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Abstract— Recent results have suggested that online Model
Predictive Control (MPC) can be computed quickly enough to
control fast sampled systems. High-speed applications impose
a hard real-time constraint on the solution of the MPC prob-
lem, which generally prevents the computation of the optimal
controller. In current approaches guarantees on feasibility and
stability are sacrificed in order to achieve a real-time setting. In
this paper we develop a real-time MPC scheme based on robust
MPC design that recovers these guarantees while allowing for
extremely fast computation. We show that a simple warm-
start optimization procedure providing an enhanced feasible
solution guarantees feasibility and stability for arbitrary time
constraints. The proposed method can be practically imple-
mented and efficiently solved for dynamic systems of significant
problem size. Implementation details for a real-time robust
MPC method are provided that achieves computation times
equal to those reported for methods without guarantees. A12-
dimensional problem with 3 control inputs and a prediction
horizon of 10 time steps is solved in2msec with a performance
deterioration less than 1% and thereby allows for sampling
rates of 500Hz.

I. I NTRODUCTION

In online Model Predictive Control (MPC) approaches, a
constrained optimal control problem is solved at each time
instant, which has restricted the applicability of MPC to
slow dynamic processes. In recent years it was shown that
the optimal solution to this type of problem can be solved
offline and the so-called explicit solution can then be used as
a control look-up table online [1], [2]. Whereas this enables
MPC to be used for fast sampled systems its application is
strongly limited by the problem size. This work is motivated
by recent results showing that the computation times for
solving an MPC problem can be pushed into a range where
an online solution becomes a reasonable alternative for the
control of high-speed systems. Significant reduction of the
computational complexity can be achieved by exploiting the
particular structure and sparsity of the optimization problem
given by the MPC problem using tailored solvers [23], [24].

High speed systems impose a strict real-time constraint
on the problem which generally prevents the computation
of the optimal controller. The goal is then to provide a
suboptimal control action within the time constraint that
still guarantees stability of the closed-loop system and
achieves acceptable performance. A method providing these
guarantees by combining online and explicit MPC was
introduced in [25], which is however limited to smaller
problem dimensions. Available methods for fast online MPC
do not give guarantees on either feasibility or stability of

the applied control action in a real-time implementation.
In this paper we develop a real-time MPC scheme that
guarantees stability for all time constraints and allows for
fast online computation. The a-priori stability guarantee
then allows one to trade the performance of the suboptimal
controller for lower online computation times. We show that
the method can bepractically implemented and efficiently
solved for systems of significant size.

A standard warm-start procedure is applied in which
the optimization problem for the current state is initialized
with the shifted suboptimal control sequence computed at
the previous time instance. The optimization is terminated
early when a specified time constraintτ is hit returning
an enhanced feasible solution. First, asymptotic stability
of the so-calledτ -real-time control law resulting from
this procedure is established for the nominal system. The
approach is then extended to the case of uncertain systems
that are subject to bounded additive disturbances. We show
that the use of a robust MPC design guarantees constraint
satisfaction as well as input-to-state stability of the uncertain
system under the proposedτ -real-time control law. The
presented results are based on existent stability theory in
the MPC literature, e.g. [15], [16], [20] and the references
therein, that is studied and emphasized in the context of
real-time MPC for linear systems. In particular we exploit
the fact that a suboptimal rather than optimal solution to
the (robust) MPC problem is sufficient for stability if it
satisfies the constraints and has a lower cost than the shifted
sequence from the last sample. We point out that this
theory offers a stability guarantee for the nominal and the
uncertain case under a standard and simple online procedure.

A real-time MPC procedure for uncertain linear systems
is developed using the tube based robust MPC approach in
[17]. We present the computational details for implementing
the proposed method and emphasize that the required
sets can be computed or approximated for all problem
sizes allowing the real-time MPC scheme to be applied to
dynamic systems of30 dimensions or more. We show that
the structure and sparsity of the optimization problem is
maintained in the robust case and can be solved efficiently
using solvers tailored for the solution of MPC problems. A
custom solver was developed for this paper using a primal
barrier interior-point method [4] that achieves computation
times that are equal or even faster compared to existing
methods with no guarantees. For a12-dimensional example
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system the MPC problem with a limit of5 interior-point
iterations was solved in2msec with an average performance
deterioration of less than1% allowing for sampling rates
of 500Hz. The corresponding computation times for a
30-dimensional system were10msec allowing for sampling
rates of100Hz.

The outline of the paper is as follows: In Section III
the nominal real-time control procedure is introduced and
asymptotic stability is shown repeating important results
from the literature. Section IV extends these results to the
uncertain case. The concept of robust MPC is described and
input-to-state stability is shown for the proposed method.
The computational details necessary to apply the proposed
procedure are provided in Section V. Finally, in Section VI
we illustrate our approach and its advantages using numerical
examples and provide a comparison with the literature.

II. N OTATION & PRELIMINARIES

A polyhedron is the intersection of a finite number of
halfspacesP = {x|Ax ≤ b} and apolytopeis a bounded
polyhedron. IfA ∈ R

m×n thenAi ∈ R
n is the vector formed

by thei-th row of A. If b ∈ R
m is a vector thenbi is thei-th

element ofb. Given two setsS1, S2 ⊆ R
n the Minkowski

sum is defined asS1⊕S2 , {s1 +s2|s1 ∈ S1, s2 ∈ S2} and
the Pontryagin difference asS1⊖S2 , {s1|s1+s2 ∈ S1, s2 ∈
S2} = {s1|s1 ⊕ S2 ⊆ S1}. For a collection of sets{Si ⊂
R

n, i ∈ [a, a+1, · · · , b]},
⊕b

i=a Si , Sa ⊕Sa+1 ⊕· · ·⊕Sb.
Given a sequenceu , [u0, · · · , uN−1], u(j) denotes thej-th
element ofu. If a sequence depends on a parameter denoted
by u(x), u(j, x) denotes itsj-th element. If the elements
u(j) ∈ U thenu ∈ U

N , whereU
N , U × · · · × U.

Consider the discrete-time linear system

x+ = Ax + Bu + w (1)

and the corresponding nominal system

x+ = Ax + Bu (2)

wherex ∈ R
n is the state,u ∈ R

m is the control input and
w is a bounded disturbance that is contained in a convex and
compact setW ⊂ R

n that contains the origin. The solution
of the nominal system (2) at sampling timek for the initial
statex(0) and a sequence of control inputsu is denoted as
φ(k, x(0), u). Consider that system (1) is controlled by the
control lawu = κ(x) denoted by

x+ = Ax + Bκ(x) + w = Aκ(x) + w (3)

The solution of the controlled uncertain system for a se-
quence of disturbancesw is denoted as̄φκ(k, x(0), w).

Definition II.1 (Positively invariant (PI) set). A set S ⊆
R

n is a positively invariant (PI) set of systemx+ = Aκ(x),
if Aκ(x) ∈ S for all x ∈ S.

Definition II.2 (Robust positively invariant (RPI) set).
A set S ⊆ R

n is a robust positively invariant (RPI) set of
(3) if Aκ(x) + w ∈ S for all x ∈ S, w ∈ W .

The smallest RPI set that is contained in every closed RPI
set of (3) is called a minimal RPI (mRPI) set, and the biggest
PI set that contains every closed PI set ofx+ = Aκ(x) is
called a maximal PI (MPI) set.

Definition II.3 (Regional ISS [7], [21]). Given an RPI set
Γ ⊆ R

n with 0 ∈ Γ, system (3) is Input-to-State Stable (ISS)
in Γ w.r.t. w if there exists aKL-function [22] β and aK-
function [22] γ such that for all initial statesx(0) ∈ Γ and
for all disturbance sequencesw = [w0, · · · , wj ] ∈ W j+1:
‖φκ(j, x(0), w)‖2 ≤ β(‖x(0)‖2, j)+γ(‖w[j−1]‖), ∀j ≥ 0 ,
where‖w[j−1]‖ , sup0≤k≤j−1{‖wk‖2}.

Remark II.4. Note that the condition for input-to-state sta-
bility reduces to that for asymptotic stability ifw = 0. A
systemx+ = Ax+w is ISS if the nominal systemx+ = Ax

is asymptotically stable and the effect of the disturbance on
the evolution of the system is bounded.

III. R EAL-TIME MPC

Consider the nominal linear discrete-time system (2). The
goal is to regulate the state of the system to the origin while
respecting constraints on inputs and states, which can be
formulated as the following MPC problemPN (x):

min
u

VN (x, u) ,

N−1∑

i=0

l(xi, ui) + Vf (xN ) (4)

s.t. xi+1 = Axi + Bui, i = 0, . . . , N − 1 ,

(xi, ui) ∈ X × U, i = 0, . . . , N − 1 ,

xN ∈ Xf ,

x0 = x ,

(5)

where u = [u0, · · · , uN−1] ∈ U
N denotes the input

sequence, X and U are polytopic constraints on
the states and inputs, the stage cost is defined as
l(xi, ui) := 1

2xT
i Qxi + 1

2uT
i Rui, Vf (x) = 1

2xT Px is
a terminal penalty function,Q, R andP are positive definite
matrices andXf ⊆ X is a compact terminal target set with
properties as defined in Assumption III.1.

The associated state trajectory to a given control sequence
u(x) at statex is x(x) , [x0, x1, · · · , xN ], wherex0 = x

and for eachi, xi = φ(i, x, u(x)). ProblemPN (x) implicitly
defines the set of feasible control sequencesUN (x) =
{u(x) | u(x) ∈ U

N , x(x) ∈ X
N × Xf} and feasible initial

statesXN , {x | UN (x) 6= ∅}. For a given statex ∈ XN

the solution ofPN (x) yields the optimal control sequence
u∗(x). The implicit optimal MPC control law is then given
in a receding horizon fashion byκ(x) , u∗(0, x).

Assumption III.1. In the following it is assumed thatVf (·)
is a Lyapunov function inXf and Xf is a PI set for
system (2) under the control lawκf (x) = Kx, given by
the following conditions:

A1: Xf ⊆ X, (A + BK)Xf ⊆ Xf , KXf ⊆ U

A2: Vf ((A + BK)x) − Vf (x) ≤ −l(x, Kx)∀x ∈ Xf .

Theorem III.2 (Stability under κ(x), [16]). Consider
ProblemPN (x) fulfilling Assumption III.1. The closed-loop



systemx+ = Ax + Bκ(x) is asymptotically stable with
region of attractionXN .

For a given valuex ∈ XN , we can write (4) as a Quadratic
Program (QP) of the following form :

min
z

zT Hz s.t. Pz ≤ g , Ez = c , (6)

wherez , [u0, x1, · · · , uN−1, xN ] ∈ R
N(n+m) is a vector

containing the sequence of states and control inputs. See
e.g. [2] for details on the conversion and [24] for details on
the structure ofH, P, g, E andc.

Most real applications impose a real-time constraint
on the solution of the MPC problem, i.e. a limit on the
computation time that is available to compute the control
input, at each time instance. This often prevents the
computation of the optimal solution to (6). The introduction
of a τ -real-time constraint can lead to the loss of feasibility
and more importantly stability when using a general
optimization solver. A suboptimal control input therefore
has to be provided within the real-time constraint that
ensures stability and a minimal performance deterioration.
In the following a control law is calledτ -real time (τ -RT)
if it is computed inτ seconds.

Various approaches trying to reduce the computation time
in online MPC have been recently proposed. Many methods
are based on the development of custom solvers that take
advantage of the particular sparse structure in an MPC
problem (e.g. [23], [24]). In [23], for example, an infeasible
start newton method is applied that is terminated after a
fixed number of steps. A tailored solver was developed that
exploits the sparse structure of the MPC problem resulting in
computation times in the range of milliseconds. The authors
in [5] develop a warm-start based homotopy approach
that is terminated early in case of a time constraint. Most
available approaches however sacrifice feasibility and/or
stability in order to achieve a real-time guarantee. In [12]a
relation between the level of suboptimality and the stability
guarantee is derived. These results can however not be
applied to the considered case of real-time MPC since it is
currently not possible to determine the level of suboptimality
that a given solver will achieve in a fixed amount of time.

We show that in the nominal case aτ -RT input sequence
that is guaranteed to be feasible and stabilizing can be easily
constructed for any time constraintτ . A standard warm-start
procedure is employed where the input sequence computed
at statex is used to initialize the QP (6) for the next state
x+ in (2) (note that the vectorz can be directly constructed
from the current state and a given input sequence). The
QP is then solved using an optimization routine that is
iteratively improving the solution by taking feasible steps and
is terminated after timeτ . The described procedure returns
a τ -RT control law.

Definition III.3 ( τ -RT optimizer). Assume ũ(x) =

[ũ0, · · · , ũN−1] is a feasible control sequence forx, x̃(x) is
the associated state sequence andx+ = Ax + Bũ(0, x) is
the current state. The shifted sequence is given by

ushift(x) = [ũ1, · · · , ũN−1, K x̃(N, x)] (7)

We defineuRT(x
+, τ) to be the control variables ofPN (x)

after time τ , with τ ≥ 0. A τ -RT optimizer computes a
control sequence inτ seconds with the following properties:

• uRT(x
+, τ) is feasible forx+

• uRT(x
+, 0) = ushift(x)

• VN (x+, uRT(x
+, τ)) ≤ VN (x+, uRT(x

+, 0))

Definition III.4 (Nominal τ -RT control law). Let
uRT(·, τ) be as defined in III.3. Theτ -RT control law
is

κτ (x) = uRT(0, x, τ), for x ∈ XN . (8)

It is well-known that in the nominal case the shifted sequence
in (7) is feasible and stabilizes the system in (2) [20].
The fact that any improved feasible solution of the shifted
sequence also offers guaranteed stability has been pointed
out previously in several places (see e.g. [16], [20]) but
its importance for real-time MPC has not been previously
studied. We therefore state this result for completeness.

Theorem III.5 (Stability under κτ (x), [20]). The
closed-loop systemx+ = Ax + Bκτ (x) is asymptotically
stable for allτ ≥ 0 with region of attractionXN .

Remark III.6. The critical requirement in order to guaran-
tee stability of theτ -RT control law is feasibility of the
shifted sequence in (7) or so-called recursive feasibility.
This guarantees stability of the0-RT control law. In order
to guarantee stability for all subsequent timesτ ≥ 0 the
optimization has to maintain feasibility and ensure that the
cost function is not increased with respect to the cost at time
τ = 0. These requirements are not automatically fulfilled by
all standard optimization routines in which case they have to
be explicitly enforced, see Section V-B for details.

IV. REAL-TIME ROBUST MPC

In practice, model inaccuracies or disturbances usually
cause violation of the nominal system dynamics in (2) which
can lead to the loss of (recursive) feasibility. Stability of the
nominal optimal MPC controller as well as the proposed
τ -RT control law can then not be guaranteed. This issue
is addressed in robust MPC schemes that recover recursive
feasibility by changing the problem formulation. As men-
tioned previously, this is the crucial item in order to prove
stability of the proposed real-time MPC method. Note that in
the considered case stability can therefore not be achieved
by the approach described in [13], where a constraint on
the Lyapunov decrease in the first step is introduced, since
the solutions are not recursively feasible. In this sectionthe
results for the nominal case are extended to the uncertain
case using a robust MPC method. We first describe the idea
of robust MPC and then develop a robustτ -RT control law
that guarantees ISS of the closed-loop uncertain system.



A. Robust MPC

Consider the discrete-time uncertain system in (1). The
goal of robust MPC is to provide a controller that satisfies
the state and input constraints and achieves some form of
stability despite disturbances that are acting on the system.
Asymptotic stability of the origin can not be achieved in the
presence of persistent disturbances. It can, however be shown
that under certain conditions the trajectories converge toan
RPI setZ, which can be seen as the ‘origin’ for the uncertain
system. This is captured in the concept of ISS in Definition
II.3, requiring the nominal system to be asymptotically stable
and the influence of the disturbance on the evolution of the
states to be bounded [21].

There is a vast literature on the synthesis of robust MPC
controllers, see e.g. [15], [16] and the references thereinfor
an overview. The crucial property of recursive feasibility
is guaranteed by all available robust MPC methods and
could be used to derive a real-time MPC controller for the
uncertain system (1). In order to allow for fast computation
we use the tube based robust MPC approach for linear
systems described in [17] in this work. The main steps of the
procedure are outlined in the following (see [17] for details).

The method is based on the use of a feedback policy
of the form u = ū + K(x − x̄) that bounds the effect of
the disturbances and keeps the statesx of the uncertain
system in (1) close to the states̄x of the nominal system
x̄+ = Ax̄ + Bū. Loosely speaking, the controlled uncertain
system will stay within a so-called tube with constant section
Z and centersx̄(i), where Z is an RPI set for system
x+ = (A + BK)x + w. The robust MPC problem can
therefore be reduced to the control of the tube centers,
which are steered to the origin by choosing a sequence of
control inputsū and the initial tube center̄x(0). It can be
shown that if the initial center is chosen according to the
constraintx = x(0) ∈ x̄(0) ⊕ Z for a given initial statex,
then the trajectory of the uncertain system remains within
the described tube (in fact for all̄u, x(i) ∈ x̄(i) ⊕ Z if
x(0) ∈ x̄(0) ⊕ Z). This can be formulated as a standard
MPC problem with the only difference that the first statex̄0

is also an optimization variable representing the tube center
for the current statex. In order to guarantee that the uncertain
system does not violate the constraints in (5) the constraints
for the tube centers must be tightened in the following way:
X̄ = X ⊖ Z, Ū = U ⊖ KZ. This results in the following
robust MPC problem̄PN (x):

min
x̄0,ū

V̄N (x, x̄0, ū) ,

N−1∑

i=0

l(x̄i, ūi) + Vf (x̄N ) (9)

s.t. x̄i+1 = Ax̄i + Būi, i = 0, . . . , N − 1 ,

(x̄i, ūi) ∈ X̄ × Ū, i = 0, . . . , N − 1 ,

x̄N ∈ Xf ,

x ∈ x̄0 ⊕Z ,

(10)

ProblemP̄N (x) implicitly defines the set of feasible initial
statesX̄N ⊆ XN and feasible control sequencesŪN (x).

Remark IV.1. Note that the re-optimization of the tube
center at every time step introduces feedback to the distur-
bance. A feasible and stable controller could however also
be obtained by computing the center trajectory and control
sequence once for the intial statex(0) and then running the
system with the obtained control sequence and after that with
the auxiliary control law.

Assumption IV.2. It is assumed thatQ, R, P, Vf (·), Xf ful-
fill Assumption III.1 with X̄ and Ū replacingX andU and
κf (x) = Kx.

Remark IV.3. The setXf ⊕ Z is an RPI set for system
x+ = (A + BK)x + w.

The resulting robust MPC control law is given by:

κ̄(x) = ū∗(0, x) + K(x − x̄∗
0(x)) , (11)

where ū∗(x) and x̄∗
0(x) is the optimal solution tōPN(x).

Note that the optimal initial center̄x∗
0(x) is not necessarily

equal to the current statex.

Theorem IV.4 (Stability under κ̄(x)). Consider Problem
P̄N (x) fulfilling Assumption IV.2. The closed-loop system
x+ = Ax + Bκ̄(x) + w is ISS inX̄N w.r.t. w.

Proof. Robust stability of the setZ with region of attraction
X̄N was proven in [17] which corresponds to ISS in̄XN

[21]. �

B. Real-time robust MPC

The previously described robust MPC scheme separates
the effect of the uncertainty from the nominal system
behavior and thereby allows us to directly extend the results
for the nominal case in Section III to the case of uncertain
systems. We show in the following that aτ -RT control law
for the uncertain system (1) can be obtained by applying
the proposed real-time MPC scheme to the robust MPC
problem P̄N (x) and prove that the resulting robustτ -RT
control law is ISS. Our results are based on the fact that
recursive feasibility of the MPC control law is recovered by
means of a robust MPC design. This is a well-known fact
in the robust MPC literature and has been stated in various
places (e.g. [15], [17]). Although it was previously remarked
e.g. in [15] that this result can be used to show that an
enhanced solution of̄PN (x) rather than the optimal one is
sufficient for stability, this result has not been exploitedin
the context of real-time MPC to our knowledge.

The same standard optimization routine as described in
Section III is applied to solvēPN (x). The optimization is
initialized with the input sequence and tube centers computed
at the previous time step. The procedure improves the
initial solution and is terminated early after a fixed timeτ

determined by the real-time constraint. The resulting feasible
suboptimal controller together with the static feedback in
(11) is applied to the system.

Definition IV.5 (Robust τ -RT optimizer). We define
ūRT(x

+, τ) to be the control variables and̄x0,RT(x
+, τ) to



be the corresponding state variablex̄0 after solvingP̄N (x)
for time τ . A robust τ -RT optimizer computes a control
sequence and an initial center inτ seconds with properties
as defined in Assumption III.3 and the additional property:

• x+ ∈ x̄0,RT(x
+, τ) ⊕Z for x+ in (1).

Definition IV.6 (Robust τ -RT control law). Let ūRT(·, τ)
andx̄0,RT(·, τ) be as defined in IV.5. The robustτ -RT control
law is

κ̄τ (x) = ūRT(x, τ)+K(x−x̄0,RT(x, τ)), for x ∈ X̄N . (12)

Theorem IV.7 (Stability under κ̄τ (x)). The closed-loop
systemx+ = Ax+Bκ̄τ (x)+w is ISS inX̄N w.r.t. w for all
τ ≥ 0.

Proof. Recursive feasibility was proven in [17].
Since V̄N (x, x̄0,RT(x, τ), u) = VN (x̄0,RT(x, τ), u) and
κ̄τ (x̄0,RT(x, τ)) = κτ (x̄0,RT(x, τ)), asymptotic stability of
the center trajectoryx̄0,RT(φκ̄τ

(j, x(0), w), τ) is shown
by Theorem III.5. ISS then follows from the fact that
φκ̄τ

(j, x(0), w) ∈ x̄0,RT(φκ̄τ
(j, x(0), w), τ) ⊕Z [17]. �

Theorem IV.7 guarantees stability of the uncertain system (1)
in a real-time MPC implementation by using the robustified
problem formulationP̄N (x). The solution of (9) can be
stopped after an arbitrary available timeτ and even a0-
time feasible and stabilizing solution is available with the
shifted sequence.

V. COMPUTATIONAL METHODS

In order to apply the proposed suboptimal control scheme
to high-speed systems, problem̄PN (x) has to be solved very
quickly. The following sections describe the computational
details necessary for the problem setup and show that it can
be efficiently solved even for higher dimensional systems.

A. Tube based robust MPC

Method [17] described in Section IV requires the
following elements to be computed: the RPI setZ, the PI
setXf satisfying Assumption A1 in IV.2 and the tightened
constraints̄X andŪ. Ideally,Z is taken as the minimal RPI
(mRPI) set andXf as the maximal PI (MPI) set. An explicit
representation of these sets can however generally not be
computed except in special cases [6], [8]. It is however
always possible to compute an invariant outer approximation
of the mRPI set and an invariant inner approximation of the
MPI set of predefined shape.

The details for computing ellipsoidal and polytopic
approximations forZ and Xf as well as the tightened
constraint X̄ and Ū are outlined in the following. For
simplicity, the unconstrained infinite horizon optimal
cost is taken as the terminal costVf (x) = 1

2xT Px

and the corresponding optimal LQ controller is used
for K in (11), there are however different ways of
choosing a stabilizing affine controller [9], [19]. We denote
AK , A+BK. The polyhedral state and control constraints
areX = {x |Gx ≤ f} andU = {u |Cu ≤ d}. For simplicity

we assume thatW = {w | ‖w‖∞ ≤ δ} in the polytopic
case andW = {w | ‖w‖2 ≤ δ} in the ellipsoidal case. The
results can however be extended to the case whereW is
a general bounded polytope or a general ellipse, respectively.

1) Polytopic approximation ofXf : The MPI set cor-
responds to the output admissible set [6]. Using the LQ
controller the output admissible set can be finitely determined
by O∞ = {x ∈ R

n |GAtx ≤ f, ∀t ∈ [1, · · · , t∗]} which
can be computed using [10]. The exact calculation might
however be prohibitively complex in higher dimensions. An
approximation of the MPI set is described in [11] where
a positively invariant polytope is derived as the separatorof
two ellipsoidal sets resulting in a number of QPs, which will
still be limited to relatively small dimensions (< 10).

2) Ellipsoidal approximation ofXf : Most approaches use
the level set of a quadratic Lyapunov function to derive an
invariant ellipsoidal inner approximation of the MPI set [3],
[9]. In the considered case a Lyapunov function is readily
available withVf (x) = xT Px. An ellipsoidal approximation
of the MPI set can be computed as the biggest level set
fulfilling the state and control constraints:EXf

= {x ∈
R

n |xT Px ≤ γmax}, whereγmax = argmin{−γ |xT Px ≤
γ, x ∈ X̄, Kx ∈ Ū}. This results in a simple LP that can be
solved for all dimensions.

3) Polytopic approximation ofZ: The method described
in [18] can be used to compute anǫ-outer approximation of
the mRPI set. An inner approximation is obtained using a
series of projections and is then scaled by a suitable amount:
F (α, s) = (1−α)−1

⊕s−1
i=0 AiW . For a given value ofs the

best scaling parameterα is such thatF (α, s) is the smallest
outer approximation. The parameterss andα are chosen by
means of an iterative procedure that requires the solution of
simple algebraic equations for the case whereW is defined
by box constraints. The computation of the Minkowski sum
however limits this method to small dimensions (< 10).

Another variant for the computation of an approximate
polyhedral mRPI set that simultaneously optimizes for a
piece-wise affine auxiliary control law is presented in [19],
which may potentially cause a large increase in the number
of optimization variables.

4) Ellipsoidal approximation ofZ: An RPI ellipsoidal
outer approximation of the mRPI set can be determined using
a level set ofVf (·) similar to V-A.2. An extra constraint is
added enforcing that the ellipsoid is in fact an RPI set. The
minimal ellipsoidal RPI set is then given byEZ = {x ∈
R

n |xT Px ≤ γmin}, where γmin = argmin{γ |xT Px ≤
γ, x ∈ X̄, Kx ¯∈ U, x+Px+ ≤ γ, ∀x s.t. xT Px ≤ γ with
x+ in (3)}. This problem can be tranformed into an LMI
using the S-procedure [3] and can be efficiently solved for
all dimensions.

5) Constraint tightening: In the case that polyhedral
approximations are used, the Minkowski differences
X̄ = X⊖Z, Ū = U⊖KZ were computed using [10] which



requires the computation of a series of LPs. In the case
of ellipsoidal approximations the Minkowski differences
can be computed similarly by solving a series of LMIs.
The robustified constraints can hence be computed rapidly
for all dimensions. The tightened constraintsX̄ and Ū are
polytopic in both cases and of the same complexity as the
origional constraintsX andU.

The question is then of course, which approximation to
use, a polyhedral or an ellipsoidal one. Since the above
described computations are performed offline the computa-
tion times are not crucial. In general however polyhedral
approximations can only be computed for smaller systems,
approximately 6-7 dimensions. Whereas ellipsoidal approx-
imations might be slightly more conservative in this range,
they represent the better if not the only choice for higher
dimensions. If the considered system is in the range where a
polyhedral approximation can be computed, an explicit so-
lution [1] of the MPC problem should as well be considered
since it allows for extremely fast computation times in lower
dimensions. Another advantage of ellipsoidal invariant sets is
the fact that the number of constraints introduced by the con-
dition x ∈ x̄0⊕Z in (10) is fixed, whereas polytopic invariant
sets may add a large number of constraints leading to slower
computation times and excessive memory requirements. It
is hencealwayspossible to compute the invariant sets and
tightened constraints using ellipsoidal approximations even
for significant problem sizes. The offline set computations
were carried out using the YALMIP toolbox [14].

B. Optimization

In the case thatZ andXf are polyhedral sets, the robust
MPC problemP̄N (x) can be written as a QP of the form (6),
where the vectorz also includes the initial statēx0. If Z and
Xf are represented by ellipsoidal sets, problemP̄N(x) can
be transformed into a quadratically constrained QP (QCQP),
that is the QP (6) with two extra quadratic constraints on the
initial and the terminal state:(x̄0 − x)T P (x̄0 − x) ≤ γmin

and x̄T
NP x̄N ≤ γmax. Both problems, the QP as well as

the QCQP, can be efficiently solved using interior-point
methods. A feasible start primal barrier interior-point method
[4] was chosen to realize theτ -RT control law in (12).
Standard interior-point methods maintain feasibility but
since they use a modified cost for the optimization the actual
MPC cost in (4) could increase during the iteration steps.
An extra constraint enforcing a non-increasing MPC cost
VN (x+, uRT(x

+, τ)) ≤ VN (x+, uRT(x
+, 0)) and thereby

ensuring the controller properties defined in Definition III.3
has to be explicitly added to the optimization problem. The
time constraint is realized by performing a fixed number of
optimization steps.

The QP as well as the QCQP result in very sparse problem
structures similar to those described e.g. in [23], [24] with a
dense band from the decrease constraint, forming a so-called
arrow structure. A solver exploiting this particular structure
can solve the QP as well as the QCQP extremely quickly.

The authors developed a simple custom solver written in
C++, based closely on that given in [23], for the real-time
method proposed in this paper that results in computation
times in the range of milliseconds (see results in Section
VI). This offers the possibility to apply real-time robust MPC
to high-speed systems with the big advantage that stability
is always guaranteed and the available computation time is
used to improve the solution and increase the performance.
The simulations were executed on a 2.8GHz AMD Opteron
running Linux using a single core.

VI. RESULTS& EXAMPLES

A. Illustrative Example

We first illustrate the method and its components using
the following 2D system:

x
+

=

[
1 1

0 1

]
x +

[
1

0.5

]
u + w , (13)

with a prediction horizonN = 5 and the constraints‖x‖∞ ≤
5 and‖u‖∞ ≤ 1 on the states and control inputs,Q = I and
R = 1. The disturbance is assumed to be bounded inW =
{w|‖w‖2/∞ ≤ 0.025}. The terminal cost functionVf (x)
is taken as the unconstrained infinite horizon optimal value
function for the nominal system withP = [ 1.8085 0.2310

0.2310 2.6489 ] and
κf (x) = Kx is the corresponding optimal LQ controller.
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Fig. 1. State trajectories for example (13). The dash-dotted line is the actual
trajectory x(i) and the solid line represents the trajectory of tube centers
x̄0(x(i)). The terminal setXf is shown as well as the sets̄x0(x(i))⊕Z.

Polytopic and ellipsoidal approximations ofZ andXf were
calculated as described in Section V. In Figure 1 a state tra-
jectory x(j) starting fromx(0) = [−2.5, 1.2]T is illustrated
for a sequence of extreme disturbances for the ellipsoidal and
the polytopic case together with the corresponding trajectory
of tube centers̄x0(x(j)) and setsx̄0(x(i)) ⊕ Z and Xf .
The ellipsoidal terminal set is significantly smaller and the
ellipsoidal setZ slightly bigger than in the polytopic case
which is due to the fact that the shape of the ellipsoid was
fixed. Despite the different set sizes, the two approaches
however result in a very similar region of attraction.

B. Oscillating masses

The oscillating masses example described in [23] is
chosen to examine our real-time method and evaluate it
against that proposed in [23]. The considered model has
n = 12 states andm = 3 inputs. Ellipsoidal invariant sets
were computed forXf and Z, polytopic approximations



Tab. I

CLOSED-LOOP PERFORMANCE DETERIORATION IN%

kmax 1 2 3 4 5 6 7 8

△Jcl 1.39 1.32 1.10 0.88 0.70 0.55 0.44 0.33

cannot be computed for this problem size. For a horizon
of N = 30 this results in a QCQP with462 optimization
variables and1238 constraints. A random disturbance
sequence with‖w‖2 ≤ 0.25 is acting on the system, which
corresponds to20% of the actuators control range. The
method was run with the same optimization parameters given
in [23] and a fixed number of optimization stepskmax = 5 in
order to have a direct comparison with the reported results.
Our solver was able to compute5 Newton steps in6msec
(averaged over100 runs) and hereby achieves timings that
are essentially equal to those reported in [23]. We can hence
achieve the same fast sampling rates using the robust MPC
design and achieve guaranteed feasibility and stability. Both
methods provide a closed-loop performance deterioration
△Jcl < 1% taken over a large number of sample points,
where△Jcl =

∑
∞

i=0
(l(xi,κ̂(xi))−l(xi,κ(xi)))∑
∞

i=0
l(xi,κ(xi))

, κ̂(x) denotes the
suboptimal controller obtained afterkmax iterations andκ(x)
the optimal controller of the considered method.△Jcl is
estimated by simulating the trajectory for a long time period.

After establishing that the proposed approach performs
equally well for the particular example it is important to
note that one would choose the optimization parameters
differently for our method. A long horizon was taken in
[23] since no stability guarantee is provided. This is however
not necessary using the presented approach due to its a-
priori stability guarantee. We therefore reduce the horizon
to N = 10 resulting in a QCQP with162 decision variables
and398 constraints and investigate the effect of the number
of allowed iterations on the closed-loop performance dete-
rioration, reported in Table I. It is important to note that
the performance as well as the region of attraction are not
affected by the reduction of the horizon toN = 10. One
Newton step can now be computed in0.3msec. Consequently
the real-time MPC method withkmax = 5 iterations can be
implemented with a sampling time of2msec resulting in a
controller rate of500Hz. It is remarkable that the one step
solution still shows considerably low performance loss. Since
stability is guaranteed at all times one could therefore choose
kmax = 1 in order to achieve extremely low computation
times of0.3msec in trade for lower performance.

C. Large Example

A random example withn = 30, m = 8 and N = 10
was generated resulting in an optimization problem with
410 optimization variables and1002 constraints. Ellipsoidal
invariant sets were computed forXf and Z. We recorded
the computation time for the invariant sets and tightened
constraints which were computed offline in only19 seconds.
The robust MPC problem withkmax = 5 Newton iterations
was solved in10msec allowing for an implementation of the
MPC controller at a sampling rate of100Hz.
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