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ABSTRACT

Recovery of sparse signals from linear, dimensionality reducing
measurements broadly fall under two well-known formulations,
named the synthesis and the analysis á la Elad et al. Recently,
Chandrasekaran et al. introduced a new algorithmic sparse recovery
framework based on the convex geometry of linear inverse prob-
lems, called the atomic norm formulation. In this paper, we prove
that atomic norm formulation and synthesis formulation are equiva-
lent for closed atomic sets. Hence, it is possible to use the synthesis
formulation in order to obtain the so-called atomic decompositions
of signals. In order to numerically observe this equivalence we
derive exact linear matrix inequality representations, also known
as the theta bodies, of the centrosymmertic polytopes formed from
the columns of the simplex and their antipodes. We then illustrate
that the atomic and synthesis recovery results agree on machine
precision on randomly generated sparse recovery problems.

Index Terms— Analysis formulation, Atomic norm, Synthesis
formulation, Semidefinite programming, Theta body

1. INTRODUCTION
The theory of compressive sensing (CS) rekindled the interest in the
classical underdetermined linear regression (ULR) problem, which
has many applications in data processing and analysis—from decon-
volution to compression and from data mining to learning. In a typ-
ical ULR problem, an unknown vector x ∈ Rn is observed via a
dimensionality reducing matrix Φ ∈ Rm×n (m < n) as follows:

y = Φx + n, (1)

where n ∈ Rm is an additive noise with ‖n‖2 ≤ δ.
While (1) defines an ill-posed problem, as Φ has a nontrivial

null space, Candés, Romberg, and Tao [1], and Donoho [2] showed
that a signal having a sparse representation in one basis can be re-
covered from a few number of projections. By sparse representation,
we mean that the signal, in some dictionary Ψ ∈ Rn×l, can be syn-
thesized as

x = Ψs. (2)

In this synthesis equation, only k ¿ l of the coefficients of s are
nonzero, i.e., s ∈ Σl

k. Random projections play a key role as a uni-
versal measurement mechanism as they provide stable embedding of
sparse signals with overwhelming probability.

The initial CS results are predicated upon the signals being
sparse in a known basis, i.e. l = n. However, there are several
important cases in machine learning and signal processing in which
a signal of interest is not sparse in an orthonormal basis but is sparse
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in a frame with correlated columns. For instance, in signal process-
ing, we use Gabor frames for speech analysis. In many machine
learning applications, the signal is typically sparse in an overcom-
plete dictionary of learned features. For these cases, the initial CS
results disappointingly do not apply.

As a result, two recovery approaches emerged to handle the re-
dundant representations case: synthesis and analysis formulations.
Elad et al. [3] offer a comprehensive study of these formulations
and illustrates the equivalence for the undercomplete dictionaries Ψ
(i.e., l ≤ n). For the overcomplete dictionaries (i.e., l > n), the
equivalence is valid if and only if ΨΨts = s. Moreover, Elad et
al. bring about a geometric interpretation of the synthesis formula-
tion saying that the projection of the `1 ball in Rl by the dictionary
Ψ is the convex hull of the dictioary atoms and their antipodes. In
the CS literature, Rauhut et al. [4] and Candes et al. [5] established
algorithmic guarantees for the synthesis and analysis formulations.

Now, there is a new formulation in town, proposed by Chan-
drasekaran et al. in [6], which we refer to as the atomic formulation
of sparse recovery á la Elad et al. The authors in [6] introduce an al-
gorithmic way for recovering the signal x (or its approximations) by
doing minimization over a norm induced by the geometry of the dic-
tionary. This signal recovery formulation—seemingly—differ from
the synthesis formulation, and cannot recover the sparse coefficients
in general. A key strength of this approach is the associated geomet-
ric analysis techniques which enables one to find tight upper bounds
on the required number of measurements for perfect recovery using
random measurements based on Gaussian width calculations [6].

Contributions: In this paper, we reveal the connection between
the works in [3] and [6] by proving that the synthesis and atomic
norm formulations are equivalent. This equivalence has many im-
portant implications: First, it allows an alternative geometric way
(e.g., see [7]) of obtaining tight measurement bounds for the exact
recovery that can be used in synthesis formulation and vice versa.
Second, it finds the solution to the open question in [6] by suggest-
ing the synthesis formulation for recovery of the sparse coefficients
of the signal with the least atomic norm. Moreover, it enables one
to solve the minimization problem in a lower dimensional space Rn

in the cases that the atoms in the dictionary have a simple algebraic
structure, instead of the `1 minimization, which may have to operate
on a higher (possibly infinite) dimensional space Rl.

In order to numerically observe the equivalence of the synthe-
sis and atomic formulations, we focus on overcomplete dictionaries
formed from the simplex. We derive exact linear matrix inequality
representations, known as the theta bodies, of the centrosymmer-
tic polytopes formed from the columns of the simplex and their an-
tipodes. We observe that the two formulations agree up to the ma-
chine precision on randomly generated sparse recovery problems.
We then contrast the performance of synthesis recovery formulation
with the first order method proposed in Chandrasekaran et al.
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2. PRELIMINARIES

2.1. Synthesis vs. Analysis formulations of sparse recovery

The synthesis and analysis formulations are already well-known:
The synthesis formulation of sparse recovery reconstructs signals as
a sparse combination of the columns of a dictionary as follows:

x̂S = Ψ arg min
s
‖s‖1 subject to ‖y −ΦΨs‖2 ≤ δ (3)

Elad et al. renders an accurate geometric interpretation to (3) (when
Φ is identity), where the synthesis defining polytope Ψ · {s

∣∣‖s‖`1 ≤
1} is obtained as the convex hull of the columns of Ψ and their
antipodes [3]. Interestingly, a similar understanding is also offered
by Chandrasekaran et al. in [6].

Rauhut et al. in [4] provides theoretical recovery guarantees to
the solution of (3) by characterizing the dictionary restricted isome-
try properties (D-RIP) of ΦΨ

(1− δk)‖s‖22 ≤ ‖ΦΨs‖22 ≤ (1 + δk)‖s‖22, ∀s ∈ Σl
k, (4)

Rauhut et al. then prove that random matrix ensembles satisfy (4)
with high probability provided m = O(k log(l/k)). They show
that given D-RIP, the recovery error of the synthesis formulation is
upperbounded by the noise norm times a constant.

The analysis formulation, on the other hand, enforces sparsity
through various forward measurements of the signal towards higher
dimensions (i.e., l as opposed to n) [3]:

x̂A = arg min
x
‖Ψ†x‖1 subject to ‖y −Φx‖2 ≤ δ (5)

where Ψ† is the right pseudoinverse of Ψ: ΨΨ† = I . Using D-RIP
mechanics of Rauhut et al., Candes et al. provide similar theoretical
estimation guarantees on the analysis formulation [8].

Based on the interest in CS, there has been an extra ordinary
amount of work that went into developing efficient convex optimiza-
tion algorithms in solving (3) and (5), exploiting Bregman distances,
smoothing [9], operator splitting, and proximal methods [10]. There
are also variations around the analysis model, called the cosparse
model [11], which promises interesting recovery-computation trade-
offs. We also present results on this new model in our context by
using the “Greedy Analysis Pursuit” (GAP) algorithm.

2.2. Atomic formulation of sparse recovery
In [6], the authors propose the following atomic formulation:

x̂Atomic = arg min
x
‖x‖A subject to ‖y −Φx‖2 ≤ δ, (6)

where A denotes the set of atoms formed using the columns of Ψ
and their antipodes, and ‖ · ‖A is the atomic norm:

‖x‖A = inf{t > 0
∣∣x ∈ t conv(A)},

= inf{
∑

ci

∣∣ x =
∑
ai∈A

ciai, ci ≥ 0}, (7)

where conv(A) is the convex hull of the elements in A.
Note that the atomic set A induces a norm only if the geometric

polytope, as defined by convex hull, is centrosymmetric, i.e., sym-
metric with respect to the origin. Sparse representation of signals
then geometrically implies they live in the low dimensional facets
of the convex hull of the atomic polytope. Dohono also offers such
an interpretation via the geometric k-neighborliness of polytopes in
equivalence of `0 and `1 problem in [12].

Chandrasekaran et al. in [6] explain that the `1-norm, which
leads to the cross-polytope in Rn, is an instance of the atomic norm.
That is, A = {±ei}n

i=1, where ei’s are the canonical basis vectors
of Rn. The proposed atomic norm formulation also generalizes to
many other linear inverse problems: examples include the nuclear
and spectral norms for the sets of rank-1 and orthogonal matrices,
respectively. Chandrasekaran et al. mention that while their formu-
lation can recover x directly, it cannot recover its sparse coefficients
s.

A key advantage of using the atomic norm formulation is that
the geometry introduced by conv(A) enables an alternative way to
find tight upper bounds on the required number of measurements for
perfect recovery using random measurements based on width calcu-
lations of the so-called tangent cones [6]. The resulting sampling
bounds in sparse recovery are competitive with the bounds as ob-
tained by Dohono [12], and Donoho and Tanner [7] based on Grass-
manian angle calculations and concentrations-of-measures.

Chandrasekaran et al. propose the two algorithmic approaches
to solving (7). One approach is based on algebraic convex geometry,
which we discuss in the next subsection. The other one is based on
proximal first order methods, which rely on the following projection:

PA(x) = x− µ arg min
y

{
0.5‖y − µ−1x‖ : 〈y,a〉 ≤ 1∀a ∈ A}

,

(8)
where µ is a smoothing parameter. The complexity of these projec-
tions is quite high as the solution involves a quadratic program with
2l constraints. We use this projection operator within the Peaceman-
Rachford scheme [10] in the simulations.

2.3. Theta bodies

Our last step before establishing the main results of the paper is to
briefly introduce theta bodies as semidefinite relaxations of conv(A)
for a set of atoms. We refer to [13] for more details.

If A be a subset of a larger atomic set Ā, then ‖x‖Ā ≤ ‖x‖A.
Thus, the approximate norm ‖x‖Ā provides a lower bound for the
objective in (6). This is the key concept in generating theta bodies.

In sequel, we consider the convex hull of algebraic varieties. Let
I ⊆ R[x] be a polynomial ideal and VR(I) = {x

∣∣f(x) = 0, ∀f ∈
I} be its real algebraic variety. Then, one can show that

closure
(
conv(VR(I))

)

= {x
∣∣f(x) ≥ 0, ∀f linear and nonnegative on VR},

= {x∣∣f(x) ≥ 0, ∀f linear and nonnegative modulo I}.

Verifying the nonnegativity of a multivariate polynomial is in-
tractable in general. However, a polynomial which can be written
as sum of squares (SOS) of other polynomials is easily seen to be
nonnegative everywhere. Hence, relaxations of the convex hull can
be obtained by substituting nonnegative functions by SOS restricted
ones. A k-SOS function is the one that can be written as sum of
squares of polynomials of degree at most k. Using the k-SOS func-
tions, the k-th theta body THk(I) of an ideal is given by

THk(I) = {x
∣∣f(x) ≥ 0,∀f linear and k− SOS modulo I}. (9)

It is easy to check that the convex relaxations THk(I) of a con-
vex hull conv(VR(I)) satisfy closure

(
conv(VR(I))

) ⊆ · · · ⊆
THk+1(I) ⊆ THk(I). We call an ideal k-exact when we have
closure

(
conv(VR(I))

)
= THk(I). Base on this observation, the

following theorem alludes to a reconstruction method for THk of
an ideal, based on semidefinite programming.



Theorem 1 (Corollary 2.15 and Proposition 2.18 in [13]). Let I
be an ideal and choose B = {1, x1, . . . , xn, . . . } as the basis for
the quotient ring R[x]/I. Let MB,k(I) = {y ∈ R|B2k|

∣∣y0 =

1, MB,k(y) º 0} Then, we have THk(I) = πRn

(MB,k(I)
)
.

Here, MB,k(y) is the k-th truncated moment matrix and πRn is the
projection over the coordinates indexed by degree one monomials.

3. EQUIVALENCE OF SYNTHESIS AND ATOMIC
FORMULATIONS3.1. Establishing the equivalence

Theorem 2 (Equivalence of synthesis and atomic formulations).
The synthesis-based (3) and the atomic norm minimization formula-
tions (6) are equivalent in the sense that they yield the same results
x̂S = x̂Atomic for any δ with probability one.

Proof: This statement is already geometrically observed in Elad et
al.Ḣere, we provide an algebraic proof. Using the definition of the
atomic norm (7), and noting the symmetry condition required for the
atomic setA to define a proper norm, we have the following equality

‖x‖A = inf
{ ∑

i

(ci + di)
∣∣ x =

∑
i

(
ciai + di(−ai)

)
; ci, di ≥ 0

}
.

Note that the above set, over which we are taking the infimum
includes either of the representations

∑
i(ci − di)ai or

∑
i(di −

ci)(−ai), depending on whether ci − di ≥ 0 or di − ci > 0. Using
the triangular inequality, we have |ci − di| ≤ ci + di. By excluding
these representations of x in (10) which have no chance to take the
infimum value, we have the following equality

‖x‖A = inf
{ ∑

i

|si|
∣∣ x =

∑
i

siai

}
= inf

{
‖s‖`1

∣∣ x = Ψs
}

Since {s
∣∣ x = Ψs} is a closed set, we can write x̂Atomic as

x̂Atomic = arg min
x

‖y−Φx‖≤δ

min{‖s‖`1

∣∣ x = Ψs}

= Ψ arg min
s

‖y−ΦΨs‖≤δ

‖s‖`1 = x̂S .

The above equalities are valid when the solutions to the synthesis
and atomic formulations are unique, which occurs with probability
one. ¥

3.2. Implications

For general frames with arbitrary distributed atoms in the space,
computation of conv(A) is not always feasible and the proximal first
order method in [6] involves projections to Rl. Chandrasekaran et.
al. [6] suggests semidefinite relaxations of conv(A) using theta bod-
ies in the cases that the atomic set has algebraic structure. The price
of this simplification is extra measurements needed for exact recov-
ery, in the cases that conv(A) is not exact. Also, there are cases in
which theta bodies of a convex hull can lead to poor approximations
of the atomic norm. In the next section, we give an example of a
dictionary for which the first theta body approximation is the `2 ball.
Theorem 2 assures that we can always recover the same results by
employing existing efficient convex optimization algorithms for the
alternative synthesis formulation on the sparse coefficients.

Another advantage of Theorem 2 is that the equivalence of
synthesis and atomic formulations enables one to apply established
bounds for the latter in [6] to the former, and vice versa: for instance,
Rauhut et. al.’s compressive sensing bounds in [4] become instantly
applicable random embeddings of high dimensional polytopes.

4. EXAMPLES OF TH1 EXACT OVERCOMPLETE
DICTIONARIES

A simplex is a generalization of the notion of a triangle or a tetra-
hedron to higher dimensions. An n-simplex in general is an n-
dimensional polytope which is the convex hull of its vertices. Here,
we study regular simplices which are regular polytopes with equal
length edges. The vertices of an n-dimensional simplex can form a
dictionary Ψn×(n+1). Then, the atomic set A includes all the sim-
plex vertices and their antipodes. We prove now below that A is
1-exact and 2- exact for odd and even values of n, respectively.

Theorem 3 (TH exactness of simplices). Let S be the set of n + 1
vertices of a simplex in Rn andA = S∪(−S). ThenA is one-exact
and two-exact for odd and even values of n, respectively.

Proof: Let {ei}i be the canonical vectors in Rn, c = 0+e1+···+en
n+1

be the centroid of the origin and ei’s and ẽi = 2c− ei be the reflec-
tion of ei with respect to c. DefineB = {0, e1, . . . , en, 2c, ẽ1, . . . , ẽn}.
Let v =

∑n

i= n+1
2

ei when n is odd and v =
∑n−1

i= n
2

2ei + en

when n is even. It is easy to see that for b ∈ B,v · b ∈ {0, 1}
for odd n and v · b ∈ {0, 1, 2} for even n. Consequently, all the
atoms in B can be covered by two (three) parallel shifts of the facets
of conv(B) for odd (even) n. Regarding the fact that the atoms in
A can be projected to the atoms in B using shift and rotation oper-
ators, A satisfies the same property. This and Theorem 4.2 in [13]
completes the proof. ¥

For an atomic set formed from vertices of a 2-simplex and their
negatives, we can prove that TH1(A) is equal to the `2-ball. This
shows that even-dimensional simplices are not 1-exact in general
(Note that the above theorem is different from the statement in Ex-
ample 4.6 in [13] in the sense that we consider the negatives of the
vertices as well). This example also illustrates that theta bodies may
not be ideal surrogates of conv(A) in all problems.

5. EXPERIMENTS

While our main theorem proves the equivalence of the synthesis and
atomic formulations, one needs to be careful when comparing the
results of their numerical solutions.

To this end, we provide an experimental set up using an odd-
dimensional simplex as our dictionary. Since the odd-dimensional
simplices are 1-exact (Theorem 3), we can implement the atomic
formulation in (6) using the algebraic structure for TH1. Theorem 1
gives the rules for computing theta body relaxations of an ideal. To
compute TH1, we just need to add the quadratic basis functions of
the quotient ring R[x]/I of the form xixj , 1 ≤ i, j ≤ n to the set
B = {1, x1, . . . ,xn}. For the vanishing ideal of the atomic set A,
this can be done without need to compute the ideal.

To evaluate different sparse recovery methods, we generate syn-
thetic data based on the synthesis model. Here, we fix n = 99
and we use a dictionary Ψ99×100 formed by the vertices of a 99-
simplex. We generate 10 different realizations of (m, k). For each
pair, we produce 10 random k-sparse vectors α and Gaussian ran-
dom sensing matrices Φm×99. Figure 1 shows average signal errors
for x = Ψα recovery from measurements Φx. The average is taken
over 10 realizations of the signal and the sensing matrix for each pair
of (m, k). Figure 2 illustrates the same results for the sparse recov-
ery when we have additive noise in (1). A numerical summary of the
results is also given in Table 1. The signal errors in this table are the
average values over 100 different realizations of (m, k).

Note that the analysis and GAP formulations assume an analysis-
based prior on the signal and recover an x such that Ψtx is sparse.
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Fig. 1. Signal error versus different realizations of (m, k) for the
atomic, synthesis, analysis and GAP formulations for a 99-simplex
dictionary. Atomic and Atmoic1 represent the results for the (exact)
TH1 and the proximal first order method implementations of atomic
formulation, respectively.
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Fig. 2. Signal error versus different realizations of (m, k) for sparse
recovery of a signal from noisy measurements for the atomic, syn-
thesis, analysis and GAP formulations for a 99-simplex dictionary.
Atomic and Atmoic1 represent the results for the (exact) TH1 and
the proximal first order method implementations of atomic formula-
tion, respectively.

However, since this is not the case in general for signals generated
with the synthesis model (i.e., Ψtx is not sparse in general), we
expect these methods to perform worse than the synthesis-based
methods. We observe that when the signals actually obey the anal-
ysis model, or the so-called cosparse model, the analysis-based and
GAP recovery methods typically outperform the synthesis-based
methods (simulations not shown due to lack of space).

The synthesis and analysis formulations are implemented with
the SeDuMi MATLAB toolbox. The first realization of atomic for-
mulation (Atomic) is based on TH1. The second realization of the
atomic formulation (Atomic1) is implemented based on the first or-
der method proposed in [6], with µ = 10−4, and 2000 maximum
number of iterations or 10−4 tolerance, whichever occurs first. The
plots show that when we use exact algebraic characterizations of the
atomic ball, the interior point method results in the same solutions
for both the synthesis and the atomic formulations of sparse recov-
ery up to computer accuracy, while the first order method proposed
by Chandrasekaran et al. could lead to different results as it is a first
order method. Moreover, (not shown) the first order methods of the
synthesis still leads to numerically accurate solutions.

6. CONCLUSIONS
We establish that the atomic and synthesis recovery formulations are
equivalent for closed atomic sets. We observe that the synthesis and
atomic norm formulations offer salient computational trade-offs, es-
pecially prominent when the number of atoms can be infinite. While
the relaxations of the convex hull of the atomic set via theta bodies or
some other means increases the number of measurements needed for
exact recovery, they are necessary for tractable optimization for sets
with infinitely many atoms. We also show that the set of atoms, con-

Different methods Signal error Signal error
in the noiseless case in the noisy case

Atomic 0.3627± 0.2928 0.6057± 0.1819
Synthesis 0.3627± 0.2928 0.6057± 0.1819
Analysis 0.4734± 0.2236 0.6308± 0.1650

GAP 0.5374± 0.3236 0.6560± 0.2170
Atomic1 0.6424± 0.3932 0.7179± 0.1005

Table 1. Signal recovery error of the atomic, synthesis, analysis and
GAP formulations for a 99-simplex dictionary. Atomic and Atmoic1
represent the results for the (exact) TH1 and the proximal first order
method implementations of atomic formulation, respectively.

sisting of the vertices of a simplex and their antipodes, are one/two
exact for odd/even dimension. By this result and the facts from [6]
we can recover the signal using semidefinite programming in the
simplex case.
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