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Abstract— The application of nuclear norm regularization
to system identification was recently shown to be a useful
method for identifying low order linear models. In this paper,
we consider nuclear norm regularization for identification of
LTI systems from data sets with missing entries under a
total squared error constraint. The missing data problem is
of ongoing interest because the need to analyze incomplete
data sets arises frequently in diverse fields such as chemistry,
psychometrics and satellite imaging. By casting the system
identification as a convex optimization problem, nuclear norm
regularization can be applied to identify the system in one step,
i.e., without imputation of the missing data. Our exploratory
work makes use of experimental data sets taken from an
open system identification database, DaISy, to compare the
proposed method named NucID to the standard techniques
N4SID, prediction error minimization and expectation con-
ditional maximization via linear regression. NucID is found
to consistently identify systems with missing data within the
imposed error tolerance, a task at which the standard methods
sometimes fail, and to be particularly effective when the data
is missing with patterns, e.g., on multi-rate systems, where it
clearly outperforms existing procedures.

I. INTRODUCTION

The need to identify a dynamic system from an incomplete
data set is a rather common situation in practice. There are
different reasons that lead to missing entries in the data
sets available for identification, such as: Sensor failures,
outliers or plant shutdowns, which generate missing entries
in the data set at random and multi-rate sampling or periodic
disturbances that create patterns of missing data. Over the
last three decades a number of researchers from various fields
have recognized the need for systematic methods to exploit
incomplete data sets for system identification and it is still
recognized as a big and open challenge in process industry
[1].

The goal of this paper is to present a recently developed
method for system identification from noise-corrupted data
with missing entries in the outputs. The proposed method
is applicable to SISO and MIMO systems, identifies a non-
parametric linear model and incorporates the minimization of
the order of the identified system in a natural and transparent
way by approximating it with the nuclear norm, i.e., by
the sum of the singular values, of the Hankel matrix built
from finite impulse response (FIR) coefficients. The resulting
nuclear norm regularization for the rank of a matrix is the
analogue to thel1 regularization for vector cardinality, which
is a well-known heuristic that produces sparse solutions.
These regularization methods have been studied in detail by a
number of researchers and set the foundation of the recently
developed compressed sensing frameworks for measurement,
coding and signal estimation [2], [3], [4].

The proposed technique minimizes the nuclear norm of
the Hankel matrix of FIR coefficients while constraining
the fitting error between model and data to a desired level
of accuracy. This method allows one to directly choose
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a desired accuracy and then poses a convex optimization
problem to find the lowest order model that achieves it,
rather than iteratively tuning the order of the model, as
is common practice. Nuclear norm regularization has been
recently suggested by [2], [6] as a way to promote the
identification of low order models out ofcomplete data sets.
This work shows how the nuclear norm regularization is
specially attractive, when the data sets have missing entries,
i.e. for the missing data problem.

A sensitivity analysis of the identification algorithm is
performed on different structures of missing data in the
outputs: structured missing data and randomly distributed
missing data. The proposed method is compared under these
scenarios to commonly used methods for identification with
missing data and several case studies are performed on
experimental data sets taken from the DaISy Database [9].

NucID is found to consistently identify systems from
complete data sets or data missing at random within the
imposed error tolerance, a task at which the standard methods
sometimes fail. In the case of structured missing data,
NucID is shown to be particularly effective and clearly
outperform existing procedures. This poses NucID as an
attractive tool for the identification of multi-rate sampled-
data systems.

The paper is organized as follows: The general identifi-
cation problem and the identification problem with missing
data are defined in Section II and IV, respectively. Section
III describes the nuclear norm regularization. The methods
for comparison and the results of the identification of exper-
imental data sets are presented in Sections V and VI.

II. PROBLEM FORMULATION

The identification problem is first formulated for the
case where no data is missing in the outputs, before being
extended in section IV to the general case of missing data.

The goal is to identify a discrete-time linear time-invariant
model of the lowest possible order that can explain a
sequence of inputu(t) ∈ Rm and output measurements
ymeas(t) ∈ Rp over an observation windowt = 0, . . . , N−1.
We use the shorthand matrix notation for inputsU ∈ RN×m

and outputsY meas ∈ RN×p by stacking the vectorsymeas(t)
andu(t) rowwise. No assumptions on the specific structure
or order of the model are made and the outputi at time
instancet, i.e., yi(t), is represented as a linear combination
of the impulse responses of the inputsj = 1, . . . ,m, i.e.,
through a finite impulse response (FIR) model

yi(t) =
m∑

j=1

t∑
τ=t−r

hij(t− τ)uj(τ) + vi(t) i = 1, . . . , p

(1)

The valueshij are the FIR coefficients from inputj to
output i and the zero-mean white-noisevi(t) captures the
unmeasurable disturbance affecting outputi at time t. The
sequence of FIR coefficients for channeli, j has lengthr,
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which is a parameter that must be chosen large enough to
describe the dynamics of the system to be identified.

The total squared error in the identification procedureeN

can be quantified by the sum of the squared differences be-
tween the measurementsY meas and the outputsY predicted
by model (1) over theN samples:

eN :=
N∑

t=0

(ymeas(t)− y(t))2 = ‖Y meas − Y ‖2
F , (2)

where‖ · ‖F is the Frobenius norm.
The FIR coefficientshij(t) for t = 0, . . . , r of each of the

i·j channels of model (1) are the variables to be estimated in
order to describe the set of dataY meas within a given error
boundeN ≤ γ. The order of the resulting model is given by
the rank of the Hankel matrixHh formed from the impulse
response coefficientshij

Hh :=


h(0) h(1) · · · h(r − nH)
h(1) h(2) · · · h(r − nH + 1)
h(2) h(3) · · · h(r − nH + 2)

...
...

...
h(nH) h(nH + 1) · · · h(r)

 (3)

where each entryh(t) is a matrix inRp×m containing the
coefficientshij(t) of all channels for the corresponding time
stept, nH := r/2 andr is assumed to be even. Note that as
long asr is long enough compared to the system dynamics,
the order of the identified model has nothing to do withr.
The order of model (1) can be understood as the number of
states of the corresponding state-space model.

The search for a model of the lowest order that satisfies
the error boundeN ≤ γ can be posed as the following
optimization problem:

min
h

rank (Hh) (4)

s.t. ‖Y meas − Y ‖2
F ≤ γ

Alternatively, problem (4) can be written as

min
h
‖Y meas − Y ‖2

F + α rank (Hh) (5)

in which the trade-off between the quality of fit and the
order of the model is made explicit i.e., a Pareto curve can
be obtained by varyingα.

III. MINIMUM-RANK MODELS VIA NUCLEAR
NORM MINIMIZATION

Minimizing the rank of a matrixA ∈ Rn×n is a nonconvex
problem and is in general NP-hard. Thenuclear normis a
convex heuristic for rank minimization that was proposed
in [5] and shown in [2] to be theconvex envelope, or the
closest convex function to the rank operation:

‖A‖∗ :=
n∑

i=1

σi(A) (6)

whereσi(A) is the ith singular value ofA. In the last few
years, minimization of thel1 norm has been used as a convex
approximation of cardinality minimization, or to promote
sparsity in the decision vector of optimization problems,
in fields ranging from statistics [7] to communications [4].
Since the singular values of a matrix are all positive, the nu-
clear norm ofA is equal to thel1 norm of the vector formed

from the singular values ofA. As a result, minimizing the
nuclear norm (6) will lead to sparsity in the vector of singular
values, or equivalently to a low-rank matrixA.

We now turn to the optimization problem (4) and relax
the non-convex rank to a nuclear norm minimization:

min
h

‖Hh‖∗ (7)

s.t. ‖Y meas − Y ‖2
F ≤ γ

The above optimization problem can be re-cast as a semi-
definite program (SDP) [5]

min tr (V1) + tr (V2) (8)

s.t.

[
V1 HT

h
Hh V2

]
� 0

‖Y meas − Y ‖2
F ≤ γ

where we introduce the symmetric matricesV1, V2 ∈
RnH ·p×nH ·p as decision variables. Optimization problem (8)
can therefore be posed and solved using standard SDP
software (e.g., [8]).

Computational complexity:The SDP (8) has a large
number of variables due to the introduction of the matrices
V1 and V2, which limits the scale of problems that can be
solved. In [6] a custom interior point solver for a related
class of SDPs was proposed that offers speed improvements
of orders of magnitude over previous algorithms and should
be applicable to the SDP (8) with minor modification.
The method [6] was used for system identification without
missing data, but the technique is based on minimizing the
nuclear norm ofY measU⊥, which requires a significantly
larger number of optimization variables than the proposed
cost‖Hh‖∗.

IV. SYSTEM ID WITH MISSING DATA
A. Problem formulation with missing data

We assume that all inputs have been sampled at a constant
rate and that they are all available, i.e., we haveN inputs
u(t) for t = 0, . . . , N −1 that, as before, can be collected in
a matrixU ∈ RN×m. Given the FIR modelh, we can then
write a linear function ofh andU (1) to compute the matrix
Y ∈ RN×p, which is thepredictedoutput of the model at
all sample pointst = 0, . . . , N − 1.

In the case of missing data not all samplesymeas
i (t) will

be measured. The available outputs are recorded rowwise
in a measurementoutput matrix Y meas ∈ RÑ×p. Note
that Y meas contains fewer entries thanY , i.e., Ñ < N ,
because only the points in time with available measurements
of the predictionsY are stored inY meas. In order to make
these two matrices comparable, we define a measurement
matrix M ∈ RÑ×N that maps the predictions onto the space
of available measurements,M : RN×p 7→ RÑ×p. In the
case where all measurements are available,M is simply the
identity matrixI.

As before, the erroreMD under missing data is defined as
the sum of the squared differences between the predictions
MY at the points in time where data is available, and the
measurementsY meas

eMD := ‖Y meas −MY ‖2
F . (9)

Standard approaches for fitting models with missing data
first generate the missing measurements by interpolating the



available dataY meas and then use regular model identi-
fication techniques. The limitation of these approaches is
that they must make an assumption on how this data is to
be interpolated. Here, we make no such assumptions and
consider fitting the data only at the measured points. The
minimization of the nuclear norm can then be thought of
as an interpolation method for the missing data where the
interpolation is done by fitting a function in the class of
low-rank dynamic systems.

Identifying a low-order model of the form (1) within a
given error boundγMD from the incomplete data setU and
Y meas can now be cast as the convex optimization problem

min
h

‖Hh‖∗ (10)

s.t. ‖Y meas −MY ‖2
F ≤ γMD

A sensitivity analysis was carried out on problem (10)
to investigate the effect on the identified dynamical model
of different measurement matricesM , i.e., different patterns
and amounts of output missing data. Two cases were investi-
gated: (a) The missing output entries repeat themselves with
the same pattern along the output matrixY meas and, (b)
The missing output entries are randomly distributed along
the output matrixY meas. In both cases we assume that all
inputs are available.

Remark 1:The measurement matrixM as defined above
assumes that all the outputsj = 1, . . . , p will be missing at
the same time instancet . This rather restrictive and unreal-
istic assumption can be dropped in a straightforward way by
defining a measurement matrixMj for each output channel
j = 1, . . . , p. The formulation remains as in problem (4) by
redefining the errors as

eMD :=
p∑

j=0

‖Y meas
j −MjY ‖2

F (11)

B. Structured missing data

Sensors and actuators can have different rates at which
they acquire data or take setpoints, respectively. In this work
we consider the case where sensors and actuators work
synchronously but at different rates. This can be interpreted
as a multi-rate process between inputs and outputs, or
amongst different outputs. This case corresponds to building
the measurement matrixM by retaining only everynth row
of an identity matrix. Note that multi-rate scenarios lead
very quickly to high percentages of missing dataMD%,
e.g., the simplest case where every second measurement of
the outputs is not recorded corresponds to a percentage of
missing data ofMD% = 50%.

C. Randomly missing data

Problems in sensors during acquisition can lead to loss
in the measured data at random points in time. Different
percentages of missing dataMD% have been considered,
ranging from no missing data,MD% = 0% to MD% =
70%. The measurement matrixM in this case is built by
randomly dropping rows from an identity matrix with a
uniform distribution.

V. NUMERICAL EXAMPLES

The proposed identification method, from now on referred
to as nuclear norm identification (NucID), was compared

with standard toolboxes available in MATLAB. Real exper-
imental data from the DaISy Database [9] was used for the
following identification experiments:

1) No missing data. The complete data sets were used to
identify a linear dynamic model.

2) Structured missing data. The outputs are sampled at a
lower rate than the inputs.

3) Random missing data. Some percentageMD% from the
output measurements is lost at random.

The outputs from the data sets were removed according
to the pattern chosen for each experiment and are specified
in each case.

A. Benchmark methods

Three different identification techniques were chosen for
comparison with NucID. The corresponding MATLAB tool-
box is given in brackets.

1) N4SID: Estimate a state-space model using subspace
identification techniques. (n4sid)

2) PEM: Estimate a state-space model using an iterative
prediction-error minimization method. (pem)

3) Expectation Conditional Maximization using Linear Re-
gression (LR): Estimate a FIR model using multivariate
linear regression with missing data. (ecmmvnrmle)

At this point it is important to note the way these methods
are used when data is missing. In principle, there are two
options: The missing entries can be simply disregarded in the
identification procedure or one can try to guess the values of
the missing entries, which is known as imputation. There are
different techniques toimputethe values of the missing data,
e.g., linear interpolation, regression imputation, expectation
maximization.

MATLAB offers the toolbox ‘misdata’ to impute the value
of missing entries of data sets. The algorithm alternates be-
tween estimating models with N4SID from the available data
and estimating missing data points. This iterative procedure
is repeated until a given relative tolerance is achieved (1%)
or for a maximum number of times (10 by default). The
“reconstructed” data set can then be used with the three
identification methods N4SID, PEM and LR.

This two step procedure of imputing values of missing
entries and then identifying a model does not apply for the
NucID method, which is a one step procedure that does not
need any imputation of the missing values. This is one of
the key benefits of the proposed method, since the procedure
of imputing the data will often either cause a significant
artificial increase in model order, or will generate nonsensical
results when large percentages of data are missing.

VI. RESULTS

This section presents the identification of several dynam-
ical systems comparing the proposed method with three
standard identification tools, N4SID, PEM and LR, presented
in the previous section. First the identification problem of a
CD player arm is presented and discussed in detail to high-
light the advantages of NucID over N4SID, PEM and LR.
Then the same detailed analysis for a number identification
problems is summarized in section VI-B.



A. Identification of a CD player arm

The experimental data from a mechanical construction of
a CD player arm is considered here. The system has two
inputs that are forces of the mechanical actuators and two
outputs that are related to the tracking accuracy of the arm.
The data set contains2, 000 sample points out of which400
were used for the identification procedure and the rest to
validate the identified models. In the first experiment all
measurements were considered while for the second and
the third experiments data was dropped from the outputs
according to the strategy described. The error presented in
this paper has been normalized with the factor|YI − ȲI |2,
whereYI is the complete set for identification and̄YI the
mean of the samples.

1) Complete data set:The complete data set was used
to identify a dynamical model using N4SID, PEM, LR and
NucIDand the resulting impulse responses are presented in
Fig. 1. For the sake of clarity, the impulse responses for LR
were not plotted since they are of high order and make the
figure unclear, as illustrated further on. The models identified
with N4SID and PEM have an order of two and are in general
in good agreement with the FIR coefficients identified by
NucID.

Fig. 1. FIR coefficients of the identified dynamical system for NucID,
N4SID, PEM using the complete data set.

In order to provide an overview of the order of the model
identified by NucID, a singular value decomposition (SVD)
of the Hankel matrix built from the FIR coefficientsHh

was computed and inspected. The order was then defined
as the number of singular values above 0.01% (10−4) of
the first value. Fig. 2 shows the SVD ofHh for five
NucID identification procedures using different values for
the error boundγ. It can be observed that by decreasingγ,
the number of non-negligible singular values (denoted with
a star) increases, i.e., the order of the identified model is
higher.

The four approaches are compared by plotting for each
method the order of the identified models against the corre-
sponding normalized error in Fig. 3. For the methods N4SID
and PEM, models with fixed orders from1 to 10 were
identified and their normalized errors computed. The LR
method yields only one point, since there is no way to choose
the order of the identified model as in the other methods. For
the NucID method the tuning of the order is done through
varying γ and the order and errors of five runs presented in
Fig. 2 for different values ofγ are plotted in Fig. 3.

It is evident for N4SID, PEM and NucID, that there
is a trade-off between the order of the identified model

Fig. 2. SVD of the Hankel matrixHh built from the FIR coeffi-
cients identified with the NucID method for different error boundsγ =
2.32, 2.35, 2.45, 2.75, 7.8. The stars define the non-negligible singular
values above the threshold of10−4, that define the order of the model.

and the prediction error. The NucID method is able to
identify models that give lower prediction errors than models
identified with N4SID and PEM with the same order. It is
well known that LR gives a rather good fit, but with very
high order models, as illustrated in Fig. 3.

We can conclude that when using the complete set of data
the NucID method is able to identify dynamical models that
are comparable to the other methods in terms of model order
and prediction error, and that in this specific case slightly
outperforms N4SID, PEM and LR. Similar results for the
identification of low-order models from complete data sets
had also been observed by [6]. The next step is to assess the
impact of missing output data on the identified models with
the different methods.

Fig. 3. Order of the identified model as a function of the normalized
prediction error for NucID, N4SID, PEM and LR.

2) Structured missing data:This section presents the
identification of the CD player arm example assuming that
the output data was collected at a slower sampling rate
than the one of the inputs, as encountered in a multi-rate
sampled-data process. In the first example, we consider four
experiments, runs (a) – (d), where the measurements ofonly
the first output is sampled at a lower frequency than the
inputs, and therefore the percentage of missing data in the
outputs does not exceed50%. Note that for the first example,
the second output of runs (a) – (d) is sampled at the the
same rate as both inputs, i.e., the data set still contains all
the output measurements of the second output. In a second
example, runs (e) – (h), both channels are sampled at lower
rates, which results in higher percentages of missing data.
The sampling rates that were analyzed are reported in Table



TABLE I
MULTI -RATE IDENTIFICATION EXPERIMENTS OF THECD PLAYER ARM

Run Normalized sampling time of MD%
Input 1 Input 2 Output 1 Output 2

(*) 1 1 1 1 0 %
(a) 1 1 2 1 25.00%
(b) 1 1 3 1 33.33%
(c) 1 1 4 1 37.50%
(d) 1 1 8 1 43.75 %
(e) 1 1 2 8 68.75 %
(f) 1 1 8 2 68.75 %
(g) 1 1 3 8 77.08 %
(h) 1 1 8 8 87.50 %

I. The last column of Table I is the percentage of missing data
in the outputsMD% compared to run (*), that corresponds
to the case analyzed in the previous section, where the entire
data set is available for identification. The results for runs (a)
– (d) are plotted in Fig. 4. The NucID and the LR method
identify models with rather small prediction errors, around
0.2 for runs (a) – (c). These values are comparable with the
ones from run (*) in Fig. 3. For run (d) the performance
of the LR method deteriorates considerably while the model
identified with the NucID method is the same as before. The
order of the identified models by LR are substantially higher
(11th order) than the ones from NucID (4rd order).

Models of different orders identified with N4SID and PEM
in each run are connected with a line in Fig. 4. We can
observe how their performance greatly deteriorates as the
amount of missing data increases fromMD% = 25% (run
(a), solid line —) toMD% = 33.3% (run (b), dotted line
· · ·) and MD% = 43.75% (run (d), dashed line - - -). For
the sake of clarity, run (c) has not been shown, but it follows
the same trend.

Fig. 4. Runs (a)-(d): Order of the identified model as a function of the
normalized prediction error for NucID, N4SID, PEM and LR for structured
missing data. Models of different orders identified with N4SID and PEM in
the same run are connected with a line; Run (a): solid (—). Run (b): dotted
(· · ·). Run (d): dashed (- - -). For the sake of clarity, run (c) has not been
shown.

In a second example, we consider the case were both
outputs are sampled at lower rates than the inputs. Four
different scenarios are studied. Runs (e) and (f) have the same
amount of missing data, but the sampling rates are exchanged
between the outputs to test the sensitivity of the identified
model to the output with more or less missing data. In runs
(e) and (f) the measurements of the outputs are collected
synchronously, but the sampling rates differ by a factor of
four. Runs (g) and (h) investigate rather high percentages of

output missing data.
The results for the second example are presented in Fig. 5.

Note that the scale on the x-axis has changed from Fig. 4 to
Fig. 5. Only LR and NucID were able to find a solution
in all runs. LR identified high order models (11th) with
larger errors than in the previous examples. In runs (e)
and (f), N4SID and PEM identified models that predicted
unacceptably large errors. These methods are also sensitive
to the output with higher or lower sampling rates, since the
models identified in run (e) (solid line —) have much smaller
errors than in run (f) (dashed line - - -). For runs (g) and
(h), N4SID and PEM were not able to find stable models.
The NucID method consistently identified in runs (e) –( h)
the same model as in all the previous runs, with the same
order (4th order) and prediction error (approx. 0.2). A good
consistency of NucID is was observed throughout the runs
(a) – (h) where the identified FIR coefficients were virtually
identical to those identified from the complete set of data in
run (*).

Fig. 5. Runs (e) – (h): Order of the identified model as a function of the
normalized prediction error for NucID, N4SID, PEM and LR for structured
missing data. Models of different orders identified with N4SID and PEM in
the same run are connected with a line; Run (e): solid (—). Run (f): dashed
(- - -). N4SID and PEM did not identify a stable model for runs (g) and
(h).

3) Randomly missing data:In this example, an increasing
percentage of the output entriesMD% is missing at random
throughout the measurements and the results are reported
in Table II, where each row represents a different amount
of missing data. The normalized errorseI for each of the
methods is reported together with the ordern of the identified
model. For NucID, N4SID and PEM the identification error
of the same order models are reported, whereas for LR
the errors correspond to higher order models. After50%
of missing data N4SID and PEM fail to identify a model,
indicated by a star *. Only NucID and LR are able to identify
a model when more than40% of the data is missing, although
only NucID finds a model of a reasonable order.

NucID, PEM and LR give normalized errors in the same
range for up to 45% of missing data, although of course the
order of the LR models is much higher. The performance
of N4SID is acceptable only for some specific instances and
after 50% of missing data, N4SID and PEM fail to identify
a model at all. The NucID method is able to identify the
system with up to 75% of missing data with rather small
errors.

B. System identification from DaISy database

In this final section we present selected scenarios from the
previous analysis applied to different systems taken from the



TABLE II
RESULTS FOR MISSING DATA AT RANDOM

NucID N4SID PEM LR
MD% n eI n eI
10 3 0.1965 0.2490 0.2062 11 0.2042
20 3 0.1995 0.5682 0.2054 11 0.2066
30 3 0.1970 0.7576 0.2119 11 0.2080
40 5 0.1912 0.2265 0.2025 11 0.2134
50 4 0.1934 * * 11 0.2571
60 4 0.1935 * * 11 0.2900
70 3 0.2303 * * 11 0.3867

database for system identification (DaISy) [9]. Due to space
restrictions, we present only the main results in Table III.
The type of system, reference number and the number of
inputs and outputs (Inputs x Outputs) can be found in the
first column. In all the results of this section, two scenarios
for each system are presented, one with the complete data
set and one multi-rate scenario as presented in section VI-
A.2, where inputs and outputs are sampled at different rates.
The second column gives the sampling time of the output
or outputs with respect to the sampling time of the inputs.
For example [8 1] means that the first output is sampled
eight times slower than the inputs while the second output is
sampled with the same sample time. The rest of the columns
present the order of the identified system and the normalized
error using the validation and identification data set. Table
III shows that NucID is able to identify with rather small
errors all the examples presented using the complete data set.
The orders and errors are comparable to the other methods
except for LR, where the order of the models is known to
be high. Little performance degradation can be seen for the
NucID method for all multi-rate scenarios, whereas N4SID
and PEM fail for three scnearios, indicated by a star *. For
the last example, the stirred tank the state space methods
give very similar results to NucID, slightly outperforming it.

VII. CONCLUSIONS AND FUTURE WORKS

A system identification method, called NucID, based
on nuclear norm regularization has been presented. The
NucID method identifies a low order linear model from
input/output data, given an upper bound on the prediction
error. NucID is compared to standard identification tech-
niques, like N4SID, prediction error minimization (PEM) and
expectation conditional maximization via linear regression
(LR). Diverse sets of experimental data were taken from
the system identification database DaISy [9] to compare
the methods among themselves. Two different scenarios of

TABLE III
IDENTIFICATION OF EXPERIMENTAL DATA FROM DA ISY DATABASE

System norm. NucID N4SID PEM LR
(In x Out) Ts n eV eI n eV eI n eV eI n eV eI
Hair dryer (1x1) 1 4 0.1319 0.1387 4 0.1081 0.1222 4 0.1010 0.1219 43 0.1091 0.1171
96-006 8 4 0.1382 0.1437 * * * * * * 43 0.1889 0.1729
Heat flow (2x1) 1 5 0.2168 0.1902 3 0.2989 0.2573 3 0.3305 0.2955 26 0.7476 0.1233
96-011 4 5 0.2881 0.2578 * * * * * * 26 0.7545 0.1738
Heat exchanger (1x1) 1 4 0.3263 0.2130 3 0.5086 0.3742 2 0.7005 0.5245 21 0.3110 0.2059
96-002 5 5 0.3312 0.2208 * * * * * * 21 0.3525 0.2286
Stirred tank (1x2) [ 1 1 ] 4 0.1018 0.1511 4 0.099 0.170 3 0.143 0.1861 21 1.000 0.1487
98-002 [ 8 1 ] 3 0.1038 0.1524 4 0.0990 0.1458 3 0.0929 0.1497 * * *

missing data in the outputs were studied. The multi-rate
scenario, where the missing entries have a pattern along
the outputs due to differences in the sampling times of the
outputs with respect to the inputs. In the second scenario
data is missing at random, e.g., when sensors fail. From the
results shown in this work, we can conclude that:
• The nuclear norm regularization is a heuristic that allows
one to minimize the order of the identified model. The iden-
tification problem can be posed as a convex optimization
problem that yields a low order model that explains the
experimental data within a given error bound.
• Normally, identifying a model form an incomplete data set
involves two steps: imputing the values of missing entries in
the data set according to some criteria, and then identifying
a model form the “reconstructed” data set with standard
system identification techniques. In contrast to this two-step
approach, the NucID method involves only one step. It deals
with missing data without having to make any assumptions
or having to impute in some way the values of missing
entriesa priori.
• NucID can be used for system identification from complete
and incomplete data sets. When data is missing at random,
the advantages become clear only at high percentages of
missing data. In the case of structured missing data, i.e., for
multi-rate sampled-data systems, the NucID method clearly
outperforms the conventional two-step procedures and is
able to correctly identify a model with considerably lower
sampling rates in the outputs.
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