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Control with Stability, Feasibility, and Performance Guarantees

Sean Summers, Colin N. Jones, John Lygeros, and ManfredrMora
ETH Zurich, Switzerland

Abstract— In this paper, an algorithm is introduced based Yet, the computation of a feasible control laiv which
on classical wavelet multiresolution analysis that returs a preserves the stability and performance of the cost functio

low complexity explicit model predictive control law built — 555r6ximation is not straightforward, but can be done using
on a hierarchy of second order interpolating wavelets. It is the techni di din I3 15’ 16
proven that the resulting interpolation is everywhere feaible. e techniques discussed in [3], [15], [16].

Further, tests to confirm stability and to compute a bound In [13] an approximate scheme was proposed that has
on the performance loss are introduced. Since the controlte some of the same positive benefits of the method introduced

approximation is built on a gridded hierarchy, the evaluation in this paper. The primary similarity and strength of the
of the control law in real-ime systems is naturally fast and  55565¢h js that the control law is defined over a hierarthica

runs in a bounded logarithmic time. A simple example is t of h b hich id t v fast onli
provided which both illustrates the approach and motivates Set ol hypercubes, which provides an extremely fast oniine

further research in this direction. evaluation time that is similar to that given here. The lanit
tion of the approach [13] is in the generation of the control
l. INTRODUCTION law that is defined over these hypercubes, which can be

The implementation of a model predictive controllerdiscontinuous, infeasible and potentially destabilizinghe
(MPC) requires the exact global solution of an optimizationvorst case. While the control law may often result in good
problem online at each sampling instant. It has beconperformance, there is no systematic procedure to provetthat
well-known that this optimization problem can be posedvill satisfy the basic requirements of feasibility and $liab
parametrically, with the measured states the parameter or to bound the performance loss. It is the introduction
. . of a constructive procedure to guarantee these additional

J* () == min {h(=, u)lg(z,u) < 0}. benefits, while maintaining the fast online calculationeim
The offline computation of this parametric problem resultghat distinguishes the method proposed in this paper.
in an explicit optimal control law.* () mapping the current  In this paper, we wish to extend the class of problems
statez to the optimal system input [1], [14], [18]. The resultthat can be considered for fast online implementation. In
is an online computation of the optimal control law whichour approach we construct an approximate control law by
depends on the evaluation of the explicit functigh(z) at ~adaptive wavelet interpolation, and then analyze the tiesul
statex rather than the solution of the optimization problemapproximate cost function. Examples of wavelets are the

There are two main limitations of this approach. First, iforthogonal Daubechies wavelets [8], [9], the biorthogonal
the optimal control law can be computed, the computationgpline wavelets [5], and Interpolets [10], [11]. In this pap
complexity of the explicit controller can grow quickly with we have chosen the second order Interpolet as our wavelet of
problem size. Also, as the controller complexity grows, th€hoice. As it turns out, interpolating wavelets of the seton
worst case computation time may rise above a practic@rder have a property which is of the utmost importance to
value, thereby eliminating it as a viable choice in a remleti our analysis. Namely, they result in a barycentric intespol
system. Therefore, it is only natural to consider approxémation law, which guarantees that the resulting interpotaties
controllers whenever a reduction in the computational conwithin the convex hull of the points being interpolated. As a
plexity and/or online computation time is needed. See [2Esult of this property, we are able to accurately evaluze t
and [15] for a general overview of the problem. stability and feasibility of the control law, and even guaese

Several authors have proposed approximation algorithrtize controller to be optimal within a specified thresheld
that can produce simpler piecewise affine (PWA) control laws The rest of the paper is arranged as follows. In section
at the cost of optimality [3], [13], [15], [17]. In almost all Il we construct a d-dimension multiscale basis function,
cases, the authors initially approximate the epigraph ef tHntroduce an adaptive thresholding approach for sparse fun
optimal cost function/* with a polyhedron/, usually de- tion approximation, and show that the multiscale basis we
signed to ensure specific stability or performance comgBai have constructed is barycentric. In section Il we intragluc
Then, a feasible control law(z) is computed such thatis  the well known linear Model Predictive Control problem

a Lyapunov function for the resulting closed-loop systemgnd the corresponding feasibility, stability, and perfance
guarantees for the approximate control law. In section IV
Sean Summers, Colin N. Jones, John Lygeros, and Manfred iMoraye introduce the numerical implementation of the adaptive
are with the Automatic Control Laboratory, Department offotma- | ithm h . l | . v
tion Technology and Electrical Engineering, ETH Zurich, i@erland algorithm for the approximate control law. In section V we

summer s, cj ones, | ygeros, norari @ontrol . ee. ethz. ch provide a numerical example of the method.
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II. MULTISCALE FUNCTION APPROXIMATION

1r O X o
Let the standard one-dimensional scaling function (h¢ 058
function) with supporf—1, 1] be defined as 0.6
¢(x) := max(1 — [z], 0). 1) -

In one dimension, we consider a dyadic discretization o oo - x - o

the unit intervalQ? = [0,1]. The resulting grid(2;, itself

a finite reduction off}, is characterized by the level of S ‘ _ o _

discretization/ and the index. The levell determines the Fig-1. (Left) Piecewise linear hierarchical basis (sdiié$) vs. nodal point

one-dimensional distance between grid points according ?53'5( (?jaSh?d “Tjevsl})é ((R'ght) ((f nd)pmms for subspadas (blue circles),
- red x’s), an green dots).

the dyadic formulation, i.e. the distance between points is " ’

definedh; = 27! and the number of points & = 2! + 1.

0O 02 04 06 08 1

The index: determines the location of the grid points;, Any functionw, € Vi can be uniquely represented in the
e a;=i-M, 0<i<2. nodal basis by the expression
Let ¢;; be a family of basis functions defined énwith
support[z; ; — hy, z1; + hi]. The functiong; ; is generated 2!
from the scaling function (1) via translation and dilation, w(z) = sz,i ()
T —1- hl =0
dui(z) = ¢ ( h; ) ’ (2) with coefficientsu; ;. Likewise, the same function; Vld

The family of univariate multiscale functions, ; which can be uniquely represented in the hierarchical basis by

make up the hierarchical basis is given as 1

Y1 = Pui, €. u(z) = Z Z Whi Vi)
H k=0icrg
where
S (ieNojl<i<2 —1iodd 1>1, WIEZ h|erarch|cz:]I (derz]tallllj). coefficientsy, ; € ]5 ) |
L=\ fieNolo<i<2)) I=1, . common thresholding argument, and the one we wi

employ throughout this papefwy ;| > ¢, simply reduces
Lety € N¢, i.e. the bold font of some arbitrary variableto taking the absolute value of the detail coefficient gneate

taking values in the d-dimensional non-negative integerghan the tolerance, and discarding the weight; if it is

denote a d-dimensional multi-index, where operations. (e.thwer than the threshold. In this manner, an adaptive foncti

exponentiation) and comparisons (esg. hold component- approximation can be expressed

wise, e.g.y? = [y} v3...y3]. We now consider the con-

struction of a multivariate multiscale basis on the uniteub sy (@) = D wii - Pral),

Q4 = [0,1]?, whered is the dimension, by tensor product (ki) EAS (u)

expansion of the one-dimensional multivariate functions o PUN _

ie. where the ‘active’ index sef\’(u) is the index set corre-

sponding to all non-zero detail coefficients.

d
Vi = H ) A. Barycentric Interpolation

j=1
In [16], the authors computed an approximate controller

ith the multi-indexi € I and 2 . i
w uiti-indexs € 4, based on barycentric interpolation. Although this reslite

{ieNglo<i<2}\ a continuous albeit nonlinear control law, the authors were
It = {ieNflo<i<2'ijevenvje[l,d} 1>1l,, ableto exploitthe fact that the resulting interpolatioesli
{ieNdlo<i<2l} I =1y .  within the convex hull of the points being interpolated, aisd

Note that/{ is simply the full grid less those points seen a result could guarantee feasibility, stability, and pqunce
previous levels, as depicted in Figure 1. We may now defirt ounds for the approximate control law. Therefore, in order

the d-dimensional hierarchical function spaces of piesewi 0 gen(_erate similar arg_uments_for an approximate control
. . d . d - law built from the basis functions introduced above, we
d-linear functions asV* = spaf{«,; : i € If'}. Defining

the family of d-dimensional nodal basis functions must first show that the hierarchical basis functions géaera
hypercubes spanned by barycentric interpolation.

d Let us denote the convex hull df, i.e. the intersection

Pri(x) = H‘blv%‘ (z;) of all convex sets containing’, as conyV) and the set
=1 of extreme points oft’ as ext(V) for someV c R A
and the d-dimensional nodal function spag¢é= spar{¢;; : ~ definition of a barycentric interpolation function follows
0 <i < 2!, it can be shown that! = @, ., W where  Definition 3 (Barycentric function)Let  § =

€ denotes the direct sum. B con{v1,...,v,}) C R? be a polytope. The function



f»(z) is calledbarycentricif three conditions hold for all WhereI}’;gl) = Ip, N{iliy = i1} = Ig, N{ilir = i;} We
xz €S andv € extr(S) = {v1,...,v,}, can systematically extraet, ; (zx) + ¢i, (1) = 1 for the
@) k" dimension until we have

fo(z) >0, positivity
> ful@)=1, partition of unity  (5) o fol@) = bz, (@a) + bua,(za) = 1,
veextr(S) veextr(R;)
Z vfs(z) =z . linear precision (6) which satisfies thepartition of unity. Lastly, we prove that
eexn(s) N the multiscale basis satisfies tlirgear precisionrequirement.
Given the nodal function approximation spacé andQd, ~ Consider
for some pointz(.1; € QF wherej € {j € Njj0 < ) ) d
j < 204V 5 oddVk € [1,d]}, the polytopic regionR; Z vfo(e) = Z [ivha, .- s ial] H@ij (z),
associated withr(; 1 j) € R; can be defined veexti(R;) ielg; j=1
d
Rj _ = Qd = ﬂ Supﬂwl,i@,i) ’ (7) = Z Zlhl H ¢l,7:j (55)7 C
i€lR, leIR‘i J=1
’ d
where e Z iqhy H b4, (x)
IRJ. = {i € Ng|0 <i< 2l, Ty € supﬂwl,i@,i)}. i€ IR, Jj=1

Note that supp) denotes the support of a function, and thatl herefore,linear precisioncan be evaluated dimension by
if the weight is zero then the support is empty. It can be segimension, i.e. for eaclk € {1,d} we can evaluate that
that |J; Ry = Q7 and thatR; is a hypercube for alf. The —2eexu(r) Vk.fo(2) = zx. For arbitraryk € {1, d} we have
second part holds since the basis functions are axis aligned

d
and have hypercubic support (thus, finite intersectiongltres vpfo(z) = i [T d0s. ()
in either the empty set or a hypercube). Z Z H v

. o . . veextr(R;) ielR; j=1

We now arrive at a critical lemma which will lead to -
provable arguments regarding the feasibility, stabilapd = ko, (k) Z H i ()
performance of the approximate control law. ielggk) J#k

Lemma 8 (Nodal Barycentric Interpolation}ziven a d- .
dimensional spacé&2? and nodal function approximation Fiphidr, (2r) Z H¢l=ij (),
spaceV/, the multivariate basis of tensor product second ie") 7k

. . d _ = .

order interpolets defined over ay C Q¢ form a barycen = Tehudyz, (@) + b, (). (9)

tric interpolation overR;. o ) )

Proof: By definition, R; is a polytope (hypercube) BY the definition of the interpolating wavelets, (1) and (2),
with 2¢ verticesv € ext(R;) = {v € Qf|i € Ir,v = We can expand (9) such that
take only two values, an uppéx and a loweri,, and are i (1 _ w w ) )
separated by a value of one, iig.— i, = 1. h h

[i1hi, ..., iqh]}, whereh; is the width. Note that because ity (k) + ighidrs (xr) =
R; is a hypercube, the index valugsin the k" dimension " - o

We may now proceed by evaluating each of the three charaking into account the propertiés —i,, = 1 andi, h; <
acteristics of barycentric interpolatioRositivity is straight 4, < 7.k, simple arithmetic leads us to the result

forward by the definition of the hat function (1). For the = .
partition of unity property, we can see that ixhi (1 — %_lehl ) + il (1 — %_Tl’“hl ) = Tk.
l l
Z folz) = Z ﬁ@ij (), Repeating this process for _al_l dimensians {1,d} leads
B el =1 to the property ol!near precision _ .=
3 ] G‘_Corollary 10_(H|erar(|:h|call Barygentnc%r;ter)po(lgtmn)a
iven an active multiscale index set’(u) (i.e. the
= (@) 3 H D, () indices corresponding to all non-zero det;il coefficiemts i
el =2 W, ..., W), the following properties hold
d 1) Vl“ can be decomposed into hypercubes spanned by
+¢ui, (1) Z H(bl,ij (@), barycentric interpolation, Wheréfld"‘; = D, W]f"s
el =2 andW"° = spar{vy; : (1,i) € (I, If) N A% (u)}.
d 2) GivenV,™, the set required for barycentric interpola-
- Z H i, (25) tion to hold is given by

iery ) I=2 R® = {R e QYR = R; ,for somej} (11)



where R; is defined in (7). Lemma 17: [16] If R = con(vy,...,v.a) € Q¢ (Where
Proof: The first item is straight forward. We simply fill v; ... v, are the vertices of the hyperculdy), u(v;) is the
the approximate function space with, ; = 0 for all (k,i) €  approximate control law for the vertex andd(z) is defined
{(k,i) € (N,N%)|(k,i) ¢ A%(u),k < I} such thatvld*‘S = as in (16), then for all: € R,
@<, W becomes full, and then we apply Lemma 8. The

second item is due to (7). [ |
T ) econv b V2
I1l. APPLICATION TOMODEL PREDICTIVE CONTROL a(x) w(v) )T\ (vga) ’

In this paper we are specifically interested in the followind-€mma 17 leads us to the following result.

semi-infinite horizon optimal control problem: Lemma 18:[Barycentric Feasibility] The approximate
T (2) — : T+ UN 12 T0s 12y control law i(z) is a feasible solution of (12), i.e.
@ = pmin_ o un@o,oen) A2 T 0 s € R if and only if d(v) is feasible
S.t. Tit1 = A,Ti + Bui, Vi = O, ceey N -1 for all v € eXtr(R)'
(zi,u;) € X xU, Vi=0,...,N—1 Proof: Follows directly from Lemma 17 and the
convexity ofg. |

N € Xp, 20 =2,
We will now show that the cost function (13) evaluated
for the approximate control law (16) ovét € R° can be
upper bounded by an approximate cost defined by barycen-
J(uo, .. un—1,20,...,2N) = Vn(zn) + Z l(zi,ui) 5 tric interpolation. In doing so, we can show that the cost
’ (13) generated by the approximate control law (which is non-
convex) is no more sub-optimal than the cost generated by
and X, U, and X are convex constraints on the states anglarycentric interpolation, for which stability and perfwance
inputs and the stage costis a strictly convex function. can be computed. Thus, enabling us to prove stability and

A function 7(-) : R — R is assumed to exist that is performance of the approximate control law.
continuous, strictly increasing and hag0) = 0 such that

~(|z||) < I(x,0) for all z. Problem (12) can be re-written
as a parametric optimization problem:

where

Lemma 19:1f @ (z) is the barycentric control law defined
in (16) andu(v) is feasible for alb € extr(R), thenJ*(z) <
J(a(x)) < J(z), Vx € R where

u* (x) = argmin{h(x,u)|g(x, u) < 0}, (14)
where v is a vector containing the sequence of inputs J(z) = Z J(a(v))fo(x), Vre R.
ug,...,uny—1 and appropriate auxiliary variables and the veexti(R)

functionsh andg are convex. The system inputis then given  pyoof: The control lawi(z) is feasible for allz € R

in a receding horizon fashion [19] by («), which is the first (| emma 18), thus the cost functiof(@(x)) must be sub-
input in the optimal control sequence of (12). optimal, which gives us the lower bountt (z) < .J(it(x)).

Given that in II-A we have shown that the approximatt—:glves the upper bound. ) -
controller built from the adaptive multiscale basis funos Lemma 19 proves that for eache R, the true approximate
can be separated into polytopic regions (hypercubes) 6¢St function.J(a(z)) will lie within the convex hull of
barycentric interpolation, we may now introduce the folthe extreme points (v, J(v))v € extr(R)}. With this key
lowing results which enable us to evaluate the feasibilityesult in place, we can make use of the approximate stability
stability, and performance of the individual regions. Thigheorem given in [20].
will be_done by constructing a Lyapunov function for the Theorem 20:Let J* : R? — R be the cost function of
approximate closed-loop systent = Az + Bi(z).  the optimal control problem (12) and a Lyapunov function

Codn5|de£ a_hlerarc_hlcal approximate control law defineg; ihe systemet = Az + Buj(x). The approximate value
on Q% C RY with maximal levell function J(a(x)) is a Lyapunov function for the system

a(z) = Z Wi - Yp (). (15) 2t = Ax + Big(z) if for all z in the feasible seR the
(k1) EAD (ut) condition J*(x) < J(u(z)) < J*(z) 4+ v(]|z||) holds.
whereu* is given by (14). By Corollary 10, we see that thelheorem 20 and Lemma 19 Iegq us to our main_stability and
approximate control law withitk € R® can be expressed by performance guarante_e. Spemﬁcally, the_follovylng .thm)re
the barycentric interpolation law states that the suboptimality of a polytopic region, in term
of thresholde, can be computed simply by solving a convex
i(x)= > a)fu(x), ifzekR (16)  optimization problem.
veext(R) Theorem 21:[Hierarchical Stability] The approximate
Note thatu(v) is not necessarily the optimal control law, butcost function J(u(x)) satisfies the Lyapunov criteria of
the approximate control law. Theorem 20 over a regiok € R° € R if err(R) > 0,



whereerr(R) is given by the convex optimization problem,Algorithm 1 Adaptive Hierarchical Approximate MPC

N-1

V ll’l l )
;n)}r; N(TN +ZO Zi,u;) + €l(xo, 0)

Y J@w)x

veextr(R)

err(R) =
(22)

s.t.
veextr(R)
z, € X ju; €U ,xny € Xn.
Proof:  Proof is based on the barycentric in-
terpolation properties (4), (5), and (6) which results

N> cextr(r) J(@(v)) Ay defined on the convex hull 3
, J(@(vqea))). Therefore, by construction, 4
if the worst case error between the optimal cost function ancb:
the convex hull of the approximate cost function is less thané:
el(xo,0), then the entire region spanned by the barycentric7:

conu(J (@(v1)), . .-

interpolation satisfies the same bounds. |
Corollary 23: The approximate control law/ (a(z)) de- 8
fined over the setR* := {R € Rllerr(R) > 0} isa &

Lyapunov function overR*.
Since the system must also be invariant or feasible for all

time, a Lyapunov function alone is insufficient to provell:

Z A =120 = Z VAy, 1:

veextr(R) 2:

10:

Require: MPC problem (12), Cost (13), performance

thresholde, cost threshold ;, and minimum, maximum,
and boundary level argumerts /.., andlpdry.

Ensure: detail coefficientsw and index setA such that

the approximate control law (15)(z) has guaranteed
feasibility, stability, and performance bouad
Initialize the ‘active’ setA = {(k,7): i € I,k = o}
Initialize the evaluation seR; for k = [y, the set of
feasible regionsR; = (), the set of infeasible regions
R; = (), and the set of regions intersecting with the
boundaryR, = 0 at k = lpary
Compute the initial detailsv = {wy, ; :
while Ry, # 0 andk < lax do
Rupdate: 0
forall Re R, do
Check Stability by Theorem (21) and Feasibility by
Lemma (18) for current regiof®
Assign R € Ry, to eitherR,, Ry, Ry, Or Rupdate
end for
Split the hypercube regions in the update Bgpdate
and assign taRy;
Define the set of new vertices iR; 1 asA,

(k,i) € A}

stability for a constrained system. As discussed in [15]122 Compute

since It—_:‘vel sets of Lyapunoy fun_ctlons are invariant [4], it wei: (ki) €A, ,and fory = zp;

is possible to determine an invariant subseft W — ’ ay) |nfeaS|bIe or
Corollary 24: If Jmin := min{J(@(v))|v € extr(R*)} and " J(@(y)) = J*(y) > esl(y,0)

the conditions of Theorem 20 are satisfied, then the set

o 13:  Let A = {(k,i): (k,1) € A, wp; € Wy, }
I':={z € R*|J(i(z)) < Jmin} 14:  Update the ‘active’ indext = A UA*
is invariant under the control lavi(z). 15 Update the detail se¥ = w U wn
160 k=k+1

IV. APPROXIMATE EXPLICIT CONTROL LAW 17: end while

With the results from the preceding sections, we can now
develop a recursive algorithm for the approximate model
predictive control law. The algorithm initializes at a usehypercubes aligned to the axis, where each hypercube in the
defined coarse uniform grid, and then proceeds with a dyadiee has2? values associated to it representing (15) at the
refinement strategy, saving only the points which violate ¥ertices. With this approach, while there is a slight inseea
user defined thresholding law and/or feasibility conditionin the necessary storage, the online computation time of
Pseudocode for the process is given in Algorithm 1. (15) is minimal and independent of the number of details
) ] ] stored. For example, at a tree depthl ef 7 and assuming a
A. Complexity of Real-Time Implementation processor speed df GHz, we can evaluate the control law
The online implementation of the approximate control lavat 20 MHz, 10 MHz, and 5 MHz for d = 2, d = 3, and
consists of evaluating (15) at statet each step. With thisin d = 4.
mind, we introduce two data structures for the computation
of (15) which trade-off speed and storage complexity.
In the first approach, we store the non-zero detail coef- Consider the simple two-dimensional example:
ficients in a perfect hash function [6], [7], [12], [21] and 11 1
=[] )

compute (15) using only the basis functions which are non- 01
zero at statec. With this approach, the required storage is
minimal and the online computation of the control value atvith the input and state constraintg| < 0.25, ||z|| <
x becomes independent of the number of details stored. For and a horizon ofN = 10. The stage cost is taken as
example, at a depth @f= 7 and assuming a processor speed(z, u) := 2’z + 0.01uw'u. The optimal control law in this
of 1 GHz , we can evaluate the control law2atMHz, 1 MHz,  case require821 regions and can be seen in Figure 2. With
and500 KHz for d = 2, d = 3, andd = 4. =05, €5 =025 1l =1, lpay = 5, and lpnax = 7,

In the second approach, similar to [13] and enabled bye compute a stabilizing control law using Algorithm 1 that
Corollary 10, we create a minimal search tree comprised abnsists ofi 38 detail coefficients spanniriglevels. In Figure

V. NUMERICAL EXAMPLE



(a) Approximate control law

(c) Detail Coefficients

-5 0 5 S5 -4 -3 -2 -1 0 1
)(l X

(d) Feasible Region

(e) Hierarchical Tree Structure

150 200 250 300 350

Number of detail coefficients

400 450

(f) Optimality vs. Complexity

Fig. 2. The approximate control law and optimal control lase shown in (a) and (b) respectively. Notice the sparsityhefrequired detail coefficients
as shown in (c). In (d), the red region denotes a feasible taidlesregion with bounded performance, the yellow regiomoties the regions which intersect
with the boundary, and the black line gives the boundary ef dptimal feasible set. In (e), we see the resulting hiereattiree structure if speed is

chosen over storage space. In (f) we illustrate optimalijyvérsus approximation complexity (i.e. number of non-zeetail coefficients).

2, the resulting control law and feasible regions are showng]
Figure 2 also shows the performance threshae)dversus
the required non-zero detail coefficients, the hierardhiea

; - El
structure, and the map of detail coefficients.

VI. CONCLUSION [10]

The approximate explicit MPC method we have presentqgl]
consists of a simple hierarchical gridding scheme which ig2]
easy to implement. The approach approximates the optimal
control law directly, and because of the basis functionsl uset
to build the function approximation, has guaranteed stgbil
feasibility, and bounds on the performance. The ability td'4]
guarantee a level of accuracy between grid points enables an
adaptive approach based on thresholding which can lead|[ig)
a sparse representation of the explicit control law.
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