channel options: The missing entries can be simply disregarded in the

Jj=1,...,p. The formulation remains as in problem (4) byjdentification procedure or one can try to guess the values of
redefining the errors as the missing entries, which is known as imputation. There are
P different techniques tamputethe values of the missing data,
eMp = Z [y meas — M;Y % (11) edg. Iir)ear interpolation, regression imputation, expectation
= maximization.
o MATLAB offers the toolbox ‘misdata’ to impute the value
B. Structured missing data of missing entries of data sets. The algorithm alternates be-

Sensors and actuators can have different rates at whitMeen estimating models with N4SID from the available data
they acquire data or take setpoints, respectively. In this woAnd estimating missing data points. This iterative procedure
we consider the case where sensors and actuators wéskepeated until a given relative tolerance is achieved (1%)
synchronously but at different rates. This can be interpretedf for a maximum number of times (10 by default). The
as a multi-rate process between inputs and outputs, deconstructed” data set can then be used with the three
amongst different outputs. This case corresponds to buildingentification methods N4SID, PEM and LR.
the measurement matrix/ by retaining only every:*" row This two step procedure of imputing values of missing
of an identity matrix. Note that multi-rate scenarios leadntries and then identifying a model does not apply for the
very quickly to high percentages of missing dataDs, NuclD method, which is a one step procedure that does not
e.g., the simplest case where every second measuremenneéd any imputation of the missing values. This is one of
the outputs is not recorded corresponds to a percentagetbé key benefits of the proposed method, since the procedure
missing data of\/ Dy, = 50%. of imputing the data will often either cause a significant

artificial increase in model order, or will generate nonsensical
C. Randomly missing data results when large percentages of data are missing.

Problems in sensors during acquisition can lead to loss
in the measured data at random points in time. Different VI]. RESULTS
percentages of missing dafd Dy, have been considered,

ranging from no missing datal/ Dy, = 0% to M Dy = This section presents the identification of several dynam-

70%. The measurement matriX/ in this case is built by jcal systems comparing the proposed method with three

randomly dropping rows from an identity matrix with astandard identification tools, N4SID, PEM and LR, presented

uniform distribution. in the previous section. First the identification problem of a

CD player arm is presented and discussed in detail to high-

V. NUMERICAL EXAMPLES light the advantages of NucID over N4SID, PEM and LR.

The proposed identification method, from now on referredhen the same detailed analysis for a number identification
to as nuclear norm identification (NuclD), was comparegroblems is summarized in section VI-B.



A. ldentification of a CD player arm 10°

The experimental data from a mechanical construction ¢ 2|
a CD player arm is considered here. The system has tv
inputs that are forces of the mechanical actuators and tv
outputs that are related to the tracking accuracy of the arr
The data set contairs 000 sample points out of which00
were used for the identification procedure and the rest !
validate the identified models. In the first experiment al 7
measurements were considered while for the second a T
the third experiments data was dropped from the outpu
according to the strategy described. The error presented ¢ ® Singularvalueindex =
this paper has been normalized with the fadigr — Y72,

whereY; is the complete set for identification ad the Fig. 2. SVD of the Hankel matrixt;, built from the FIR coeffi-
mean of the samples. cients identified with the NuclD method for different error boungds=

.32, 2.35, 2.45, 2.75, 7.8. The stars define the non-negligible singular
1) Complete data setThe complete data set was usedsalues above the threshold b6—4, that define the order of the model.

to identify a dynamical model using N4SID, PEM, LR and
NuclDand the resulting impulse responses are presented in

Fig. 1. For the sake of clarity, the impulse responses for LRnd the prediction error. The NuclD method is able to

were not plotted since they are of high order and make thgentify models that give lower prediction errors than models
figure unclear, as illustrated further on. The models identifiegientified with N4SID and PEM with the same order. It is

with N4SID and PEM have an order of two and are in generge|| known that LR gives a rather good fit, but with very

in good agreement with the FIR coefficients identified byhigh order models, as illustrated in Fig. 3.

NuclD. We can conclude that when using the complete set of data
the NuclD method is able to identify dynamical models that

" Threshold

AR —
R

Normalized singular value of 1-111
3

rrem U, |—nuerorm|  gre comparable to the other methods in terms of model order

o1 e and prediction error, and that in this specific case slightly

ol _ outperforms N4SID, PEM and LR. Similar results for the

O HHF identification of low-order models from complete data sets
o) o ) had also been observed by [6]. The next step is to assess the

impact of missing output data on the identified models with
the different methods.

1 ] =
N =g =
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Fig. 1. FIR coefficients of the identified dynamical system for NuclD,
N4SID, PEM using the complete data set.

Order of the model
o
T

In order to provide an overview of the order of the mode
identified by NuclD, a singular value decomposition (SVD) 2 Tee——
of the Hankel matrix built from the FIR coefficientd, . , , , , , , , ,
was computed and inspected. The order was then defin 01 02 03 R S Prediion ete 08 021
as the number of singular values above 0.018¢) of
the first value. Fig. 2 shows the SVD df{;, for five Fig. 3. Order of the identified model as a function of the normalized
NuclD identification procedures using different values foprediction error for NuclD, N4SID, PEM and LR.
the error boundy. It can be observed that by decreasing
the number of non-negligible singular values (denoted with 2) Structured missing dataThis section presents the
a star) increases, i.e., the order of the identified model identification of the CD player arm example assuming that
higher. the output data was collected at a slower sampling rate

The four approaches are compared by plotting for eadhan the one of the inputs, as encountered in a multi-rate
method the order of the identified models against the correampled-data process. In the first example, we consider four
sponding normalized error in Fig. 3. For the methods N4SI@xperiments, runs (a) — (d), where the measuremenislgf
and PEM, models with fixed orders frorh to 10 were the first output is sampled at a lower frequency than the
identified and their normalized errors computed. The LRnputs, and therefore the percentage of missing data in the
method yields only one point, since there is no way to choosmitputs does not exce&8%. Note that for the first example,
the order of the identified model as in the other methods. Féine second output of runs (a) — (d) is sampled at the the
the NucIlD method the tuning of the order is done througBame rate as both inputs, i.e., the data set still contains all
varying v and the order and errors of five runs presented ithe output measurements of the second output. In a second
Fig. 2 for different values ofy are plotted in Fig. 3. example, runs (e) — (h), both channels are sampled at lower

It is evident for N4SID, PEM and NuclID, that thererates, which results in higher percentages of missing data.
is a trade-off between the order of the identified modeThe sampling rates that were analyzed are reported in Table




TABLE |

MULTI-RATE IDENTIFICATION EXPERIMENTS OF THECD PLAYER ARM

output missing data.
The results for the second example are presented in Fig. 5.
Note that the scale on the x-axis has changed from Fig. 4 to

Run Normalized sampling fime of MDe; Fig. 5. Only LR and NuclD were able to find a solution

R A R S R Y in all runs. LR identified high order models (L1th) with
@ T T > T 25.00% larger errors than in the previous examples. In runs (e)
®) T il 3 T 33.33% and (f), N4SID and PEM identified models that predicted
(g) i i g i 23? -%":; unacceptably large errors. These methods are also sensitive
@ 2 2 to the output with higher or lower sampling rates, since the
G il il 2 8 68.75 % ; i A

0 T T 3 5 6375 % models identified in run (e) (solid line —) have much smaller
(@) T il 3 3 77.08 % errors than in run (f) (dashed line - - -). For runs (g) and
) 1 1 8 8 87.50 % (h), N4SID and PEM were not able to find stable models.

The NucIlD method consistently identified in runs (e) —( h)
the same model as in all the previous runs, with the same
order (4th order) and prediction error (approx. 0.2). A good

I The last column of Table | is the percentage of missing daignsistency of NuclD is was observed throughout the runs
in the outputs)M Dy, compared to run (*), that corresponds a) — (h) where the identified FIR coefficients were virtually

to the case analyzed in the previous section, where the entjfantical to those identified from the complete set of data in
data set is available for identification. The results for runs (g); *).

— (d) are plotted in Fig. 4. The NuclD and the LR method

identify models with rather small prediction errors, arounc’ ® @O O

0.2 for runs (a) — (c). These values are comparable with tr 2 UV O el
ones from run (*) in Fig. 3. For run (d) the performance 10 } e
of the LR method deteriorates considerably while the mod: © T S e
identified with the NucID method is the same as before. Th % @ A e
order of the identified models by LR are substantially highe = T T
(11th order) than the ones from NuclD (4rd order). T |ewm I;I T

Models of different orders identified with N4SID and PEM S s g S =
in each run are connected with a line in Fig. 4. We cal I\ e
observe how their performance greatly deteriorates as tl ? e T
amount of missing data increases framiDy, = 25% (run o A S S S

Normalized Prediction error

(@), solid line —) toM Dy, = 33.3% (run (b), dotted line
--+) and M Dy, = 43.75% (run (d), dashed line - - -). For
the sake of clarity, run (c) has not been shown, but it followsig. 5. Runs (e) — (h): Order of the identified model as a function of the

the same trend.

(@), ®) (© [C))
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(@)
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o
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Normalized Prediction error

Fig. 4.

normalized prediction error for NuclD, N4SID, PEM and LR for structured
missing data. Models of different orders identified with N4SID and PEM in
the same run are connected with a line; Run (e): solid (—). Run (f): dashed
(- - -). N4SID and PEM did not identify a stable model for runs (g) and
(h).

3) Randomly missing datdn this example, an increasing
percentage of the output entrid$ Do, is missing at random
throughout the measurements and the results are reported
in Table Il, where each row represents a different amount
of missing data. The normalized errotg for each of the
methods is reported together with the ordesf the identified
model. For NucID, N4SID and PEM the identification error
of the same order models are reported, whereas for LR
the errors correspond to higher order models. Afief%
of missing data N4SID and PEM fail to identify a model,

Runs (a)-(d): Order of the identified model as a function of thendicated by a star *. Only NucID and LR are able to identify

normalized prediction error for NuclD, N4SID, PEM and LR for structured ; icai
missing data. Models of different orders identified with N4SID and PEM ina model when more that0’ of the data is missing, although

the same run are connected with a line; Run (a): solid (—). Run (b): dott<@Nly NuclD finds a mOde! of a feasf)name Orde_r-
(- - ). Run (d): dashed (- - -). For the sake of clarity, run (c) has not been NuclD, PEM and LR give normalized errors in the same

shown.

range for up to 45% of missing data, although of course the
order of the LR models is much higher. The performance

In a second example, we consider the case were boghi N4SID is acceptable only for some specific instances and
outputs are sampled at lower rates than the inputs. Fogfter 50% of missing data, N4SID and PEM fail to identify

different scenarios are studied. Runs (e) and (f) have the sa@énodel at all. The NuclD method is able to identify the

amount of missing data, but the sampling rates are exchangggstem with up to 75% of missing data with rather small
between the outputs to test the sensitivity of the identifiedrrors.

model to the output with more or less missing data. In runs ) o

(e) and (f) the measurements of the outputs are collect&l System identification from DalSy database
synchronously, but the sampling rates differ by a factor of In this final section we present selected scenarios from the
four. Runs (g) and (h) investigate rather high percentages pfevious analysis applied to different systems taken from the



TABLE I

RESULTS FOR MISSING DATA AT RANDOM missing data in the outputs were studied. The multi-rate

scenario, where the missing entries have a pattern along
the outputs due to differences in the sampling times of the

T NuclD | N‘S"D [ PEM T LZ outputs with respect to the inputs. In the second scenario
10 T3 01965 02490 T 02067 | 11 1 02042 data is missing at random, e.g., when sensors fail. From the
20 3 | 0.1995 | 0.5682 | 0.2054 | 11 | 0.2066 results shown in this work, we can conclude that:

4318 2 8:1812 8:;%? 8:%;2 ﬁ 8:%232 e The nuclear norm regularization is a heuristic that allows

28 21 8&832 : - ﬁ 8'38(7)(1) oneto minimize the order of the identified model. T_he_ ide_n-

2 3 | 02303 ] * . 11 | 03867 tification problem can be posed as a convex optimization

problem that yields a low order model that explains the

experimental data within a given error bound.
¢ Normally, identifying a model form an incomplete data set

database for system identification (DalSy) [9]. Due to spac
restrictions, we present only the main results in Table IIl.
The type of system, reference number and the number oft
inputs and outputs (Inputs x Outputs) can be found in the
first column. In all the results of this section, two scenarios
for each system are presented, one with the complete daty
set and one multi-rate scenario as presented in section ViR
A.2, where inputs and outputs are sampled at different rate
The second column gives the sampling time of the outpft
or outputs with respect to the sampling time of the inputs.
For example [8 1] means that the first output is sampledt
eight times slower than the inputs while the second output i
sampled with the same sample time. The rest of the column
present the order of the identified system and the normalize
error using the validation and identification data set. Table
Il shows that NuclID is able to identify with rather small

The orders and errors are comparable to the other metho?ﬁ
except for LR, where the order of the models is known to
be high. Little performance degradation can be seen for the
NucID method for all multi-rate scenarios, whereas N4SIDI[2]
and PEM fail for three scnearios, indicated by a star *. For
the last example, the stirred tank the state space methods
give very similar results to NuclD, slightly outperforming it. 0
VIl. CONCLUSIONS AND FUTURE WORKS 5]
A system identification method, called NuclD, based
on nuclear norm regularization has been presented. Thig]
NuclD method identifies a low order linear model from
input/output data, given an upper bound on the predictiorny
error. NuclD is compared to standard identification tech-
niques, like N4SID, prediction error minimization (PEM) and i8]
expectation conditional maximization via linear regression
(LR). Diverse sets of experimental data were taken from
the system identification database DalSy [9] to compard®]
the methods among themselves. Two different scenarios of

TABLE Il
IDENTIFICATION OF EXPERIMENTAL DATA FROM DAISY DATABASE

dnvolves two steps: imputing the values of missing entries in
the data set according to some criteria, and then identifying
model form the “reconstructed” data set with standard
system identification techniques. In contrast to this two-step
approach, the NucID method involves only one step. It deals
ith missing data without having to make any assumptions
3

ntriesa priori.

NuclD can be used for system identification from complete
and incomplete data sets. When data is missing at random,
he advantages become clear only at high percentages of
dnissing data. In the case of structured missing data, i.e., for
multi-rate sampled-data systems, the NuclD method clearly
gutperforms the conventional two-step procedures and is
able to correctly identify a model with considerably lower

having to impute in some way the values of missing

sampling rates in the outputs.
errors all the examples presented using the complete data set.
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System norm. NucID N4SID PEM LR
(In X OUt) Ts n ey er n ey er n ey er n ey er
Hair dryer (1x1) 1 4101319 0.1387| 4 | 0.1081| 0.1222| 4 | 0.1010| 0.1219| 43 | 0.1091| 0.1171
-006 8 4 | 0.1382| 0.1437 | * | * * ol ox * 43 | 0.1889| 0.1729
Heat flow (2x1) 1 51 0.2168 | 0.1902| 3 | 0.2989 | 0.2573| 3 | 0.3305| 0.2955| 26 | 0.7476 | 0.1233
96-011 4 5| 0.2881| 0.2578 | * | * * ol ox * 26 | 0.7545| 0.1738
Heat exchanger (Ix1) 1 4103263 0.2130| 3 | 0.5086| 0.3742| 2 | 0.7005| 0.5245| 21 | 0.3110 | 0.2059
96-002 5 5 | 0.3312| 0.2208 | * | * * ol ox * 21 | 0.3525| 0.2286
Stirred tank (Ix2) [T1T] 4] 01018 01511 4 | 0.099 | 0.170 | 3 | 0.143 | 0.1861| 21 | 1.000 | 0.1487
-002 [81] | 3| 0.1038| 0.1524| 4 | 0.0990| 0.1458 | 3 | 0.0929 | 0.1497 | * * *




