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A multiresolution approximation method for fast
explicit model predictive control

Sean Summers, Colin N. Jones, John Lygeros, and Manfred Morari

Abstract—A model predictive control law is given by the
solution to a parametric optimization problem that can be pre-
computed offline and provides an explicit map from state to
control input. In this paper, an algorithm is introduced based on
wavelet multiresolution analysis that returns a low complexity
explicit model predictive control law built on a hierarchy of
second order interpolets. The resulting interpolation is shown to
be everywhere feasible and continuous. Further, tests to confir
stability and to compute a bound on the performance loss are
introduced. Since the controller approximation is built on a grid
hierarchy, convergence to a stabilizing control law is guaranteed
and the evaluation of the control law in real-time systems is
naturally fast and runs in a bounded logarithmic time. Two
examples are provided; A two-dimensional example with an
evaluation speed of31 ns and a four-dimensional example with
an evaluation speed ofl19 ns.

Index Terms—Model Predictive Control; Multiscale Methods;
Explicit MPC; Fast MPC; Receding-Horizon control.

I. INTRODUCTION

The implementation of a model predictive control (MPC

law requires the solution of an optimization problem onlate

each sampling instant. This optimization problem can bego

parametrically, with the measured statas the parameter
J*(z) ;== min{h(x,u) : g(xz,u) < 0}.

The offline computation of this parametric problem resutts
an explicit optimal control law.* ()

x to the optimal system input [1]-[3]. The result is an onlin
computation of the optimal control law which depends on t

evaluation of the explicit functiom* () at statex rather than

the solution of the optimization problem. In many releva
cases, the result is a significant decrease in the requid@teon

computation. This approach is known as Explicit MPC.

Several authors have proposed approximation algorithms
that can produce simpler explicit control laws for linear P
problems at the cost of optimality [4], [6]-[9]. In almost al
cases, the authors initially approximate the epigraph ef th
optimal cost functionJ* with a polyhedronJ, usually de-
signed to ensure specific stability or performance congsai
Then, a feasible control lai(z) is computed such thaf is
a Lyapunov function for the resulting closed-loop systeime T
computation of a feasible control law which preserves the
stability and performance of the cost function approxiorati
can be done using the techniques discussed in [4], [6], [7],
[9], [10].

In the same spirit, we introduce an algorithm that consgruct
a low complexity approximate explicit control law using pda
tive multiscale bases. Such bases provide a powerful means
to detect local singularities and often lead to quite simple
refinement strategies. Some examples of possible basadéncl
orthogonal Daubechies wavelets [11]-[13], biorthogopéihe

avelets [14], and interpolets [15], [16]. Here, we use a

ierarchy of basis functions to approximate the expliciitool

SIaw, where the basis functions are constructed using a tenso

product expansion of second order interpolets.
The resulting approximation by multiscale bases is shown
to be everywhere continuous, low in storage requirements,

and require limited online computation. Further, we show
. that the second order interpolets result in an interpalatip
mapping the current Statebarycentric coordinates, which guarantees that the megult
ﬁ'\terpolation lies within the convex hull of the points bgin
nﬁterpolated. We emphasize that it is this property, i.@ th

interpolation by barycentric coordinates, which motigatke

r‘l]ise of second order interpolets as the basis function otehoi

rather than one of many alternatives, e.g. radial basigifum
[17]. As a result of this property, we are able to accurately

There are two main limitations of Explicit MPC. First,_ if theevaluate the stability and feasibility of the approximatecel
optimal control law can be computed, the storage reqL“Nas"'neBredictive control law, and even guarantee the controtidyet

O.f theAl explicit hcontrollelrl can grtl)w_ quickly W'rt]h IorObIemwithin a specified performance threshold of optimal.
size. Also, as the controller complexity grows, the worsteca In Section Il we construct @-dimension multiscale basis

comp “t"?‘“or.‘ time may rse gboye a pragt|cal value, thereH.Ynction, introduce an adaptive thresholding approach for
eliminating it as a viable choice in a real-time system. FherSparse function approximation, and show that the multiscal

foI:e, It is onl;(/j ”"j_t”r?" ;ﬁ cotn5|der appr oxma’;e Codr}f{rdle:basis we have constructed is comprised of barycentric ¢oord
whenever a reduction in the storage requirements and/orednl, 4ie5 1 Section 11l we introduce the well known linear Mbde

computation time is needed. For a general overview of t'ﬂﬁ‘edictive Control problem and the corresponding feasibil

problem, the reader is referred to the recent surveys [4], [SStabiIity, and performance guarantees for the approximate

Research supported by the Swiss National Science Foundatider grant control Iaw- In Section IV_We mtro.duce the numencall Im-
200021-122072 and by ETH Zurich under grant ETH-12 09-2 plementation of the adaptive algorithm for the approximate
Sean Summers, Colin N. Jones, John Lygeros, and Manfred Morgntrol law and discuss the computational complexity of the

are with the Automatic Control Laboratory, Department of nfa- hod. In Secti v id ical | f th
tion Technology and Electrical Engineering, ETH Zurich, iSerland method. n Section V we provide numerical examples of the
method.

sunmer s, cj ones, | ygeros, norari @ontrol . ee. ethz. ch
Preprint submitted to IEEE Transactions on Automatic Control. Received: April 19, 2011 09:58:22 PST
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.o


https://core.ac.uk/display/147975253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Limited circulation. For review only 5

Il. MULTISCALE FUNCTION APPROXIMATION ¥y,; which make up the hierarchical basis are hereafter defined

Our approximation method effectively relies on coarsel§S
gridding the state space, and then systematically regugddi Vri = bris i € Ip.
with increasing resolution the regions which have not been
approximated sufficiently (i.e. not all grid points are exated) It can be shown that
while only keeping the grid points which play a significant V= @Wk,
role in the function approximation. We start with a brief

introduction of the sparse multiresolution methodology fo h boli he di | h ds. th
function approximation. The reader is referred to [18]H2 erg@ Sym 0|ze§t e direct sum. In O.t er words, the same
unction u; € V; which was expressed in the nodal basis in

for more information on which subsections II-A, 1I-B, an . ; ) .
(3) can be equivalently represented in the hierarchicaisbas

k<l

[I-C are based. :
by the expression
l
A. One-Dimensional Multiscale Basis
, . . . , w(z) =D > wpirilx)
Define the standard one-dimensional scaling function (hat k—lp ic Ty

function) with suppor{—1,1] by with coefficientswy, ; € R, commonly referred to as the hier-

1=z, ifxe[-1,1], 1 archical details, corresponding to the difference betwten
o(x) = 0, otherwise. @ true function valuey,;(z ;) and the value of the approximate

: . : L o function one level below. Since every basis function in the

In one dimension, we consider a dyadic discretization on the . : ' )

o . S . ierarchical function space can be defined as a weighted sum
unit interval2 = [0, 1]. The resulting grid?; is characterized

by the level of discretization and the index. At level | the of basis functions in the nodal function space, i.e. for pver

: . . il < k< )
distance between points ks = 2! and the number of points VE{rilo <kl i€}
is N = 2! + 1. The indexi determines the location of the grid 2!
points according to the equation Y= Z a; - Pri
1=0
wg=ioh, 0<i<2 . l . .
’ wherea; € R for all i € {0,...,2"}, there exists a linear
Considerg,; ; a family of basis functions defined di with transformation from the nodal basis representation to the
support[z;; — hy, 21 + lu]. The functiong,; is generated hierarchical basis representation. Considering the vesto
from function (1) via translation and dilation, the nodal basis functions and the vector of the hierarchical
r—i-h basis functions), the transformation between basis’ can be
sy
¢l,z’(5ﬂ) =0 <hl> .

(2) expressed
The family of basis functiong; ; is commonly referred to as a b= A9,
nodal basis of level, and can be used to construct a functiojhere the matrixA is square and invertible (i.e. there also
spacel; of piecewise linear functions, exists an inverse transformation from the hierarchicalsbas
Vi = spar{¢y, : 0 < i < 2'). t_he nodal basis). In the wavelet co.mmunlty, these transferm
’ tions are known as forward and inverse wavelet transforms
That is, any functionu; € V; can be uniquely represented in20], [22].
the nodal basis as a weighted sum of basis functions Note that one can project general continuous functions
u : [0,1] — R onto the subspac®;. The resulting projection

2L
V, is a piecewise linear approximation af and can
() — L 3) weEMW . . :
w () ;vl’ i) ) pe represented uniquely in both the nodal basis and the
o B . hierarchical basis. Consider the continuous function
where the coefficients; ; are equal to the function value . 1
(). , u(z) = 2z+1, Itz < 2 4)
e —5(x—3)*+2, else

Equivalently,V; can be constructed as the summation of hi-
erarchical function spacd¥,, where the basis correspondinglefined onz € [0,1]. Results for a piecewise linear approx-
to Wy is referred to as a hierarchical basis. The hierarchicahation of (4) with levell = 4 and minimal hierarchical

function spacéVy, for k € Ny andk > [, is defined as level [ = 0 are shown in Figure 1. It is important to
, note that the piecewise linear approximation(xz) of (4) is
Wi :=span{p,i : i € I} equivalent in both the nodal and hierarchical represemisti
with the hierarchical index set defined For the nodal basis functions, the projection wfonto w;

(Figure 1(a)) is easy since the weights are equivalent to the

value of (4) at the nodes. As a result, the weights tend to be

large and the removal of a single nodal basis function would

wherel, € Ny denotes the lowest level of discretization (typbe detrimental to the approximation. In contrast, the tme

ically [o = 0). The family of univariate multiscale functionsof » onto «; using hierarchical basis functions (Figure 1(b))
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uR)
u(x)

(a) Nodal representation (b) Hierarchical representation

Fig. 1. Example of a piecewise linear approximation of the fiamcu () defined in (4) with a maximum resolution of levie= 4 given in the nodal basis
1(a) and the hierarchical basis 1(b). 1(a) The piecewissmlimpproximation.4(x) (solid line) with corresponding nodal basis functions taaklines). 1(b)
The piecewise linear approximatiam (x) (solid line) with corresponding hierarchical basis fuon8 (dashed lines). In both 1(a) and 1(b), the piecewise
linear function (solid line) is the result of the summation loé tbasis functions (dashed lines).

is slightly more complex, but allows for adaptive threslioigd
(see Section II-C) since the weights (hierarchical détadad

to decrease significantly with resolution. That is, the reaho
of the hierarchical basis functions with very small weights
would not greatly effect the approximation of (4).

B. d-Dimensional Multiscale Basis

Lety € N¢ denote ad-dimensional multi-index (i.ey is a
d-vector of indices taking values in the non-negative intsjge
where operations (e.g. addition) and comparisons (g).
hold component-wise ang; is the jth component ofy. A
multivariate multiscale basis on the unit cub¢ = [0,1]¢,
whered is the dimension, can be constructed by tensor product

expansion of the one-dimensional multivariate functigns Fig. 2. Two dimensional hierarchical basis function by tenpooduct
- : ’ nsion of the one dimensional hat function.
(see Figure 2), i.e. expansion of the one dimensional hat functio

Yri = H Vi i; it can be shown that
=B we.
with the multi-indexi € I and gg
{ieN{:0<i<2F}\{ieNg: i
It={ 0<i<2Fi;evenvje{l,....d}} k>l , _Z p
{ieNd:0<i<2k}) k=1 . w(r) = > i i

Note that/{ is simply the full grid at levelk minus those \ith coefficientsu; ;. Likewise, the same function; € V¢

points seen at previous levels, as depicted in Figure 3 ®r than pe uniquely represented in the hierarchical basis by
2-dimensional case. We may now define tth@limensional

hierarchical function spaces of piecewisdinear functions as
P P = Z Z Wi i wk i )
Wi = spar{vy; :i€ I k=0icrg

Defining the family ofd-dimensional nodal basis functions With hierarchical detailsuy ; € R.

Sui(x H 1,0, (x5) C. Adaptive Thresholding

In the hierarchical basis methodology, the weight of the
specific scaling functiomy, ;, and not the function value(x),
is saved at each grid pointe ¢. The level of approximation
d = spar{¢;;i:0<i< 2’}7 is initialized at the coarsest level, usually= 0, and continues
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Algorithm 1 Adaptive Function Approximation

1l o . X . o Require: A functionu € V from which samples can be taken
and a threshold € R
08t . . . . . Ensure: An approximate function given by’ andw
1: Define the initial ‘active’ index seA’ = {(lo,1) : i € I}
0.6 i NO —
and temporary index set’ = ()
X . X . X . e . .
04 2: Compute initial detailsv = {wy; : (k,i) € A%}
' 3: while A°\A° # ) do
0.2t ) ' ) ’ 4. SetA® = A
5: ComputeA), = U ;yens Mk, 1)
or O . x . (@) . — Lo e (B3 s
6:  Computew,, = {wy; : (ki) € A}, |wyi| > 6}
0 02 04 06 08 1 7 EvaluateAfL = {(k7 1) : (k’, i) E~A§l, Wg,i € Wn}
8: Increase index set® = A° UA?
Fig. 3. Grid points for subspacé¥? (circles), W2 (x's), andW2 (dots). & Increase details sat = w U wy,
10: end while

in a direction of dyadic refinement. In many relevant cases

the hierarchical details tend to zero as the grid space psints are explored, and thus significant areas of the space
refined [18]-[20]. To decrease the storage requirementhér may be missed. A more sophisticated error indicator may
approximation of a function, one may consider storing onlglleviate this problem in specific cases, but modificatiams t
those grid points whose weights are larger than a user sgetcithe adaptive algorithm are usually advised against. B&gaus
threshold. Thus, we may significantly reduce the number fafr any modification to the adaptive search method, there is
stored variables (hierarchical details) for the approxiomof always some function which will lead the adjusted procedure
a functionu(x) without a significant loss in the accuracy ofo fail. However, it will be seen in the sequel that when using
the approximation. The adaptive function approximation cahe second order interpolets as the basis, an upper bound on
be expressed as the maximum error can be achieved if the function being

A approximated is convex.
i(z) = Z Wi - Yri(T)

(ki)EAs

h h d et ( he ind g D. Barycentric Coordinates

where the ‘active’ index s i.e. the index set correspond- ,

ing to non-zero detail coefficients) is a function of the user I;olr ?nytsgmbctﬂﬁ(v Ie: C?n\(f) be th? <tJOnVEX hull of?
defined threshold as well as the function to be approximated" ? exi(R) be the set of ex rgme points. .

u. Common thresholdingywy, ;| > 0, simply reduces to taking Definition 1 (Barycentric Coordinates [23])Let S :=

d .
the absolute value of the hierarchical detail greater tten tconv({vl, -otn}) C R _be a po_Iytop(_a. A set of functions
threshold, and discarding the weighy, ; if it is lower than f.(z) are calledoarycentric coordinatesf for all = € S and

the threshold. v € extr(S)

We employ a upidirectior!al nearest neighbor bisection ap- folz) >0, positivity (6)
proach for the grid resolution update. We denote a nearest _1 it £ unit 7
neighbor as any point that is exactly one level up and at most Z fol@) =1, partition ot unity ()
one index removed in all dimensions (see (5)). The nearest veext(s)
neighbor functionM (k, i) maps a single indekk,i) € A’ to Z vfy(z) =1 . linear precision (8)
its set of nearest neighbors in level and space, i.e. veextr(S)

M(k,i) = {(k+1,q):q€ Iy, Barycentric coordinates provide a convenient way to irgerp
g — 26, <1 Vje(l dy} () late a function on a mesh, requiring only the function valaies
j i < ey .

the vertices for interpolation. In many cases, the intexpoh

We now proceed with Algorithm 1. The algorithm initializess continuous and nonlinear. Additionally, the interpmatof
the ‘active’ index at the coarsest level, i.g. Then, the the data at the vertices by barycentric coordinates is away
nearest neighbors in level and space are determined and dharanteed to be inside the convex hull of the points being
corresponding hierarchical details are computed. Only tierpolated [23]. As a result of this property, the authors
details with an absolute value greater than the user defirned[10] were able to show that an approximate MPC law
threshold are saved while the rest are discarded. This gsoceonstructed via interpolation over polytopes by barydentr
is repeated until no more details can be added or a maximawordinates guaranteed feasibility, stability, and penénce
resolution has been attained. bounds.

Remark 1:Ideally, the output from Algorithm 1 would In the same spirit as [10], we now show that the function ap-
result in an approximation containing all weights with aproximation by adaptive hierarchical basis function exgbam
absolute value greater than the threshold. Yet, this wiltlya introduced in Section II-C generates a grid (of hypercubes)
be the case since only the neighbors of the saved gedanned by an interpolation by barycentric coordinateger®i
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a nodal function approximation spat® and ad-dimensional where v, and x;, are thekth coordinates ofv and z. For

space?, consider the set of levdl hypercubic regions?;; & € {1,...,d} we have
of width 2; whose centers are given by, ;) € Q4 jel; 4
where S whl@) = Y ik [ s ()

Lij={jeNd:0<j< 20D 5 oddVk € {1,...,d}}. veext( Ry ;) i€l ;=1

9) = (il (vx) +iphigri, (vx)) -
A hypercubic regionR, ; is defined H (17, (5) + bui, (z5))
J#k
Rj = {zeQl:xe ﬂ supéii) ¢, (10) = ixhudy, (xr) + b, (2r). (11)
1€lr, ; By the definition of the interpolets, (1) and (2), we can expan

where (112) such that

I, ={i € Nj:0<i<2 2041 €SupHor)} ixhidy g, (ox) + il (ar) =

is the set of indices corresponding to the vertices of the i/ (1 - ‘Lkhilkhl ) + il <1 — xkhiékhl >
hypercubeR; ;. Note that supp) denotes the support of a ! !
function and that J; Ry = Q% Also, it holds that allR; j are Taking into account the propertigs — i, = 1 and i h; <
hypercubes since the basis functions are axis aligned ared ha,, < i,.h;, simple arithmetic leads us to the result
hypercubic support, hence, finite intersections resultitimee

the empty set or a hypercube. el <1 _ | ®e ikl ) +igh (1 I e TS ) =
We now arrive at a critical lemma in which we show that hi hi

the nodal basis functions are barycentric coordinates ffor gepeating this process for all dimensidns {1,...,d} leads

Ry 5 C Q4, and thus will lead to provable arguments regarding, the property ofinear precision -

the feasibility, stability, and performance of the approate Next, we show that the above also holds for adaptive hierar-
control law. An alternative proof for Lemma 1 can be foundpical function approximation spaces.

in [24]. _ _ _ Corollary 1 (Hierarchical Barycentric Coordinates):
Lemma 1 (Nodal Barycentric Coordinatesgiven @ d-  Gijyen an active multiscale index s&f (x) spanning multiple

. ) 4 : o _ \ u) S !

dimensional space)® and nodal function approximation evels of resolution fromi, to [ (i.e. the indices corresponding

space V4, the multivariate basis of tensor product secon@y gl active hierarchical details iV wd), the
0" ’

order interpolets defined over any hyperculg; C Q¢ are following properties hold
barycentric coordinates fak, ;.

Proof: By definition, R, ; is a hypercube witf2¢ vertices
veext(Ry;) ={veQ:ieclp,,v="[ih,. .. id]}
where b, = 27! is the width of the hypercube®, ;. Note
that becauseR; ; is a hypercube, the index valuég in the
k" dimension take only two values, an upggrand a lower
i,, and are separated by a value of one, i;e— i, = 1.
We evaluate each of the three characteristics of barycentri

1) The function approximation spaé®, ., W;*° can be
decomposed into hypercubes with barycentric coordi-
nates at the vertices, Whe%,j’é =spaf{yy;i : (ki) €
(k, I N AP () }.

2) The set of hypercubic regions up to leveln which
the basis functions form an interpolation by barycentric
coordinates is

coordinates Positivity is straightforward by the definition of RCQ%ke{ly,....Il}, R=Ry; ,j€ I
t_he hat function (1). For th@artition of unity property, we R = and
first note that for allj € {1,...,d} (ki) € A(u), &>k, - ¢ R
P, (@) + dug;(25) = 1. where Ry, ; is defined in (10) and; is defined in (9).
It can then be shown that 3) The minimal set of hypercubic regions spannifig
p in which the basis functions form an interpolation by
Z fol@) = Z H‘ZS" () barycentric coordinates is
v - bs2i N\ )
veextr(Ry, ;) i€ln, ; j=1 RO={ReR:R¢ Q, VQ € R\ R}. (12)
d
_ (6= () + s (2)) Proof: The first item is straightforward. We fill the
o big v A function approximation space witly, ; = 0 for all (k,i) €
_ {(k,i) € (NN : k€ {lo,....1}, (ki) ¢ A%(u)} such

)

thatV? = @,., W*°, and then apply Lemma 1. The second
which satisfies thepartition of unity Lastly, we prove that item is a consequence of (9) and (10). The third item resailts i
the multiscale basis satisfies tleear precisionrequirement. Q¢ decomposed into a minimal set of hypercubes (possibly)
We evaluatdinear precisiondimension by dimension, i.e. for varying in size depending on the set of active basis funstion
eachk € {1,...,d} we show thaly_ ..y, ) Vkfo(2) = T [
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(a) Hypercubic Regions at level 1 (b) Hypercubic Regions at level 2
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(c) Hypercubic Regions at level 3 (d) Minimal set of hypercubic regionsk¢)

Fig. 4. An example of al = 2 hierarchical function approximation if2? over levelsk € {1, 2, 3}. The active hierarchical indices are given by the
corresponding centers (dots) on the grids. The hypercigions in which the basis functions form an interpolationbayycentric coordinates are marked

gray.

Corollary 1 effectively states that any function approximak € {2, 3} is active), and as a result the get also conveys
tion built adaptively in the hierarchical function spacesnfis this sparsity.
a function interpolation by barycentric coordinates. Rrtips
1 and 2 exploit the fact that, at the highest level of resotuti  |II. A PPLICATIONS TOMODEL PREDICTIVE CONTROL
a transformation from the hierarchical function space t® th The interest in parametric programming in the control

nodal function space results in a full nodal grid. FUthef,mmnity in recent years has arisen from the ability to
while the fotal number_ of hypgrcublc regions sat|sfy|.ng thﬁose certain optimal control problems as parametric progra
properties of barycentric coordinates are possibly opgitay resulting in numerous methods to pre-compute the optimal

(ﬁ!nceh all Ry g . aF the rr?a)l(lmum level of r(;,'180|;1,l.t|0n“ S"’,‘t'Sfycontrol law offline. In this paper we are specifically inteegs
this characteristic at the least), because the hieraichga i, e following finite horizon optimal control problem:
proximation space may in some cases be sparse, the minimal

set of hypercubes spanniff can be quite small (Property J*(z) =  min  J(uo,...,un—1,%0,...,ZN) (13)
3). An example is illustrated in Figure 4. We consider a (w0 un—1}

d = 2 hierarchical function approximation if?? over levels St i1 = Az + Bu;,

k € {1, 2, 3} where the active hierarchical indices are given Vi=0,...,N—1
by the corresponding centers (dots on the grids). Subfigures (zi,u;) € X xU, Vi=0,...,N—1

4(a), 4(b), and 4(c) illustrate the hypercubic regions at¢le

1, 2, and 3 (marked gray) in which the basis functions form
an interpolation by barycentric coordinates. Note thasé¢he To =T,

regions are overlapping since any basis function at levedn where

be uniquely represented by a linear combination of nodasbas N—
functions at any level > k. Further, the seR is the union of J(uo, ... un—1,%0, ..., on) = Vn(zn) + Z Wi, ug)
the hypercubes marked gray in Subfigures 4(a), 4(b), and 4(c) i

The minimal set of hypercubes spanning the approximation (14)

space? (i.e. R%) is represented in Subfigure 4(d). Note thaﬁnd X, U, and X»» are compact convex constraints on the

the hierarchical fungnon spaces at I'eve&ise.{z, 3} are states and inputs and the stage cbss a strictly convex
sparsely populated (i.e. only one basis function at eacél IeYunction. A functiony(-) : R — R is assumed to exist that
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is continuous, strictly increasing and ha§)) = 0 such that extremal points. In doing so, we show that the cost generated
~v(|z||) < I(z,0) for all . Problem (13) can be re-written asby the approximate control law (which is non-convex) is no
a parametric optimization problem: more sub-optimal than the cost generated by the interpolati
by barycentric coordinates, for which stability and perfor

u*(z) := argmin{h(z,u) : g(z, u) < 0}, (15)  mance can be computed. This enables us to prove stability
where u is a vector containing the sequence of input@nd performancze of the approximate control law.
wo,...,uxy_1 and appropriate auxiliary variables and the Lemma 4:If 4(x) is the barycentric control law defined in

funct|onsh and g are convex [1]. The system input is therl17) andi(v) is feasible for alby € extr(R), then the following
given in a receding horizon fashion [25] by, (x), which is Pounds hold
the first input in the optimal control sequence of (13). J*(z) < J(a(z)) < J(x), VzeR,
The following sections will demonstrate that an approxi-
mate control law built from the multiresolution methodojog Vnere
presented above leads to a stabilizing feasible expligitrob Z J(a(v)) fo(z), Yz € R.
law for the MPC problem (13).

veextr(R)

Proof: The control lawu(x) is feasible, yet approxi-
A. Stability Guarantees of Approximate Controllers mate, for allz € R (Lemma 3), thus the cost function
In Section 1I-D we showed that the approximate controllef(#(x)) must be sub-optimal, which gives us the lower bound
built from the adaptive multiscale basis functions can bé&"(x) < J(u(x)). The second portion of the proof can be
separated into hypercubic regions spanned by an inteipolatfound in [10], [26] and is briefly outlined as follows. Note
by barycentric coordinates. We now evaluate the feagipilithat due to the barycentric interpolation it holds thatry) =
stability, and performance of the individual regions by €O, cex(r (V) fu(z0) @nd i (zo) = 32, cox(ry ©i(v) fu(2o)
structing a Lyapunov function for the approximate closeopl for all i = 0,..., N, wherez;(z() is the solution of the state

systema™ = Ax + Bii(x). dynamics at theth step in the sequence when initialized at
Consider a hierarchical approximate control law defined an and the approximate control law is applied at each step.
Q4 c RY (Xp C X C Q%) with maximum levell Ne1
i)=Y wr - Yrala). (26) (@) = Vi(@n(z0)) + ; H@i(@0), &i(0))
(k,i)EAS (u*) N
where u* is given by (15). By Corollary 1, we see that =Vy Z En () fo(zo) | +

the approximate control law defined dd € R?, where R° veext(R)
is defined in (12), can be expressed as an interpolation by

barycentric coordinates Zl ( Z (0) o (20), Z ai(?))ﬂ;(%))
i(z) = Z aw(v) fo(z), if =€ R. (17) vEeXt(R) veexti(R)
veextr( i) Convexity of the stage costand the terminal costy gives

The following Lemma states that the resulting interpolatiothe following relation:
(i.e. the approximate control law) defined acrdds R° lies J(t(z0))
within the convex hull of the points being interpolated.

Lemma 2:If R = conM(vy,...,v5a) € Q% a(v;) is the < Z Folzo) (
approximate control law for the statg anda(z) is defined veext(R)

as in (17), then Z J(a(v)) fo(xo)

( fta) ) € conv(( a&) )( ﬁzjj;) ))7 veext(R) -

N-1
Vn(Zn(20)) + Z 1(Z3(xo), ﬁz‘(%)))

i=0

for all z € R. Lemma 4 proves that for eache R, the true approximate cost
Proof: Follows as consequence afx) expressed as anfunction.J(a(x)) will lie within the convex hull of the extreme

interpolation by barycentric coordinates [10], [26]. B points {(v, J(4(v))) : v € extr(R)}. With this key result in

Lemma 2 leads us to the following result. place, we can make use of an approximate stability theorem

Lemma 3 (Barycentric Feasibility)The approximate con- given in [26], which is motivated by the work [27].
trol law 4(x) is a feasible solution of (13), i.eWx,4(z)) < Theorem 1:Let J* : R? — R be the cost function of the
0, Vz € R, if and only if 4(v) is feasible for allv € extr(R). optimal control problem (13) and a Lyapunov function for the
Proof: Follows directly from Lemma 2 and the convexitysystemz* = Az + Bujj(z). The optimal cost functiow* (z)
of g. B is a Lyapunov function for the system™ = Az + Biig(z) if
We now show that the cost function (14) evaluated for tHer all = in the feasible seR the control lawi(x) is feasible
approximate control law (17) oveR € R° can be upper and the condition/*(z) < J(a(z)) < J*(x) +~(||z||) holds.
bounded by an approximate cost defined by the interpolation Proof: Assume that/*(xzg) < J(u(zo)) for somexy. It
by barycentric coordinates of the approximate cost at tfi@lows by assumption thai(zg) = (ao(xo), ..., tn—1(z0))
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is a feasible input sequence for the statg, where ¢  [0,1] performance loss over a regioR € R’ if

(xo,Z1(xo),...,ZNn(x0)) is the resulting feasible stateerr(R) > 0, whereerr(R) can be computed by solving the
sequence. Consider the time-shifted input and statenvex optimization problem:
sequences  (u1(xo), ..., un—1(z0), u(Zn(x0))) and

. N-—-1

(.’)3'1 ([Eo), R ,i‘N({L‘o),ALfL‘N(LU()) + BM(@‘N({E()))), which

are feasible for (13) by the assumption tiat is an invariant err(R) = min V(o) + Z Wz, ws) + €l(20,0)
set under the control law(z). At the next time step we are

at the stater; = Axg + Bi(xg) = Z1(x), and the shifted Z J(@
sequence is a feasible, sub-optimal solution to (13) at the vEexu( k)
statex;. The cost/ (13) evaluated at this shifted sequence is s.it. Ay, >0, Z Ao = 1,29 = Z VA,
then bounded as follows veextr(R) veextr(R)
T (@1) SJ (o), w1 (o), plin (w0)), @1, @it1 = Az + Bug, Vi =0,..., N —1,
i (o), Ay (w0) + Bpu(an ())) SRS S M S
=Vn(Azn(z0) + Bu(dn(20))) Proof: The optimal cost function/*(z) satisfies the

Lyapunov criteria of Theorem 1 if for alty € R

N
l i’z €T ,ﬁi T
+; (#i(z0). %i(20)) T*(w0) + el(20, 0) — J(it(x0)) > 0.

N—-1
=Vn(Zn(20)) + Z 1(Z:(x0), 13 (20)) (18) By Lemma 4, for allzg € R
Fllan (o) ilan) - Valon(an) @9y (@) + el 0) = Ji(r0)) 27 () + (o, 0
+ Vi (Adn (w0) + Bulin (o)) (20) Z( )J v)) o).
veext(R

— (0, o (20)).

Expression (18) is equal to the sub-optimal cdéti(z()) at Further, note thatrr(1?) can be written as

xo and therefore less tha#*(zg) + v(||zo||) by assumption R) = min J* I (@
and the sum of (19) and (20) is non-positive by the assumptigw( ) o (wo) + el(0,0 Z (av

that the decay rate dfyy is greater than the stage cost within veext(R)
the setXr. Therefore, we get the inequality (by the convexity s.t. Ay, >0, Z A =1,20 = Z Vp.
of1,1(0,0) = 0, andy(||z||) < I(z,0) for all 2 by assumption) veext(R) veext(R)

J*(x1) <J*(20) +v(||zol|) — I(z0, o (x0) By the properties of barycentric coordinates (6), (7), a8 (

and because_, ce.y gy J(@(v))A, is defined on the convex

< (@o) +y([lwoll) = 1(z0,0) hull conv({ (v, J(a(v))) : v € extr(R)}), for all zo € R

<J*(z0)
J*(zg) + €l(x0,0 Z J(u(v)) fo(xo) > err(R)

which demonstrates that the optimal cost functidh is a R
veexr

Lyapunov function for the approximate closed loop system
2T = Az + Big(z). B Therefore, if the worst case error between the optimal cost
Remark 2:We point out that a similar result to Theorem ¥unction and the convex hull of the approximate cost functio

can be found in the work [28]. Under a slight modificationis less thanel(xzg,0) (i.e. err(R) > 0), then the entire

to the assumptions, i.e. that the gamma function used risgion spanned by the interpolation by barycentric coagis
Theorem 1 be strictly less than the gamma function that lowestisfies the Lyapunov criteria of Theorem 1. [ ]
bounds the stage cost, Theorem 16 in [28] can be used taCorollary 2: The optimal cost functiow™(z) defined over
guarantee asymptotic stability for the approximate cldseg the setR* := {x € R: R€ R®, err(R) >0} is a Lyapunov
system. With respect to this result, it is important to ndt@tt function overR*.

this additional assumption for asymptotic stability is aj|g sjnce the system must also be invariant or feasible forrak i
satisfied in Theorem 2 and Algorithm 2 when the specifiegl| yapunov function alone is insufficient to prove stabifioy
threshold ise € [0,1). Further, in the event that the lineary constrained system. As discussed in [4], since level sets
system of interest has noise, Theorem 9 in [28] providestiplyf Lyapunov functions are invariant [29], it is possible to

to-state stability under certain mild assumptions. determine an invariant subset af C Q¢. Let 9R* denote
Theorem 1 and Lemma 4 lead us to our main stability aRfe boundary of?*.

performance guarantee. Specifically, the following theore corollary 3: If Jyn := min{J*(z) : z € OR*} and R*
states that the sub-optimality of a hypercubic region, im& contains the origin, then the set
of a specified threshold can be evaluated by solving a convex
optimization problem. I'={zeR":J"(x) < Jmin}
Theorem 2 (Hierarchical Stability)The optimal cost func-
tion J*(z) satisfies the Lyapunov criteria of Theorem 1 withs invariant under the control law(x).
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1IV. APPROXIMATE EXPLICIT CONTROL LAW AIgorithm 2 Adaptive Hierarchical Approximate MPC
A. Offline Computation Require: MPC problem (13), Cost (14), performance thresh-
old ¢, cost threshold;, and minimum, maximum, and
boundary level arguments, lmax, andlpgry.

We now develop a recursive algorithm for the multiresolu-

tion approximation of the model predictive control law. Th%nsure: detail coefficientsw and index setA such that
algorithm initializes at a user defined coarse uniform gaiut] the approximate control law (16)(z) has guaranteed

then proceeds with a dyadic refinement strategy, saving only feasibility, stability, and performance bourd
the points which violate a user defined thresholding lawand/ .| uisiize t,he ‘activ;a' seth = {(k,q):i € I,k = lo}

feasibility condition. . . . . 2: Initialize the evaluation seR?, for & = [y, the set of
Pseudocode for the approximation process is given in Al- feasible regions?, = (), the set of infeasible regiors; =

H d m
gorithm 2. For stater € R and controlu € R™, the 0, and the set of regions intersecting with the boundary
model predictive control problem is defined as in (13) and Ry =0 ath = lpg
_ = lbdy

(14) through the choice of system matricésand B, convex 3. Compute the initial detailsv = {wy, : (k,i) € A}

state and control constrainf§ andi/, terminal setYr, time 4: while Ry, # 0 andk < lyay do ’ ’

horizon IV, and cost function defined by the running cost_ — p e 0 -

() : R xR — R™ and the terminal costy () : RT - R. = PHe € R, do

The overall target performance defined by the user is given by: Check Stability by Theorem (2) and Feasibility by
the threshold coefficient. Additionally, a heuristic threshold Lemma (3) for current regio®

e; € [0,¢] may also be defined such that only coefficients,, Assign R € Ry to eitherR., Ry, Ry, OF Rupda

which result in a cost function error larger thag/(z,0) are end for A upaate

EeFitr-] Itis |rrt1port?nt to ptc_)|rr1]tt out t.h?t .Wh”eJ can bet_used 10:  Refine the hypercube regions in the update Bgfjate
y the user to enforce a tighter pointwise approximatioorerr and assign Ry

criteria in hopes_ of speeding up_the convergence of Algorith 11 Define the set of new vertices iy, as A,
2, a decrease in the complexity of the solution cannot b1 . Compute
guaranteed in general. '

The index setA is initialized at levell, along with all wri: (ki) € A, ,and fory =
indices and details. As the grid is refined, stores the Wy = i(y) infeasible, or
levels of resolutionk and indices corresponding to the set J(a(y)) — J*(y) > €sl(y,0)

of hierarchical details which are not discarded. The maximu . : .

level of resolution is given ag,.., and the maximum level 1 Letd, = {(lf’l)-: ({{’-1) € An) g € Wn}
i xs 14:  Update the ‘active’ index\ = AU A}

of resolution at the boundary is given Hyay. Note that . Update the detail set — w U w,,

as lmax — 00, lpary — 00, ande — 0, the approximate 160 k=rk+1

cost function and approximate control law converge to thg,. end while

true solutions. Given that in general the true cost function

is continuous and nonsmooth, the convergence properties of

Algonthm_ 2 with respect 1@, lmax, andlpary cannot be well using only the basis functions which are non-zero at state
char_actensed. i i Specifically, we are interested in the perfect hash funstion
Itis necessary to store the hypercubic regions of guardntgfoquced in [31] and [32], which result in (minimal) pecte
sta}bility RS,.guaranteed infeasipility%f (i.e. no f.easible PoINt |ash tables with constant worst case lookup time. With this
exists W'th'r.' any hypercube irfy), and regions at level approach, the required storage is minimal and the online

lary Which intersect the boundary of the feasible $&L  .mpytation of the control value atbecomes independent of

all of which are initialized as the null set. Also, at eac e number of details stored. The overall storage requinéme

k € {lo,- - lmax}, it is necessary to store the set of hyperg, 1o anproximate control law depends on the hash fungtion
cubic regionsR;, which are to be evaluated for feasibility,

o i X > the stored detail values, and the integer index associaitid w
stability, and performance, and refined if these conditiares

- : o o each detail. It is therefore necessary to store approxignate
not satisfied. The set of stored detail coefficients is given b, floating point numbersy integers, andn binary variables
the setw. : '

wheren is the total number of stored detail values (note that
_ _ in this approach the storage (i«). is implicitly dependent on
B. Online Computation the dimension). Further, it can be shown that the worst case
The online implementation of the approximate control laumber of floating point operations (flops) necessary foheac
consists of evaluating (16) at each step. In the current g@luation of the optimal control law is given by the funatio
proach, because of the adaptive nature of Algorithm 2, it isﬂo — d (Al ] flo N
necessary to create a smart data structure for the hiecatchi Phasn (4 Imax 4 0) +M0PS s, - (Imax = o)
details. With this in mind, we introduce two data structures (24— 1)+ 221 d!
for the computation of (16) which trade-off speed and sterag — il(d—1)!
requirements. _ B od
In the first approach, we store the non-zero hierarchical (Imax — o) + (d + 1) - 27— 1
details in a perfect hash function [30] and compute (1&)herelna is the finest level of detaily is the coarsest level
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Fig. 5. The approximate control law and optimal control law stiewn in (a) and (b) respectively. Notice the sparsity ofréguired hierarchical details as
shown in (c). In (d), the (inner) set denoting the feasibld atable region with bounded performance and the (outer)esaitohg the regions which intersect
with the boundary are given with respect to the the solid fiegresenting the boundary of the optimal feasible set. Invie)see the resulting hierarchical
tree structure if speed is chosen over storage space. Ine(f)lustrate optimality €) versus approximation complexity.

of detail, d is the dimension, and flops,,, is the required V. NUMERICAL EXAMPLES
flops for the hash function of interest. For example, at aldep
of lmax = 7 with [, = 0 and using a hash function requiring ™ 2D MPC Example
21 flops, we can evaluate the control law in approximately Consider the simple two-dimensional example:
0.5 ps,1 ps, and2 usford =2, d = 3, andd = 4 assuming
a processor speed afGflops/s . ot = { L1 ] o4 { 1 } "
In the second approach, similar to [7] and enabled by 0 1 0.5
Corollary 1, we create a minimal search tree comprisingji input and state constraints| < 0.25, ||z|l« < 5,
hypercubes aligned to the axis, where each hypercube in they 5 horizon of N = 10. The s?age cost is taken as
tree has2¢ values associated to it representing (16) at tq%x’u) .= z'z + 0.01u'u. The explicit optimal control law,
vertices. With this approach, while there is a slight iné®a o mnyted using the Multi-Parametric Toolbox [33], regsire
in the necessary storage, the online computation time of (16, regions and can be seen in Figure 5. With= 0.5,
is minimal and independent of the number of details storegj =0.25, lp = 1, loary = 5, andlpay = 7, We compute a
The overall storage requirement for the approximate contiqapilizing control law using Algorithm 2 that consists 6
law is given by the minimum search tree and the stored noggdarchical details spanniriglevels. In Figure 5, the resulting
values at the vertices of each hypercube (approximately  control law and feasible regions are shown as well as the
floating point numbers, where the number of hypercubes e rformance threshold versus the required number of non-
is implicitly a function of the saved hierarchical details ;erg hierarchical details, the hierarchical tree strugtand
and dimensiond). Further, it can be shown that the worsfhe map of hierarchical details. Assuming a processor speed
case number of floating point operations necessary for eagh Gfiops/s, the explicit multiscale control law for this two-
evaluation of the optimal control law is given by the funatio yimensional example can be evaluatedims or0.5 us with
the search tree and perfect hash data structures respgctive
flops,.. = (d+1) -2 +d - (3+ lmax—lo) — 1 and even faster if implemented on a parallel processor.

wherelmay is the finest level of detaily, is the coarsest level
of detail, andd is the dimension. For example, at a tree deptg- 4D MPC Example

of lmax = 7 with [ = 0, we can evaluate the control law31  Consider the following four-dimensional example:
ns,61 ns, and119 ns ford = 2, d = 3, andd = 4 assuming
a processor speed af Gflops/s. rT = Ax + Bu
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Fig. 6. (a) Sample four-dimensional system trajectory with dptimal online receding horizon control (red dashed lingJ the multiscale approximate
receding horizon control (blue solid line). (b) Error tretigry for the sample four-dimensional system trajectory iy the optimal solution minus the
approximate solution (Note the difference in scale compaoeBigure 6(a)). (c) Sample control trajectory for the foumdhsional system with the optimal
online receding horizon control value (red dashed line) @wedmultiscale approximate receding horizon control valdeg(lsolid line).

with matrices VI. CONCLUSION
The approximate explicit MPC method we have presented
0.4035 03704 0.2935  —0.7258 consists of a simple hierarchical gridding scheme whiclagye
A= —0.2114 0.6405 —0.6717 —0.0420 to implement. The approach approximates the optimal cbntro
0.8368  0.0175 —0.2806  0.3808 |° law directly, and because of the basis functions used ta buil
—0.0724 0.6001  0.5552  0.4919 the function approximation, can provide guaranteed stabil
B = [ 1.6124 0.4086 —1.4512 —0.6761 ]T . feasibility, and bounds on the performance. The abilityuarg

antee a level of accuracy between grid points (the hypesjube
d €nables an adaptive approach based on thresholding which ca

The input and state constraints are defijed < 0.2 an - e :
lead to a sparse representation of the explicit control ket is

l|z]loc < 5, and the horizon is set t&V = 17. The stage ! : i . i
cost is taken ad(x, u) := =’z + 0.2u’u. Note that the system fast to implement. Future considerations include redudireg

matrices, optimal control weights, and horizon length wefPnservative nature of the verification procedure and eben

chosen randomly and that the nominal system is stable. {fif results to systems with nonlinear dynamics.
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