Dispersion of fast ions in models of anisotropic plasma turbulence

Kyle B. Gustafson, EPFL - TORPEX

(results contained here were obtained at U Maryland)

with Professor William Dorland, U Maryland and Ingmar Brömstrup

Generalized dispersion of particles

i.e. Metzler/Klafter Phys Rep 339 (2000) 1-77; Balescu book and articles

$$\delta x = x(t) - x(0)$$

$$\sigma^2 = \overline{(\delta x - \overline{\delta x})^2}$$

$$\sigma^2(t) \sim t^{\gamma}$$

$$\gamma = 1$$
 diffusive
$$\gamma > 1$$
 superdiffusive
$$\gamma = 2$$
 ballistic

Brownian walk ⊂ continuous time random walks

$$\gamma = 1 \qquad \gamma > 1 \qquad \gamma < 1 \qquad \gamma < 1 \qquad \Delta t_1 \qquad = \qquad \Delta t_2 \qquad = \qquad \Delta t_3 \qquad 2$$

Random walks in turbulence

 Microscale core turbulence with zonal flows (thesis work, in preparation for publication)

2) Macroscale edge turbulence with blobs (new project)

Z pinch geometry

$$\Omega_s = rac{q_s B}{m_s c}$$

$$\mathbf{v}_B = \frac{v_{\parallel}^2 + \frac{1}{2}v_{\perp}^2}{\Omega_s R_c} \hat{y}$$

- Magnetic field only toroidal, B ~ 1/r to edge.
- Gyroaveraged ExB drift produces radial (x) and axial (y) turbulent dispersion.
- Axial B drift V_B
 is constant for
 each particle.

Pressure-gradient-driven instability in a gyrokinetic Z-pinch

Brömstrup PhD, U Maryland 2008; Ricci et al PRL 97 245001 (2006)

- Our new gyrokinetic, local (1/ $L_n = -\nabla n/n$), δf , particle-in-cell code (GSP), provides markers as Lagrangian tracer probes.
- We extract a subset of these tracers and compare the absolute dispersion in the nonlinear phase of the turbulence.
- Turbulence driven by density gradient $(1/L_T = 0)$ and curvature, unstable for $2/7 < L_n/R < \pi/2$

Results from nonlinear gyrokinetic simulations

- Benchmarked fluxes with GS2
- Axially: superdiffusive to ballistic
- Radially: diffusive for several density gradients
- Comparing diffusion coefficients from test-particles and flux/gradient relation
- Dependence of test-particle diffusion coefficient on gyroradius

Particle flux compared with GS2

Ricci et al PRL 97 245001 (2006) for GS2 data

Gyrokinetic turbulence

Surface plots of electrostatic potential, $\Phi(x,y)$

Nonlinear phase - steady zonal flow with background turbulence

Periodic copies for tracers to follow

Sample gyrocenter trajectories

Marker particles distributed on v₁ grid

$$\Delta x_1 \sim 5 \rho_{th}$$
 $\Delta x_2 \sim 60 \rho_{th}$

Larger v_⊥ implies more trapping in E x B vortices (for a given turbulence scale)

Axial displacements

Gustafson, del Castillo Negrete, Dorland, PoP 102309 (2008)

Approaching ballistic (γ~2)

Consistent with our study of a prescribed vortex chain in shear flow (see ref.)

Radial displacements

 \hat{y}

c.f. Manfredi & Dendy PRL 1996; Zhang et al PRL 2008; Sanchez et al PRL 2008; Hauff et al PRL 2009

Radial displacements

Medium gradient (L_n)

Clearly diffusive after t = 600 R/v_{th}.

Smaller diffusivity consistent with observed change in flux

Diffusivity two ways

Basu et al Phys Plasmas, 10 2003

$$D_{part} = rac{\sigma_x^2(t)}{2t} \; {f 2} \; D_{flux} = \Gamma_{\infty} L_n \; .$$

Conservation of potential vorticity,

$$\Pi = \nabla^2 \phi - n + x \; ,$$
 in the inviscid local ${\rm L_n}$ limit implies these should be equal.

Disagreement: artificial dissipation and Krook collision operator, or new version of potential vorticity is needed.

Diffusivity depends on gyroradius

Diffusivity depends on gyroradius

Summary of these results

- New gyrokinetic PIC code, valid at large k_⊥ρ, is benchmarked with GS2 and convenient for studying particle dispersion
- Zonal flows in a local gyrokinetic simulation give diffusive radial test-particle transport at the ion Larmor radius scale.
- Test-particle diffusivity, D_{part} , is related to Fick's law diffusivity, D_{flux} .
- Energy dependence of diffusivity shows clear trends for several values of the density gradient.

Random walks in turbulence

 Microscale turbulence with zonal flows

2) Macroscale turbulence with blobs

New project: fast ions in TORPEX

A. Fasoli, et al, Phys. Plasmas 13, 055902 2006

 Experimental model of scrape-off-layer simple magnetized torus.

 Well-characterized blobs could drive nondiffusive transport

Simulated fast ions in turbulent E-field: drift-reduced Braginskii equations

Periodic boundary conditions

 k_{\parallel} =0 2D simulation

Tracer particle source with realistic spread in energies (10%) and in angular distribution (0.2rad)

20/22

Fast ions: early results

Data

Synthetic diagnostic

Plyushchev, PhD EPFL 2010

Bürckel, Diploma EPFL 2009

Asymptotic modeling for high and low energy ions

- To be characterized in terms of the variance and a separable continuous time random walk: trapping time and flight length distributions
- Radial trapping increases with particle energy because averaging effects make radial streaming ineffective