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Abstract— In this paper, an algorithm is introduced based
on classical wavelet multiresolution analysis that returns a
low complexity explicit model predictive control law built
on a hierarchy of second order interpolating wavelets. It is
proven that the resulting interpolation is everywhere feasible.
Further, tests to confirm stability and to compute a bound
on the performance loss are introduced. Since the controller
approximation is built on a gridded hierarchy, the evaluation
of the control law in real-time systems is naturally fast and
runs in a bounded logarithmic time. A simple example is
provided which both illustrates the approach and motivates
further research in this direction.

I. INTRODUCTION

The implementation of a model predictive controller
(MPC) requires the exact global solution of an optimization
problem online at each sampling instant. It has become
well-known that this optimization problem can be posed
parametrically, with the measured statex as the parameter

J∗(x) := min {h(x, u)|g(x, u) ≤ 0} .

The offline computation of this parametric problem results
in an explicit optimal control lawu∗(x) mapping the current
statex to the optimal system input [1], [14], [18]. The result
is an online computation of the optimal control law which
depends on the evaluation of the explicit functionu∗(x) at
statex rather than the solution of the optimization problem.

There are two main limitations of this approach. First, if
the optimal control law can be computed, the computational
complexity of the explicit controller can grow quickly with
problem size. Also, as the controller complexity grows, the
worst case computation time may rise above a practical
value, thereby eliminating it as a viable choice in a real-time
system. Therefore, it is only natural to consider approximate
controllers whenever a reduction in the computational com-
plexity and/or online computation time is needed. See [2]
and [15] for a general overview of the problem.

Several authors have proposed approximation algorithms
that can produce simpler piecewise affine (PWA) control laws
at the cost of optimality [3], [13], [15], [17]. In almost all
cases, the authors initially approximate the epigraph of the
optimal cost functionJ∗ with a polyhedronJ̃ , usually de-
signed to ensure specific stability or performance constraints.
Then, a feasible control law̃u(x) is computed such that̃J is
a Lyapunov function for the resulting closed-loop system.
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Yet, the computation of a feasible control law̃u which
preserves the stability and performance of the cost function
approximation is not straightforward, but can be done using
the techniques discussed in [3], [15], [16].

In [13] an approximate scheme was proposed that has
some of the same positive benefits of the method introduced
in this paper. The primary similarity and strength of the
approach is that the control law is defined over a hierarchical
set of hypercubes, which provides an extremely fast online
evaluation time that is similar to that given here. The limita-
tion of the approach [13] is in the generation of the control
law that is defined over these hypercubes, which can be
discontinuous, infeasible and potentially destabilizingin the
worst case. While the control law may often result in good
performance, there is no systematic procedure to prove thatit
will satisfy the basic requirements of feasibility and stability
or to bound the performance loss. It is the introduction
of a constructive procedure to guarantee these additional
benefits, while maintaining the fast online calculation time
that distinguishes the method proposed in this paper.

In this paper, we wish to extend the class of problems
that can be considered for fast online implementation. In
our approach we construct an approximate control law by
adaptive wavelet interpolation, and then analyze the resulting
approximate cost function. Examples of wavelets are the
orthogonal Daubechies wavelets [8], [9], the biorthogonal
spline wavelets [5], and Interpolets [10], [11]. In this paper,
we have chosen the second order Interpolet as our wavelet of
choice. As it turns out, interpolating wavelets of the second
order have a property which is of the utmost importance to
our analysis. Namely, they result in a barycentric interpola-
tion law, which guarantees that the resulting interpolation lies
within the convex hull of the points being interpolated. As a
result of this property, we are able to accurately evaluate the
stability and feasibility of the control law, and even guarantee
the controller to be optimal within a specified thresholdǫ.

The rest of the paper is arranged as follows. In section
II we construct a d-dimension multiscale basis function,
introduce an adaptive thresholding approach for sparse func-
tion approximation, and show that the multiscale basis we
have constructed is barycentric. In section III we introduce
the well known linear Model Predictive Control problem
and the corresponding feasibility, stability, and performance
guarantees for the approximate control law. In section IV
we introduce the numerical implementation of the adaptive
algorithm for the approximate control law. In section V we
provide a numerical example of the method.
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II. M ULTISCALE FUNCTION APPROXIMATION

Let the standard one-dimensional scaling function (hat
function) with support[−1, 1] be defined as

φ(x) := max(1 − |x|, 0). (1)

In one dimension, we consider a dyadic discretization on
the unit intervalΩ = [0, 1]. The resulting gridΩl, itself
a finite reduction ofΩ, is characterized by the level of
discretizationl and the indexi. The levell determines the
one-dimensional distance between grid points according to
the dyadic formulation, i.e. the distance between points is
definedhl = 2−l and the number of points isN = 2l + 1.
The indexi determines the location of the grid pointsxl,i,
i.e. xl,i := i · hl, 0 ≤ i ≤ 2l.

Let φl,i be a family of basis functions defined onΩ with
support[xl,i − hl, xl,i + hl]. The functionφl,i is generated
from the scaling function (1) via translation and dilation,

φl,i(x) = φ

(

x− i · hl

hl

)

. (2)

The family of univariate multiscale functionsψl,i which
make up the hierarchical basis is given as

ψl,i = φl,i, i ∈ Il.

where

Il =

{

{i ∈ N0|1 ≤ i ≤ 2l − 1, i odd} l > l0 ,
{i ∈ N0|0 ≤ i ≤ 2l} l = l0 .

Let y ∈ N
d
0, i.e. the bold font of some arbitrary variable

taking values in the d-dimensional non-negative integers,
denote a d-dimensional multi-index, where operations (e.g.
exponentiation) and comparisons (e.g.≤) hold component-
wise, e.g.y2 = [y2

1 y2
2 . . . y

2
d]. We now consider the con-

struction of a multivariate multiscale basis on the unit cube
Ωd = [0, 1]d, whered is the dimension, by tensor product
expansion of the one-dimensional multivariate functionsψl,i,
i.e.

ψl,i =

d
∏

j=1

ψ(l,ij)

with the multi-indexi ∈ Id
l and

Id
l =







{

i ∈ N
d
0|0 ≤ i ≤ 2l

}

\
{

i ∈ N
d
0|0 ≤ i ≤ 2l, ij even∀j ∈ [1, d]

}

l > l0 ,
{i ∈ N

d
0|0 ≤ i ≤ 2l} l = l0 .

Note thatId
l is simply the full grid less those points seen at

previous levels, as depicted in Figure 1. We may now define
the d-dimensional hierarchical function spaces of piecewise
d-linear functions asW d

l = span{ψl,i : i ∈ Id
l }. Defining

the family of d-dimensional nodal basis functions

φl,i(x) =
d

∏

j=1

φl,ij
(xj)

and the d-dimensional nodal function spaceV d
l = span{φl,i :

0 ≤ i ≤ 2l}, it can be shown thatV d
l =

⊕

k≤l W
d
k where

⊕

denotes the direct sum.
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Fig. 1. (Left) Piecewise linear hierarchical basis (solid lines) vs. nodal point
basis (dashed lines). (Right) Grid points for subspacesW 2
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(green dots).

Any functionul ∈ V d
l can be uniquely represented in the

nodal basis by the expression

ul(x) =

2l

∑

i=0

vl,i · φl,i(x)

with coefficientsvl,i. Likewise, the same functionul ∈ V d
l

can be uniquely represented in the hierarchical basis by

ul(x) =

l
∑

k=0

∑

i∈Id
k

wk,i · ψk,i(x)

with hierarchical (detail) coefficientswk,i ∈ R.
A common thresholding argument, and the one we will

employ throughout this paper,|wk,i| ≥ δ, simply reduces
to taking the absolute value of the detail coefficient greater
than the tolerance, and discarding the weightwk,i if it is
lower than the threshold. In this manner, an adaptive function
approximation can be expressed

ûΛδ(u)(x) =
∑

(k,i)∈Λδ(u)

wk,i · ψk,i(x),

where the ‘active’ index setΛδ(u) is the index set corre-
sponding to all non-zero detail coefficients.

A. Barycentric Interpolation

In [16], the authors computed an approximate controller
based on barycentric interpolation. Although this resulted in
a continuous albeit nonlinear control law, the authors were
able to exploit the fact that the resulting interpolation lies
within the convex hull of the points being interpolated, andas
a result could guarantee feasibility, stability, and performance
bounds for the approximate control law. Therefore, in order
to generate similar arguments for an approximate control
law built from the basis functions introduced above, we
must first show that the hierarchical basis functions generate
hypercubes spanned by barycentric interpolation.

Let us denote the convex hull ofV , i.e. the intersection
of all convex sets containingV , as conv(V ) and the set
of extreme points ofV as extr(V ) for someV ⊂ R

d. A
definition of a barycentric interpolation function follows:

Definition 3 (Barycentric function):Let S :=
conv({v1, . . . , vn}) ⊂ R

d be a polytope. The function



fv(x) is called barycentric if three conditions hold for all
x ∈ S andv ∈ extr(S) = {v1, . . . , vn},

fv(x) ≥ 0 , positivity (4)
∑

v∈extr(S)

fv(x) = 1 , partition of unity (5)

∑

v∈extr(S)

vfv(x) = x . linear precision (6)

Given the nodal function approximation spaceV d
l andΩd,

for some pointx(l+1,j) ∈ Ωd where j ∈ {j ∈ N
d
0|0 ≤

j ≤ 2(l+1), jk odd∀k ∈ [1, d]}, the polytopic regionRj

associated withx(l+1,j) ∈ Rj can be defined

Rj =







x ∈ Ωd

∣

∣

∣

∣

∣

∣

x ∈
⋂

i∈IRj

supp(wl,iφl,i)







, (7)

where

IRj
:= {i ∈ N

d
0|0 ≤ i ≤ 2l, x(l+1,j) ∈ supp(wl,iφl,i)}.

Note that supp(·) denotes the support of a function, and that
if the weight is zero then the support is empty. It can be seen
that

⋃

jRj = Ωd and thatRj is a hypercube for allj. The
second part holds since the basis functions are axis aligned
and have hypercubic support (thus, finite intersections result
in either the empty set or a hypercube).

We now arrive at a critical lemma which will lead to
provable arguments regarding the feasibility, stability,and
performance of the approximate control law.

Lemma 8 (Nodal Barycentric Interpolation):Given a d-
dimensional spaceΩd and nodal function approximation
spaceV d

l , the multivariate basis of tensor product second
order interpolets defined over anyRj ⊆ Ωd form a barycen-
tric interpolation overRj.

Proof: By definition, Rj is a polytope (hypercube)
with 2d verticesv ∈ extr(Rj) = {v ∈ Ωd

l |i ∈ IRj
, v =

[i1hl, . . . , idhl]}, wherehl is the width. Note that because
Rj is a hypercube, the index valuesik in the kth dimension
take only two values, an upperik and a lowerik, and are
separated by a value of one, i.e.ik − ik = 1.

We may now proceed by evaluating each of the three char-
acteristics of barycentric interpolation.Positivity is straight
forward by the definition of the hat function (1). For the
partition of unityproperty, we can see that

∑

v∈extr(Rj)

fv(x) =
∑

i∈IRj

d
∏

j=1

φl,ij
(xj),

= φl,i1
(x1)

∑

i∈I
∗(1)
Rj

d
∏

j=2

φl,ij
(xj)

+φl,i1
(x1)

∑

i∈I
∗(1)
Rj

d
∏

j=2

φl,ij
(xj),

=
∑

i∈I
∗(1)
Rj

d
∏

j=2

φl,ij
(xj)

whereI∗(1)Rj
= IRj

∩ {i|i1 = i1} = IRj
∩ {i|i1 = i1} .We

can systematically extractφl,ik
(xk) + φl,ik

(xk) = 1 for the
kth dimension until we have

∑

v∈extr(Rj)

fv(x) = φl,id
(xd) + φl,id

(xd) = 1,

which satisfies thepartition of unity. Lastly, we prove that
the multiscale basis satisfies thelinear precisionrequirement.
Consider

∑

v∈extr(Rj)

vfv(x) =
∑

i∈IRj

[i1hl, . . . , idhl]
d

∏

j=1

φl,ij
(x),

=





∑

i∈IRj

i1hl

d
∏

j=1

φl,ij
(x), . . .

. . . ,
∑

i∈IRj

idhl

d
∏

j=1

φl,ij
(x)



 .

Therefore,linear precisioncan be evaluated dimension by
dimension, i.e. for eachk ∈ {1, d} we can evaluate that
∑

v∈extr(Rj)
vkfv(x) = xk. For arbitraryk ∈ {1, d} we have

∑

v∈extr(Rj)

vkfv(x) =
∑

i∈IRj

ikhl

d
∏

j=1

φl,ij
(x)

= ikhlφl,ik
(xk)

∑

i∈I
∗(k)
Rj

∏

j 6=k

φl,ij
(xj)

+ikhlφl,ik
(xk)

∑

i∈I
∗(k)
Rj

∏

j 6=k

φl,ij
(xj),

= ikhlφl,ik
(xk) + ikhlφl,ik

(xk). (9)

By the definition of the interpolating wavelets, (1) and (2),
we can expand (9) such that

ikhlφl,ik
(xk) + ikhlφl,ik

(xk) =

ikhl

(

1 −

∣

∣

∣

∣

xk − ikhl

hl

∣

∣

∣

∣

)

+ ikhl

(

1 −

∣

∣

∣

∣

xk − ikhl

hl

∣

∣

∣

∣

)

.

Taking into account the propertiesik − ik = 1 and ikhl ≤
xk ≤ ikhl, simple arithmetic leads us to the result

ikhl

(

1 −

∣

∣

∣

∣

xk − ikhl

hl

∣

∣

∣

∣

)

+ ikhl

(

1 −

∣

∣

∣

∣

xk − ikhl

hl

∣

∣

∣

∣

)

= xk.

Repeating this process for all dimensionsk ∈ {1, d} leads
to the property oflinear precision.

Corollary 10 (Hierarchical Barycentric Interpolation):
Given an active multiscale index setΛδ(u) (i.e. the
indices corresponding to all non-zero detail coefficients in
W d

0 , . . . ,W
d
l ), the following properties hold

1) V d,δ
l can be decomposed into hypercubes spanned by

barycentric interpolation, whereV d,δ
l =

⊕

k≤l W
d,δ
k

andW d,δ
l = span{ψl,i : (l, i) ∈ (l, Id

l ) ∩ Λδ(u)}.
2) GivenV d,δ

l , the set required for barycentric interpola-
tion to hold is given by

Rδ = {R ∈ Ωd|R = Rj , for somej} (11)



whereRj is defined in (7).
Proof: The first item is straight forward. We simply fill

the approximate function space withwk,i = 0 for all (k, i) ∈
{(k, i) ∈ (N,Nd)|(k, i) /∈ Λδ(u), k ≤ l} such thatV d,δ

l =
⊕

k≤l W
d,δ
k becomes full, and then we apply Lemma 8. The

second item is due to (7).

III. A PPLICATION TO MODEL PREDICTIVE CONTROL

In this paper we are specifically interested in the following
semi-infinite horizon optimal control problem:

J∗(x) = min
{u0,...,uN−1}

J(u0, . . . , uN−1, x0, . . . , xN ) (12)

s.t. xi+1 = Axi +Bui, ∀i = 0, . . . , N − 1

(xi, ui) ∈ X × U , ∀i = 0, . . . , N − 1

xN ∈ XF , x0 = x,

where

J(u0, . . . , uN−1, x0, . . . , xN ) := VN (xN ) +

N−1
∑

i=0

l(xi, ui) ,

(13)

andX , U , andXF are convex constraints on the states and
inputs and the stage costl is a strictly convex function.
A function γ(·) : R → R is assumed to exist that is
continuous, strictly increasing and hasγ(0) = 0 such that
γ(||x||) ≤ l(x, 0) for all x. Problem (12) can be re-written
as a parametric optimization problem:

u∗(x) := argmin
u

{h(x, u)|g(x, u) ≤ 0}, (14)

where u is a vector containing the sequence of inputs
u0, . . . , uN−1 and appropriate auxiliary variables and the
functionsh andg are convex. The system input is then given
in a receding horizon fashion [19] byu∗0(x), which is the first
input in the optimal control sequence of (12).

A. Stability Guarantees of Approximate Controllers

Given that in II-A we have shown that the approximate
controller built from the adaptive multiscale basis functions
can be separated into polytopic regions (hypercubes) of
barycentric interpolation, we may now introduce the fol-
lowing results which enable us to evaluate the feasibility,
stability, and performance of the individual regions. This
will be done by constructing a Lyapunov function for the
approximate closed-loop systemx+ = Ax +Bû(x).

Consider a hierarchical approximate control law defined
on Ωd ⊂ R

d with maximal levell

û(x) =
∑

(k,i)∈Λδ(u∗)

wk,i · ψk,i(x). (15)

whereu∗ is given by (14). By Corollary 10, we see that the
approximate control law withinR ∈ Rδ can be expressed by
the barycentric interpolation law

û(x) =
∑

v∈extr(R)

û(v)fv(x), if x ∈ R. (16)

Note thatû(v) is not necessarily the optimal control law, but
the approximate control law.

Lemma 17: [16] If R = conv(v1, . . . , v2d) ∈ Ωd (where
v1 . . . v2d are the vertices of the hypercubeR), û(vj) is the
approximate control law for the vertexvj andû(x) is defined
as in (16), then for allx ∈ R,

(

x
û(x)

)

∈ conv

((

v1
û(v1)

)

. . .

(

v2d

û(v2d)

))

.

Lemma 17 leads us to the following result.

Lemma 18:[Barycentric Feasibility] The approximate
control law û(x) is a feasible solution of (12), i.e.
g(x, û(x)) ≤ 0, ∀x ∈ R, if and only if û(v) is feasible
for all v ∈ extr(R).

Proof: Follows directly from Lemma 17 and the
convexity ofg.

We will now show that the cost function (13) evaluated
for the approximate control law (16) overR ∈ Rδ can be
upper bounded by an approximate cost defined by barycen-
tric interpolation. In doing so, we can show that the cost
generated by the approximate control law (which is non-
convex) is no more sub-optimal than the cost generated by
barycentric interpolation, for which stability and performance
can be computed. Thus, enabling us to prove stability and
performance of the approximate control law.

Lemma 19:If û(x) is the barycentric control law defined
in (16) andû(v) is feasible for allv ∈ extr(R), thenJ∗(x) ≤
J(û(x)) ≤ J̃(x), ∀x ∈ R where

J̃(x) =
∑

v∈extr(R)

J(û(v))fv(x), ∀x ∈ R.

Proof: The control lawû(x) is feasible for allx ∈ R
(Lemma 18), thus the cost functionJ(û(x)) must be sub-
optimal, which gives us the lower boundJ∗(x) ≤ J(û(x)).
The second portion of the proof can be found in [16], which
gives the upper bound.

Lemma 19 proves that for eachx ∈ R, the true approximate
cost functionJ(û(x)) will lie within the convex hull of

the extreme points
{

(v, J̃(v))|v ∈ extr(R)
}

. With this key
result in place, we can make use of the approximate stability
theorem given in [20].

Theorem 20:Let J∗ : R
d → R be the cost function of

the optimal control problem (12) and a Lyapunov function
for the systemx+ = Ax +Bu∗0(x). The approximate value
function J(û(x)) is a Lyapunov function for the system
x+ = Ax + Bû0(x) if for all x in the feasible setR the
conditionJ∗(x) ≤ J(û(x)) ≤ J∗(x) + γ(||x||) holds.

Theorem 20 and Lemma 19 lead us to our main stability and
performance guarantee. Specifically, the following theorem
states that the suboptimality of a polytopic region, in terms
of thresholdǫ, can be computed simply by solving a convex
optimization problem.

Theorem 21:[Hierarchical Stability] The approximate
cost function J(û(x)) satisfies the Lyapunov criteria of
Theorem 20 over a regionR ∈ Rδ ∈ R if err(R) ≥ 0,



whereerr(R) is given by the convex optimization problem,

err(R) = min
x,λ,u

VN (xN ) +

N−1
∑

i=0

l(xi, ui) + ǫl(x0, 0)

−
∑

v∈extr(R)

J(û(v))λv (22)

s.t. λv ≥ 0,
∑

v∈extr(R)

λv = 1, x0 =
∑

v∈extr(R)

vλv,

xi ∈ X , ui ∈ U , xN ∈ XN .
Proof: Proof is based on the barycentric in-

terpolation properties (4), (5), and (6) which results
in

∑

v∈extr(R) J(û(v))λv defined on the convex hull
conv(J(û(v1)), . . . , J(û(v2d))). Therefore, by construction,
if the worst case error between the optimal cost function and
the convex hull of the approximate cost function is less than
ǫl(x0, 0), then the entire region spanned by the barycentric
interpolation satisfies the same bounds.

Corollary 23: The approximate control lawJ(û(x)) de-
fined over the setR∗ := {R ∈ Rδ|err(R) ≥ 0} is a
Lyapunov function overR∗.
Since the system must also be invariant or feasible for all
time, a Lyapunov function alone is insufficient to prove
stability for a constrained system. As discussed in [15],
since level sets of Lyapunov functions are invariant [4], it
is possible to determine an invariant subset ofΩd.

Corollary 24: If Jmin := min{J(û(v))|v ∈ extr(R∗)} and
the conditions of Theorem 20 are satisfied, then the set

I := {x ∈ R∗|J(û(x)) ≤ Jmin}

is invariant under the control laŵu(x).

IV. A PPROXIMATE EXPLICIT CONTROL LAW

With the results from the preceding sections, we can now
develop a recursive algorithm for the approximate model
predictive control law. The algorithm initializes at a user
defined coarse uniform grid, and then proceeds with a dyadic
refinement strategy, saving only the points which violate a
user defined thresholding law and/or feasibility condition.
Pseudocode for the process is given in Algorithm 1.

A. Complexity of Real-Time Implementation

The online implementation of the approximate control law
consists of evaluating (15) at statex at each step. With this in
mind, we introduce two data structures for the computation
of (15) which trade-off speed and storage complexity.

In the first approach, we store the non-zero detail coef-
ficients in a perfect hash function [6], [7], [12], [21] and
compute (15) using only the basis functions which are non-
zero at statex. With this approach, the required storage is
minimal and the online computation of the control value at
x becomes independent of the number of details stored. For
example, at a depth ofl = 7 and assuming a processor speed
of 1 GHz , we can evaluate the control law at2 MHz, 1 MHz,
and500 KHz for d = 2, d = 3, andd = 4.

In the second approach, similar to [13] and enabled by
Corollary 10, we create a minimal search tree comprised of

Algorithm 1 Adaptive Hierarchical Approximate MPC
Require: MPC problem (12), Cost (13), performance

thresholdǫ, cost thresholdǫJ , and minimum, maximum,
and boundary level argumentsl0, lmax, and lbdry.

Ensure: detail coefficientsw and index setΛ such that
the approximate control law (15)̂u(x) has guaranteed
feasibility, stability, and performance boundǫ.

1: Initialize the ‘active’ setΛ = {(k, i) : i ∈ Ik, k = l0}
2: Initialize the evaluation setRk for k = l0, the set of

feasible regionsRs = ∅, the set of infeasible regions
Rf = ∅, and the set of regions intersecting with the
boundaryRb = ∅ at k = lbdry

3: Compute the initial detailsw = {wk,i : (k, i) ∈ Λ}
4: while Rk 6= ∅ andk ≤ lmax do
5: Rupdate= ∅
6: for all R ∈ Rk do
7: Check Stability by Theorem (21) and Feasibility by

Lemma (18) for current regionR
8: AssignR ∈ Rk to eitherRs, Rf , Rb, or Rupdate

9: end for
10: Split the hypercube regions in the update setRupdate

and assign toRk+1

11: Define the set of new vertices inRk+1 asΛn

12: Compute

wn =







wk,i : (k, i) ∈ Λn , and fory = xk,i

û(y) infeasible, or
J(û(y)) − J∗(y) > ǫJ l(y, 0)







13: Let Λ∗
n = {(k, i) : (k, i) ∈ Λn, wk,i ∈ wn}

14: Update the ‘active’ indexΛ = Λ ∪ Λ∗
n

15: Update the detail setw = w ∪ wn

16: k = k + 1
17: end while

hypercubes aligned to the axis, where each hypercube in the
tree has2d values associated to it representing (15) at the
vertices. With this approach, while there is a slight increase
in the necessary storage, the online computation time of
(15) is minimal and independent of the number of details
stored. For example, at a tree depth ofl = 7 and assuming a
processor speed of1 GHz, we can evaluate the control law
at 20 MHz, 10 MHz, and 5 MHz for d = 2, d = 3, and
d = 4.

V. NUMERICAL EXAMPLE

Consider the simple two-dimensional example:

x+ =

[

1 1
0 1

]

x+

[

1
0.5

]

u,

with the input and state constraints|u| ≤ 0.25, ||x||∞ ≤
5, and a horizon ofN = 10. The stage cost is taken as
l(x, u) := x′x + 0.01u′u. The optimal control law in this
case requires221 regions and can be seen in Figure 2. With
ǫ = 0.5, ǫJ = 0.25, l0 = 1, lbdry = 5, and lmax = 7,
we compute a stabilizing control law using Algorithm 1 that
consists of138 detail coefficients spanning7 levels. In Figure
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Fig. 2. The approximate control law and optimal control law are shown in (a) and (b) respectively. Notice the sparsity of the required detail coefficients
as shown in (c). In (d), the red region denotes a feasible and stable region with bounded performance, the yellow region denotes the regions which intersect
with the boundary, and the black line gives the boundary of the optimal feasible set. In (e), we see the resulting hierarchical tree structure if speed is
chosen over storage space. In (f) we illustrate optimality (ǫ) versus approximation complexity (i.e. number of non-zerodetail coefficients).

2, the resulting control law and feasible regions are shown.
Figure 2 also shows the performance threshold (ǫ) versus
the required non-zero detail coefficients, the hierarchical tree
structure, and the map of detail coefficients.

VI. CONCLUSION

The approximate explicit MPC method we have presented
consists of a simple hierarchical gridding scheme which is
easy to implement. The approach approximates the optimal
control law directly, and because of the basis functions used
to build the function approximation, has guaranteed stability,
feasibility, and bounds on the performance. The ability to
guarantee a level of accuracy between grid points enables an
adaptive approach based on thresholding which can lead to
a sparse representation of the explicit control law.
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