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Abstract— Fast model predictive control on embedded sys-
tems has been successfully applied to plants with microsecond
sampling times employing a precomputed state-to-input map.
However, the complexity of this so-called explicit MPC can
be prohibitive even for low-dimensional systems. In this pa-
per, we introduce a new synthesis method for low-complexity
suboptimal MPC controllers based on function approximation
from randomly chosen point-wise sample values. In addition
to standard machine learning algorithms formulated as convex
programs, we provide sufficient conditions on the learning algo-
rithm in the form of tractable convex constraints that guarantee
input and state constraint satisfaction, recursive feasibility and
stability of the closed loop system. The resulting control law can
be fully parallelized, which renders the approach particularly
suitable for highly concurrent embedded platforms such as
FPGAs. A numerical example shows the effectiveness of the
proposed method.

I. INTRODUCTION

In model predictive control (MPC), the control input
is obtained by solving an optimization problem at each
sampling time. It is well-known that for certain problem
structures, the resulting quadratic or linear program can be
solved offline using multiparametric programming [1]. The
solution is a piece-wise affine (PWA) state feedback control
law defined over polyhedral regions partitioning the state
space. Thus, online evaluation of the control law reduces
to a point location problem, which can be solved efficiently
using a binary search tree [2], [3]. This so-called explicit
MPC enables finite time optimal control of fast systems such
as power electronics, see e.g. [4] and the references therein.

Explicit MPC is however limited mainly in two ways.
First, the computation of the parametric solution may be
computationally intractable, even for low dimensional sys-
tems. This stems from the fact that the solution to multi-
parametric programs can grow exponentially in the problem
size. Second, if a PWA state feedback map has been obtained,
generation of the associated search tree may fail or lead
to lookup tables of sizes prohibitive for embedded control
hardware.

In this work, we propose a new synthesis method for
suboptimal explicit MPC based on function approximation
which yields low-complexity control laws with a low degree
of suboptimality, enhancing applicability of MPC on resource
constrained platforms. Our method is based on approximat-
ing the optimal PWA control law from point-wise sample
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values by a weighted sum of nonlinear basis functions. As the
samples are chosen randomly, we call this process learning,
and the learning problem consists of finding a suitable set of
weights by means of convex optimization.

While standard methods from machine learning, e.g. soft
margin support vector regression [5] or more general kernel
methods [6], may work well in practice, no system theoretic
guarantees are provided when learning MPC control laws.
The main contribution of this work is to present a learning
problem that provides guarantees for input and state con-
straint satisfaction, recursive feasibility and stability of the
closed loop system with only mild requirements on the class
of basis functions. This is accomplished by deriving suitable
tractable convex constraints which can be added to any of
the standard learning setups relying on convex optimization.
An observation from our numerical experiments is that
when learning with such system theoretic constraints, the
resulting weight matrix is often sparse, resulting in low
storage requirements and fast online evaluation.

A vast number of other approximate explicit MPC
schemes have been proposed in the literature [7]. While ge-
ometric methods (e.g. [8], [9], [10], [11], [12]) are based on
the polyhedral partitioning of the state space, our approach
belongs to the class of function approximation. An early
work in this context is [13], employing neural networks and a
gradient-based search to find the associated weights through
non-convex optimization. Function approximation by PWA
basis functions is considered in [14], where the offline prob-
lem is a convex quadratic or linear program. However, the
exact solution is needed to compute the approximation, and
closed-loop stability is verified a-posteriori by construction
of a piece-wise linear (PWL) Lyapunov function, which is
generally difficult to obtain. Both the exact solution and a
PWL Lyapunov function are also prerequisites for stability
guarantees given in [15], which is based on a global poly-
nomial approximation and is restricted to 1,∞-norm cost
functions. Barycentric interpolations on a hierarchical grid
are computed in [16] by a series of convex optimization
problems.

In contrast, the method presented in this paper permits to
use any differentiable function as basis function, which gives
freedom to the control designer to trade off approximation
accuracy vs. memory and computing power limitations. As
the basis functions can be evaluated fully in parallel, the
resulting state feedback controller is particularly suited for
highly concurrent embedded platforms such as FPGAs or
VLIW processors. Moreover, our algorithm relies solely
on point-wise values of the optimal solution and is hence
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potentially suited for MPC problems of high complexity. We
approximate only the first control move of the input trajec-
tory, which is sufficient for closed loop control in a receding
horizon implementation, thereby significantly reducing the
problem size.

The outline of the paper is as follows: In Section II we
introduce the MPC formulation under consideration and the
general function approximation setting, followed by a spe-
cialization to learning MPC controllers in Section III. After
stating the semi-infinite learning problem, we subsequently
derive finite tractable convex inner approximations of the
infinite constraints. Our method is applied to an example
system in Section IV, showing the effectiveness of learning
optimal controllers under system theoretic constraints.

NOTATION

In is the n × n identity matrix. R≥0 (R+) is the set of
nonnegative (strictly positive) reals. The operators ⊗ and
⊕ denote the Kronecker product and the Minkowski sum,
respectively. vec (A) is the vector obtained by stacking the
columns of matrix A. A polyhedron is an intersection of a
finite number of closed half-spaces in Rn, and a polytope
is a bounded polyhedron. extrP denotes the set of vertices
of the polytope P . All inequalities are component-wise if
applied to vectors.

II. PRELIMINARIES

In this work, we consider linear discrete time dynamical
systems of the form

x+ = Ax+Bu , (1)

where x ∈ Rnx is the current state, u ∈ Rnu the current
control input and x+ the successor state. If (1) is controlled
by the control law u = κ(x), the closed loop system is
defined as

x+ = Ax+Bκ(x) . (2)

Definition II.1 (Positively invariant (PI) set) A set X ⊆
Rnx is a Positively Invariant (PI) set of system (2), if
Ax+Bκ(x) ∈ X ∀x ∈ X .

Definition II.2 (K-class function) A real-valued function
α : R≥0 → R≥0 belongs to class K if it is continuous,
strictly increasing and α(0) = 0.

Definition II.3 (Lyapunov function) Let X be a PI set for
system (2) containing a neighborhood N of the origin in its
interior and let α(·), ᾱ(·) and β(·) be K-class functions.
A non-negative function V : X → R≥0 with V (0) = 0 is
called a Lyapunov function in X if:

V (x) ≥ α(‖x‖) ∀x ∈ X , (3)
V (x) ≤ ᾱ(‖x‖) ∀x ∈ N , (4)

V (x+)− V (x) ≤ −β(‖x‖) ∀x ∈ X . (5)

Theorem II.4 (Asymptotic stability [17]) If system (2) ad-
mits a Lyapunov function in X , then the equilibrium point at
the origin is asymptotically stable with region of attraction
X .

A. MPC Problem Formulation

In model predictive control, a cost function reflecting var-
ious control tradeoffs is minimized over a finite time horizon
with respect to the control inputs u = [u0, . . . , uN−1]:

V ∗N (x) = min
u
VN (x,u) =

N−1∑
n=0

l (xn, un) + Vf (xN ) (6a)

s.t. x0 = x , (6b)
xn+1 = Axn +Bun n = 0, . . . , N − 1 , (6c)
(xn, un) ∈ X× U n = 0, . . . , N − 1 , (6d)
xN ∈ Xf . (6e)

The sets X = {x ∈ Rnx |HXx ≤ hX} and U =
{u ∈ Rnu |Huu ≤ hu} are assumed to be closed and convex
polytopes, containing the origin in their interior. We define
XN as the set of x for which (6) is feasible. The stage
costs are of the form l(xi, ui) = xTi Qxi + uTi Rui where
Q ∈ Rnx×nx is a positive semi-definite and R ∈ Rnu×nu a
positive definite weight matrix. The terminal penalty function
is given by Vf (xN ) = xTNPxN for some P ∈ Rnx×nx

positive definite. The terminal target set Xf ⊆ X is a compact
convex polytope containing the origin in its interior. We
denote the minimizer of (6) by u∗(x), and the corresponding
state feedback control law is the first element of the optimal
input sequence, κ(x) = u∗0(x), such that the closed loop
system dynamics under receding horizon control are given
by

x+ = Ax+Bu∗0(x) . (7)

Assumption II.5 In the following, we assume that Xf is
a PI set under the control law κf (x) and that Vf (·) is a
Lyapunov function in Xf :
A1: Ax+Bκf (x) ∈ Xf and κf (x) ∈ U ∀ x ∈ Xf ,
A2: Vf (Ax+Bκf (x))−Vf (x) ≤ −l(x, κf (x))∀x ∈ Xf .

Theorem II.6 (Lyapunov function for (7) [18]) Under
Assumption II.5, V ∗N (·) is a Lyapunov function for the
closed loop system (7).

B. Kernel Regression

In classical nonlinear regression, one seeks to approximate
a function f : Ω ⊆ Rn → R in some function space F ,
by a function f̃ : Ω → R in some F̃ ⊆ F , such that the
approximation error ‖f−f̃‖F , where ‖·‖F is a norm defined
on F , is minimized:

min
f̃∈F
‖f − f̃‖F .

Since the minimization problem is carried out over the
space of functions F̃ , it is in general infinite dimensional
and computationally intractable. A common approach is to
parametrize F̃ by a weighted sum of L nonlinear basis
functions ki : Ω → R and to minimize the empirical error
instead. This involves drawing M samples χi according to a
distribution P : Ω→ R≥0. At the samples, f(·) is evaluated
to yield fi := f(χi). With

k(x) := [k1(x), . . . , kL(x)]T , (8)



the finite dimensional problem of learning f is then given
by

θ∗ := arg min
θ

M∑
i=1

L(ri) (9a)

s.t. ri = f(χi)− f̃(χi) i = 1, . . . ,M (9b)

f̃(χi) = θT k(χi) i = 1, . . . ,M (9c)

where θ∗ ∈ RL is the set of weights that minimize the
empirical error under loss function L : R→ R≥0. For some
common choices of basis functions and the relation to kernel
methods see e.g. [5] and [19].

III. LEARNING AN MPC CONTROLLER

A. Sampling

To generate data for learning, we define Ω = XN as the
domain of the basis functions ki(·), which ensures that the
samples χi are feasible for the original MPC problem (6).

B. The primary learning problem

First, note that the learning problem in (9) has to be
adjusted in order to fit our purpose of learning an MPC
control law.

Definition III.1 (Suboptimal control law) The suboptimal
state feedback control law employs a dual-mode strategy
[18], [20] and is given by

ũ(x) :=

{
Θk(x) x /∈ Xf
κf (x) x ∈ Xf

, (10)

where Θ ∈ Rnu×L is a set of weights and k(x) is a column
vector of basis functions evaluated at x as defined in (8).
The suboptimal closed loop dynamics are given by

x+ = Ax+Bũ(x) . (11)

We first state a rather general result for this class of subop-
timal controllers. By incorporating input and state constraint
satisfaction, recursive feasibility and stability constraints
into the learning problem (9), we impose system theoretic
constraints on (10) and (11). Thus the following theorem is
key to our method.

Theorem III.2 (Primary learning problem) Let X̃ ⊆ XN
be a polytopic set containing the origin in its interior.
Furthermore, let χi ∈ XN , i = 1, . . . ,M denote randomly
drawn samples. If the semi-infinite optimization problem over
the weights Θ of (10),

min
Θ

M∑
i=1

L(ri) (12a)

s.t. ri = u∗0(χi)− ũ(χi), i =1, . . . ,M , (12b)

ũ(x) ∈ U ∀x ∈ X̃ , (12c)

Ax+Bũ(x) ∈ X̃ ∀x ∈ X̃ , (12d)

V ∗N (x+)− V ∗N (x) ≤ −εl(x, 0) ∀x ∈ X̃ , (12e)

with x+ as given in (11), ri ∈ Rnu , L : Rnu → R≥0

and ε ∈ R+ is feasible for some fixed ε > 0, then X̃ is a

PI set for the closed loop system (11). Furthermore, (11) is
asymptotically stable with region of attraction X̃ .

Remark III.3 As the suboptimal control law employs a
dual-mode strategy, it suffices to impose (12c),(12d) and
(12e) for all x in X̃ \Xf , as the terminal controller κf (x)
satisfies these conditions by Assumption II.5.

The primary learning problem (12) is merely theoretical,
as the optimization problem has an infinite number of con-
straints. In the next section, we will derive the main result of
the paper, which is a tractable convex inner approximation
of (12) with a finite number of constraints.

C. Derivation of a tractable learning problem

We will first derive a tractable formulation of the input
constraints (12c), by making use of a robust optimization
reformulation technique, see e.g. [21]. A similar reformula-
tion is also employed in the subsequent derivation of convex
conditions sufficient for (12d). Finally, we give sufficient
finite convex constraints for (12e).

Some mild assumptions are required for the basis functions
and the involved sets, which are met by all standard basis
functions used in learning [22].

Assumption III.4 The basis functions ki(·) are continu-
ously differentiable on X̃ .

Assumption III.5 Let the set X̃ ⊆ X be compact and
convex with non-empty interior and implicit representation,
i.e. X̃ = {x ∈ Rnx |∃u : Gx+Hu ≤ b, } with G ∈ Rm×nx ,
H ∈ Rm×N ·nu , b ∈ Rm and u is the input vector. For details
on how to derive such a representation see e.g. [23].

Lemma III.6 (First order Taylor approximation) Let
R ⊆ X̃ , where R =

{
x ∈ X̃ | Hr x ≤ hr

}
is defined by a

finite number of linear inequalities with hr ∈ RNr . The first
order approximation of k(x) around a point xc ∈ R allows
for a representation

k (x) ∈ Jk (xc) (x− xc) + k (xc)⊕W , x ∈ R ,

where Jk(xc) := ∇xk(x)|x=xc
∈ RL×nx is the Jacobian of

k(·) evaluated at xc and W = {w ∈ RL : Hww ≤ hw} is a
compact convex polytope defined by Hw ∈ RNw×L and hw ∈
RNw overbounding the remainder of the Taylor expansion.

Proof: Since k(·) is differentiable on X by Assump-
tion III.4, the Jacobian exists. Since X̃ ⊆ X is bounded, the
remainder w(x) := k(x)− Jk(xc)(x− xc)− k(xc) must be
bounded for all x ∈ R.

Remark III.7 In general, the map of R under w(·) as
defined in the proof of Lemma III.6 is nonlinear, but can be
overbounded by interval arithmetic methods [24], yielding
the polytope W.

Assumption III.8 The set W has a non-empty interior.

D. Satisfying input constraints

The following theorem states the tractable counterpart of
invariance condition (12c).



Theorem III.9 (Tractable input constraints) Define R
and W as in Lemma III.6 and fix xc ∈ R. Furthermore,
define

A :=

 G 0 H
0 Hw 0
Hr 0 0

 , B :=

 b
hw
hr

 ,

C (Θ, xc) :=
[
HuΘJk (xc) HuΘ 0

]
,

D (xc) := hu +HuΘ (Jk (xc)xc − k (xc)) ,

and let Nu be the number of rows of Hu. Then, the existence
of Θ ∈ Rnu×L and Y ∈ RNu(m+Nw+Nr) such that

(INu ⊗ B)
T
Y ≤ D (xc) , (13a)

(INu
⊗A)

T
Y = vec

(
C (Θ, xc)

T
)
, (13b)

Y ≥ 0 , (13c)

is a sufficient condition for (12c) on R, i.e. (13) implies
ũ(x) ∈ U ∀x ∈ R.

Proof: Using Lemma III.6, a sufficient condition for
ũ(x) ∈ U ∀x ∈ R is given by

HuΘ (Jk (xc) (x− xc) + k (xc) + w) ≤ hu
∀x ∈ R, ∀w ∈W (14a)

⇔HuΘJk (xc)x+HuΘw ≤ hu +HuΘ (Jk (xc)xc − k (xc))

∀x ∈ R, ∀w ∈W . (14b)

Using the matrices introduced in the theorem, we rewrite the
infinite condition as constraints on the row-wise maxima of
the LHS of (14b) as follows:

max
x∈R,w∈W

Ci (Θ, xc)

xw
0

 ≤ Di (xc) , (15a)

⇔ max
x,w,u

Ci (Θ, xc)

xw
u

 ≤ Di (xc) , (15b)

s.t. A

xw
u

 ≤ B (15c)

for i = 1, . . . , Nu, where Ci (Θ, xc), Di (xc) denote the ith

row of the corresponding matrices. Since both X̃ and W
are compact convex sets with nonempty interior (Assump-
tion III.5 and Assumption III.8), strong duality for LPs holds
and we then have that

max
x,w,u

Ci (Θ, xc)

xw
u

 = min
yi
BT yi ≤ Di (xc) (16)

s.t. A

xw
u

 ≤ B
s.t. AT yi = Ci (Θ, xc)

T
,

yi ≥ 0 ,

i = 1, . . . , Nu. Since the existence of yi satisfying (16) is
sufficient, the minimization in (16) can be dropped. Repeating
this construction for every row of C (Θ, xc) and stacking the
corresponding variables to Y := [yT1 , . . . , y

T
Nu

]T yields the
claim.

Remark III.10 (Input feasibility for union of regions)
Let R regions Ri, i = 1, . . . , R correspond to a covering
of X̃ , i.e. ∪Ri=1Ri = X̃ and let Theorem III.9 be satisfied
for all R regions with separate Y i and one Θ. Then
Theorem III.9 holds on X̃ .

Remark III.11 (Tractability of (13)) Both the number of
additional variables Y and the number of constraints in-
troduced in Theorem III.9 is polynomial in the dimen-
sions involved. We have precisely Nu (1 +m+Nw +Nr)
inequality and Nu (nx + L+Nnu) equality constraints in
Nu (m+Nw +Nr) variables.

E. Recursive feasibility
The following theorem states the tractable counterpart of

invariance condition (12d).

Theorem III.12 (Tractable invariance constraint) Let X̃
be given by an explicit polytopic representation, i.e. X̃ =
{x ∈ Rnx |Hxx ≤ hx} with hx ∈ RNx . Let furthermore
xc ∈ R ⊆ X̃ be fixed and R, A, B and W be defined
as in Theorem III.9. Define furthermore

E (Θ, xc) :=
[
Hx (A+BΘJk (xc)) HxBΘ 0

]
,

F (Θ, xc) := hx +HxBΘ (Jk(xc)xc − k(xc)) .

Then a sufficient condition for the semi-infinite constraint

x ∈ R ⇒ Ax+Bũ(x) ∈ X̃
is the existence of weights Θ ∈ Rnu×L and a column vector
Y ∈ RNx(m+Nw+Nr) such that

(INx ⊗ B)
T Y ≤ F (Θ, xc) , (17a)

(INx
⊗A)

T Y = vec
(
E (Θ, xc)

T
)
, (17b)

Y ≥ 0 . (17c)

Proof: By linearizing ũ(x) according to Lemma III.6,
using the polytopic representation of X̃ and reordering the
constraints yields a structure equivalent to (15). Dualizing,
dropping the minimum and stacking the dual variables, yields
the claim.

Remark III.13 Any convex inner approximation of X̃ , de-
fined as X̄ := {x ∈ Rnx | Hxx ≤ hx} ⊂ X̃ , can be used in
Theorem III.12 to impose x ∈ R ⇒ Ax + BΘk(x) ∈ X̄ ,
yielding a sufficient condition for invariance. This is impor-
tant in practice, where X̃ is usually defined only implicitly.

Remark III.14 (Invariance for union of regions) Let R
regions Ri, i = 1, . . . , R correspond to a covering of X̃ as
in Remark III.14 and let Theorem III.12 be satisfied for all
R regions with separate Yi and one Θ. Then Theorem III.12
holds on X̃ and subsequently X̃ is an invariant set for (11).

Remark III.15 (Tractability of (17)) Both the number of
additional variables Y and the number of constraints in-
troduced in Theorem III.12 is polynomial in the dimen-
sions involved. We have precisely Nx (1 +m+Nw +Nr)
inequality and Nx (nx + L+Nnu) equality constraints in
Nx (m+Nw +Nr) variables.



F. Stability

We will now derive sufficient conditions for (12e). We
state convex constraints which can be added to the learning
problem to impose that the optimal value function V ∗N (·),
which, by Lemma II.6, is a Lyapunov function for (7), is
also a Lyapunov function for (11). The following results will
be useful for the derivation of this result in Theorem III.18.

Lemma III.16 Let x+
i (x) denote the ith component of the

successor state of x satisfying (11). Let furthermore ai and
bi denote the ith row of A and B, respectively. Then there
exist y

i
∈ RNw

≥0 and ȳi ∈ RNw

≥0 such that

x+
i

(
x,Θ, y

i

)
≤ x+

i (x) ≤ x̄+
i (x,Θ, ȳi) ∀x ∈ X̃ , (18a)

−HT
wyi = ΘT bTi , HT

w ȳi = ΘT bTi , (18b)

where

x+
i (x,Θ, y

i
) := x+,L(x,Θ, xc)− hTwyi ,

x̄+
i (x,Θ, ȳi) := x+,L(x,Θ, xc) + hTwȳi ,

x+,L
i (x,Θ, xc) := aix+ biΘ (Jk(x− xc) + k(xc)) .

Proof: We first linearize the control law according to
Lemma III.6. Writing an underbound on the ith component
of the successor state, we have

x+
i (x,Θ) = min

w∈W
aix+ biΘ (Jk(x− xc) + k(xc) + w)

= aix+ biΘ (Jk(x− xc) + k(xc))︸ ︷︷ ︸
x+,L
i (x,Θ,xc)

+ min
w∈W

biΘw .

Since W is a nonempty compact convex set, the minimum
exists and is attained. Hence, strong duality of LPs yields

min
w

biΘw = max
y
i

− hTwyi (19)

s.t.Hww ≤ hw s.t. −HT
wyi = ΘT bTi ,

y
i
≥ 0 .

Since some lower bound is sufficient, we can drop the
maximization in (19), yielding the left inequality in (18a).
By a similar construction, the overbound on x+

i is obtained
by maximizing x+

i (x) w.r.t. to w, dualizing and dropping the
minimum.

Corollary III.17 (Set of successor states) The set of suc-
cessor states obtained by overbounding the linearization of
the suboptimal control law,

X+(x,Θ) :=
{
x+ ∈ Rnx | x+

j ≤ x+
j ≤ x̄+

j

}
,

with x+
j ≡ x+

j

(
x,Θ, y

j

)
and x̄+

j ≡ x̄+
j (x,Θ, ȳj) satisfying

Lemma III.16, is a convex outer bound of the true successor
state, i.e. we always have that

x+(x,Θ) := Ax+BΘk(x) ∈ X+(x,Θ) ∀x ∈ X̃ ,∀Θ .

Proof: Follows from the definition of X+(x,Θ).

Theorem III.18 (Finite convex stability constraints) Let
X̃ be given as in Assumption III.5, xc ∈ R ⊆ X̃ be fixed

and R be defined as in Theorem III.9. A sufficient condition
for (12e) is the existence of weights Θ ∈ Rnu×L such that

V ∗N
(
x+(x,Θ)

)
− V ∗,LN (x, xc) ≤ −εl(x, 0) (20a)

∀x ∈ extr (R) , x+(x,Θ) ∈ extr
(
X+(x,Θ)

)
, (20b)

where

V ∗,LN (x, xc) := ∇x V ∗N (x)|x=xc
(x− xc) + V ∗N (xc)

is the optimal value function linearized in xc.
Proof: By linearizing V ∗N (x) around xc, we obtain a

sufficient condition for (12e)

V ∗N (x+(x,Θ, w))− V ∗,LN (x, xc) + εl(x, 0) ≤ 0 (21)
∀x ∈ R, ∀w ∈W.

The LHS of (21) is convex in x and w, as x+(x,Θ, w)
is affine in x and w when applying the linearized control
law. Maximizing the LHS of (21) over all x ∈ X̃ and
w ∈W yields the worst Lyapunov decrease which should be
nonpositive. Note that X+(x,Θ) is a box, hence a compact
convex polytope. The maximum of a convex function over
a convex polytope is attained at one of the vertices of the
polytope, hence it suffices to check (21) at the vertices of R
and the corresponding vertices of X+(x,Θ).

G. Tractable loss functions

In order to yield a convex problem, convex loss functions
L(·) should be used. A common loss function is the squared
2-norm of the residuals ri, i.e. L(ri) := ‖ri‖22, yielding a
constrained least-squares problem. Many other convex loss
functions exist [5]. In particular, regularization terms of
type λ‖vec (Θ) ‖1, λ ∈ R+, are often added to facilitate
sparse solutions. Here λ allows to trade off sparsity vs.
approximation accuracy.

Assumption III.19 (Convex loss function) The loss func-
tion L(·) in (12a) is chosen such that it is convex on U.

We are now ready to state a tractable formulation of (12).

Theorem III.20 (Tractable learning problem) Let X̃ ⊆
XN be a polytopic set containing the origin in its interior.
Furthermore, let χi ∈ XN , i = 1, . . . ,M denote randomly
drawn samples. If, for some fixed ε > 0, the convex
optimization problem

min
Θ,Y,Y,y,ȳ

M∑
i=1

L (ri) (22a)

s.t. (12b), (13), (17), (20), (22b)

is feasible, returning an optimal set of weights Θ∗, then
the closed loop system (11) under the proposed suboptimal
control law in (10) with weights Θ∗ is asymptotically stable
with region of attraction X̃ .

Remark III.21 (A posteriori verification) Conditions
(13), (17) and (20) can also be used for verification of the
corresponding system theoretic guarantees for (11) when
using the standard learning approach in (9).



Remark III.22 (Stability implies invariance) Feasibility
of (21) for x0 = x+(x,Θ) for fixed Θ and ∀x ∈ X̃ implies
that X̃ is an invariant set for (11). Hence, (17) may also be
dropped from the tractable learning problem.

Remark III.23 The tractable learning problem (22) is a
quadratically constrained quadratic program (QCQP). In
case the MPC problem is formulated with a linear (1 or ∞)
norm as the stage and terminal cost, the resulting learning
problem is a QP.

We have derived a tractable convex inner approximation of
the semi-infinite learning problem (12). If it is feasible, the
resulting controller is equipped with the desired system the-
oretic properties. In case of infeasibility of (12), the control
designer can select different or more basis functions, or refine
the regions Ri where necessary. A good indicator where to
refine the tessellation is the size of the linearization error sets
Wi. Once a feasible solution to (12) has been obtained, more
samples can be added to increase approximation accuracy.

In the following, we apply our method of learning MPC
controllers to an example system.

IV. NUMERICAL EXAMPLE

In this section, we present the results for learning the
optimal finite horizon controller of a double integrator sys-
tem. We employ the LQR state feedback law as terminal
controller, i.e. κf (x) = KLQRx. The terminal set Xf was
chosen as the maximum invariant set under LQR control
along with the terminal weight Vf (x) = xTPx. The problem
data is given by

A =

[
1 1
0 1

]
, B =

[
1

0.5

]
,

Q = QLQR = I2 , R = RLQR = 1 , N = 5 ,

P =

[
1.8085 0.231
0.231 2.6489

]
, ‖x‖∞ ≤ 5 , |u| ≤ 1 .

We use the following basis function for the learning:

ki(x) =

(
1− ‖x− χi‖2

σ

)3

,

with σ = 20. This function has been investigated on a 1-
dimensional domain e.g. in [6], [19]. We draw M = 200
samples by sampling from a uniform distribution, yielding
L = M = 200 basis functions centered at the sample
points. We have chosen X̃ := 0.9XN and a tessellation
into 274 regions, out of which 60 lie strictly inside Xf
(Fig. 1). In the learning problem (22), we use a quadratic loss
function without regularization, L(r) = ‖r‖22, and impose
input constraints (13) and invariance constraints (17). The
problem has been formulated with YALMIP [25] and the
resulting QP is solved by CPLEX in 43s on an Intel Xeon
2.53 GHz machine with 8 cores. Stability has been verified
a-posteriori using (20).

Figure 2 shows the feasible set XN of the nominal MPC
controller with the random sample points used for learning.
We have added the vertices of XN to the sample set.
The samples not encircled were assigned an almost zero
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Fig. 1. Tessellation of region of interest, X̃ = 0.9XN , into 274 regions,
60 of which are strictly inside the terminal set Xf and are not shown here.
The black dots depinct the linearization points xc.
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Fig. 2. Samples used for learning. Only the encircled 42 samples out of
200 have been assigned weights with a magnitude bigger than 10−6, i.e.
the resulting weight vector is sparse, which significantly speeds up online
evaluation of the control law.

weight (less than 10−6 in magnitude), which shows that the
constrained learning is sparse even without regularization.
In this example, only 42 out of the 200 samples suffice to
evaluate the nonlinear control law. This result suggests that
oversampling does not necessarily increase the complexity
of the resulting control law.

The learned controller is a good approximation of the
optimal PWA control law, as can be seen in Fig. 3. Due to
the use of nonlinear basis functions, the global behavior of
the PWA law is captured well, although local approximation
errors can be high. This is particularly the case near the
hinges of the PWA law. The largest error on a grid of 7480
points is 0.339 at x = [2.5 − 0.315]T with u∗0(x) = −1 and
ũ(x) = −0.661.

To investigate the closed loop performance under the
approximate control law, trajectories have been simulated



Fig. 3. Optimal (in blue) vs. learned (in green) controller.
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Fig. 4. State and input trajectories for two different initial states.

from 7480 initial conditions (the same points as used above
to evaluate the approximation error). Figure 4 depicts two
selected trajectories from different initial conditions. The
closed loop system is stable, which has been verified a-
posteriori with (20). The same result would have been ob-
tained by including the constraints into the learning problem.
No state constraint violations occurred for the trajectories.
The number of steps needed to reach the terminal region
increases for about 10% of the trajectories by one step as
compared to the nominal controller.
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