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A multiresolution approximation method for fast
explicit model predictive control

Sean Summers, Colin N. Jones, John Lygeros, and Manfred Morari

Abstract—A model predictive control law is given by the
solution to a parametric optimization problem that can be pre-
computed offline and provides an explicit map from state to
control input. In this paper, an algorithm is introduced based on
wavelet multiresolution analysis that returns a low complexity
explicit model predictive control law built on a hierarchy of
second order interpolets. The resulting interpolation is shown to
be everywhere feasible and continuous. Further, tests to confirm
stability and to compute a bound on the performance loss are
introduced. Since the controller approximation is built on a grid
hierarchy, convergence to a stabilizing control law is guaranteed
and the evaluation of the control law in real-time systems is
naturally fast and runs in a bounded logarithmic time. Two
examples are provided; A two-dimensional example with an
evaluation speed of31 ns and a four-dimensional example with
an evaluation speed of119 ns.

Index Terms—Model Predictive Control; Multiscale Methods;
Explicit MPC; Fast MPC; Receding-Horizon control.

I. I NTRODUCTION

The implementation of a model predictive control (MPC)
law requires the solution of an optimization problem onlineat
each sampling instant. This optimization problem can be posed
parametrically, with the measured statex as the parameter

J∗(x) := min {h(x, u) : g(x, u) ≤ 0} .

The offline computation of this parametric problem results in
an explicit optimal control lawu∗(x) mapping the current state
x to the optimal system input [1]–[3]. The result is an online
computation of the optimal control law which depends on the
evaluation of the explicit functionu∗(x) at statex rather than
the solution of the optimization problem. In many relevant
cases, the result is a significant decrease in the required online
computation. This approach is known as Explicit MPC.

There are two main limitations of Explicit MPC. First, if the
optimal control law can be computed, the storage requirements
of the explicit controller can grow quickly with problem
size. Also, as the controller complexity grows, the worst case
computation time may rise above a practical value, thereby
eliminating it as a viable choice in a real-time system. There-
fore, it is only natural to consider approximate controllers
whenever a reduction in the storage requirements and/or online
computation time is needed. For a general overview of the
problem, the reader is referred to the recent surveys [4], [5].
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Several authors have proposed approximation algorithms
that can produce simpler explicit control laws for linear MPC
problems at the cost of optimality [4], [6]–[9]. In almost all
cases, the authors initially approximate the epigraph of the
optimal cost functionJ∗ with a polyhedronJ̃ , usually de-
signed to ensure specific stability or performance constraints.
Then, a feasible control law̃u(x) is computed such that̃J is
a Lyapunov function for the resulting closed-loop system. The
computation of a feasible control law̃u which preserves the
stability and performance of the cost function approximation
can be done using the techniques discussed in [4], [6], [7],
[9], [10].

In the same spirit, we introduce an algorithm that constructs
a low complexity approximate explicit control law using adap-
tive multiscale bases. Such bases provide a powerful means
to detect local singularities and often lead to quite simple
refinement strategies. Some examples of possible bases include
orthogonal Daubechies wavelets [11]–[13], biorthogonal spline
wavelets [14], and interpolets [15], [16]. Here, we use a
hierarchy of basis functions to approximate the explicit control
law, where the basis functions are constructed using a tensor
product expansion of second order interpolets.

The resulting approximation by multiscale bases is shown
to be everywhere continuous, low in storage requirements,
and require limited online computation. Further, we show
that the second order interpolets result in an interpolation by
barycentric coordinates, which guarantees that the resulting
interpolation lies within the convex hull of the points being
interpolated. We emphasize that it is this property, i.e. the
interpolation by barycentric coordinates, which motivates the
use of second order interpolets as the basis function of choice
rather than one of many alternatives, e.g. radial basis functions
[17]. As a result of this property, we are able to accurately
evaluate the stability and feasibility of the approximate model
predictive control law, and even guarantee the controller to be
within a specified performance threshold of optimal.

In Section II we construct ad-dimension multiscale basis
function, introduce an adaptive thresholding approach for
sparse function approximation, and show that the multiscale
basis we have constructed is comprised of barycentric coordi-
nates. In Section III we introduce the well known linear Model
Predictive Control problem and the corresponding feasibility,
stability, and performance guarantees for the approximate
control law. In Section IV we introduce the numerical im-
plementation of the adaptive algorithm for the approximate
control law and discuss the computational complexity of the
method. In Section V we provide numerical examples of the
method.
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II. M ULTISCALE FUNCTION APPROXIMATION

Our approximation method effectively relies on coarsely
gridding the state space, and then systematically regridding
with increasing resolution the regions which have not been
approximated sufficiently (i.e. not all grid points are evaluated)
while only keeping the grid points which play a significant
role in the function approximation. We start with a brief
introduction of the sparse multiresolution methodology for
function approximation. The reader is referred to [18]–[22]
for more information on which subsections II-A, II-B, and
II-C are based.

A. One-Dimensional Multiscale Basis

Define the standard one-dimensional scaling function (hat
function) with support[−1, 1] by

φ(x) :=

{

1 − |x| , if x ∈ [−1, 1],
0 , otherwise.

(1)

In one dimension, we consider a dyadic discretization on the
unit intervalΩ = [0, 1]. The resulting gridΩl is characterized
by the level of discretizationl and the indexi. At level l the
distance between points ishl = 2−l and the number of points
is N = 2l +1. The indexi determines the location of the grid
points according to the equation

xl,i := i · hl, 0 ≤ i ≤ 2l.

Considerφl,i a family of basis functions defined onΩ with
support [xl,i − hl, xl,i + hl]. The functionφl,i is generated
from function (1) via translation and dilation,

φl,i(x) = φ

(

x− i · hl

hl

)

. (2)

The family of basis functionsφl,i is commonly referred to as a
nodal basis of levell, and can be used to construct a function
spaceVl of piecewise linear functions,

Vl := span{φl,i : 0 ≤ i ≤ 2l}.

That is, any functionul ∈ Vl can be uniquely represented in
the nodal basis as a weighted sum of basis functions

ul(x) =
2l

∑

i=0

vl,i · φl,i(x) , (3)

where the coefficientsvl,i are equal to the function value
ul(xl,i).

Equivalently,Vl can be constructed as the summation of hi-
erarchical function spacesWk, where the basis corresponding
to Wk is referred to as a hierarchical basis. The hierarchical
function spaceWk, for k ∈ N0 andk ≥ l0, is defined as

Wk := span{φk,i : i ∈ Ik} ,

with the hierarchical index set defined

Ik =

{

{i ∈ N0 : 1 ≤ i ≤ 2k − 1, i odd} k > l0 ,
{i ∈ N0 : 0 ≤ i ≤ 2k} k = l0 ,

wherel0 ∈ N0 denotes the lowest level of discretization (typ-
ically l0 = 0). The family of univariate multiscale functions

ψk,i which make up the hierarchical basis are hereafter defined
as

ψk,i = φk,i, i ∈ Ik.

It can be shown that

Vl =
⊕

k≤l

Wk,

where⊕ symbolizes the direct sum. In other words, the same
function ul ∈ Vl which was expressed in the nodal basis in
(3) can be equivalently represented in the hierarchical basis
by the expression

ul(x) =

l
∑

k=l0

∑

i∈Ik

wk,i · ψk,i(x) ,

with coefficientswk,i ∈ R, commonly referred to as the hier-
archical details, corresponding to the difference betweenthe
true function valueul(xk,i) and the value of the approximate
function one level below. Since every basis function in the
hierarchical function space can be defined as a weighted sum
of basis functions in the nodal function space, i.e. for every
ψ ∈ {ψk,i : l0 ≤ k ≤ l, i ∈ Ik}

ψ =

2l

∑

i=0

ai · φl,i

where ai ∈ R for all i ∈ {0, . . . , 2l}, there exists a linear
transformation from the nodal basis representation to the
hierarchical basis representation. Considering the vector of
the nodal basis functions~φ and the vector of the hierarchical
basis functions~ψ, the transformation between basis’ can be
expressed

~ψ = A~φ,

where the matrixA is square and invertible (i.e. there also
exists an inverse transformation from the hierarchical basis to
the nodal basis). In the wavelet community, these transforma-
tions are known as forward and inverse wavelet transforms
[20], [22].

Note that one can project general continuous functions
u : [0, 1] → R onto the subspaceVl. The resulting projection
ul ∈ Vl is a piecewise linear approximation ofu and can
be represented uniquely in both the nodal basis and the
hierarchical basis. Consider the continuous function

u(x) =

{

2x+ 1 , if x ≤ 1
2

−5(x− 1
2 )2 + 2 , else

(4)

defined onx ∈ [0, 1]. Results for a piecewise linear approx-
imation of (4) with level l = 4 and minimal hierarchical
level l0 = 0 are shown in Figure 1. It is important to
note that the piecewise linear approximationu4(x) of (4) is
equivalent in both the nodal and hierarchical representations.
For the nodal basis functions, the projection ofu onto ul

(Figure 1(a)) is easy since the weights are equivalent to the
value of (4) at the nodes. As a result, the weights tend to be
large and the removal of a single nodal basis function would
be detrimental to the approximation. In contrast, the projection
of u onto ul using hierarchical basis functions (Figure 1(b))

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: April 19, 2011 09:58:22 PST



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u(
x)

x

(a) Nodal representation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u(
x)

x

(b) Hierarchical representation

Fig. 1. Example of a piecewise linear approximation of the function u(x) defined in (4) with a maximum resolution of levell = 4 given in the nodal basis
1(a) and the hierarchical basis 1(b). 1(a) The piecewise linear approximationu4(x) (solid line) with corresponding nodal basis functions (dashed lines). 1(b)
The piecewise linear approximationu4(x) (solid line) with corresponding hierarchical basis functions (dashed lines). In both 1(a) and 1(b), the piecewise
linear function (solid line) is the result of the summation of the basis functions (dashed lines).

is slightly more complex, but allows for adaptive thresholding
(see Section II-C) since the weights (hierarchical details) tend
to decrease significantly with resolution. That is, the removal
of the hierarchical basis functions with very small weights
would not greatly effect the approximation of (4).

B. d-Dimensional Multiscale Basis

Let y ∈ N
d
0 denote ad-dimensional multi-index (i.e.y is a

d-vector of indices taking values in the non-negative integers),
where operations (e.g. addition) and comparisons (e.g.≤)
hold component-wise andyj is the jth component ofy. A
multivariate multiscale basis on the unit cubeΩd = [0, 1]d,
whered is the dimension, can be constructed by tensor product
expansion of the one-dimensional multivariate functionsψk,i

(see Figure 2), i.e.

ψk,i =

d
∏

j=1

ψk,ij

with the multi-indexi ∈ Id
k and

Id
k =







{

i ∈ N
d
0 : 0 ≤ i ≤ 2k

}

\
{

i ∈ N
d
0 :

0 ≤ i ≤ 2k, ij even∀j ∈ {1, . . . , d}
}

k > l0 ,
{i ∈ N

d
0 : 0 ≤ i ≤ 2k} k = l0 .

Note thatId
k is simply the full grid at levelk minus those

points seen at previous levels, as depicted in Figure 3 for the
2-dimensional case. We may now define thed-dimensional
hierarchical function spaces of piecewised-linear functions as

W d
k = span{ψk,i : i ∈ Id

k}.

Defining the family ofd-dimensional nodal basis functions

φl,i(x) =

d
∏

j=1

φl,ij
(xj)

and thed-dimensional nodal function space

V d
l = span{φl,i : 0 ≤ i ≤ 2l},
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Fig. 2. Two dimensional hierarchical basis function by tensor product
expansion of the one dimensional hat function.

it can be shown that

V d
l =

⊕

k≤l

W d
k .

ul(x) =

2l

∑

i=0

vl,i · φl,i(x)

with coefficientsvl,i. Likewise, the same functionul ∈ V d
l

can be uniquely represented in the hierarchical basis by

ul(x) =

l
∑

k=0

∑

i∈Id
k

wk,i · ψk,i(x)

with hierarchical detailswk,i ∈ R.

C. Adaptive Thresholding

In the hierarchical basis methodology, the weight of the
specific scaling functionwk,i, and not the function valueu(x),
is saved at each grid pointx ∈ Ωd

k. The level of approximation
is initialized at the coarsest level, usuallyl0 = 0, and continues
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in a direction of dyadic refinement. In many relevant cases
the hierarchical details tend to zero as the grid space is
refined [18]–[20]. To decrease the storage requirements forthe
approximation of a function, one may consider storing only
those grid points whose weights are larger than a user specified
threshold. Thus, we may significantly reduce the number of
stored variables (hierarchical details) for the approximation of
a functionu(x) without a significant loss in the accuracy of
the approximation. The adaptive function approximation can
be expressed as

û(x) =
∑

(k,i)∈Λδ

wk,i · ψk,i(x) ,

where the ‘active’ index setΛδ (i.e. the index set correspond-
ing to non-zero detail coefficients) is a function of the user
defined thresholdδ as well as the function to be approximated
u. Common thresholding,|wk,i| ≥ δ, simply reduces to taking
the absolute value of the hierarchical detail greater than the
threshold, and discarding the weightwk,i if it is lower than
the threshold.

We employ a unidirectional nearest neighbor bisection ap-
proach for the grid resolution update. We denote a nearest
neighbor as any point that is exactly one level up and at most
one index removed in all dimensions (see (5)). The nearest
neighbor functionM(k, i) maps a single index(k, i) ∈ Λδ to
its set of nearest neighbors in level and space, i.e.

M(k, i) = {(k + 1,q) : q ∈ Ik+1,

|qj − 2ij | ≤ 1 ∀j ∈ {1, . . . , d}} . (5)

We now proceed with Algorithm 1. The algorithm initializes
the ‘active’ index at the coarsest level, i.e.l0. Then, the
nearest neighbors in level and space are determined and the
corresponding hierarchical details are computed. Only the
details with an absolute value greater than the user defined
threshold are saved while the rest are discarded. This process
is repeated until no more details can be added or a maximum
resolution has been attained.

Remark 1: Ideally, the output from Algorithm 1 would
result in an approximation containing all weights with an
absolute value greater than the threshold. Yet, this will rarely
be the case since only the neighbors of the saved grid

Algorithm 1 Adaptive Function Approximation
Require: A functionu ∈ V from which samples can be taken

and a thresholdδ ∈ R

Ensure: An approximate function given byΛδ andw

1: Define the initial ‘active’ index setΛδ = {(l0, i) : i ∈ Ik}
and temporary index set̂Λδ = ∅

2: Compute initial detailsw = {wk,i : (k, i) ∈ Λδ}
3: while Λδ\Λ̂δ 6= ∅ do
4: Set Λ̂δ = Λδ

5: ComputeΛδ
n =

⋃

(k,i)∈Λδ M(k, i)

6: Computewn = {wk,i : (k, i) ∈ Λδ
n, |wk,i| ≥ δ}

7: EvaluateΛ̃δ
n = {(k, i) : (k, i) ∈ Λδ

n, wk,i ∈ wn}
8: Increase index setΛδ = Λδ ∪ Λ̃δ

n

9: Increase details setw = w ∪ wn

10: end while

points are explored, and thus significant areas of the space
may be missed. A more sophisticated error indicator may
alleviate this problem in specific cases, but modifications to
the adaptive algorithm are usually advised against. Because,
for any modification to the adaptive search method, there is
always some function which will lead the adjusted procedure
to fail. However, it will be seen in the sequel that when using
the second order interpolets as the basis, an upper bound on
the maximum error can be achieved if the function being
approximated is convex.

D. Barycentric Coordinates

For any setR ⊂ R
d, let conv(R) be the convex hull ofR

and let extr(R) be the set of extreme points.
Definition 1 (Barycentric Coordinates [23]):Let S :=

conv({v1, . . . , vn}) ⊂ R
d be a polytope. A set of functions

fv(x) are calledbarycentric coordinatesif for all x ∈ S and
v ∈ extr(S)

fv(x) ≥ 0 , positivity (6)
∑

v∈extr(S)

fv(x) = 1 , partition of unity (7)

∑

v∈extr(S)

vfv(x) = x . linear precision (8)

Barycentric coordinates provide a convenient way to interpo-
late a function on a mesh, requiring only the function valuesat
the vertices for interpolation. In many cases, the interpolation
is continuous and nonlinear. Additionally, the interpolation of
the data at the vertices by barycentric coordinates is always
guaranteed to be inside the convex hull of the points being
interpolated [23]. As a result of this property, the authors
in [10] were able to show that an approximate MPC law
constructed via interpolation over polytopes by barycentric
coordinates guaranteed feasibility, stability, and performance
bounds.

In the same spirit as [10], we now show that the function ap-
proximation by adaptive hierarchical basis function expansion
introduced in Section II-C generates a grid (of hypercubes)
spanned by an interpolation by barycentric coordinates. Given
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a nodal function approximation spaceV d
l and ad-dimensional

spaceΩd, consider the set of levell hypercubic regionsRl,j

of width hl whose centers are given byx(l+1,j) ∈ Ωd, j ∈ Il,j
where

Il,j = {j ∈ N
d
0 : 0 ≤ j ≤ 2(l+1), jk odd ∀k ∈ {1, . . . , d}}.

(9)

A hypercubic regionRl,j is defined

Rl,j =







x ∈ Ωd : x ∈
⋂

i∈IRl,j

supp(φl,i)







, (10)

where

IRl,j
:= {i ∈ N

d
0 : 0 ≤ i ≤ 2l, x(l+1,j) ∈ supp(φl,i)}

is the set of indices corresponding to the vertices of the
hypercubeRl,j. Note that supp(·) denotes the support of a
function and that

⋃

jRl,j = Ωd. Also, it holds that allRl,j are
hypercubes since the basis functions are axis aligned and have
hypercubic support, hence, finite intersections result in either
the empty set or a hypercube.

We now arrive at a critical lemma in which we show that
the nodal basis functions are barycentric coordinates for all
Rl,j ⊆ Ωd, and thus will lead to provable arguments regarding
the feasibility, stability, and performance of the approximate
control law. An alternative proof for Lemma 1 can be found
in [24].

Lemma 1 (Nodal Barycentric Coordinates):Given a d-
dimensional spaceΩd and nodal function approximation
spaceV d

l , the multivariate basis of tensor product second
order interpolets defined over any hypercubeRl,j ⊆ Ωd are
barycentric coordinates forRl,j.

Proof: By definition,Rl,j is a hypercube with2d vertices
v ∈ extr(Rl,j) = {v ∈ Ωd

l : i ∈ IRl,j
, v = [i1hl, . . . , idhl]},

where hl = 2−l is the width of the hypercubeRl,j. Note
that becauseRl,j is a hypercube, the index valuesik in the
kth dimension take only two values, an upperik and a lower
ik, and are separated by a value of one, i.e.ik − ik = 1.
We evaluate each of the three characteristics of barycentric
coordinates.Positivity is straightforward by the definition of
the hat function (1). For thepartition of unity property, we
first note that for allj ∈ {1, . . . , d}

φl,ij
(xj) + φl,ij

(xj) = 1.

It can then be shown that

∑

v∈extr(Rl,j)

fv(x) =
∑

i∈IRl,j

d
∏

j=1

φl,ij
(xj),

=

d
∏

j=1

(φl,ij
(xj) + φl,ij

(xj)),

= 1,

which satisfies thepartition of unity. Lastly, we prove that
the multiscale basis satisfies thelinear precisionrequirement.
We evaluatelinear precisiondimension by dimension, i.e. for
eachk ∈ {1, . . . , d} we show that

∑

v∈extr(Rl,j)
vkfv(x) = xk

where vk and xk are thekth coordinates ofv and x. For
k ∈ {1, . . . , d} we have

∑

v∈extr(Rl,j)

vkfv(x) =
∑

i∈IRl,j

ikhl

d
∏

j=1

φl,ij
(xj)

= (ikhlφl,ik
(xk) + ikhlφl,ik

(xk)) ·
∏

j 6=k

(φl,ij
(xj) + φl,ij

(xj))

= ikhlφl,ik
(xk) + ikhlφl,ik

(xk). (11)

By the definition of the interpolets, (1) and (2), we can expand
(11) such that

ikhlφl,ik
(xk) + ikhlφl,ik

(xk) =

ikhl

(

1 −

∣

∣

∣

∣

xk − ikhl

hl

∣

∣

∣

∣

)

+ ikhl

(

1 −

∣

∣

∣

∣

xk − ikhl

hl

∣

∣

∣

∣

)

.

Taking into account the propertiesik − ik = 1 and ikhl ≤
xk ≤ ikhl, simple arithmetic leads us to the result

ikhl

(

1 −

∣

∣

∣

∣

xk − ikhl

hl

∣

∣

∣

∣

)

+ ikhl

(

1 −

∣

∣

∣

∣

xk − ikhl

hl

∣

∣

∣

∣

)

= xk.

Repeating this process for all dimensionsk ∈ {1, . . . , d} leads
to the property oflinear precision.
Next, we show that the above also holds for adaptive hierar-
chical function approximation spaces.

Corollary 1 (Hierarchical Barycentric Coordinates):
Given an active multiscale index setΛδ(u) spanning multiple
levels of resolution froml0 to l (i.e. the indices corresponding
to all active hierarchical details inW d

l0
, . . . ,W d

l ), the
following properties hold

1) The function approximation space
⊕

k≤lW
d,δ
k can be

decomposed into hypercubes with barycentric coordi-
nates at the vertices, whereW d,δ

k := span{ψk,i : (k, i) ∈
(k, Id

k ) ∩ Λδ(u)}.
2) The set of hypercubic regions up to levell in which

the basis functions form an interpolation by barycentric
coordinates is

R =











R ⊆ Ωd :k ∈ {l0, . . . , l}, R = Rk,j , j ∈ Ik,j

and

∀(k, i) ∈ Λδ(u), k > k, xk,i /∈ R











whereRk,j is defined in (10) andIk,j is defined in (9).
3) The minimal set of hypercubic regions spanningΩd

in which the basis functions form an interpolation by
barycentric coordinates is

Rδ = {R ∈ R : R 6⊂ Q, ∀Q ∈ R \R}. (12)

Proof: The first item is straightforward. We fill the
function approximation space withwk,i = 0 for all (k, i) ∈
{(k, i) ∈ (N,Nd) : k ∈ {l0, . . . , l}, (k, i) /∈ Λδ(u)} such
thatV d

l =
⊕

k≤lW
d,δ
k , and then apply Lemma 1. The second

item is a consequence of (9) and (10). The third item results in
Ωd decomposed into a minimal set of hypercubes (possibly)
varying in size depending on the set of active basis functions.
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(a) Hypercubic Regions at level 1
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(b) Hypercubic Regions at level 2
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(c) Hypercubic Regions at level 3
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(d) Minimal set of hypercubic regions (Rδ)

Fig. 4. An example of ad = 2 hierarchical function approximation inΩ2 over levelsk ∈ {1, 2, 3}. The active hierarchical indices are given by the
corresponding centers (dots) on the grids. The hypercubic regions in which the basis functions form an interpolation bybarycentric coordinates are marked
gray.

Corollary 1 effectively states that any function approxima-
tion built adaptively in the hierarchical function spaces forms
a function interpolation by barycentric coordinates. Properties
1 and 2 exploit the fact that, at the highest level of resolution,
a transformation from the hierarchical function space to the
nodal function space results in a full nodal grid. Further,
while the total number of hypercubic regions satisfying the
properties of barycentric coordinates are possibly overlapping
(since all Rl,j at the maximum level of resolution satisfy
this characteristic at the least), because the hierarchical ap-
proximation space may in some cases be sparse, the minimal
set of hypercubes spanningΩd can be quite small (Property
3). An example is illustrated in Figure 4. We consider a
d = 2 hierarchical function approximation inΩ2 over levels
k ∈ {1, 2, 3} where the active hierarchical indices are given
by the corresponding centers (dots on the grids). Subfigures
4(a), 4(b), and 4(c) illustrate the hypercubic regions at levels
1, 2, and 3 (marked gray) in which the basis functions form
an interpolation by barycentric coordinates. Note that these
regions are overlapping since any basis function at levelk can
be uniquely represented by a linear combination of nodal basis
functions at any levell ≥ k. Further, the setR is the union of
the hypercubes marked gray in Subfigures 4(a), 4(b), and 4(c).
The minimal set of hypercubes spanning the approximation
spaceΩ2 (i.e. Rδ) is represented in Subfigure 4(d). Note that
the hierarchical function spaces at levelsk ∈ {2, 3} are
sparsely populated (i.e. only one basis function at each level

k ∈ {2, 3} is active), and as a result the setRδ also conveys
this sparsity.

III. A PPLICATIONS TOMODEL PREDICTIVE CONTROL

The interest in parametric programming in the control
community in recent years has arisen from the ability to
pose certain optimal control problems as parametric programs,
resulting in numerous methods to pre-compute the optimal
control law offline. In this paper we are specifically interested
in the following finite horizon optimal control problem:

J∗(x) = min
{u0,...,uN−1}

J(u0, . . . , uN−1, x0, . . . , xN ) (13)

s.t. xi+1 = Axi +Bui,

∀i = 0, . . . , N − 1

(xi, ui) ∈ X × U , ∀i = 0, . . . , N − 1

xN ∈ XF ,

x0 = x,

where

J(u0, . . . , uN−1, x0, . . . , xN ) := VN (xN ) +

N−1
∑

i=0

l(xi, ui) ,

(14)

and X , U , and XF are compact convex constraints on the
states and inputs and the stage costl is a strictly convex
function. A functionγ(·) : R → R is assumed to exist that
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is continuous, strictly increasing and hasγ(0) = 0 such that
γ(||x||) ≤ l(x, 0) for all x. Problem (13) can be re-written as
a parametric optimization problem:

u∗(x) := arg min
u

{h(x, u) : g(x, u) ≤ 0}, (15)

where u is a vector containing the sequence of inputs
u0, . . . , uN−1 and appropriate auxiliary variables and the
functionsh and g are convex [1]. The system input is then
given in a receding horizon fashion [25] byu∗0(x), which is
the first input in the optimal control sequence of (13).

The following sections will demonstrate that an approxi-
mate control law built from the multiresolution methodology
presented above leads to a stabilizing feasible explicit control
law for the MPC problem (13).

A. Stability Guarantees of Approximate Controllers

In Section II-D we showed that the approximate controller
built from the adaptive multiscale basis functions can be
separated into hypercubic regions spanned by an interpolation
by barycentric coordinates. We now evaluate the feasibility,
stability, and performance of the individual regions by con-
structing a Lyapunov function for the approximate closed-loop
systemx+ = Ax+Bû(x).

Consider a hierarchical approximate control law defined on
Ωd ⊂ R

d (XF ⊆ X ⊆ Ωd) with maximum levell

û(x) =
∑

(k,i)∈Λδ(u∗)

wk,i · ψk,i(x). (16)

where u∗ is given by (15). By Corollary 1, we see that
the approximate control law defined onR ∈ Rδ, whereRδ

is defined in (12), can be expressed as an interpolation by
barycentric coordinates

û(x) =
∑

v∈extr(R)

û(v)fv(x), if x ∈ R. (17)

The following Lemma states that the resulting interpolation
(i.e. the approximate control law) defined acrossR ∈ Rδ lies
within the convex hull of the points being interpolated.

Lemma 2: If R = conv(v1, . . . , v2d) ∈ Ωd, û(vj) is the
approximate control law for the statevj and û(x) is defined
as in (17), then
(

x
û(x)

)

∈ conv

((

v1
û(v1)

)

. . .

(

v2d

û(v2d)

))

,

for all x ∈ R.
Proof: Follows as consequence ofû(x) expressed as an

interpolation by barycentric coordinates [10], [26].
Lemma 2 leads us to the following result.

Lemma 3 (Barycentric Feasibility):The approximate con-
trol law û(x) is a feasible solution of (13), i.e.g(x, û(x)) ≤
0, ∀x ∈ R, if and only if û(v) is feasible for allv ∈ extr(R).

Proof: Follows directly from Lemma 2 and the convexity
of g.
We now show that the cost function (14) evaluated for the
approximate control law (17) overR ∈ Rδ can be upper
bounded by an approximate cost defined by the interpolation
by barycentric coordinates of the approximate cost at the

extremal points. In doing so, we show that the cost generated
by the approximate control law (which is non-convex) is no
more sub-optimal than the cost generated by the interpolation
by barycentric coordinates, for which stability and perfor-
mance can be computed. This enables us to prove stability
and performance of the approximate control law.

Lemma 4: If û(x) is the barycentric control law defined in
(17) andû(v) is feasible for allv ∈ extr(R), then the following
bounds hold

J∗(x) ≤ J(û(x)) ≤ J̃(x), ∀x ∈ R,

where

J̃(x) =
∑

v∈extr(R)

J(û(v))fv(x), ∀x ∈ R.

Proof: The control law û(x) is feasible, yet approxi-
mate, for all x ∈ R (Lemma 3), thus the cost function
J(û(x)) must be sub-optimal, which gives us the lower bound
J∗(x) ≤ J(û(x)). The second portion of the proof can be
found in [10], [26] and is briefly outlined as follows. Note
that due to the barycentric interpolation it holds thatx̂i(x0) =
∑

v∈extr(R) x̂i(v)fv(x0) and ûi(x0) =
∑

v∈extr(R) ûi(v)fv(x0)
for all i = 0, . . . , N , wherex̂i(x0) is the solution of the state
dynamics at theith step in the sequence when initialized at
x0 and the approximate control law is applied at each step.

J(û(x0)) = VN (x̂N (x0)) +

N−1
∑

i=0

l(x̂i(x0), ûi(x0))

= VN





∑

v∈extr(R)

x̂N (v)fv(x0)



+

N−1
∑

i=0

l





∑

v∈extr(R)

x̂i(v)fv(x0),
∑

v∈extr(R)

ûi(v)fv(x0)





Convexity of the stage costl and the terminal costVN gives
the following relation:

J(û(x0))

≤
∑

v∈extr(R)

fv(x0)

(

VN (x̂N (x0)) +
N−1
∑

i=0

l(x̂i(x0), ûi(x0))

)

=
∑

v∈extr(R)

J(û(v))fv(x0)

Lemma 4 proves that for eachx ∈ R, the true approximate cost
functionJ(û(x)) will lie within the convex hull of the extreme
points {(v, J(û(v))) : v ∈ extr(R)}. With this key result in
place, we can make use of an approximate stability theorem
given in [26], which is motivated by the work [27].

Theorem 1:Let J∗ : R
d → R be the cost function of the

optimal control problem (13) and a Lyapunov function for the
systemx+ = Ax+Bu∗0(x). The optimal cost functionJ∗(x)
is a Lyapunov function for the systemx+ = Ax+Bû0(x) if
for all x in the feasible setR the control lawû(x) is feasible
and the conditionJ∗(x) ≤ J(û(x)) ≤ J∗(x)+ γ(||x||) holds.

Proof: Assume thatJ∗(x0) ≤ J(û(x0)) for somex0. It
follows by assumption that̂u(x0) = (û0(x0), . . . , ûN−1(x0))
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is a feasible input sequence for the statex0, where
(x0, x̂1(x0), . . . , x̂N (x0)) is the resulting feasible state
sequence. Consider the time-shifted input and state
sequences (û1(x0), . . . , ûN−1(x0), µ(x̂N (x0))) and
(x̂1(x0), . . . , x̂N (x0), Ax̂N (x0) + Bµ(x̂N (x0))), which
are feasible for (13) by the assumption thatXF is an invariant
set under the control lawµ(x). At the next time step we are
at the statex1 = Ax0 + Bû(x0) = x̂1(x0), and the shifted
sequence is a feasible, sub-optimal solution to (13) at the
statex1. The costJ (13) evaluated at this shifted sequence is
then bounded as follows

J∗(x1) ≤J(û1(x0), . . . , ûN−1(x0), µ(x̂N (x0)), x1, . . . ,

x̂N (x0), Ax̂N (x0) +Bµ(x̂N (x0))

=VN (Ax̂N (x0) +Bµ(x̂N (x0)))

+

N
∑

i=1

l(x̂i(x0), ûi(x0))

=VN (x̂N (x0)) +

N−1
∑

i=0

l(x̂i(x0), ûi(x0)) (18)

+ l(x̂N (x0), ûN (x0)) − VN (x̂N (x0)) (19)

+ VN (Ax̂N (x0) +Bµ(x̂N (x0))) (20)

− l(x0, û0(x0)).

Expression (18) is equal to the sub-optimal costJ(û(x0)) at
x0 and therefore less thanJ∗(x0) + γ(||x0||) by assumption
and the sum of (19) and (20) is non-positive by the assumption
that the decay rate ofVN is greater than the stage cost within
the setXF . Therefore, we get the inequality (by the convexity
of l, l(0, 0) = 0, andγ(||x||) ≤ l(x, 0) for all x by assumption)

J∗(x1) ≤J
∗(x0) + γ(||x0||) − l(x0, û0(x0)

≤J∗(x0) + γ(||x0||) − l(x0, 0)

≤J∗(x0)

which demonstrates that the optimal cost functionJ∗ is a
Lyapunov function for the approximate closed loop system
x+ = Ax+Bû0(x).

Remark 2:We point out that a similar result to Theorem 1
can be found in the work [28]. Under a slight modification
to the assumptions, i.e. that the gamma function used in
Theorem 1 be strictly less than the gamma function that lower
bounds the stage cost, Theorem 16 in [28] can be used to
guarantee asymptotic stability for the approximate closed-loop
system. With respect to this result, it is important to note that
this additional assumption for asymptotic stability is always
satisfied in Theorem 2 and Algorithm 2 when the specified
threshold isǫ ∈ [0, 1). Further, in the event that the linear
system of interest has noise, Theorem 9 in [28] provides Input-
to-state stability under certain mild assumptions.
Theorem 1 and Lemma 4 lead us to our main stability and
performance guarantee. Specifically, the following theorem
states that the sub-optimality of a hypercubic region, in terms
of a specified thresholdǫ, can be evaluated by solving a convex
optimization problem.

Theorem 2 (Hierarchical Stability):The optimal cost func-
tion J∗(x) satisfies the Lyapunov criteria of Theorem 1 with

ǫ ∈ [0, 1] performance loss over a regionR ∈ Rδ if
err(R) ≥ 0, whereerr(R) can be computed by solving the
convex optimization problem:

err(R) = min
λ,u

VN (xN ) +

N−1
∑

i=0

l(xi, ui) + ǫl(x0, 0)

−
∑

v∈extr(R)

J(û(v))λv

s.t. λv ≥ 0,
∑

v∈extr(R)

λv = 1, x0 =
∑

v∈extr(R)

vλv,

xi+1 = Axi +Bui, ∀i = 0, . . . , N − 1,

xi ∈ X , ui ∈ U , xN ∈ XF .

Proof: The optimal cost functionJ∗(x) satisfies the
Lyapunov criteria of Theorem 1 if for allx0 ∈ R

J∗(x0) + ǫl(x0, 0) − J(û(x0)) ≥ 0.

By Lemma 4, for allx0 ∈ R

J∗(x0) + ǫl(x0, 0) − J(û(x0)) ≥J
∗(x0) + ǫl(x0, 0)

−
∑

v∈extr(R)

J(û(v))fv(x0).

Further, note thaterr(R) can be written as

err(R) = min
λ

J∗(x0) + ǫl(x0, 0) −
∑

v∈extr(R)

J(û(v))λv

s.t. λv ≥ 0,
∑

v∈extr(R)

λv = 1, x0 =
∑

v∈extr(R)

vλv.

By the properties of barycentric coordinates (6), (7), and (8)
and because

∑

v∈extr(R) J(û(v))λv is defined on the convex
hull conv({(v, J(û(v))) : v ∈ extr(R)}), for all x0 ∈ R

J∗(x0) + ǫl(x0, 0) −
∑

v∈extr(R)

J(û(v))fv(x0) ≥ err(R)

Therefore, if the worst case error between the optimal cost
function and the convex hull of the approximate cost function
is less thanǫl(x0, 0) (i.e. err(R) ≥ 0), then the entire
region spanned by the interpolation by barycentric coordinates
satisfies the Lyapunov criteria of Theorem 1.

Corollary 2: The optimal cost functionJ∗(x) defined over
the setR∗ := {x ∈ R : R ∈ Rδ, err(R) ≥ 0} is a Lyapunov
function overR∗.
Since the system must also be invariant or feasible for all time,
a Lyapunov function alone is insufficient to prove stabilityfor
a constrained system. As discussed in [4], since level sets
of Lyapunov functions are invariant [29], it is possible to
determine an invariant subset ofX ⊆ Ωd. Let ∂R∗ denote
the boundary ofR∗.

Corollary 3: If Jmin := min{J∗(x) : x ∈ ∂R∗} and R∗

contains the origin, then the set

I := {x ∈ R∗ : J∗(x) ≤ Jmin}

is invariant under the control laŵu(x).
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IV. A PPROXIMATE EXPLICIT CONTROL LAW

A. Offline Computation

We now develop a recursive algorithm for the multiresolu-
tion approximation of the model predictive control law. The
algorithm initializes at a user defined coarse uniform grid,and
then proceeds with a dyadic refinement strategy, saving only
the points which violate a user defined thresholding law and/or
feasibility condition.

Pseudocode for the approximation process is given in Al-
gorithm 2. For statex ∈ R

d and controlu ∈ R
m, the

model predictive control problem is defined as in (13) and
(14) through the choice of system matricesA andB, convex
state and control constraintsX andU , terminal setXF , time
horizon N , and cost function defined by the running cost
l(·, ·) : R

d×R → R
m and the terminal costVN (·) : R

d → R .
The overall target performance defined by the user is given by
the threshold coefficientǫ. Additionally, a heuristic threshold
ǫJ ∈ [0, ǫ] may also be defined such that only coefficients
which result in a cost function error larger thanǫJ l(x, 0) are
kept. It is important to point out that whileǫJ can be used
by the user to enforce a tighter pointwise approximation error
criteria in hopes of speeding up the convergence of Algorithm
2, a decrease in the complexity of the solution cannot be
guaranteed in general.

The index setΛ is initialized at level l0 along with all
indices and details. As the grid is refined,Λ stores the
levels of resolutionk and indices corresponding to the set
of hierarchical details which are not discarded. The maximum
level of resolution is given aslmax, and the maximum level
of resolution at the boundary is given bylbdry. Note that
as lmax → ∞, lbdry → ∞, and ǫ → 0, the approximate
cost function and approximate control law converge to the
true solutions. Given that in general the true cost function
is continuous and nonsmooth, the convergence properties of
Algorithm 2 with respect toǫ, lmax, and lbdry cannot be well
characterised.

It is necessary to store the hypercubic regions of guaranteed
stabilityRs, guaranteed infeasibilityRf (i.e. no feasible point
exists within any hypercube inRf ), and regions at level
lbdry which intersect the boundary of the feasible setRb,
all of which are initialized as the null set. Also, at each
k ∈ {l0, . . . , lmax}, it is necessary to store the set of hyper-
cubic regionsRk which are to be evaluated for feasibility,
stability, and performance, and refined if these conditionsare
not satisfied. The set of stored detail coefficients is given by
the setw.

B. Online Computation

The online implementation of the approximate control law
consists of evaluating (16) at each step. In the current ap-
proach, because of the adaptive nature of Algorithm 2, it is
necessary to create a smart data structure for the hierarchical
details. With this in mind, we introduce two data structures
for the computation of (16) which trade-off speed and storage
requirements.

In the first approach, we store the non-zero hierarchical
details in a perfect hash function [30] and compute (16)

Algorithm 2 Adaptive Hierarchical Approximate MPC
Require: MPC problem (13), Cost (14), performance thresh-

old ǫ, cost thresholdǫJ , and minimum, maximum, and
boundary level argumentsl0, lmax, and lbdry.

Ensure: detail coefficientsw and index setΛ such that
the approximate control law (16)̂u(x) has guaranteed
feasibility, stability, and performance boundǫ.

1: Initialize the ‘active’ setΛ = {(k, i) : i ∈ Ik, k = l0}
2: Initialize the evaluation setRk for k = l0, the set of

feasible regionsRs = ∅, the set of infeasible regionsRf =
∅, and the set of regions intersecting with the boundary
Rb = ∅ at k = lbdry

3: Compute the initial detailsw = {wk,i : (k, i) ∈ Λ}
4: while Rk 6= ∅ andk ≤ lmax do
5: Rupdate= ∅
6: for all R ∈ Rk do
7: Check Stability by Theorem (2) and Feasibility by

Lemma (3) for current regionR
8: AssignR ∈ Rk to eitherRs, Rf , Rb, or Rupdate

9: end for
10: Refine the hypercube regions in the update setRupdate

and assign toRk+1

11: Define the set of new vertices inRk+1 asΛn

12: Compute

wn =







wk,i : (k, i) ∈ Λn ,and fory = xk,i

û(y) infeasible, or
J(û(y)) − J∗(y) > ǫJ l(y, 0)







13: Let Λ∗
n = {(k, i) : (k, i) ∈ Λn, wk,i ∈ wn}

14: Update the ‘active’ indexΛ = Λ ∪ Λ∗
n

15: Update the detail setw = w ∪ wn

16: k = k + 1
17: end while

using only the basis functions which are non-zero at statex.
Specifically, we are interested in the perfect hash functions
introduced in [31] and [32], which result in (minimal) perfect
hash tables with constant worst case lookup time. With this
approach, the required storage is minimal and the online
computation of the control value atx becomes independent of
the number of details stored. The overall storage requirement
for the approximate control law depends on the hash function,
the stored detail values, and the integer index associated with
each detail. It is therefore necessary to store approximately
n floating point numbers,n integers, and2n binary variables
wheren is the total number of stored detail values (note that
in this approach the storage (i.e.n) is implicitly dependent on
the dimension). Further, it can be shown that the worst case
number of floating point operations (flops) necessary for each
evaluation of the optimal control law is given by the function

flopshash = d · (4 + lmax− l0) + flopshash · (lmax− l0)

·(2d − 1) +
d
∑

i=1

2i d!

i!(d− i)!

·(lmax− l0) + (d+ 1) · 2d − 1

wherelmax is the finest level of detail,l0 is the coarsest level
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Fig. 5. The approximate control law and optimal control law areshown in (a) and (b) respectively. Notice the sparsity of therequired hierarchical details as
shown in (c). In (d), the (inner) set denoting the feasible and stable region with bounded performance and the (outer) set denoting the regions which intersect
with the boundary are given with respect to the the solid linerepresenting the boundary of the optimal feasible set. In (e), we see the resulting hierarchical
tree structure if speed is chosen over storage space. In (f) we illustrate optimality (ǫ) versus approximation complexity.

of detail, d is the dimension, and flopshash is the required
flops for the hash function of interest. For example, at a depth
of lmax = 7 with l0 = 0 and using a hash function requiring
21 flops, we can evaluate the control law in approximately
0.5 µs,1 µs, and2 µs for d = 2, d = 3, andd = 4 assuming
a processor speed of1 Gflops/s .

In the second approach, similar to [7] and enabled by
Corollary 1, we create a minimal search tree comprising
hypercubes aligned to the axis, where each hypercube in the
tree has2d values associated to it representing (16) at the
vertices. With this approach, while there is a slight increase
in the necessary storage, the online computation time of (16)
is minimal and independent of the number of details stored.
The overall storage requirement for the approximate control
law is given by the minimum search tree and the stored nodal
values at the vertices of each hypercube (approximatelym2d

floating point numbers, where the number of hypercubesm
is implicitly a function of the saved hierarchical detailsn
and dimensiond). Further, it can be shown that the worst
case number of floating point operations necessary for each
evaluation of the optimal control law is given by the function

flopstree = (d+ 1) · 2d + d · (3 + lmax− l0) − 1

wherelmax is the finest level of detail,l0 is the coarsest level
of detail, andd is the dimension. For example, at a tree depth
of lmax = 7 with l0 = 0 , we can evaluate the control law in31
ns, 61 ns, and119 ns for d = 2, d = 3, andd = 4 assuming
a processor speed of1 Gflops/s.

V. NUMERICAL EXAMPLES

A. 2D MPC Example

Consider the simple two-dimensional example:

x+ =

[

1 1
0 1

]

x+

[

1
0.5

]

u,

with input and state constraints|u| ≤ 0.25, ||x||∞ ≤ 5,
and a horizon ofN = 10. The stage cost is taken as
l(x, u) := x′x + 0.01u′u. The explicit optimal control law,
computed using the Multi-Parametric Toolbox [33], requires
221 regions and can be seen in Figure 5. Withǫ = 0.5,
ǫJ = 0.25, l0 = 1, lbdry = 5, and lmax = 7, we compute a
stabilizing control law using Algorithm 2 that consists of138
hierarchical details spanning7 levels. In Figure 5, the resulting
control law and feasible regions are shown as well as the
performance thresholdǫ versus the required number of non-
zero hierarchical details, the hierarchical tree structure, and
the map of hierarchical details. Assuming a processor speed
of 1 Gflops/s, the explicit multiscale control law for this two-
dimensional example can be evaluated in31 ns or0.5 µs with
the search tree and perfect hash data structures respectively,
and even faster if implemented on a parallel processor.

B. 4D MPC Example

Consider the following four-dimensional example:

x+ = Ax+Bu
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Fig. 6. (a) Sample four-dimensional system trajectory with the optimal online receding horizon control (red dashed line) and the multiscale approximate
receding horizon control (blue solid line). (b) Error trajectory for the sample four-dimensional system trajectory given by the optimal solution minus the
approximate solution (Note the difference in scale compared to Figure 6(a)). (c) Sample control trajectory for the four-dimensional system with the optimal
online receding horizon control value (red dashed line) andthe multiscale approximate receding horizon control value (blue solid line).

with matrices

A =









0.4035 0.3704 0.2935 −0.7258
−0.2114 0.6405 −0.6717 −0.0420
0.8368 0.0175 −0.2806 0.3808
−0.0724 0.6001 0.5552 0.4919









,

B =
[

1.6124 0.4086 −1.4512 −0.6761
]T
.

The input and state constraints are defined|u| ≤ 0.2 and
||x||∞ ≤ 5, and the horizon is set toN = 17. The stage
cost is taken asl(x, u) := x′x+ 0.2u′u. Note that the system
matrices, optimal control weights, and horizon length were
chosen randomly and that the nominal system is stable. In
this case, the Multi-Parametric Toolbox [33] computation was
terminated (at≈ 50000 regions) before it was able to obtain
an explicit optimal control law with which to compare the
approximate solution, therefore we only make comparisons
with the online implementation of the MPC solution. With
ǫ = 1, ǫJ = 0.25, l0 = 1, lbdry = 3, and lmax = 7,
we compute a stabilizing control law using Algorithm 2 that
consists of3633 hierarchical details spanning7 levels. In
Figure 6(a), an example trajectory of the system is shown com-
paring the optimal online receding horizon solution with the
multiscale explicit approximate control law. Figure 6(b) shows
the error between the two solutions and Figure 6(c) compares
the optimal control input and the sub-optimal control input.
Additionally, 10000 Monte Carlo simulations were completed
with the initial states drawn randomly from the feasible region
according to a uniform distribution. The results included an
average open loop performance loss ofǫaverage< 0.12 and
an average closed loop cost increase of less than3 percent.
As evident from the Monte Carlo analysis and Figures 6(a),
6(b), and 6(c), the implementation of the approximate control
law performs very well. Yet, the most influential benefit of
the explicit approximate control law in this case is the online
evaluation speed that can be achieved. Assuming a processor
speed of1 Gflops/s, the explicit multiscale control law for
this four-dimensional example can be evaluated in119 ns or
2.5 µs with the search tree and perfect hash data structures
respectively, and even faster if implemented on a parallel
processor.

VI. CONCLUSION

The approximate explicit MPC method we have presented
consists of a simple hierarchical gridding scheme which is easy
to implement. The approach approximates the optimal control
law directly, and because of the basis functions used to build
the function approximation, can provide guaranteed stability,
feasibility, and bounds on the performance. The ability to guar-
antee a level of accuracy between grid points (the hypercubes)
enables an adaptive approach based on thresholding which can
lead to a sparse representation of the explicit control law that is
fast to implement. Future considerations include reducingthe
conservative nature of the verification procedure and extending
the results to systems with nonlinear dynamics.
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