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breuses nouvelles idées. Sincere and grateful thanks, Tony.

Je ne sais comment remercier suffisamment Roberto Ardon tant il a contribué et partagé,
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Abstract

To cope with a variety of clinical applications, research in medical image processing has

led to a large spectrum of segmentation techniques that extract anatomical structures from

volumetric data acquired with 3D imaging modalities. Despite continuing advances in

mathematical models for automatic segmentation, many medical practitioners still rely on

2D manual delineation, due to the lack of intuitive semi-automatic tools in 3D.

In this thesis, we propose a methodology and associated numerical schemes enabling the

development of 3D image segmentation tools that are reliable, fast and interactive. These

properties are key factors for clinical acceptance.

Our approach derives from the framework of variational methods: segmentation is ob-

tained by solving an optimization problem that translates the expected properties of target

objects in mathematical terms. Such variational methods involve three essential compo-

nents that constitute our main research axes: an objective criterion, a shape representation

and an optional set of constraints.

As objective criterion, we propose a unified formulation that extends existing homo-

geneity measures in order to model the spatial variations of statistical properties that are

frequently encountered in medical images, without compromising efficiency.

Within this formulation, we explore several shape representations based on implicit

surfaces with the objective to cover a broad range of typical anatomical structures. First-

ly, to model tubular shapes in vascular imaging, we introduce convolution surfaces in the

variational context of image segmentation. Secondly, compact shapes such as lesions are

described with a new representation that generalizes Radial Basis Functions with non-

Euclidean distances, which enables the design of basis functions that naturally align with

salient image features. Finally, we estimate geometric non-rigid deformations of prior tem-

plates to recover structures that have a predictable shape such as whole organs.

Interactivity is ensured by restricting admissible solutions with additional constraints.

Translating user input into constraints on the sign of the implicit representation at pre-

scribed points in the image leads us to consider inequality-constrained optimization.

Keywords: image segmentation, medical imaging, implicit surfaces, interactive seg-

mentation, vascular segmentation, variational methods, inequality constraints, convex op-

timization, non-Euclidean radial basis functions, non-rigid deformation.
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Version Abrégée

Afin de répondre aux multiples besoins des applications cliniques, la recherche en traite-

ment d’images médicales a permis le développement d’une large palette de techniques de

segmentation capables d’extraire des structures anatomiques à partir de données volumiques

acquises dans des modalités d’imagerie 3D. Pourtant, en dépit de progrès constants dans

la modélisation mathématique du problème de la segmentation automatique, de nombreux

praticiens hospitaliers ont toujours recours au contourage manuel de structures d’intérêt en

2D, car les outils semi-automatiques intuitifs sont encore rares en 3D.

Dans cette thèse, nous proposons un cadre méthodologique et des schémas numériques

adaptés qui permettent le développement d’outils fiables, rapides et interactifs pour la seg-

mentation d’images volumiques. Ces propriétés sont essentielles pour l’acceptation clinique.

Notre approche s’inscrit dans le cadre des méthodes variationnelles: la segmentation est

obtenue grâce à la résolution d’un problème d’optimisation qui traduit en termes mathé-

matiques les propriétés attendues des objets cibles. Ces méthodes variationnelles reposent

sur trois ingrédients qui constituent nos principaux axes de recherche: un critère objectif,

une représentation des formes et, de manière optionnelle, un ensemble de contraintes.

Nous proposons comme critère objectif une formulation unifiée qui étend les critères

d’homogénéité existants afin de prendre en compte de manière efficace les variations spa-

tiales des propriétés statistiques fréquemment rencontrées dans les images médicales.

Dans ce cadre, nous explorons plusieurs représentations des formes à l’aide de surfaces

implicites pour couvrir une variété importante de structures anatomiques. Tout d’abord,

afin de modéliser les formes tubulaires en imagerie vasculaire, nous introduisons les surfaces

de convolution dans le contexte variationnel de la segmentation. Ensuite, les objets com-

pacts comme les tumeurs sont décrits à l’aide d’une nouvelle représentation qui généralise

les fonctions de base radiale au cas des distances non-Euclidiennes. Les fonctions de base

ainsi créées ont une forme qui épouse naturellement les contours de l’image. Enfin, nous

estimons la transformation géométrique non-rigide de formes à priori pour extraire des

structures dont la forme est caractéristique, comme par exemple des organes complets.

L’interactivité est assurée de manière générique en réduisant les solutions admissibles

grâce à des contraintes additionnelles. Le fait d’exprimer l’intervention de l’utilisateur

comme des contraintes ponctuelles sur le signe de la représentation implicite des objets

nous amène à considérer le cadre de l’optimisation sous contraintes d’inégalités.
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Mots-clés: segmentation d’images, imagerie médicale, surfaces implicites, segmenta-

tion interactive, segmentation vasculaire, méthodes variationnelles, contraintes d’inégalité,

optimisation convexe, fonctions de base radiale non-Euclidiennes, déformation non-rigide.
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Notations

n image dimension, n = 2 for 2D images, n = 3 for 3D volumes.

Ω image domain, an open subset of Rn, Ω ⊂ Rn.

d number of image components (channels), e.g. d = 3 for color images.

I an image, an integrable function I : Ω 7→ Rd.
x a point in the image domain, x ∈ Ω.

y another point in the image domain, y ∈ Ω.

Ωi closed subset of Ω, Ωi ⊂ Ω, region number i.

Ω1 closed subset of Ω, Ω1 ⊂ Ω, referred to as the ”foreground” region.

|Ωi| measure of the continuous set Ωi, s.t. |Ωi| =
∫

Ωi

dx

Per(Ωi) perimeter of Ωi, i.e. a measure of its boundary.

Γ region boundary, a closed curve or surface, such that Γ = ∂Ω1.

n outward pointing unit normal field of the boundary Γ.

∇ gradient operator in Rn.

∇. divergence operator in Rn.

∆ Laplacian operator in Rn, such that ∆ = ∇.(∇).

pi a non-parametric distribution of intensity in the region i

H Heaviside step function

δ Dirac distribution

Φ implicit function, positive in the foreground.

u a membership function to the foreground.

◦ functional composition, i.e. f ◦ g(x) = f (g(x))

∗ convolution, i.e. [f ∗ g](x) =

∫
Ω
f(x)g(x− y)dy

Wσ n-dimensional Gaussian functions of scale σ

Kε 1-dimensional Gaussian of scale ε
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Introduction 1
1.1 Context and Objectives

In the last 30 years, digital diagnostic imaging has become pervasive in all aspects of

medicine. Among other modalities, Magnetic Resonance Imaging, X-ray Computerized

Tomography and Ultrasound provide effective and non-invasive means for mapping the

anatomy of a patient in 3D. With the ever-increasing number and size of digital medical

images acquired daily in hospitals, advanced image processing is already an essential tool

in oncology, cardiology, neurology and many other clinical application areas. In particular,

image segmentation algorithms that delineate anatomical structures of interest are a key

component to assist and automate radiological tasks in a timely fashion.

In the computer vision community, segmentation is usually defined as the process of

separating an image into constituent regions in a way that mimics the human visual sys-

tem, which is closely related to perceptual grouping and clustering [81]. In the context

of medical imaging, segmentation has an even broader meaning that encompasses a vari-

ety of computer-assisted tasks, with extremely diverse motivations. The same term can

refer for instance to the automatic contouring of organs, the extraction of their vascu-

lar structures (inner and outer vessel walls) or to the classification of healthy vs abnor-

mal/necrotic/malignant tissues. In the current practice, clinical usages of the outcome of

segmentation algorithms include volume measurements, visualization and rendering, follow-

up and registration of an anatomical structure over time or across different modalities,

therapy planning, image-guided interventions or surgical simulations. Imaging artifacts

that may significantly affect the performance of algorithms are as diverse as the applica-

tions, stemming from noise, partial volume effect or motion during acquisitions.

1
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To cope with a considerable variety of clinical needs in terms of application require-

ments, research in medical image processing has led to a large spectrum of 3D segmentation

methods, ranging from surface reconstruction of manual slice-by-slice contouring to fully-

automatic techniques that incorporate prior knowledge on the shape and appearance of

the target anatomical structures. Within this spectrum, the more automation is expected

from a segmentation algorithm, the more specificity, sophistication and computational com-

plexity are usually involved. However, reality is that any image segmentation algorithm is

inevitably prone to errors, which makes acceptance of such fully-automatic tools in clinical

routine a true challenge. In the timely context of repeated examinations, it is unreasonable

to expect a radiologist to rely on an algorithm that occasionally fails after having processed

the image for one minute.

Despite continuing advances in segmentation methodology and mathematical models,

many applications still rely on manual delineation, due partly to insufficient reliability of

automatic tools, partly to the lack of easy-to-use semi-automatic methods. In this respect,

the remaining bottlenecks for clinical acceptance of image segmentation algorithms in 3D

are reliability, efficiency and interactivity. These three properties are the essential motiva-

tions behind the work presented in this manuscript.

Reproducibility is often mentioned as a key factor in favor of automatic methods. How-

ever, reproducibility should sometimes be balanced to satisfy medical practitioners who also

considerably value control and supervision on the final result. Semi-automatic segmentation

techniques that incorporate knowledge from an expert are the best candidates to combine

efficiency, accuracy and repeatability while offering better confidence and avoiding the risk

of complete failures.

In this perspective, interactivity should be envisaged more thoroughly than a post-

processing correction step, as a means to design techniques that place the radiologist’s

expertise at the core of the segmentation process. Not only does this require appropriate

computational algorithms, but also intuitive user interfaces, in particular for 3D data. The

challenges of these new application workflows are only briefly addressed in this work, al-

though they are probably equally important for clinical applicability.

Our objective is to develop computational approaches to 3D interactive medical image

segmentation that are broadly useful. In order to fulfill a large spectrum of application

requirements, we believe that there exits a need for both diversity and unification. While

general paradigms are important for software re-usability, rapid algorithm prototyping and

interoperability, only the multiplicity of techniques inside a unified formulation can achieve

broad utility. Our approach derives from the mathematical framework of variational image

segmentation with implicit surfaces, principles of which are briefly reminded hereunder.
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1.2 Implicit Surfaces

Implicit surfaces, also called isosurfaces or equipotential surfaces, refer to a widely used

representation of 3D surfaces for scientific visualization of medical, material or atmospheric

data, surface reconstruction from unorganized point sets as well as image segmentation. An

implicit surface Γ is defined by a continuous scalar-valued field function Φ over the domain

Ω, through its zero-set, the locus of points at which the function equals zero:

Γ =
{
x ∈ Ω,Φ(x) = 0

}
= Φ−1(0) (1.1)

An implicit surface Γ can be recovered from its scalar field Φ for instance using the Marching

Cubes algorithm [111], which results in a triangular mesh.

With polynomial expressions, algebraics such as spheres, quadrics and ellipsoids are

common building blocks to design simple implicit surfaces. There is a also a number of

well-established methods to create scalar fields by analytically expressing the value of Φ(x)

at every point in space as a function of some underlying geometric primitives. For instance,

using points as primitives, blobby models such as meta-balls [20] and soft objects [182] are

popular in computer graphics. They are specific examples of the Radial Basis Functions

framework, in which the field function Φ is built as a linear combination of translated and

scaled versions of a radially-symmetric non-negative kernel ϕ centered around N points xi:

Φ(x) =
N∑
i=1

λiϕ

(
‖x− xi‖

σi

)
(1.2)

where λi, xi and σi for i ∈ {1..N} are the free parameters of the representation illustrated

in the 2D case in Figure 1.1. We refer the reader to the book of Bloomenthal [21] for gener-

alizations to other primitives such as lines, arcs or planes to create implicit representations

usually referred to as convolution surfaces. An implicit function can also be represented

as a sampled volume on a regular grid as in the level-set framework for image segmenta-

tion [133]. In this case, the field does not have an analytical expression but is defined as a

solution of a partial differential equation.

From the implicit function theorem, it can be shown that if 0 is a regular value of a

continuous function Φ : R3 → R , the implicit surface {Φ(x) = 0} is a two-dimensional

manifold [32]. Moreover, the Jordan-Brouwer separation theorem states that such a mani-

fold separates space into the surface itself and two connected open sets: an infinite outside

and a finite inside [79]. Therefore, an implicit function is a suitable representation of a

partitioning of an image into two phases.

Implicit surfaces have a number of other desirable properties in the context of 3D image

segmentation. Smooth scalar field functions guarantee a continuous and smoothly changing

surface that is readily usable for differential calculus. In particular, differential quantities

such as unit normals and curvature can be directly and accurately computed from the

field function. Another useful attribute is that implicit surfaces easily allow objects of

arbitrary topology to blend together by simply summing their implicit representations.

Furthermore, interactive segmentation may benefit from the property that implicit surfaces

directly incorporate information of whether a given point lies inside or outside of the surface.
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Figure 1.1 — Left: implicit representation of a contour in 2D defined by {Φ = 0} where Φ : Ω→ R
is a 2D function - Right: an implicit contour obtained with Radial Basis Functions as in Eq. (1.2).
5 basis functions shown in the middle with positive (red) and negative (blue) weights λi create a
scalar field function by linear blending; a corresponding implicit contour {Φ = 0} (yellow).

1.3 Variational Image Segmentation

Since the pioneer work of Roberts et al. on pose estimation using least squares fitting [145],

almost all fundamental areas of image processing such as object recognition, restoration

and registration adopt a variational perspective and cast their mathematical formulation

as an optimization problem.

Classically, segmentation consists in partitioning an image into non-overlapping con-

stituent regions that are homogeneous with respect to some prescribed characteristic at-

tributes, often called features, such as intensity, color or texture. With the multiplicity

of possible image cues, the success of segmentation algorithms is highly dependent on the

specification of which coherent attributes are relevant for a given application.

Casting segmentation into an optimization problem, the solution is explicitly defined as

an optimum of an objective function that precisely defines what properties are expected of

a meaningful partitioning. Focusing on the case of only two regions that correspond to the

target anatomical structure (inside) and its surrounding tissues (outside), we can formulate

the segmentation problem as:

min
Φ ∈ S

F (Φ, I) (1.3)

where I is the original image, Φ is a mathematical representation of the inside region and

S is a set of admissible solutions. The objective criterion F encodes suitable homogeneity

measures that discriminate objects from each others. In probabilistic methods, minimiza-

tion of F is equivalent to maximizing a likelihood or a posteriori probability.

In this work, we only consider the case of continuous representations, from which implicit

surfaces Φ are a special type, as opposed to discrete representations such as graphs [23, 25,

76, 148, 158]. Since both the image I and the scalar field Φ are functions, the criterion F

is a functional, usually minimized by numerical schemes derived from calculus of variations

[123, 154, 165] or shape gradients [54, 55].
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1.4 Contributions

Within the general formulation (1.3), specific choices for F , Φ and S are simultaneously

explored in this work on algorithms for interactive segmentation of 3D medical images with

implicit surfaces.

First, we propose a unified functional F that extends standard homogeneity measures

to model spatial variations of statistical tissue properties without compromising efficiency.

Then, in this formulation, we explore a number of novel complementary representations

Φ to cover a diversity of object descriptions, ranging from very general membership functions

to vessel-specific implicit generalized cylinders. Targeting rather spherical shapes such as

lesions, we also develop a new surface representation based on a generalization of Radial

Basis Functions with non-Euclidean distances. For other anatomical structures that follow

a known predictable shape, Φ is designed as a geometrically-deformed template for model-

based segmentation. Dedicated numerical schemes to minimize F are associated to each

representation Φ.

Finally, interactivity is ensured in a generic fashion by restricting the set S of admissible

solutions with additional constraints. Translating user input into constraints on the sign of

the implicit function Φ at prescribed points in the image leads us to consider inequality-

constrained optimization algorithms.

Our main contributions can be summarized as follows:

• A unified variational formulation generalizing statistical criteria derived from the Re-

gion Competition algorithm [189] to localized, non-parametric homogeneity measures

that can be efficiently computed. In the case of a standard geometric constraint,

problem is solved with convex relaxation, which gives a new interpretation of global

minimizers of Active Contours [26, 130] with a membership function.

• A robust method for joint centerline extraction and vessel segmentation with a tubular

representation based on smooth implicit convolution surfaces. To our knowledge, this

representation has already been proposed for rendering complex vascular structures

[132] but was never used in the context of variational image segmentation.

• The introduction of a non-Euclidean, image-dependent distance in conventional Radial

Basis Functions [73] for interactive segmentation. This new representation creates

feature-aligned kernels and yields more accurate results with much fewer control points

than its Euclidean counterpart, leading to a small number of variables to optimize.

• A fast algorithm for live, interactive and model-based segmentation. The method

recovers a geometric transformation of an implicit shape by jointly optimizing a global

alignment and a smooth non-rigid deformation field. User input is translated into non-

linear inequality constraints that are solved with an Augmented Lagrangian approach.
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As a preview example on a computerized tomography angiography image, Figure 1.2

shows the diversity and complementarity of implicit representations. In the same variational

formulation, each anatomical structure is extracted using one of the proposed representa-

tions and a dedicated numerical scheme. Each algorithm runs in a few seconds. This

illustration sums up the outline of the manuscript.

Chapter 2 is devoted to a brief survey of image segmentation techniques. The main

principles of well-established methods such as graph-partitioning, deformable models, geo-

metric curve evolution and level-set representations are exposed. Region-based variational

approaches such as the Region Competition algorithm [189], the Mumford-Shah functional

[126] or the Active Contours Without Edges [39] are discussed more thoroughly.

The liver venous tree, rendered in yellow in Figure 1.2, is automatically extracted as

an optimal solution of the general convex optimization framework presented in chapter 3.

We enumerate a wide spectrum of statistical region descriptions, ranging from globally-

Gaussian to locally non-parametric distributions. In particular, locally-Gaussian models

are shown to constitute a fast alternative to piecewise-smooth approaches and enable to

capture spatial variations of radio-opaque contrast product concentration in angiography.

The aorta (green) and the Inferior Vena Cava (blue) are modeled as generalized cylin-

ders and implicitly represented with a smooth convolution surface around a medial curve.

Within the unified region-based formulation, we develop in chapter 4 all necessary compo-

nents to perform a joint optimization of the vessel centerline curve and the corresponding

scales, defined along the curve.

The four lesions (in red) inside the liver are delineated with the interactive segmenta-

tion method presented in chapter 5. A new surface representation is defined as a linear

combination of non-Euclidean basis functions that naturally align with the image features.

Interactivity is enabled by casting user-given labels as linear inequality constraints that are

solved using a variant of the Active Sets method.

Using the non-rigid deformation technique described in chapter 6, the liver and both

kidneys are obtained by considering the unknown implicit function to be a geometric trans-

formation of a prior shape. This formulation is consistent with the algebraic definition of

shapes proposed in [184]. The joint optimization of a global pose and a local deformation,

subject to a set of non-linear inequality constraints derived from user interactions, is per-

formed by an Augmented Lagrangian approach.

Note that the CT liver image does not relate to a clinical application evaluation and

only serves to illustrate the spectrum of possible shapes considered in this work. Focusing

on a broadly-useful methodology and algorithms, we show numerous other examples in

ultrasound and magnetic resonance or even on photographic images.



1.4. CONTRIBUTIONS 7

Figure 1.2 — All proposed algorithms in a preview example on a Computerized Tomography
image of the liver. Anatomical structures shown in surface rendering illustrate the diversity of rep-
resentations obtained with implicit surfaces. Liver and kidneys are obtained through a geometrical
transformation of a predefined template by a smooth deformation field (see Chapter 6). The hepatic
lesions (in red) are semi-automatically segmented with non-Euclidean Radial Basis Functions (see
Chapter 5). The hepatic and portal veins (in yellow) are the result of a convex optimization scheme
on a membership function (see Chapter 3). The Inferior Vena Cava (in green) and the aorta (in blue)
are implicit representations of generalized cylinders, known as convolution surfaces (see Chapter 4).
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A Short Survey on Image

Segmentation Techniques 2
This chapter presents a short survey on techniques that were developed in the past for image

segmentation. As a fundamental problem in machine vision, medical imaging and pattern

recognition, segmentation is one of the most active research fields in image processing and

has already led to a considerably large number of approaches. Even restricted to the context

of medical imaging, the spectrum is so large in terms of techniques and applications that

this survey is by no means intended to be exhaustive.

Consequently, the objective is first to provide the reader with a brief general overview

on some popular families of methods, then to progressively study in more details the influ-

ential works that are most related to ours. In particular, we highlight the advantages and

limitations of a number of existing region-based algorithms that fit in the general variational

framework adopted in chapter 3. In this regard, this chapter can be viewed as an introduc-

tion to the unified formulation from which all algorithms presented in this manuscript are

derived.

This chapter is divided into four parts. In section 2.1, we briefly introduce some low-level

classification algorithms such as thresholding, clustering and machine-learning techniques to

group pixels in their feature space, regardless of their spatial relationships. Then, section 2.2

presents the basics of discrete frameworks for region-based segmentation that further make

use of contextual information like the region-growing algorithm, Markov Random Fields and

graph-theoretic methods. In the continuous setting, fundamental principles of deformable

models are given in section 2.3 with parametric active contours, geometric curve evolution

theory and level-set numerical schemes. The last section 2.4 is more specifically focused on

existing powerful region-based variational formulations originating from the Mumford-Shah

image model and the Region Competition algorithm, and their current limitations regarding

fast 3D interactive segmentation.

9



10 CHAPTER 2. A SHORT SURVEY ON IMAGE SEGMENTATION TECHNIQUES

2.1 Low-level Classification

Low-level classification methods for image segmentation assign a class label or a membership

value to each pixel of the image without implying any type of spatial consistency. Their

efficiency is their key advantage for 3D medical applications and they are often used as a

coarse pre-segmentation step to find an initial guess for more advanced algorithms. Often,

the total number of classes to search for is assumed known based on prior knowledge of the

considered anatomical structure (e.g. white matter/gray matter/bone) or estimated using

automatic techniques such as Minimum Description Length.

2.1.1 Thresholding

Thresholding is the oldest, simplest, fastest, yet sometimes effective algorithm for obtaining

a pixel-wise classification from images in which the target structure exhibits well contrasted

intensities, or any other measurable feature. Classification is achieved by grouping all pixels

that have a value greater than a reference, the threshold, into one class, and all other pixels

into another class. Multiple thresholds can of course be used to obtain more than two

classes or to better characterize a single class. In medical applications, variations on classical

thresholding are still often resorted to, usually in a locally-adaptive fashion to make the

process less sensitive to noise and intensity inhomogeneities.

2.1.2 Classifiers

Pattern recognition classifiers for low-level image segmentation consist in the supervised

process of labeling each pixel of an image based solely on the analysis of its feature space

(e.g. the range of possible intensity values), according to a prior learning of labels performed

manually on some training data. In its simplest form, the nearest neighbor classifier, this

corresponds to assigning each pixel to the same class as the one associated with the training

sample having the closest feature value. The main advantage stems from the flexibility to

specialize classifiers to a target application, by choosing a set of discriminant features. The

features can be vector-valued, usually automatically extracted from the image such as mul-

tiple responses to filters at different scales and orientations to represent texture properties.

In general, difficulties arise with the crucial definition of proper metrics in the feature space

and the dimensioning of a representative, unbiased training dataset. Moreover, spatial re-

lationships between pixels are not easily modeled in an efficient way.

Various assumptions on the statistical structure of the feature space can be made, with

a crucial impact on classification performance. For instance, The Maximum Likelihood

classifier assumes that all measurements are independent and identically distributed (i.i.d.)

and generated from a mixture of probability distributions, usually Gaussian. In contrast,

the k-Nearest Neighbor classifier does not assume any specific structure and classifies each

pixel according to a majority of label votes within the k-closest examples of the training set.
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Many other non-linear statistical methods can be borrowed from the machine learning

literature to translate classification of image pixels into an inference problem. Analysis

of the underlying structure of a training dataset can be performed with Kernel Density

Estimation (KDE), Artificial Neural Networks, Support Vector Machines [178], as well as

boosting techniques such as AdaBoost [70] or Probabilistic Boosting Tree [173].

2.1.3 Clustering

Clustering can be thought of as the unsupervised counterpart of classifiers, with the aim

to uncover natural classes, called clusters, from the available image directly, without using

any prior learning from a training set. In most clustering algorithms, the learning phase is

replaced by an iterative process that alternates between an assignment stage, in which each

and every sample is associated with a given class, and a characterization stage in which the

descriptive properties of each class are estimated.

The simplest clustering algorithm is the K-Means that characterizes a given class by

an average of the feature values over all its samples and assigns each sample to the class

with the closest centroid. When the number of classes is not known in advance, ISODATA

(Iterative Self-Organizing Data Analysis Techniques) is a possible alternative to extend

standard K-Means by including splitting and merging criteria at each iteration. The Fuzzy

C-means algorithm [61] is a generalized and relaxed version that allows the membership

to each class and the average operations to be fuzzy. The Fuzzy C-means provides soft

segmentations and usually produces better results on low-resolution medical images in the

case of partial volume effects, since each voxel measurement might originate from more than

one tissue.

The Expectation-Maximization (EM) algorithm applies the same principles in a Bayesian

framework with the underlying assumption that the data follows a Gaussian mixture model.

It iterates between the computation of the posterior probability that each sample belongs

to a given class and the maximum likelihood estimation of all statistical parameters for

each class, typically the mean, the covariance and the mixing weights of the mixture model.

The EM algorithm is theoretically superior to the standard k-means in the sense that it

is capable of recovering clusters of arbitrary ellipsoidal shapes in the feature space, at the

price of an increased sensitivity to initial cluster guesses.

All above-mentioned clustering methods rely implicitly or explicitly on a parametric

form of the probability distribution of feature samples, such as the Gaussian Mixture Mod-

el (GMM) in the EM algorithm. A more general-purpose non-parametric procedure is the

Mean-Shift [47] that has become popular for image segmentation for its ability to recov-

er an unknown number of arbitrary-shaped clusters. The key idea is to jointly perform

classification and estimate the salient modes of the probability density function. This algo-

rithm relies on the estimation of the gradient of the density to iteratively move each cluster

centroid towards the closest prominent mode, in a hill-climbing fashion.
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2.2 Regions as Connected Sets

Contrary to the aforementioned approaches that perform pixel grouping in the feature

space only, methods that consider regions as spatially-connected sets make use of contextual

information as an essential key to achieve a proper segmentation of the image. We review

in this section a non-exhaustive list of discrete techniques such as region growing, Markov

random fields and graph-partitioning.

2.2.1 Region Growing

Region growing [2, 28] is a popular technique for isolating a region of the image that is

connected to a given pixel, called the seed point, based on some predefined homogeneity

criterion. These criteria are mostly based on intensity or texture properties but can also

incorporate information from the edges in the image. Region growing is sensitive to noise,

heavily depends on the initial seed placement and is prone to leakages in places where the

boundaries between the objects are weak or blurry. Moreover, constraints on spatial con-

nectivity and boundary smoothness cannot be easily enforced; as a result, the segmentation

may include holes and highly irregular boundaries. Often combined with other pre- and

post-processing operations such as feature extraction or morphological cleaning, Region

Growing algorithms are primarily adapted for isolating small-sized, simple-shaped, homo-

geneous anatomical structures and can easily be applied in 3D. Split-and-merge algorithms

are interesting variants of Region Growing that extract multiple regions at once without the

need for seed points [117, 139], using a recursive splitting and merging strategy according

to both homogeneity and inhomogeneity criteria.

2.2.2 Markov Random Fields

The theory of Random Fields is an highly versatile paradigm to model spatial relationships

between random variables that lie on a lattice structure such as the discrete grid of an image.

Local interactions are described through a probabilistic setting in which random variable

realizations at adjacent sites have a higher probability to be the same than if the sites are

further apart. Several kinds of random fields exist, among which the Markov random field

(MRF), Gibbs random field (GRF), conditional random field (CRF) and Gaussian random

field.

Originally developed in the context of statistical mechanics [74], Markov Random Fields

have been used for a wide spectrum of image processing problems including segmentation,

restoration, texture synthesis, surface reconstruction and motion estimation [109]. For

segmentation applications, the random variables are typically composed of an observable

intensity value and an unknown, hidden label assignment. The Markovian property implies

that the probability distribution of a variable at a given site is conditioned by (and only by)

the configuration of a predefined set of surrounding neighborhoods, called cliques. Prior

conditional probabilities can be set in order to enforce contextual coherence and smoothness

constraints by associating costs for various configurations of adjacent labels, referred to as
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clique potentials. Maximum A Posteriori (MAP) inference can eventually provide unknown

labels, given the observed image and the local interaction penalties. In the general case,

this Bayesian formulation, called MAP-MRF labeling, is computationally intractable and

leads either to sub-optimal solutions or to slow algorithms such as simulated annealing.

However, if certain conditions are fulfilled, for instance for binary labels or sub-modular

(e.g. additive) adjacency costs, the MAP estimation process can be cast as a minimization

problem that can be efficiently solved with Graph Cuts [99] or with Belief Propagation [64].

This intricate link between Markov Random Fields and the combinatorial methods involved

in Graph Theory has renewed the interest of the image processing community regarding

MRFs in the last ten years, in particular for image segmentation [17, 23, 25].

2.2.3 Graph-Partitioning

Graph-based segmentation techniques are built on the representation of the image in terms

of a undirected, weighted graph containing a set of vertices V and a set of edges E,

G = (V,E). (2.1)

Each node vi ∈ V corresponds to a pixel in the image and each edge ei = {vj , vk} ∈ E

connects pairs of neighboring pixels, with a non-negative weight that is typically some

measure of the dissimilarity between the two pixels connected by that edge. It is possible

to transform and simplify such a graph into a tree, not necessarily unique, called a Minimum

Spanning Tree (MST), which is a minimum-weight, cycle-free (i.e. tree) subset of the graph’s

edges such that all nodes are connected. The early works in graph-theoretic approaches to

segmentation and clustering [174, 187] used fixed or adaptive thresholds to cut some edges

with the largest weights in the MST, in order to split the graph into pieces, each subgraph

corresponding to a different cluster/region.

A cut is a partition of the graph into two disjoint sets of vertices, or equivalently, the set

of edges whose removal induces the splitting. Finding closed contours composed of strong

edges as optimal cuts is the principle of several segmentation algorithms that mainly differ

in the definition of the optimized quality measure. Since standard minimal cuts, minimizing

the sum of the edge weights, tend to create small, isolated regions [181], several variants

have been proposed to alleviate this bias and obtain more balanced partitions, such as the

Normalized Cuts [158] or Isoperimetric Partitioning [77].

Graph-Cuts correspond to a specific sub-field of graph-partitioning algorithms in which

the optimization is made efficient by the min-cut/max-flow equivalence [66]. The idea is to

interpret the graph as a network in which the edge weights are capacities, and maximize the

flow between two specific nodes called source and sink. For the segmentation of an image

in two regions, source and sink are usually additional nodes associated to the foreground

and background labels, respectively. Both region nodes are connected to each pixel with an

additional edge whose weight reflects the pixel’s affinity with the label, given its intensity

value. This approach has been successfully applied to interactive segmentation in [25, 148].

User-marked seeds provide an estimate of foreground/background intensity distributions
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and are linked to either the source or the sink with infinite unbreakable weights, which

guarantees their inclusion in the corresponding region once the optimal cut of the augmented

graph is found. In 2D, instant feedback in interactive applications has been achieved by

using dynamic versions [23]. The principle is to re-run the optimization algorithm much

faster after slight modifications of the graph, when new seeds have been added by the user.

The usefulness of Graph-Cuts for image processing goes beyond the field of interactive

segmentation, as a generic computational framework for globally optimizing energy func-

tionals in a discrete setting [99], or to use the underlying discrete topology to approximate

any continuous Riemannian metric space [24]. Recent works towards unified algorithms in-

vestigate their connection with other segmentation techniques, such as the Random Walkers

[76, 159] and Watersheds [49].

Although now a well-recognized framework for interactive segmentation of 2D images,

Graph-Partitioning techniques are still not so pervasive for segmenting volumetric data, in

particular because of their inherent difficulty to handle very large datasets for which the

graph can grow in a memory-prohibitive fashion. A solution would be to either reduce

the discrete first-order neighborhood from the standard 26-connectivity to the simplest 6-

connectivity (ignoring all diagonal interactions), or to work at a lower resolution. In both

cases, this would reveal one of the main drawbacks of graph-based algorithms, the appear-

ance of blockiness artifacts on the resulting cut surface, known as metrication errors. These

artifacts are more severe in 3D than in 2D and are clearly visible when weak boundaries

are present. The surface has a directional bias to be perfectly straight and aligned with one

of the lattice axes. This is for instance discussed and illustrated in [8], where a continuous

formulation of the maximum flow problem is studied to overcome metrication artifacts, at

the cost of an increased computational complexity that is incompatible with 3D interactive

applications.

2.3 Deformable Models

Deformable models are one of the most vigorously researched and published technique in

the field of computer-assisted medical image analysis. They have been widely recognized

as a major breakthrough for their ability to not only segment, but also match and track

anatomical structures over time. The main strength of deformable models is their ability

to exploit both the image data itself and some strong a priori knowledge about the char-

acteristics of the shape of the target structure, which goes beyond the simple assumptions

that objects correspond to regions that are connected homogeneous sets.

There are a number of literature reviews on deformable models, and we refer in particular

to the work of McInerney and Terzopoulos [119] for their early use in medical applications

and to the survey by Montagnat et al. [122] for the mathematical foundations of discrete and

continuous deformable surfaces in 3D. The book Active Vision, by Blake and Yuille [18], also

provides extensive background information on these techniques. Ever since, researchers have

continued to explore potential improvements towards better shape representations with the

rapid expansion of implicit representations and level-sets, towards better robustness with
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advanced statistical analysis of shapes and image features, towards more efficient numerical

algorithms. In this section, we will briefly draw a non-exhaustive list of influential works in

those directions by reviewing some related segmentation models that are not restricted to

medical imaging.

2.3.1 Parametric Active Contours

The popularity of deformable models is largely due to the seminal paper Snakes: Active

Contours by Kass et al. [92], originally proposed as a dynamic evolution of a curve towards

strong edges of the image and soon extended to the case of 3D surfaces by Terzopoulos et al.

[167]. Such active contours are examples of the general technique of matching deformable

models to image data by means of energy minimization, which was also suggested by Blake

and Zisserman in [19].

In [92], the evolution equation for the parameterized planar curve C : [0, 1] → R2 is

driven by the minimization of the following, physically-motivated, energy functional1:

F[92](C) = α

∫ 1

0

∥∥∥∥∂C∂p
∥∥∥∥2

dp+ β

∫ 1

0

∥∥∥∥∂2C
∂p2

∥∥∥∥2

dp+

∫ 1

0
P (C(p))dp (2.2)

in which α, β are positive weights balancing the model terms to obtain the desired behavior.

The first term is an elastic membrane energy that constraints the stretching, the second

term is a thin-plate energy that limits the bending. Those two terms are generally referred

to as an internal energy since they relate to the intrinsic physical properties of the curve,

modeled as a string. The last term is a line integral along the curve of an external potential,

designed to attract the curve in the lowest values of the field P . In practice, the scalar field

P : R2 → R is derived from the image and should take smaller values in places where the

object boundaries are more likely. For instance one can choose a decreasing function of the

image gradient, such as:

P = −λ ‖∇Iσ‖2 (2.3)

where λ is a normalizing positive constant and Iσ is the image smoothed with a Gaussian

kernel of scale σ. Calculus of variations on the curve C yields the Euler-Lagrange equation,

the necessary condition that the curve C must satisfy to be a local minimizer of the functional

F[92],

α
∂2C
∂p2
− β∂

4C
∂p4
−∇P (C) = 0 (2.4)

To find a solution of the above equation, an artificial variable t is usually introduced.

Starting from an initial curve C0 at t = 0, the evolution equation

∂C
∂t

= α
∂2C
∂p2
− β∂

4C
∂p4
−∇P (C) (2.5)

1In this manuscript, we use the following convention to avoid multiple use of the letter F for various

functional definitions: F[X] corresponds to the functional defined in the reference paper [X]
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is followed until a steady state is reached, the left-hand side of (2.5) vanishes, hence a

local minimizer of (2.2) is found. It is essentially a gradient-descent algorithm. In [92], a

numerical scheme based on finite differences is used to discretize the fourth-order equation

(2.5).

The Active Contours can be extended to 3D for segmenting volumetric data in the field

of medical imaging [119]. For instance, Cohen et al. in [43] proposed a finite element

scheme for the evolution equation of a parameterized surface. Bardinet et al. [12, 13] have

used superquadrics with global shape parameters and local deformations. Delingette [56]

advocated the use of discrete simplex meshes whose geometry is particularly adapted to

the implementation of smoothness constraints in 3D. As we will see in section 2.3.2, the

level-set framework proposed by Osher and Sethian [133] defines implicit representations

that readily extend all principles to 3D and beyond.

Although the key idea of moving an energy-minimizing curve/surface towards image

features had a remarkable influence on the design of new segmentation algorithms in the

last two decades, the original formulation is not without limitations. Two main practical

shortcomings were soon recognized and addressed by several researchers: (a) the paramount

influence of the initial conditions on the segmentation result and (b) the dependence on an

arbitrary parameterization of the curve/surface.

Functional (2.2) is non-convex, due to the external potential and the irregular landscape

created by the image gradients. As such, it possibly admits a huge number of local minima,

and as many valid segmentation results. In this respect, the example potential (2.3) is

particularly problematic, since it is only effective in the immediate vicinity of the step

edges, with a capture range of the order of the smoothing scale σ. Consequently, a curve

initialized far from the desired result would inevitably be attracted by other salient features,

or get stuck in flat areas. Increasing the capture range using a larger scale σ would not be

acceptable since this would significantly dislocate the edges.

This motivated the use of an external ballon force, proposed by Cohen et al. in [46],

designed to systematically push/shrink the curve in the absence of features. This is ob-

tained by adding in the evolution equation a constant term along the normal direction, or

equivalently by adding in the energy a maximizing/minimizing term proportional to the

area enclosed by the curve. However, this requires to initialize the process with a curve

lying completely inside/outside the target object, and may introduce a bias in the final

boundary location.

An alternative solution to increase the capture range is to compute a linear diffusion

of the gradients of an edge map, in order to spread the forces in the flat areas. This new

force field, called Gradient Vector Flow and proposed by Xu and Prince in [183], cannot

be written as a negative gradient of a potential function, hence the evolution equation is

formulated directly from a force balance condition rather than a variational formulation.

Reducing the sensitivity to initial conditions can also be obtained by replacing the

gradient-descent algorithm by a global optimization strategy such as Dynamic Program-

ming, which was proposed by Amini et al. in [6] for 2D spline curves, with no straightforward

extension to 3D.
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One of the most effective way of reducing the limited capture range of active contours is

to add region-based forces which rely on a global quality measure of the produced segmenta-

tion, contrary to local features derived from image gradients [147, 189]. Theses region-based

strategies are at the core of our work and are reviewed in more details in section 2.4.

Ever since, the search for global minimizers in variational formulations of deformable

models has continued in the image segmentation community. In chapter 3, we will review

in more details some recent developments in this area, in particular the works of Nikolova

et al. [130] and Bresson et al. [26] on convex relaxation techniques that have influenced

the convex formulation of region-based segmentation with a membership function that we

present in section 3.3.2.

2.3.2 Geometric Active Contours

In addition to a potentially large number of local minimizers, the original variational for-

mulation of snakes and their early variants are often criticized for their dependence on an

arbitrary parameterization of the curve, e.g. p ∈ [0, 1] in (2.2). This is the main motiva-

tion behind geometric active contours that are based on mathematical foundations of curve

evolution theory.

Geometric Curve Evolution

According to differential geometry, intrinsic properties of a curve (e.g. length, normal,

curvature) are invariant under reparameterization, which means that they do not depend

on the speed at which the curve is traversed. Hence, it is natural to require energy func-

tionals for image segmentation to be also independent on the curve parameterization. Let

C(p, t) : [0, 1]× R+ denote a family of planar closed curves where p is a given parameteri-

zation and t a time variable. Geometric evolution equations of C are of the form

∂C
∂t

= F(C)N (2.6)

where N the inward unit normal to the curve and the speed function F(C) depends only

on differential invariants of C such as its curvature or torsion. Note that the general form

of geometric evolution equations has only a normal component since a tangential compo-

nent would only affect the parameterization of the curve, not its geometry. In the field

of computer vision, one of the most thoroughly studied type of geometric evolution is the

Euclidean curve shortening flow, also called the geometric heat equation:

∂C
∂t

= κN (2.7)

where κ is the curvature. This equation is the evolution of C that yields the fastest decrease

of the Euclidean length of the curve, since (2.7) is the gradient flow of the length functional

L(C):

L(C) =

∫ 1

0

∥∥∥∥∂C∂p
∥∥∥∥ dp (2.8)
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The geometric heat equation also has a smoothing behaviour on the initial closed curve.

It gradually removes small-scale features, without developing any singularity or new ex-

trema, and eventually shrinks to a point [72], as illustrated in Fig. 2.1. Considering t as a

scale variable, this creates a scale-space representation for planar curves similarly to linear

scale-spaces defined for images based on the heat equation [110]. This evolution flow for

2D curves has an equivalent for hyper-surfaces, with slightly different properties, called the

mean curvature flow, where κ in (2.7) becomes the mean curvature of the surface.

Figure 2.1 — Geometric Heat Equation in 2D: Following (2.7) has a smoothing effect on the curve
that eventually shrinks to a point.

Geodesic Active Contours

The smoothing property obtained by minimizing the Euclidean length already suggests to

replace the two regularization terms in the original active contours model (2.2) by the length

functional to avoid the fourth-order term in (2.5). Kichenassammy et al. [93, 94], Caselles

et al. [34] and Shah et al.[157] independently proposed a new variational model that goes

one step further and simplifies (2.2) to a single term that encompasses both the internal

regularization of the curve and the external image features. The idea is to minimize the

following modified length:

Lg(C) =

∫ 1

0
g (C)

∥∥∥∥∂C∂p
∥∥∥∥ dp (2.9)

where g : R2 → R is typically a positive decreasing function of the image gradient or any

other detector required to be small where object boundaries are expected. Functional Lg
generalizes the Euclidean definition of length to a weighted length that takes into account

image characteristics. This turns boundary extraction into the problem of finding a geodesic

curve (a path with minimal length) in a Riemannian space. Taking the first variation of

Lg, it can be shown that a geodesic curve is obtained by the following geometric flow:

∂C
∂t

= gκN − 〈∇g,N〉N (2.10)

(2.10) is the curve evolution equation referred to as Geometric/Geodesic Active Contours

([94]/[34]). The first term regularizes (and shrinks) the curve by curvature flow with an

increased effect away from salient features, while the second term attracts the curve towards

the bottom of a potential well created by the function g. A typical choice for g is the
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following gradient-based potential:

g =
1

1 + ‖∇Iσ‖2
(2.11)

In the specific case of open curves with fixed end-points, the Fast Marching algorithm

[133] enables to find a global minimum of Lg in (2.9), as shown by Cohen and Kimmel in

[45]. In an earlier work, Fua and Leclerc have studied the minimization of a normalized

version Lg/L for open curves with free end-points [71] for the purpose of edge detection.

Level-Set Representation

Since their introduction in computational fluid dynamics by Osher and Sethian [133] and

in the image processing community by Casseles et al. [33] and Malladi et al. [113], the

level-set framework is the reference numerical implementation of geometric flows for closed

curves and surfaces such as (2.6). In a general setting, let Γ(t) : R+ → Rn be a smooth

family of n− 1 dimensional closed hyper-surfaces evolving in the direction of their normal

N with the image-dependent speed function F , such that

∂Γ

∂t
= FN (2.12)

The level-set methodology is a numerical implementation of the above equation that re-

lies on the definition of an auxiliary real-valued embedding function Φ(x, t) : Rn × R+ → R,

required to be Lipschitz-continuous. The implicit representation Φ is constructed so that

Γ corresponds to the zero-crossings of Φ at all times:

∀t, Γ(t) = {x ∈ Rn,Φ(x, t) = 0} (2.13)

or, equivalently:

∀t, Φ (Γ(t), t) = 0 (2.14)

To satisfy the above equation for t = 0, let the initial Φ(x, 0) be a function that takes

negative values inside the region enclosed by the closed surface Γ(0) and positive values

outside. Then, the inward unit-normal of Γ (and of every other level-set) is given by

N = − ∇Φ

‖∇Φ‖
(2.15)

.

Differentiating (2.14) with respect to t yields the evolution equation for Φ such that its

0-level coincides at all times with the geometric flow (2.12):

∂Φ

∂t
= F ‖∇Φ‖ (2.16)

Unlike Lagrangian approaches for evolution equations of parameterized curves and sur-

faces, level-set formulations are purely geometric, valid in any dimension, and readily handle

changes of topology such as splitting and merging of the interface. This last property can
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be very valuable for segmentation applications in medical imaging in order to capture ob-

jects of complex topology such as 3D vascular structures. This Eulerian specification of the

flow field also yields easier numerical implementations on a fixed Cartesian grid and avoids

polygonal meshes issues like self-intersections and degeneracy of the polygons. Differen-

tial quantities of the propagating front can also be directly obtained from the embedding

function. In particular, the mean curvature κ is given by:

κ = ∇.
(
∇Φ

‖∇Φ‖

)
(2.17)

Thus, the level-set version of the curvature flow (2.7), illustrated in Fig. 2.2 is:

∂Φ

∂t
= ‖∇Φ‖∇.

(
∇Φ

‖∇Φ‖

)
(2.18)

Figure 2.2 — Geometric Heat Equation in 2D, with an implicit representation of the contour.
Level-Set implementation using (2.18) with periodic re-distancing.

Similarly, the Geometric Active Contours model described by (2.10) can be realized by

the following level-set version to handle changes of topology, as illustrated in Fig. 2.3:

∂Φ

∂t
= g∇.

(
∇Φ

‖∇Φ‖

)
‖∇Φ‖+ 〈∇g,∇Φ〉 (2.19)

In the examples shown in Fig. 2.2 and Fig. 2.3, the initial embedding function Φ(x, 0)

is the signed distance function to Γ(0), an obvious candidate chosen in most applications

of level-set techniques since this function is easy to compute and smooth in the vicinity of

the curve. To avoid numerical stability issues due the tendency of the level-sets of Φ to get

close to each other near the object boundaries, causing ‖∇Φ‖ to become increasingly large,

the standard trick of re-initializing of the function Φ to the signed distance function of its

0-level is performed periodically.

We have briefly exposed the principles and theoretical advantages of level-set techniques

to model the evolution of curves or higher-dimensional manifolds towards image features.

This constitutes the beginnings of the popularity of implicit representations in image seg-

mentation. In this respect, this is related to our work on implicit surfaces. Among all

aforementioned advantages, the ease of description and manipulation of surfaces in 3D is

probably the most prominent to handle volumetric data in medical imaging. However, level-

set implementations, as they were first exposed, suffer from a relatively high computational

complexity, hence are unable to cope with requirements of 3D interactive applications.
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Figure 2.3 — Geometric/Geodesic active contours in 2D with a level-set representation and pe-
riodic re-distancing. First row: geometric flow of Eq. (2.10) where g is given by (2.11) and I is
the background image composed of two binary objects. Second row: the curve C is embedded in
a level-set representation Φ, resulting in the flow (2.19). Observe that the initial curve C0 (left) is
able to split to capture two separate objects (right)

There exists an extensive literature on improving the efficiency of numerical solvers

for the underlying partial differential equations, such as the Additive Operator Splitting

scheme described by Goldenberg et al. in [75] and references therein. Other improvements

consist in reducing the number of nodes of the Cartesian grid on which computations

are performed, taking advantage of the fact that only the neighborhood of the evolving

interface matters. This is the rationale behind the narrow-band method of Adalsteinsson

and Sethian [1], the hierarchical octree representation proposed by Strain et al. [163] as well

as the use of coarser grid decompositions with B-Spines [14, 15] or Radial Basis Functions

[73]. Nonetheless, level-set implementations of geometric flows still remain intrinsically slow

due to the way the smoothness of the solution is enforced. They require solving nonlinear

parabolic partial differential equations on a possibly large time domain, from the initial

position until the actual object boundary is reached. The parabolic nature is due to the

mean curvature term and imposes a stringent restriction on the time step to ensure stability.

Using curvature to control the regularity of the solution is theoretically sound for many

applications in computational physics. For segmentation applications in medical imaging,

regularity is needed to cope with noisy acquisitions and to model the smooth nature of

anatomical structures boundaries. In this case, the use of curvature terms is certainly not

the only possible choice and is questionable from a practical perspective. As we will see,

all the algorithms that we have developed in this work are also iterative schemes derived

from variational formulations using implicit representations in 3D, but none relies on the

computation of the surface curvature.

Another intrinsic limitation to all previously-described deformable models is their edge-

based strategy, since they aim at finding an optimal curve or surface that best fits local

features such as image gradients. Unfortunately, good performance is only achieved when
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they are properly initialized and the target structure is well-contrasted everywhere . In

the following section, we will review variational formulations derived from global quality

measures, usually justified from a probabilistic perspective, which leads to region-based

rather than edge-based cost functionals. Nonetheless, local edge information can also be

included. Hence, the resulting formulations are more general, while keeping the same local

fitting accuracy. Although gradient-descent optimization schemes are still employed, the

respective functionals have less local minima so that segmentation results tend to be more

robust to imaging noise and initial conditions. This key advantage is the main practical

motivation for the general framework that will be followed throughout this manuscript and

presented in details in Chapter 3.

2.4 Region-Based Variational Approaches

Region-based deformable models constitute a slight change of perspective compared to pre-

vious edge-based formulations. Rather than considering the evolving curve/surface in itself,

it is comprehended as the boundary of a region, the set of pixels that it encloses. The goal

is to take into account in the evolution equation global information on the image features

that lie inside and outside this region. Obviously, this perspective is only meaningful for

closed surfaces.

2.4.1 Optimal Piecewise-Smooth Approximation

Noteworthily, the pioneering works in this direction are not in the area of deformable models.

In a spatially-discrete setting, Region Growing [2, 28], Split-And-Merge [139] and Markov

Random Fields are the first region-based approaches. In a spatially-continuous setting,

seminal works include the Minimum Description Length (MDL) proposed by Leclerc [103]

and the Graduated-Non-Convexity optimization of the weak membrane model, by Blake and

Zisserman [19]. The Mumford-Shah piecewise-smooth image approximation model [126]

has a major influence in most subsequent segmentation algorithms that rely on region-

wise features. This inverse problem, originally developed for the purpose of restoration,

involves the recovery of a noise-free, piecewise-smooth image f from a degraded version,

the measured image I, with the following functional:

F[126](f,Γ) = µL(Γ) + λ

∫
Ω

(I − f)2 + ν

∫
Ω−Γ
‖∇f‖2 (2.20)

where Γ is the set of discontinuities of f and L(Γ) is the length of this set, chosen as a

geometric constraint. The second term is a quadratic elastic energy that tightly links f to

the original image I and the third term enforces the smoothness of f almost everywhere

except at the discontinuities that shall be preserved. Even though the study of the gener-

al Mumford-Shah variational problem is particularly involved and still an active research

topic, minimization algorithms exist (see for instance [3, 123, 143] and references therein).

However, they are both non-trivial and of little practical use for segmentation applications

in medical imaging, in particular because the set of discontinuities Γ is not in general a set
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of closed curves. Nevertheless, several simplifications and approximations can be studied.

For instance, in the limiting case ν →∞, ‖∇f‖ has to vanish, leaving only constant values

for the function f , which yields the following simplified functional, often referred to as the

piecewise-constant cartoon limit

F̂[126] ({ci},Γ) = µL(Γ) + λ
∑
i

∫
Ωi

(I − ci)2 (2.21)

where Γ is now the set of curves delineating the boundaries of closed and disjoint regions

Ωi ⊂ Ω and the ci’s are the constant values of f in each Ωi. The values ci can be easily

shown to correspond to the average intensity of I in each region. Numerous efforts have been

directed towards turning this simplified functional, also studied by Blake and Zisserman

[19], into a variational model for segmentation in both the discrete [23] and continuous [39]

settings. Besides its influence for many algorithms, the cartoon model, also referred to as

the minimal partition problem, remains of limited application scope since images that can

be accurately described by constant values in each region are extremely rare in practice.

2.4.2 Region Competition

Although region-based criteria already appear in the works by Cohen et al. [44], Ronfard

[147] and Chakraborty et al. [35] for image segmentation in two regions with curve evolution

schemes, a remarkable unification effort is proposed by Zhu and Yuille in the descripton

of their Region Competition algorithm [189]. They identified many relations between the

variational models derived from the Mumford-Shah approximation, the Minimum Descrip-

tion Length principles [103] and the heuristic procedures behind algorithms such as Region

Growing. Inspired by Maximum a Posteriori approaches from Markov Random Fields [74],

they proposed to extend the cartoon limit (2.21) by replacing the constant values in each

region by a more general parametric form of intensity distributions, in a Bayesian frame-

work. Assuming the image intensities are independent and identically distributed (i.i.d.) in

each region i, let P (I(x)|αi) be the posterior probability that point x belongs to region i

given its intensity I(x) and the parameters of the distribution described by the vector αi.

The authors in [189] propose the following variational formulation for segmentation into an

unknown number of disjoint regions:

F[189] ({Ωi}, {αi}) =
∑
i

λ+
µ

2

∫
∂Ωi

ds−
∫
Ωi

logP (I(x)|αi)dx

 (2.22)

where µ > 0 balances the geometric smoothness prior which corresponds to the length of

the boundary curves and λ > 0 is a code length to describe a region Ωi that only serves

as MDL criterion for the merging stage of the algorithm. In the case of a fixed number of

regions, λ can be set to 0. If P is chosen to be a Gaussian probability distribution of known

variance, F[189] eventually reduces to the cartoon limit (2.21). In this simplified case, the

unknown parameters αi correspond to the average values ci in each region in (2.21).
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The optimization can be done by following an alternate scheme for the unknown vari-

ables Ωi and αi. In a first stage, regions Ωi are fixed, optimal parameters αi in each region

are estimated by Maximum a Posteriori. This is particularly easy in the Gaussian case but

the principle applies to any other parametric probability distribution. In a second stage,

parameters αi are fixed and boundaries move according to gradient-descent equations ob-

tained from functional derivatives of F[189]. After transformation of the region integrals in

(2.22) into boundary integrals using Green-Riemann theorem and calculation of the corre-

sponding Euler-Lagrange equations, the authors show in [189] that any point y lying on

one of the region boundaries ∂Ωi should move according to:

dy

dt
=

∑
k∈Q(y)

{
−µ

2
κknk + logP (I(y)|αk)nk

}
(2.23)

Q(y) corresponds to the set of k such that y lies on ∂Ωk, to account for multiple junction

points, and nk and κk are respectively the outward unit normal and the curvature of ∂Ωk at

point y. Considering a point y that belongs to exactly two boundary curves, for instance at

the interface between region 1 and region 2, since the normals and curvature are the same

with opposite signs, κ1n1 = κ2n2 and (2.23) simplifies to:

dy

dt
= −µκ1n1 + log

P (I(y)|α1)

P (I(y)|α2)
n1 (2.24)

The first smoothing term corresponds exactly to the Euclidean curve shortening flow1

(2.7) while the second one determines the motion of y according a likelihood ratio test: if

I(y) fits better to the distribution of Ω1 than to that of Ω2, P (I(y|α1) > P (I(y|α2) and

the curve will move so that Ω1 embraces y. This algorithm is called Region Competition

since the intuition behind (2.24) is that adjacent regions compete for ownership of pixels

along their boundaries [189].

This Region Competition algorithm, in particular the probabilistic formulation of region-

wise terms and their inclusion in boundary evolution schemes, has inspired many authors

and paved the way for a vast number of subsequent algorithmic improvements and gener-

alizations [31, 39, 59, 83–85, 89, 134, 135, 137, 153], including the ones presented in this

manuscript. In [52], Cremers et al. give a broad overview of statistical approaches in level-

set segmentation that include color, motion and shape as additional features to simple pixel

intensity.

Zhu and Yuille use a Lagrangian numerical implementation (2.24), despite the advan-

tages of Eulerian versions with the level-set technique already discussed in section 2.3.2.

Moreover, they mention the possible inclusion of additional edge-based terms, without fur-

ther details. Jehan-Besson et al propose in [89] an alternative Eulerian minimization scheme

using mathematical tools from shape optimization of Delfour and Zolesio [54, 55]. In the

Geodesic Active Regions [137], Paragios and Deriche propose to substitute the length con-

straint with the geodesic length Lg (2.9) to complement the region competition framework

1the negative sign is the consequence of an opposite (here outward) convention for the unit normal



2.4. REGION-BASED VARIATIONAL APPROACHES 25

with both an edge-based term and a multi-phase level-set technique [153, 188]. The im-

portant conceptual difference with what follows is that the implicit representation is only

used as a numerical implementation of a boundary evolution derived from a region-based

functional.

In the following section, we describe an alternative approach, proposed by Chan and

Vese [39], in which the implicit representation is directly expressed in the functional itself, as

the optimization variable. We emphasize this difference since we adopt a similar perspective

for designing the algorithms presented in chapter 4, 5 and 6.

2.4.3 Active Contours Without Edges

In [39], Chan and Vese propose a numerical algorithm to solve a simplified version of the

minimal partition problem (2.21). They assume the image I : Ω → R is composed of only

two regions that can be approximated by constant values c1 and c2, without clearly-defined

edges. Let Ω1 ⊂ Ω be the foreground region, Ω2 = Ω\Ω1 the background region, and

Per(Ω1) the perimeter of their common boundary. Then, the minimal partition problem

can be re-written as the minimization of:

F[39](Ω1, c1, c2) = µ Per(Ω1) + λ

∫
Ω1

(I(x)− c1)2dx + λ

∫
Ω\Ω1

(I(x)− c2)2dx (2.25)

Their key idea is to use an implicit representation Φ : Ω→ R, not as a mean to describe

the evolving boundary as in previous level-set techniques, but as a representation of the

foreground region Ω1. With the Heaviside step function H : R→ {0, 1} defined by

H(a) =

{
1 if a ≥ 0

0 otherwise,
(2.26)

the characteristic function of the foreground set Ω1 is equal to H (Φ(x)). By means of the

Dirac distribution δ(a) = H ′(a), where the derivative is defined in the sense of distributions,

the perimeter of the boundary of Ω1 is given by [39]:

Per(Ω1) =

∫
Ω
‖∇H(Φ)‖ =

∫
Ω
δ(Φ)‖∇Φ‖ (2.27)

Consequently, minimizing (2.25) is equivalent to minimizing:

F[39](Φ, c1, c2) = µ

∫
Ω
δ(Φ)‖∇Φ‖+ λ

∫
Ω
H(Φ)(I − c1)2 + λ

∫
Ω
H(−Φ)(I − c2)2 (2.28)

The new unknown variable is the function Φ, and the three integrals are now defined over

the whole fixed domain Ω, which will eventually simplify the computation of the functional

derivatives with respect to Φ. Since H is not differentiable in the usual sense, a smooth

approximation Hε is introduced in [39], and we will come back later to the important

implications of this choice. Given this approximation, the gradient-descent equation for Φ,

directly derived from the first variation of the functional (2.28), is:

∂Φ

∂t
= δε(Φ)

[
µ ∇.

(
∇Φ

‖∇Φ‖

)
− λ (I − c1)2 + λ (I − c2)2

]
(2.29)
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Figure 2.4 — Active Contours Without Edges - Experiment on a 2D image with blurry object
boundaries, following evolution given by (2.29). First row: evolution of the contour {Φ = 0}. Second
row: evolution of the underlying optimal piecewise-constant approximation Î = H(Φ)c1 +H(−Φ)c2
where optimal c1 and c2 are given by (2.30). Observe that the contour automatically undergoes
topology changes, not only by split/merge mechanisms, but also by spontaneously creating new
regions or holes.

At regular time intervals, this evolution of Φ should be interlaced with an estimation of

the other unknown variables, the scalar values c1 and c2. They are obtained by setting the

derivatives of F[39] with respect to c1 and c2 to 0, which yields:

c1 =

∫
Ω
H(Φ)I∫

Ω
H(Φ)

and c2 =

∫
Ω
H(−Φ)I∫

Ω
H(−Φ)

(2.30)

In Fig. 2.4, the Active Contours Without Edges [39] algorithm is illustrated on an image

composed of two synthetic objects with blurred edges. Observe that the contour automat-

ically undergoes changes of topology, not only by splitting or merging, but also by sponta-

neously creating new regions and holes, which enables the detection of inner structures as

well as objects that lie completely outside the initial contour. In theory, this should not

be possible for boundary evolution algorithms, even with a level-set representation, since

this behavior does not correspond to a continuous evolution of a curve. This is a side effect

of the substitution of the smooth approximation Hε for H that significantly alleviates the

sensitivity of the method to initial conditions. As discussed in the original paper [39], this

effect relates to the tendency to obtain a global minimizer, even though F[39] is non-convex.

Indeed, the precise choice of the regularization Hε of H is a crucial ingredient of the al-

gorithm. While any approximation Hε satisfying lim
ε→+∞

Hε = H would be a valid choice to

compute the functional derivatives, Chan and Vese suggest the use of the following C∞
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non-compactly supported approximation (see Fig. 2.5):

Hε(a) =
1

2

(
1 +

2

π
arctan

(a
ε

))
⇒ δε(a) =

ε

2(ε2 + a2)
(2.31)

Figure 2.5 — Approximations Hε and δε, for various values of ε, using the non-compact smooth
approximation (2.31), with ε = 4 (black), ε = 2 (red) and ε = 1 (blue)

Since the approximation is non-compact, the data term is non-zero away from the

current boundary, with a capture range that depends on the value of ε, as shown in Fig 2.5.

Although large values of ε enable the creation of holes and new regions, it is not an intrinsic

feature of the variational problem (2.28) itself, but rather a side consequence of the chosen

approximation for H, which means that other choices would lead to different results. How

this relates to the global minimization of the minimal partition problem is best explained in a

later work by Nikolova et al. [130]. It is shown that δε(Φ) can be removed from the gradient-

descent evolution (2.29) without affecting the stationary solution, since ∀a ∈ R, δε(a) > 0,

which yields:

∂Φ

∂t
= µ ∇.

(
∇Φ

‖∇Φ‖

)
− λr with r = (I − c1)2 − (I − c2)2 (2.32)

In turn, (2.32) is the gradient-descent equation of the following functional [130]:

F[130](Φ) = µ

∫
Ω
‖∇Φ‖+ λ

∫
Ω

Φ r (2.33)

The key observation is that F[130] in (2.32) is convex with respect to Φ. Hence, the choice

of a non-compact approximation Hε is equivalent in practice to changing the original non-

convex functional into a convex one, which explains the propensity of the algorithm for

providing globally-minimizing solutions regardless of initial conditions. More details on the

associated convex problem are discussed in Chapter 3. A convex formulation is developed

that relates to F[130], with a new interpretation of Φ as a membership function. We will

also discuss how convexity has both practical advantages and shortcomings. In particular,

global minimizers tend to include many disconnected objects in the image, which is not

always a desired feature.
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Extension to Piecewise-Smooth Images

As already mentioned, the piecewise-constant hypothesis is too unrealistic for medical im-

ages and fails to provide accurate segmentations in most cases. A first possible generaliza-

tion is that of Zhu and Yuille [189], substituting the single constant value in each region

with a global probability distribution. This has the advantage of covering the non-Gaussian

case, but does not handle the case of spatial variations of tissue properties within a single

object. Even closer to reality is to assume that objects have smoothly-varying properties

in space, with jumps across their boundaries, as in the full Mumford-Shah functional, with

ν < +∞ in (2.20). Modeling these variations can be crucial for vessel segmentation in an-

giography, due to the non-constant concentration of contrast agent in blood after injection,

as discussed in Chapter 4. The bias field corrupting Magnetic Resonance images is another

example source of low-frequency spatial variations in intensity that need to be modeled.

Figure 2.6 — Piecewise-constant model fails to capture spatial variations in intensity. Experiment
on a synthetic image with linear ramp as background and a smoothly-varying foreground, following
(2.29). The Evolution of {Φ = 0} in this case illustrates the need for modeling smoothly-varying
intensities, as in Fig. 2.7

In order to generalize previous models to piecewise-smooth images, Vese and Chan

[177] and Tsai et al. [172] propose two similar algorithms, with slightly different numer-

ical schemes, in an attempt to solve the Mumford-Shah functional with curve evolution

techniques and the level-set method. In [44], Cohen et al. already develop a related idea

to extract a lake of approximately constant intensity from its surrounding landscape that

shows spatially-varying intensity values. In the following, we focus on the formulation for

two regions, although the case of multiple regions, with possible triple junctions, is also

discussed in [177] and [172].

The extension to piecewise-smooth images involves the substitution of the constant val-

ues c1 and c2 with two unknown C1 functions, namely s1 : Ω1 → R and s2 : Ω2 → R, defined

in each region Ω1 and Ω2. With an implicit representation Φ, Ω1 = {x ∈ Ω,Φ(x) ≥ 0} and

Ω2 = {x ∈ Ω,Φ(x) < 0}, so that the new functional reads [177]:

F[177](Φ, s1, s2) = µ

∫
Ω
‖∇H(Φ)‖ + λ

(∫
Ω
H(Φ)(I − s1)2 +

∫
Ω
H(−Φ)(I − s2)2

)
+ ν

(∫
Ω
H(Φ)‖∇s1‖2 +

∫
Ω
H(−Φ)‖∇s2‖2

)
(2.34)

The regularity of the functions si is enforced by the last two terms, penalizing the square
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norm of their gradient with a scale parameter ν > 0. Following the same methodology as

in the previous section with a smooth approximation Hε, the first variation with respect to

Φ yields the gradient-descent equation:

∂Φ

∂t
= δε(Φ)

[
µ ∇.

(
∇Φ

‖∇Φ‖

)
+ λ

(
(I − s2)2 − (I − s1)2

)
+ ν

(
‖∇s2‖2 − ‖∇s1‖2

)]
(2.35)

The evolution equation (2.35) should be interlaced with an estimation of the smooth

approximations si. The Euler-Lagrange equation of F[177] shows that they are solutions of

a Poisson equation, with Neumann boundary conditions [172, 177]:

ν∆si = λ (si − I) in Ωi

∂si
∂n

= 0 on ∂Ωi ∪ ∂Ω
(2.36)

where ∂/∂n denotes the derivative in the normal direction n at the boundary. This equation

can be solved by conjugate-gradient iterative solvers [126] and has the effect of selectively

smoothing the image by a diffusion process restricted to the domain Ωi. As shown in

Fig. 2.7, the coupled partial differential equations (2.35) and (2.36) simultaneously realize

both image segmentation and edge-preserving smoothing.

Figure 2.7 — Simultaneous segmentation and noise removal with piecewise-smooth model, with
recovery of spatial intensity variations. Experiment on a synthetic image with linear ramp as back-
ground and a smoothly-varying foreground, following (2.35). First row: evolution of {Φ = 0}.
Second row: optimal piecewise-smooth approximation Î = H(Φ)s1 +H(−Φ)s2.

A first practical difficulty arises in the evolution of Φ, where terms in ‖∇si‖ in (2.35)

appear multiplied by δε(Φ). As already discussed, δε(Φ) is non-zero everywhere in Ω, since

the support of δε is non-compact. Even with a compact-support approximation such that

δε(Φ) is confined in a narrow band around the zero-crossings of Φ, knowledge of s1 and s2

is still needed on both sides of the boundary, while their definition domain is theoretically

restricted to one or the other, as solutions of (2.36). In [177], the authors propose a

numerical fix through a heuristic extension, solving the Laplace equation ∆si = 0 with
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prescribed boundary conditions, but this is not justified from the variational formulation

F[177]. In contrast, we develop in Chapter 3 a method that gives similar results but relies

on approximations si that are defined over the whole domain Ω.

The second major practical limitation of such piecewise-smooth approaches with cou-

pled partial differential equations is their computational complexity: the estimation of both

functions s1 and s2 should be performed at each step because the boundary conditions move

accordingly to the evolution of the interface. Combined with the time step restrictions in-

duced by the curvature term in (2.35), the computational complexity becomes prohibitively

expensive and, to our knowledge, this method has never been applied to volumetric datasets

for this reason. On the contrary, the piecewise-smooth formulation that we develop in Chap-

ter 3 does not have this limitation. Instead of being solutions of diffusion equations such as

(2.36) that require iterative solvers, the optimal approximation functions si have a simple

closed-form expression, which allows much faster evaluations and 3D implementations.

2.4.4 Non-Parametric Models with Information Theory

Using Bayesian principles, the Region Competition algorithm [189] and subsequent efforts

along the same line [30, 40, 52, 89, 137] have in common to derive a statistical criterion

from the maximization of the posterior probability of the segmentation, given the observed

image. Such methods make strong assumptions about the probability distribution of fea-

tures in each region in the form of parametric models, so that only a small set of statistical

parameters (such as mean and variance) are optimized. The choice of a specific model,

often Gaussian or mixtures of Gaussian, restricts the applicability to the limited set of

images that satisfy the underlying assumptions. Deviations from the expected model can

significantly degrade the result of the segmentation.

To overcome this limitation, non-parametric statistical boundary evolution algorithms

have emerged for segmentation and tracking [83, 85, 90, 95]. Using intensity distribu-

tions [95], multivariate texture features [9] or motion information [84], these methods fol-

low a common methodology. An objective criterion is derived from information-theoretic

measures such as the entropy of the region distributions. In all cases, the Parzen window

estimation is used as an analytical expression of unknown probability distributions in order

to calculate derivatives.

Recall that Parzen window method [138], also referred to as kernel density estimation, is

a standard tool to estimate a smooth probability distribution in a non-parametric fashion.

Its principle is illustrated in Fig. 2.8 in the discrete case.

In the continuous case, the analytical expression of the estimated density in a region

Ωi ⊂ Ω of a scalar image I : Ω→ R reads :

pi(a) =
1

|Ωi|

∫
Ωi

K (I(x)− a) dx (2.37)

where the kernel K, typically Gaussian, satisfies:

∀a ∈ R, K(a) > 0 and

∫
R
K(a)da = 1 (2.38)
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Figure 2.8 — Estimation of a probability density function using Parzen windows in the discrete
case: The red dots corresponds to N realizations of a discrete random variables {xi}. Each xi
is associated to a kernel K(xi − a), here Gaussian, shown in black. The estimated probability

distribution is p(a) =
1

N

∑
i

K(xi − a)

Using kernel density estimation, non-parametric segmentation algorithms do not make

any assumption on the underlying probability distribution. Therefore, they are suitable for

intensity distributions with multiple modes. Such distributions are encountered in practice

for objects composed of multiple tissues where each tissue is roughly homogeneous, as illus-

trated on a synthetic image in Fig. 2.9. In particular, the background region of anatomical

structures often falls in this category, since target objects are usually surrounded by several

organs.

Region-based segmentation algorithms using non-parametric density estimation differ

in the choice of an objective criterion derived from information theory, in particular based

on Shannon’s entropy. The underpinning assumption is that a region may be characterized

by the average quantity of information conveyed by its intensity values. Intuitively, the

entropy of a region provides a measure of uncertainty and statistical inhomogeneity. The

extension of Shannon’s entropy to continuous variables is often referred to as the differential

entropy :

h(p) = −
∫
R
p(a) log p(a)da (2.39)

In [83], Herbulot et al. propose to minimize the sum of foreground and background

entropies h(p1) + h(p2), with pi expressed as in (2.37) to make the dependence of the

criterion on the segmentation explicit. In [95], Kim et al. choose to maximize the mutual

information between the original image and a label map, taking one discrete value in each

region. It can be shown to be equivalent to the minimization of [84, 95]:

F[95](Ω1) = µ Per(Ω1)− λ
2∑
i=1

∫
Ωi

log pi(I(x))dx

= µ Per(Ω1)− λ
2∑
i=1

∫
Ω1

log

(
1

|Ωi|

∫
Ωi

K (I(x)− I(y)) dy

)
dx

(2.40)
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where the boundary perimeter is again the geometric constraint that regularizes the solu-

tion. With an implicit representation Φ, positive in the foreground region, the gradient-

descent evolution of (2.40) is:

∂Φ

∂t
(x) = δε(Φ)

(
µ∇. ∇Φ

‖∇Φ‖
− log

p1(I(x))

p2(I(x))

)
+ δε(Φ)

(
1

|Ω2|

∫
Ω2

K(I(y)− I(x))

p2(I(y))
dy − 1

|Ω1|

∫
Ω1

K(I(y)− I(x))

p1(I(y))
dy

) (2.41)

In Fig.2.9, we show the evolution (2.41) on a synthetic image in which object and back-

ground are composed of several inner structures. In such a case, non-parametric estimation

enables to capture multiple modes in the intensity distributions. In Fig.2.10, the regions

are generated by two intensity distributions of exact same mean and variance, which makes

the foreground object invisible to the eye. Nevertheless, the algorithm is able to recover the

correct segmentation by exploiting higher-order statistical moments of the distributions.

Figure 2.9 — Segmentation with entropy and non-parametric distributions - the case of multiple
modes. The first row shows the evolution of the inside (red) and outiside (blue) probability distri-
butions during the evolution of the segmentation given in the second row: Starting from an initial
circle ( black), the curve evolves following (2.41) towards the boundaries of a synthetically-generated
hand composed of several intensity modes.

Interestingly, the functional F[95] in (2.40) is almost identical to the region competition

functional with the only difference that the parametric density function P (I|αi) is replaced

by a non-parametric estimate pi(I). Consequently, the likelihood ratio test log(p1/p2)

is still present in the evolution (2.41). The conceptual difference is revealed by the last

two terms, reflecting the changes in the density function induced by the movement of the

boundary. These coupling terms are a consequence of introducing the analytical expression

of the density estimate directly in the functional, rather than considering it as an unknown

variable that is periodically re-estimated. Therefore, (2.41) can be viewed as a true gradient-

descent in contrast to the coordinate-wise descent of region competition. However, since the

evolution of the boundary is usually much faster than the changes in intensity distributions,
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Figure 2.10 — Segmentation with entropy and non-parametric distributions - the case of identical
means and variances. The first row shows the evolution of the inside (red) and outiside (blue)
probability distributions during the evolution of the segmentation given in the second row: In this
case, the inside and outside regions of the same hand as in Fig. 2.9 are generated by two intensity
distributions of exact same mean and variance Although the foreground is virtually invisible, (2.41)
enables the recovery of the correct boundaries by exploiting higher-order statistical moments of the
distributions.

it is questionable from an practical perspective whether the coupling terms are worth the

significant complexity overhead. We come back to this discussion in the next chapter and

provide other justifications in favor of the decoupling strategy that consists in neglecting

the last two terms in (2.41). We also develop a generalization to model possible spatial

variations of intensity distribution within a single region, in a similar way than piecewise-

smooth approximations generalize the constant case.

To conclude this section on non-parametric models with information theory, let us men-

tion other possible measures of segmentation quality. The previous algorithm aims at

maximizing the mutual information between each region and its corresponding label. An

alternative criterion is to minimize the mutual information between foreground and back-

ground regions, which is equivalent to maximizing their relative entropy, also known as the

Kullback-Leibler divergence, as proposed by Houhou et al in [87]. Along the same line,

other definitions of distances between probability distributions can be maximized, such as

the Bhattacharyya [120] or the Wasserstein distance. The latter depends on cumulative

distributions to better exploit the relative contrast between regions, as proposed by Chan

et al. in [37]. Spatially-localized extensions are also considered in [129].
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2.5 Conclusion

In the last section of this survey, we exposed the variational principles of region-based

segmentation with a set of reference methods. As a conclusion, let us summarize some key

features that shall be retained in the design of computational algorithms for 3D interactive

medical image segmentation.

First, region homogeneity as a measure of segmentation quality appears to be a simple

and flexible paradigm that applies to a variety of image features and application areas.

Except for simple cases, homogeneity should be regarded in a wider sense than a simple

dispersion around an average value and include information on the whole distribution of

image values inside a given region. In this respect, non-parametric kernel density estimation

is a particularly versatile tool since no assumption on the underlying region distribution is

made.

Secondly, piecewise-smooth image approximations offer the significant advantage of tak-

ing into account spatial intensity variations that may occur inside a single object. This is

an important property for many applications in medical imaging that can not rely on the

hypothesis that the anatomical structure follows a single generative model, in particular for

vessel segmentation. Unfortunately, the existing techniques are seldom used in 3D due to

their prohibitive computational complexity.

Finally, implicit representations are a powerful description of 3D objects of arbitrarily-

complex shapes with for instance several constituent components or inner holes. They can

be used within numerical implementations of surface evolution schemes, as in the level-set

framework, or directly considered to be the unknown variable in the minimization criterion.

To regularize the set of possible solutions, a geometric constraint is most often included.

Unfortunately, this induces a motion by curvature terms that has intrinsic limitations in

terms of numerical stability.



Convex Framework for

Two-Phase Image

Segmentation 3
In this chapter, we develop a generic framework for segmentation of images in two re-

gions (foreground/background) together with a collection of specific, application-dependent

settings. The variational formulation is derived from a number of existing unsupervised

region-based techniques, such as Zhu and Yuille’s Region Competition [189] or Chan and

Vese’s Active Contours Without Edges [40]. However, we extend the standard collection

of available region homogeneity measures with localized versions that do not rely on the

usual assumption that probability distributions of features are space-invariant in each re-

gion. These local extensions are designed so that the computational complexity is kept to

a minimum. In particular, the use of local intensity averages as descriptive features yields

qualitatively similar results than piecewise-smooth approaches derived from the Mumford-

Shah functional [126], only used in 2D, with 3D computing times that are compatible with

clinical usage.

The regularity of the optimal segmentation is usually ensured through a geometric

constraint on the perimeter of the boundary. In this case, we show that the problem can be

re-formulated in a convex way by generalizing the global minimizers of active contours [26,

39]. We give an intuitive interpretation of the convex relaxation process through the use of a

membership function as optimization variable, which allows to update the region statistics

in a consistent way throughout the minimization process. As Bresson et al. in [26], we

borrow a fast optimization scheme from total variation theory and design an algorithm

that provides globally-minimizing solutions in the supervised case. In the unsupervised

case, we illustrate by several examples using global and local region statistics in 2D and

3D that the result of the minimization algorithm is in practice weakly dependent on initial

conditions.

35
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3.1 Introduction

This chapter is divided into three parts. Section 3.2 is a reminder on the fundamental

principles of variational region-based image segmentation. After a description of standard

measures of intensity homogeneity, we also propose two novel classification errors that

are specifically designed to efficiently account for space-varying statistical analysis. In

section 3.3, a computational algorithm is developed that relies on a geometric constraint

to regularize the set of possible solutions. This algorithm, which we called Fuzzy Region

Competition, has a number of desirable properties such as convexity and numerical stability.

Moreover, the optimization scheme works with any intensity homogeneity measure. In

terms of 3D surface representation, which is an important focus of this work, a membership

function describes the foreground region. Finally, we illustrate in section 3.4 on a number

of practical segmentation examples the versatility of the approach combined with global

and local features statistics.

3.2 General Variational Formulation

This first part starts with a unified formulation of a variational problem on which many

image segmentation algorithms, in particular region-based level-set methods exposed in the

previous chapter, are derived. Besides an introduction of the main notations, it is also an

opportunity to present the methodology and underpinning principles that will be followed

throughout the whole manuscript.

From sections 3.2.1 to 3.2.5, we compile a list of possible segmentation quality measures

that can be plugged in the general framework for specific applications, depending on the

expected appearance of target objects in terms of image features. We start from classical

global measures, assuming constant statistical properties in each region. Then, we develop

new extensions to model local, space-varying properties as well. Additional edge-based

criteria are also possible in the same framework, by maximizing the flux of the image

gradient through the region boundary.

For the purpose of this work, the objective of a unified formulation with a catalog of

compatible objective criteria is that all region models will be readily available for each and

every algorithm to support concrete illustrative examples.

Minimization Problem

Let the original image I : Ω → R be a n−dimensional, square-integrable function defined

on a bounded domain Ω ⊂ Rn. For the sake of simplicity, we assume that I takes values on

the real line, although the extension to vectorial images is often natural and examples will

be shown on multi-channel color images.

A region Ωi ⊂ Ω, where i is a region index, is considered to be a subset of the image

domain that can be characterized by a set of descriptive parameters, denoted αi ∈ A. In

the simplest case, αi is a finite-dimensional vector of real values. For instance, if each region

is assumed to follow a Gaussian distribution of image intensities, αi denotes the mean and
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variance of this distribution and A = R2. As we will see, αi can also correspond to a

function such as a smooth approximation or a probability distribution, in which case A is

a functional space.

In order to define an objective criterion that quantifies the quality of a segmentation,

we assume that there exists, for each region Ωi, a function ri that at each point x ∈ Ω

associates a scalar value that measures the classification error of x ∈ Ωi, according to the

descriptive parameters αi. This error function depends on the image I and often takes the

following form:

ri : Ω×A → R with ri(x,αi) = f(I(x),αi) (3.1)

For instance, if a region is described only by its average intensity value ci, the set of

parameters is A = R and a natural choice is ri(x, ci) = (I(x) − ci)
2. In all cases, the

classification error Ei associated to the whole region Ωi is obtained by integrating the

point-wise error,

Ei(Ωi,αi) =

∫
Ωi

ri(x,αi)dx (3.2)

A partitioning of the image into M disjoint regions is obtained by a set of regions

{Ωi}i=1···M that satisfies:

∀i 6= j, Ωi ∩ Ωj = ∅ and
M⋃
i=1

Ωi = Ω (3.3)

Consequently, the total classification error E that should be minimized to obtain an optimal

partitioning is:

E =

M∑
i=1

Ei(Ωi,αi) =

M∑
i=1

∫
Ωi

ri(x,αi)dx (3.4)

Focusing on the case of only two regions, a segmentation is defined by a foreground Ω1

while the background corresponds to everything else Ω2 = Ω\Ω1. Note that the foreground

region is not necessarily a connected set and might contain several objects, as illustrated in

Fig. 3.1.

Figure 3.1 — Partitioning of the image domain Ω in two regions Ω1 and Ω2 = Ω\Ω1
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In order to impose geometric constraints on admissible partitions, the classification error

(3.4) shall be regularized by adding a penalization term, denoted here R(Ω1). For instance,

in many active contour algorithms, the regularization term corresponds to the perimeter

of the foreground, R(Ω1) = Per(Ω1). Therefore, with the above assumptions, a general

formulation of the minimization problem for segmentation of an image into two disjoint

regions reads:

min
Ω1,α1,α2

{
F (Ω1,α1,α2) = R(Ω1) + λ

∫
Ω1

r1(x,α1)dx + λ

∫
Ω\Ω1

r2(x,α2)dx

}
(3.5)

where λ balances the classification error relatively to the regularization constraint. This

minimization problem involves three variables: the foreground region Ω1 and two sets of

descriptive parameters α1 and α2, one for each region. If α1 and α2 are known a priori, the

process of obtaining an optimal partition by minimizing F (Ω1) is referred to as a supervised

segmentation algorithm. On the contrary, if α1 and α2 are unknown and should also be

recovered by minimizing F (Ω1,α1,α2), the process is said to be unsupervised. In the latter

case, we follow the common methodology of a two-stage iterative procedure, summarized

in Algorithm 1 below:

Algorithm 1: General minimization scheme in the unsupervised case

Set iteration j = 0, choose initial Ω0
1

repeat

(A) Ωj
1 fixed, minimize (3.5) w.r.t. α and update parameters αj ,

(B) αj fixed, minimize (3.5) w.r.t Ω1 and update segmentation Ωj+1
1 .

until convergence

Step (B) depends on how the foreground region is represented, which is the key dif-

ferentiating factor between segmentation methods that follow the general form (3.5). In

the next chapters, we study a number of implicit surface representations and associated

computational algorithms that are applicable in a variety of 3D applications in medical

imaging. Since α1 and α2 are fixed, Step (B) also corresponds to the supervised case. In

this case, it is convenient to re-arrange the terms of F in (3.5) as:

F (Ω1) = R(Ω1) + λ

∫
Ω1

r1(x,α1)dx + λ

∫
Ω\Ω1

r2(x,α2)dx

= R(Ω1) + λ

∫
Ω1

(r1(x,α1)− r2(x,α2)) dx + λ

∫
Ω
r2(x,α2)

(3.6)

Since the last term is an integral over the whole domain Ω, it does not play any role in the

minimization with respect to the segmentation Ω1. Thus, (B) is equivalent to

min
Ω1

{
R(Ω1) +

∫
Ω1

r(x)dx

}
with r(x) = λ (r1(x,α1)− r2(x,α2)) (3.7)

Function r in (3.7) will be referred to as the competition function since it drives the solution

towards the object(s) of interest as a result of the competition between inside and outside
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intensity models. r can be interpreted as a signed likelihood test where a negative value

indicates the propensity of pixel x to be part of the foreground. Indeed, in absence of

regularization, R(Ω1) = 0 and the solutions of (3.7) are simply obtained by thresholding:

Ω∗1 = {x ∈ Ω, r(x) ≤ 0} (3.8)

In the next sections, we study Step (A) for a list of global and local statistical region

models and give update formula for the periodic re-estimation of their parameters. This

step only depends on the choice of ri and αi and applies to every algorithm, regardless of

how the foreground is represented. In all cases, it involves the minimization of:

Ei(αi) =

∫
Ωi

ri(x,αi)dx (3.9)

3.2.1 Gaussian Distributions

Following Zhu and Yuille’s Region Competition [189] principle of maximizing a log-likelihood

criterion and assuming a parametric probability distribution P (.|αi), the total classification

error associated to a region Ωi can be defined as:

Ei(αi) = −
∫

Ωi

logP (I(x)|αi) dx (3.10)

which corresponds in the general framework of the previous section to the choice:

ri(x,αi) = − logP (I(x)|αi) (3.11)

If we further assume P to be a Gaussian distribution, this yields the setting: αi = {ci, σi}

ri(x, ci, σi) =
1

2σi2
(I(x)− ci)2 + log(σi)

(3.12)

and the classification error becomes:

Ei(ci, αi) =
1

2σi2

∫
Ωi

(I(x)− ci)2 dx + |Ωi| log(σi) (3.13)

In order to find the update formula at Step (A) of Algorithm 1, we set the derivatives of

Ei with respect to ci and σi to 0:

∂Ei
∂ci

= 0 ⇔ 1

σi2

∫
Ωi

(I(x)− ci) dx = 0

⇒ c∗i =
1

|Ωi|

∫
Ωi

I(x)dx

(3.14)

and
∂Ei
∂σi

= 0 ⇔ − 1

σi3

∫
Ωi

(I(x)− ci)2 dx +
|Ωi|
σi

= 0

⇒ σ∗i =

√
1

|Ωi|

∫
Ωi

(I(x)− ci)2)dx

(3.15)
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This gives the well-known result for a maximum-likelihood estimator of parameters of a

Gaussian distribution: the optimal ci and σi are simply the mean and the standard deviation

inside the region. Note that if σ is known in advance, for instance by relying on noise

estimation techniques prior to segmentation, the Gaussian case simplifies to the cartoon

limit of the Mumford-Shah functional for piecewise-constant images.

Similar maximum-likelihood principles apply to other non-Gaussian parametric families

of intensity distributions. For instance, Bernard et al. exploited the nature of radio-

frequency signals to segment echo-cardiographic images with a Rayleigh distribution [16].

Elagouni et al. have also used a similar prior for pathological myocardial tissues in Late

Enhancement Magnetic Resonance images [63].

3.2.2 Non-Parametric Distributions

When reliable a priori information about the expected distributions is available, parametric

models perform remarkably well. Unfortunately, the choice of a specific model inevitably

limits its applicability to a restricted class of images. Moreover, if parametric distributions

can, in some cases, describe the inside region of an homogeneous anatomical structure,

it is rarely the case for its background, usually composed of various surrounding organs

that create more complex arbitrary intensity distributions. In this section, we develop a

non-parametric formulation and consider the probability density function itself to be the

unknown region parameter.

It seems natural to substitute the parametric form discussed in the previous section with

an estimate of the true probability density, approximated with kernel density estimation.

However, to ensure that the resulting optimization process converges, the following question

arises: is it justified from a variational perspective to alternate between non-parametric

density estimation and segmentation in the two-stage approach? In other words, does an

update of the probability distribution using Parzen windows decrease the overall objective

criterion? To verify this assumption, let us consider the following setting:{
αi = {pi}
ri(x, pi) = − log pi (I(x))

(3.16)

where the region parameter pi : R → R is now a function. To go further, additional

constraints are necessary to ensure that pi is a valid probability distribution:∫
R
pi(a)da = 1 and ∀a ∈ R, pi(a) > 0, (3.17)

With the above assumptions, the constrained minimization problem to solve at each update

Step (A) of the general unsupervised segmentation algorithm is:

min
pi ∈ L1(R)

{
Ei(pi) = −

∫
Ωi

log pi (I(x)) dx

}
subject to

∫
R
pi(a)da = 1

(3.18)
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To find a minimizer under the constraint that function pi sums to 1, we should study the

critical points of the Lagrangian

L(pi, µi) = Ei(pi) + µi

(∫
Rd
pi(a)da− 1

)
(3.19)

where µi ∈ R is a Lagrange multiplier. A necessary condition for p∗i to be a minimizer of L
is that the directional derivative of L in the direction η vanishes for all η. Thus a minimizer

of (3.18) should satisfy: 
∂L(pi + tη)

∂t

∣∣∣∣
t=0

= 0, ∀η
∂L
∂µi

= 0
(3.20)

By the convolution property of the Dirac distribution, the following holds:

Ei(pi) = −
∫

Ωi

log pi (I(x)) dx = −
∫

Ωi

(∫
R

log pi(a)δ (I(x)− a) da

)
dx

≈ −
∫

Ωi

(∫
R

log pi(a)Kε (I(x)− a) da

)
dx

(3.21)

where Kε is chosen so that the approximation becomes exact when ε → 0, which is in

particular true for a Gaussian of scale ε. With this approximation, switching the order of

integration yields:

Ei(pi) = −
∫
R

log pi(a)

(∫
Ωi

Kε (I(x)− a) dx

)
da (3.22)

Under this form, the directional derivative of L is much easier to calculate:

∂L(pi + tη)

∂t

∣∣∣∣
t=0

= −
∫
R

η(a)

pi(a)

∫
Ωi

Kε (I(x)− a) dxda+ µi

∫
R
η(a)da

=

∫
R
η(a)

(
− 1

pi(a)

∫
Ωi

Kε (I(x)− a) dx + µi

)
da

(3.23)

Since the right-hand side should vanish for any function η, the integrand must be equal to

0 for all a ∈ R and the necessary condition becomes:

p∗i (a) =
1

µi

∫
Ωi

Kε (I(x)− a) dx (3.24)

Finally, satisfying the second condition in (3.20) implies:∫
R
p∗i (a)da =

1

µi

∫
Ωi

(∫
R
Kε (I(x)− a) da

)
dx = 1 ⇒ µi =

∫
Ωi

dx (3.25)

Thus, the optimal p∗i is a function that takes the form of a continuous version of the Parzen

window estimate of the density within the region Ωi, with an estimation kernel Kε:

p∗i (a) =
1

|Ωi|

∫
Ωi

Kε (I(x)− a) dx (3.26)
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Note that the second constraint in (3.17), ∀a, pi(a) > 0, is automatically satisfied. In the

case of a negative log-likelihood term, we have formally checked that the update procedure

of pi with (3.26) in Step (A) using kernel density estimation is consistent with the minimiza-

tion criterion. Without any assumption on a parametric form of the probability density,

this estimation offers more flexibility for representing complex, unknown intensity distribu-

tions. As discussed in section 2.4.4, non-parametric models have been used for region-based

segmentation with information theory [9, 83–85, 90, 95, 120, 129]. In the latter techniques,

additional computationally-expensive terms are involved to account for the coupling be-

tween the segmentation and the probability density function. Ignoring the coupling and

considering pi as an unknown function, we have shown that non-parametric models are also

valid in more conventional region-based strategies and two-stage minimization approaches

such as the general framework (3.5).

Besides its simplicity, the alternate minimization scheme has additional advantages.

First, Step (B) can be relaxed to a convex problem, which provides global minimizers.

This will be shown in section 3.3. Second, it is possible to develop a simple extension of

this model to account for spatial variations of probability distributions, leading to a very

general setting with local and non-parametric distributions. In the next section, we explain

the principle of this localization in the Gaussian case, then develop a full extension to the

general case in section 3.2.4.

3.2.3 Local Gaussian Distributions

Most segmentation techniques that describe each region with a global intensity distribution

suffer from several practical limitations regarding discrimination power and reproducibility.

In medical images, it is seldom possible to discriminate between foreground and background

with a single probability density for each region. Typical difficulties include the cases

of cluttered, heterogeneous backgrounds and low-frequency artifacts such as diffusion of

contrast product in tissues or bias fields in MRI. Reproducibility is also hindered by the

fact that simple operations like cropping the image to a region of interest around the target

structure affect the estimation of the background distribution and lead to significant changes

on the final result.

The aforementioned limitations could be significantly reduced if the distributions were

defined locally and allowed to vary in space. We shall first develop such a localized extension

for the piecewise-constant case, assuming Gaussian distributions of known and equal vari-

ance for all regions. This yields a formulation that bears similarities with piecewise-smooth

models, with a much lower complexity.

The key idea to achieve a space-varying extension of a global region-based criterion is

to introduce in the functional a sliding window in order to localize the classification error.

For the piecewise-constant case, the following global classification error is associated to a

region Ωi:

Ei(ci) =

∫
Ωi

(I(x)− ci)2 dx (3.27)
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Now, let us consider the same classification error locally, in a neighborhood of point

y ∈ Ω. A local measure ei(y) of the classification error can be obtained with a symmetric

and positive window function W : Ω 7→ R+∗, such that W (z)→ 0 when ‖z‖ → +∞:

ei(y) =

∫
Ωi

W (x− y) (I(x)− si(y))2 dx (3.28)

Due to the dependence on the location y where the error is estimated, the previously

constant approximation ci is now allowed to vary in space and becomes a square-integrable

function si : Ω → R. The total classification error associated to the region Ωi is obtained

by integrating the localized error ei(y) in the whole domain Ω:

Ei(si) =

∫
Ω
ei(y)dy

=

∫
Ω

(∫
Ωi

W (x− y) (I(x)− si(y))2 dx

)
dy

(3.29)

Switching the order of integration reveals the point-wise error function ri(x, si)

Ei(si) =

∫
Ωi

(∫
Ω
W (x− y) (I(x)− si(y))2 dy

)
︸ ︷︷ ︸

ri(x, si)

dx (3.30)

and the corresponding setting in the general framework (3.5): αi = {si}

ri(x, si) =

∫
Ω
W (x− y) (I(x)− si(y))2 dy

(3.31)

In section 3.3, we will show several examples of segmentations produced using this

localized model with the two-stage iterative minimization scheme. Here, we focus on Step

(A) of the algorithm and study how local average functions si should be updated when the

region Ωi is considered fixed. The optimal s∗i should satisfy the following condition, with

Ei given by (3.30):
∂Ei(s

∗
i + tη)

∂t

∣∣∣∣
t=0

= 0, ∀η (3.32)

The functional derivative of Ei(si) in the direction η is:

∂Ei(si + tη)

∂t

∣∣∣∣
t=0

= 2

∫
Ωi

(∫
Ω
η(y)W (x− y) (I(x)− si(y)) dy

)
dx

= 2

∫
Ω
η(y)

(∫
Ωi

W (x− y) (I(x)− si(y)) dx

)
dy

(3.33)

Since the above expression should vanish for every perturbation η, the integrand inside the

parenthesis must be equal to 0 for all y ∈ Ω. Thus, the optimal s∗i must satisfy:∫
Ωi

W (x− y) (I(x)− s∗i (y)) dx = 0 (3.34)
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If Ωi is non-empty and W is strictly positive, this yields:

∀y ∈ Ω, s∗i (y) =

∫
Ωi

W (x− y)I(x)dx∫
Ωi

W (x− y)dx

(3.35)

Since W is symmetric, W (x− y) = W (y − x) the above expression is a normalized convo-

lution, involving the characteristic function χi of the set Ωi:

s∗i =
W ∗ [χiI]

W ∗ χi
with χi(x) =

{
1 if x ∈ Ωi

0 otherwise
(3.36)

The theory of normalized convolution, introduced by Knutsson and Westin in [97], is

a simple and useful extension of convolution that accounts for uncertain or missing image

samples. In this formulation, normalized convolutions naturally appear from the optimality

conditions to produce local intensity averages inside a region.

Since no smoothing occurs across the boundary of Ωi in (3.36), si can be interpreted

as a smooth approximation of the image restricted to the region Ωi. It is in analogy with

optimal approximations obtained with piecewise-smooth formulations derived from the full

Mumford-Shah functional [172, 177]. Even though no constraint on the derivatives of si is

explicitly minimized, the resulting functions are as regular as the window W . Moreover,

since W is positive everywhere, the denominator of (3.36) does not vanish. Consequently,

the approximation is defined everywhere and extrapolates intensity information of a single

region over the entire image domain. This property is an important difference with the

piecewise-smooth segmentation models in [172] and [177] that confine the definition of si in

the region Ωi only.

Another advantage is that the approximations are obtained by closed-from analytical

expressions involving only two convolutions instead of an iterative process to solve a partial

differential equation. As a result, 3D applications can be envisaged without compromis-

ing efficiency. Furthermore, if W is chosen to be a Gaussian function, having all desired

properties (positivity, symmetry), convolutions can be approximated by recursive linear

filtering [57, 185] with an algorithmic cost that does not depend on the spatial scale.

Let us mention that similar ideas of localizing a piecewise-constant minimal partition

with efficient convolution-based approximations have been independently and simultane-

ously proposed by several authors, including Piovano et al. [140], Brox et al. [29, 31], Li et

al. [107] and our work, described in [125]. Lankton et al. have describe in [102] a slightly

different approach in which localized criteria are defined only around the boundary, not

in the whole domain. They also extend the localization principle to histogram separation

based on the Bhattacharyya distance [120]. Along the same line, we develop in the next

section a generalization of the localized piecewise-constant model, assuming space-varying

Gaussian probabilities, to the case of non-parametric distributions.
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3.2.4 Local Non-Parametric Distributions

Recall that the global classification error of a region Ωi described by a non-parametric

probability distribution is:

Ei(pi) = −
∫

Ωi

log pi (I(x)) dx (3.37)

where no assumption is made on pi other than

∫
R
pi(a)da = 1. Exactly as in the previous

section, we shall consider the same error locally, within a window W around y ∈ Ω:

ei(y) = −
∫

Ωi

W (x− y) log pi (y, I(x)) dx (3.38)

To avoid multiplication of symbol definitions, we adopt the same notation pi, although it

is important to note that pi : Ω× R→ R becomes a function of both space and intensity.

Again, the global classification error is obtained by integrating ei(y) in the whole domain

Ω, yielding:

Ei(pi) =

∫
Ω
ei(y)dy = −

∫
Ωi

(∫
Ω
W (x− y) log pi (y, I(x)) dy

)
︸ ︷︷ ︸

ri(x, pi)

dx (3.39)

Thus, the new setting in the general formulation (3.5) becomes: αi = {pi}

ri(x, pi) = −
∫

Ω
W (x− y) log pi (y, I(x)) dy

(3.40)

with the additional constraint that pi must be a valid probability density at each point in

space, such that:

∀y ∈ Ω,

∫
R
pi(y, a)da = 1 (3.41)

Combining calculus of variations from section 3.2.2 and section 3.2.3, it can be shown that

the optimal p∗i that minimimizes (3.39) under the constraint (3.41) is given by:

p∗i (y, a) =

∫
Ωi

W (x− y)Kε (I(x)− a) dx∫
Ωi

W (x− y)dx

(3.42)

This expression is the formula for the parameter update step of the alternate minimization

algorithm. It is a generalization of normalized convolution to local, space-varying Parzen

window estimates. This is the most general description of a region that we consider in

this work. This generalization is consistent with all previously-mentionned models in the

following sense: in the limiting case of W reducing to a constant value, (3.42) amounts to

computing pi with standard kernel density estimation (3.26). Likewise, if pi is assumed to be

a Gaussian distribution, (3.42) boils down to the piecewise-smooth model with normalized
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convolution (3.36). Finally, if W is constant and pi is assumed Gaussian, everything reduces

to the piecewise-constant model with a single average value as region descriptor. This

property enables all these models to be used in combination so that one can select different

criteria in background and foreground regions of the image for specific target applications.

3.2.5 Maximum-Flux Criterion

In this section, we complete the list of compatible models that can be plugged in the

general framework with an edge-based criterion, a useful complement to the previously-

mentioned region homogeneity measures. A practical motivation of such a combination is

that region-based terms are usually more robust and less sensitive to initial conditions while

the edge-based terms increase segmentation accuracy.

In [176], Vasilevskiy and Siddiqi propose to segment contrasted objects such as vessels

in angiography by maximizing the flux of the image gradient through the region boundary.

This flux is obtained as a boundary integral of the scalar product between ∇I and the

outward-pointing unit normal n to the surface:

F(Ωi) =

∫
∂Ωi

〈∇Iσ,n〉 ds (3.43)

where Iσ is a smoothed version of the image to ensure differentiability before computing

the image derivatives. Intuitively, maximizing F(Ωi) not only attracts the boundary of Ωi

in areas where the norm of the gradient is high, but also tends to snap and align the surface

normals with the gradient in order to maximize the scalar product 〈∇Iσ,n〉.
The boundary integral F(Ωi) can be easily transformed into a region integral with

the divergence theorem that states that the outward flux of any differentiable vector field

v : Ω 7→ Rn through a closed surface is equal to the volume integral of the divergence of v

within the enclosed region: ∫
∂Ωi

〈v,n〉 ds =

∫
Ωi

∇.(v)dx (3.44)

Using (3.44) with v = ∇Iσ, the flux-maximizing criterion can be expressed as:

F(Ωi) =

∫
∂Ωi

〈∇Iσ,n〉 ds =

∫
Ωi

∇. (∇Iσ(x)) dx

=

∫
Ωi

∆Iσ(x)dx

(3.45)

where ∆ is the Laplacian operator. Thus, maximizing the image gradient flux through a

boundary has a tight relationship with the use of Laplacian zero-crossings in the context

of edge detection, as studied by Kimmel et al. in [96]. This corresponds to the following

setting for ri(x,αi) in the general framework:
αi = {∅}
r1(x) = ±∆Iσ(x)

r2(x) = 0

(3.46)
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Classification error function Update of
ri(x,αi) parameters αi

Piecewise-Constant ri = (I(x)− ci)2 ci = mean

Gaussian ri =
1

2σi2
(I(x)− ci)2

+ log(σi) (ci, σ
2
i ) = (mean, var)

Non-Parametric ri = − log (pi(I(x))) pi = Parzen PDF

Piecewise-Smooth ri =

∫
Ω

W (x− y)(I(x)− si(y))2dy si = Norm. Conv.

Local Non-Parametric ri = −
∫

Ω

W (x− y) log pi(I(x),y)dy pi = Local PDF

Gradient Flux r1 = ±∆I(x) r2 = 0 N/A

Table 3.1 — Catalog of global/local region statistics and flux maximization. This table provides
summary information of the region models that can be used with all the algorithms developed in this
manuscript, in a supervised or unsupervised fashion. Depending on the target anatomical structure,
one model can be chosen from this list, optionally with different settings for the foreground (i = 1)
and the background regions (i = 2). The novel piecewise-smooth and local non-parametric models
are contributions of this work and rely on normalized convolution to model spatial variation of
statistical properties with a much lower computational cost than existing approaches with Partial
Differential Equations.

The sign of ∆Iσ must be chosen in advance to perform either minimization or maximiza-

tion of F, which depends on the expected contrast of the target structure. For instance,

segmentation of a dark object on a brighter background implies the choice of r1 = −∆Iσ
for the foreground and r2 = 0.

This concludes the list of intensity models that will be used in all experiments and

illustrations for the unsupervised region-based segmentation algorithms developed in the

following chapters. Table 3.2.5 provides a summary of these criteria and the associated

expression of ri(x,αi), including two new models that are specifically designed to efficiently

account for spatial variations of statistical properties.

In the next section, we propose an algorithm that specializes the general framework in

the case of a geometric constraint on the perimeter of the foreground region, which is a

standard regularization choice since the seminal works on geometric active contours [34, 94]

and the Mumford-Shah model [126]. This leads to a convex minimization with respect to

the partition variable, using a membership function u to represent the foreground region.

Illustrations of all previously-mentioned region intensity models will show the versatility of

this framework to deal with various imaging conditions.
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3.3 Convex Relaxation with a Membership Function

Using the perimeter of the foreground as a geometric constraint R(Ω1) = Per(∂Ω1), the

general formulation (3.5) becomes the following minimization problem:

min
Ω1,α1,α2

{
F0(Ω1,α1,α2) = Per(∂Ω1) + λ

∫
Ω1

r1(x,α1)dx + λ

∫
Ω\Ω1

r2(x,α2)dx

}
(3.47)

where λ balances the classification error relatively to the geometric constraint.

Deriving a computational algorithm to solve (3.47) requires first to choose a repre-

sentation of the foreground region with a suitable function space to allow for calculus of

variations. For their ability to deal with discontinuities, functions of bounded variations

are particularly adapted to study a geometric functional such as (3.47).

3.3.1 Functions of Bounded Variations

A function u : Ω → R is said to be of bounded variation if its total variation is finite. If

u is differentiable, its total variation is the integral over the domain Ω of the norm of its

gradient:

TV (u,Ω) =

∫
Ω
‖∇u‖ (3.48)

If the function u is integrable but not differentiable, its total variation can still be

measured by:

TV (u,Ω) =

∫
Ω
|Du| := sup

{∫
Ω
u(x)∇.ϕ(x)dx : ϕ ∈ C1

c (Ω,Rn), ∀x ‖ϕ(x)‖ ≤ 1

}
(3.49)

where C1
c (Ω,Rn) is the set of continuously-differentiable vectorial functions of compact

support. With this definition, the space of functions of bounded variations is usually denoted

BV (Ω) and defined by:

BV (Ω) =

{
u ∈ L1(Ω),

∫
Ω
|Du| < +∞

}
(3.50)

This space is crucial in order to represent discontinuous functions of bounded variations

such as a binary characteristic function of a set Ωi ⊂ Ω defined by:

χi(x) =

{
1 if x ∈ Ωi

0 otherwise
(3.51)

By construction, χi is not differentiable in the usual sense at the boundary ∂Ωi but is a valid

function of BV (Ω) if Ωi is of finite perimeter with piecewise-regular boundaries [4]. Since

a characteristic function mathematically characterizes a region Ωi as a subset of the image

domain Ω, BV (Ω) is a suitable space to perform calculus of variations in segmentation

algorithms and in many other application areas in image processing such as restoration [3,

149]. Moreover, a useful geometric interpretation of BV (Ω) is obtained with the definition

of the perimeter of ∂Ωi, given as:

Per(∂Ωi) = TV (χi,Ω) =

∫
Ω
|Dχi| (3.52)
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3.3.2 General Convex Extension

The crux of the extension is that the minimization problem (3.47) can be solved by consid-

ering a closely related problem that is convex with respect to the partition variable. Recall

that an optimization problem is convex if it involves both a convex function and a convex

set of admissible solutions. In this respect, (3.47) is not convex since the set of sub-domains

Ωi ⊂ Ω is not convex. Nonetheless, it can be expressed as an optimization problem in the

set of characteristic functions (still non-convex), so that it also reads

min
χ,α1,α2

{∫
Ω
|Dχ(x)|dx + λ

∫
Ω
χ(x)r1(x,α1)dx + λ

∫
Ω

(1− χ(x))r2(x,α2)dx

}
(3.53)

Under this form, we propose to extend (3.47) into a problem that is convex in its partition

variable, replacing the characteristic function χ by a fuzzy membership function u belonging

to a convex set. A suitable choice for this set is the space of functions of bounded variations

taking values in the interval [0, 1], noted hereafter BV[0,1](Ω). In principle, this extension

bears some similarities with relaxation techniques in linear programming, which consist in

substituting a function constrained to only take discrete values {0, 1} with one that takes

intermediate real values in the interval [0, 1]. In this context, the relaxation leads to a new

formulation of the segmentation problem, which we call Fuzzy Region Competition in [125]:

min
u ∈ BV[0,1],α1,α2

{∫
Ω
|Du|+ λ

∫
Ω
u(x)r1(x,α1)dx + λ

∫
Ω

(1− u(x))r2(x,α2)dx︸ ︷︷ ︸
F1(u,α1,α2)

}
(3.54)

The relaxed problem (3.54) is convex with respect to u, hence its solutions globally minimize

F1 and can be found with fast algorithms from convex optimization theory [62]. Note that

(3.54) is convex, but it is not strictly convex. Consequently its solution is not necessarily

unique. However, convexity implies that all solutions form a convex set and correspond to

equal values of F .

Furthermore, the key property is that the solutions of the relaxed problem (3.54) allow

to find solutions of the original problem (3.47) by a thresholding operation, which is for-

malized in Proposition 1 below.

Proposition 1 Fixing α1 and α2, if u∗ ∈ BV[0,1](Ω) is a global minimizer of F1 then for

almost every t ∈ [0, 1], the characteristic function χ∗u(x, t) defined in Ω× [0, 1] by

χ∗u(x, t) =

{
1 if u∗(x) > t

0 otherwise
(3.55)

is also a global minimizer of F1. In addition, the set Ωt = {x ∈ Ω, u∗(x) > t} is a global

minimizer of F0.
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A proof of Proposition 1 is given in Annex A. Proposition 1 reveals that the set of

solutions of Problem (3.54), expressed with a membership function, is stable under thresh-

olding : any binary function obtained by thresholding an optimal membership function is

still a solution of (3.54). In addition, such thresholded binary solution corresponds to the

characteristic function of a set that is a global minimizer of the original problem (3.47).

In practice, the membership function u converges in most cases to a binary function

during the minimization of F1. In this case, all thresholds t ∈ [0, 1] are equivalent and

the solution of both the relaxed problem and the original one is unique. However, there

exist ’pathological’ cases for which several minimizers of F1, not necessarily binary, could

solve the non strictly convex problem (3.54). Those cases do not contradict Proposition 1,

neither do they easily show up numerically.

3.3.3 Fast Minimization Scheme

We can now develop a general optimization strategy to solve every two-phase segmentation

problem that can be expressed through the general formulation (3.47), choosing any of

the models from the list provided in section 3.2. In the unsupervised setting, F1 can be

minimized iteratively by alternating the following two steps:

Algorithm 2: Alternate minimization Scheme with a membership function u

Set j = 0, choose initial u0

repeat

(A) uj fixed, minimize (3.54) w.r.t. α and update parameters αj ,

(B) αj fixed, minimize (3.54) w.r.t u and update membership uj+1.

until steady state of u∗ is found

Choose any t to threshold membership, Ω∗1 = {x ∈ Ω, u∗(x) > t}

Step (A) depends on the specific choice of error functions such as the region models listed

in section 3.2, relying on global or local statistics. As we will see in various examples, the

update formula for the optimal region parameters are similar to the expressions developed in

section 3.2.1 to 3.2.4, with a slight difference: They are obtained using the fuzzy membership

function u instead of a domain integral with a characteristic function.

Step (B), can be realized by applying a generic minimization scheme for the variable

u, following the strategy proposed by Bresson et al. in [26]: Fixing the region parameters,

minimizing F1 with respect to u in BV[0,1] is equivalent to minimizing∫
Ω
|Du|+

∫
Ω
ur (3.56)

in BV under the constraint 0 6 u 6 1, where r(x) = λ (r1(x,α1)− r2(α2,x)) is the com-

petition function. Based on [130], this constrained problem has the same set of minimizers

than the unconstrained problem of minimizing∫
Ω
|Du|+

∫
Ω
ur + βν(u), (3.57)
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with the exact penalty term ν(ξ) = max(0, |2ξ − 1| − 1) and β > 1
2 ‖r‖∞. Even though the

minimization of (3.57) can be numerically performed using a gradient-descent scheme based

on the Euler-Lagrange equation, as in [130] no advantage would be taken of convexity. We

thus choose to follow [26] and exploit the fast duality projection algorithm of Chambolle [36].

To that end, we add an auxiliary variable v and consider the following weak approximation:

min
(u,v)∈BV

{∫
Ω
|Du|+ 1

2θ

∫
Ω

(u− v)2 +

∫
Ω
rv + βν(v)

}
, (3.58)

where θ is chosen to be small enough so that the two components of any minimizing couple

(u∗, v∗) are almost identical with respect to the L2 norm. Note that this approximation is

still component-wise convex in u and v. Again, the problem is minimized by a two-stage

alternate iterative scheme. u being fixed, the optimal v is directly solved point-wise [26]:

v = max (min (u− θ r, 1) , 0)) (3.59)

This update formula should be interpreted in terms of the competition function r. Recall

that negative values of r indicate a propensity of a given pixel to be included in the fore-

ground region, which corresponds to a membership value of 1. Thus, (3.59) reflects this

propensity with a linear update at a speed proportional to θ. When full membership is

attained, v = 1 or v = 0, the function saturates. For large values of θ, this corresponds

to thresholding r at 0, without imposing any regularity. The geometric regularization is

obtained by the coupling between u and v in a second inner loop: v being fixed, we should

find the function u that minimizes the first two terms of (3.58):∫
Ω
|Du|+ 1

2θ

∫
Ω

(u− v)2 (3.60)

which is a convex TV + L2 problem, also known as the Rudin-Osher-Fatemi model for

image restoration with a total variation regularizer [149]. The convex functional (3.60) can

be minimized with a fast duality projection algorithm proposed by Chambolle in [36]. Thus,

Chambolle’s total variation algorithm can be applied for the minimization of (3.58) with

respect to u. This algorithm consists in computing the restored function u from the noisy

image v with [36]:

u = v − θ ∇.p (3.61)

where the vector field p is computed using a fixed point algorithm, iterating on n > 0

τ > 0, p0 = 0, pn+1 =
pn + τ∇(∇.(pn)− v/θ)
1 + τ ‖∇(∇.(pn)− v/θ)‖

(3.62)

In practice, this algorithm is numerically very stable. Even though there is a geometric

constraint on the perimeter of the region, the algorithm does not explicitly require the

computation of the curvature of u, contrary to Euclidean length shortening flows and most

level-set algorithms. In fact, it does not rely on any derivative of u since the evolving

function, in BV (Ω), is not assumed to be differentiable. Thus, the numerical scheme is

consistent with Proposition 1 that expects convergence of u to a binary function.
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Decoupling u and v has a relaxation effect on the regularization and a positive impact

on the overall convergence. Nonetheless, choosing an unreasonably large value of θ is coun-

terproductive since it diminishes regularization almost completely. In all experiments, a

decoupling parameter value of θ = 0.01 is used.

(a) original image (b) p1 and p2 (c) final segmentation

(d) evolution of u with a small circle outside as initialization

(e) evolution of the u with a diagonal linear ramp as initialization

(f) evolution of the u with a random initialization

Figure 3.2 — Fuzzy Region Competition, supervised segmentation of the zebra image: (a) original
image and patches used to estimate the background (dashed) and foreground (solid) histograms p1

and p2 given in (b). (c) Final segmentation. (d-f) 3 different initializations, intermediary states
(step 10-20) and final partition function u (step 300). In all cases, λ = 0.1 and θ = 0.01

In Figure 3.2, we show an immediate application of the generic minimization scheme

in a supervised segmentation experiment on the zebra image. The competition function

r = r1 − r2 is built a priori, using a non-parametric negative log-likelihood model. Prob-

ability distributions pi(I) are estimated from foreground/background user-defined patches

in the image and are kept fixed during evolution, such that r = log(p2/p1). We observe

that this supervised method gives always the same binary partition function, regardless of

initial conditions, even with an initial random initialization.
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(a) original image (b) gradient ∇Iσ (c) r = −∆Iσ

(d) evolution of the membership function u for λ = 0.1

(e) λ = 1 (f) λ = 0.5 (g) λ = 0.2 (h) λ = 0.1

Figure 3.3 — 2D Ultrasound image of a breast lesion. Global geometric flux-maximization with
r = −∆Iσ. The resulting segmentation globally maximizes the image gradient flux through the
boundary, subject to a geometric constraint. Results are shown for decreasing values of λ to show
the effect of the length-shortening constraint. In all cases, θ = 0.01

Figure 3.3 illustrates another supervised example, using the gradient flux as a minimiza-

tion criterion, as detailed in section 3.2.5. The test image is a 2D ultrasound acquisition of

a breast lesion. The competition function is in this case r = −∆Iσ, fixed throughout the

minimization process. Using Proposition 1, the segmenting curve Γ∗ global maximizes the

image gradient flux through the boundary, subject to a geometric constraint:

Γ∗ = min

{
Per(Γ)− λ

∫
Γ
〈∇Iσ,n〉

}
(3.63)

The influence of the geometric constraint is shown by comparing the result for different

values of the free parameter λ in Fig.3.3. Besides smoothing, lower values of λ also tend to

fuse connected components in order to decrease to overall perimeter of the boundary.

In general, flux-maximization provides good accuracy of the boundary localization.

However, without additional intensity homogeneity criterion, it is prone to severe leak-

ages in areas where the contrast tends to fade. Consequently, gradient flux should most

often be combined with other region-based criteria.
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We can now consider unsupervised examples, using classification errors ri(x,αi) devel-

oped in the general case from section 3.2.1 to 3.2.4. In the following, we show that the new

relaxed formulation with a membership function has a consequence on the periodic update

formula for the region parameters αi. They should now be estimated in a fuzzy way at

Step (A) of the two-stage iterative process.

3.3.4 The Piecewise-Constant Case

In [130], Nikolova et al. propose to solve the minimization involved in Chan and Vese’s

Active Contours Without Edges [40] by considering an auxiliary convex problem. They

show that if c1 and c2 are fixed and u∗ is a solution of

min
u∈BV[0,1](Ω)

{
F[130](u) =

∫
Ω
|Du|+ λ

∫
Ω
u
(
(I − c1)2 − (I − c2)2

)}
, (3.64)

then the set Ωt = {x ∈ Ω, u∗(x) > t} is for almost every t ∈ [0, 1] a minimizer of the

minimal variance functional:

F[40](Ω1) = Per(∂Ω1) + λ

∫
Ω1

(I − c1)2 + λ

∫
Ω\Ω1

(I − c2)2 (3.65)

This result inspired the general formulation of section 3.3.2, and also guides the first

unsupervised segmentation algorithm. Solving the Active Contours Without Edges model

corresponds to choosing ri(ci) = λ (I − ci)2, αi = {ci} in the general formulation (3.54),

such that the problem becomes

min
u ∈ BV[0,1]

(c1, c2) ∈ R2

{
Fc(u, c1, c2) =

∫
Ω
|Du|+ λ

∫
Ω
u(I − c1)2 + λ

∫
Ω

(1− u)(I − c2)2

}
(3.66)

Applied to (3.66), Proposition 1 gives the same result that was already shown in [130].

Nonetheless, although closely related by

Fc(u, c1, c2) = F[130](u, c1, c2) + λ

∫
Ω

(I − c2)2, (3.67)

the two involved functionals lead to a slightly different perspective. F[130] is not to be

considered as a minimization on the triplet (u, c1, c2) but as a convex alternative to obtain

a minimizer of the original problem [40], when c1 and c2 are fixed. Indeed, no optimization

of c1 and c2 is involved in [130]. In practice, this implies the choice of an arbitrary level set

of u (e.g. t = 0.5) in step (A) of the alternate minimization scheme.

This may at first seem a minor issue since any level t should eventually produce a mini-

mizer at convergence. However, full convergence of u is not obtained at each step (B) since

the two steps are periodically interlaced. In particular in the first iterations, all levels of u

are not equivalent. Hence the arbitrary choice of a level t for the computation of c1 and

c2 may introduce a bias and slow down the optimization process. On the contrary, in the

proposed approach, the derivatives of Fc with respect to scalars c1 and c2 give directly new
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optimality conditions that naturally involve all levels of the fuzzy membership function and

yield the weighted averages:1 u:

c∗1 =

∫
Ω
uI∫

Ω
u

, c∗2 =

∫
Ω

(1− u)I∫
Ω

(1− u)

(3.68)

Fuzzy Region Competition with a piecewise-constant model follows the generic Algorithm 2,

alternating on:

(A) u being fixed, compute the weighted averages c1 and c2 using (3.68).

(B) c1 and c2 perform a few inner iterations on v (3.59), u (3.61) and p (3.62).

At convergence, the final segmentation is obtained by thresholding u at any level in [0, 1],

as justified by Proposition 1.

(a) evolution of the membership function u

(b) evolution of the level {u = 0.5}

(b) evolution of the piecewise-constant approximation Î = uc1 + (1− u)c2

Figure 3.4 — Fuzzy Region Competition with a piecewise-constant model on the ultrasound breast
lesion image. (a) evolution of the membership function, (b) segmentation boundary at level 0.5,
(c) piecewise-constant approximation Î = uc1 + (1− u)c2. Initialization and all parameters are the
same than in Fig. 3.3 for visual comparison with the flux-maximizing model.

1If u is 0 almost everywhere (or 1 almost everywhere), c∗1 = c∗2 =
1

|Ω|

∫
Ω

I.
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In Figure 3.4, we show the results of the piecewise-constant model on the breast lesion

ultrasound image. Observe that the lesion is fused with a surrounding tissue of similar

intensity because the intensity of the wall separating them is closer to c1 than to c2.

In Figure 3.5, this unsupervised segmentation algorithm is illustrated on a X-Ray image

of a brain aneurysm phantom. As in the supervised case, the steady state is always a

binary function. The final boundary does not depend on the initial conditions, randomly

set in this example. However, as we will discuss in more details in the next chapter,

symmetric foreground/background solutions can be obtained since they exactly have the

same functional value Fc(u, c1, c2) = Fc(1− u, c2, c1).

This method is a tool for segmenting two-phase images corrupted by a Gaussian noise of

constant variance, which is the underlying assumption. Unfortunately, as already discussed,

this is hardly realistic for medical images in clinical applications.

(a) (left) original image - (right) evolution of the level {u = 0.5},

(a) evolution of the membership function u

Figure 3.5 — Fuzzy Region Competition with a piecewise-constant model. The original image (a)
on the left is an X-ray acquisition of a brain aneurysm phantom. The evolution of the level {u = 0.5}
together with the evolution of the membership function u, starting from a random initialization
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3.4 Unsupervised Fuzzy Region Competition

In this section, we apply the convex extension and the Fuzzy Region Competition algorithm

to show with examples the complementarity and versatility of the region intensity models

defined in the beginning of this chapter for unsupervised segmentation, in 2D and 3D. As

in the piecewise-constant case, region parameters are now estimated in a fuzzy way during

the minimization process.

3.4.1 Non-Parametric Distributions

For a better characterization of region intensities, a possible way to relax the piecewise-

constant and Gaussian assumptions is to minimize a negative log-likelihood error with a

non-parametric probability distribution, and choose ri(x, pi) = − log pi(I(x).

In order to illustrate the algorithm on natural color photographs, we consider a natural

extension to multi-channel images. If I : Ω → Rd is a vector-valued image with d com-

ponents, pi : A ⊂ Rd → R becomes a d-dimensional joint probability distribution on the

feature space A. With a fuzzy membership function u ∈ BV[0,1], the classification error

associated to the foreground becomes:

E1(u, p1) = −
∫

Ω
u(x) log p1(I(x))dx (3.69)

Using the same strategy than in section 3.2.2 and studying the optimality conditions of

Ei with respect to the unknown feature distribution pi under the additional constraint∫
A
pi(a)da = 1, it can be shown that for a fixed membership u, the optimal p∗i are:

p∗1(a) =

∫
Ω
u(x)Kε(I(x)− a)dx∫

Ω
u(x)dx

p∗2(a) =

∫
Ω

(1− u(x))Kε(I(x)− a)dx∫
Ω

(1− u(x)) dx

(3.70)

These optimal functions now correspond to continuous versions of weighted kernel density

estimates. The contribution of each pixel x to the estimation of the foreground distribution

is weighted by its membership u(x). During minimization, each pixel may contribute to

both regions according to the certainty of its current classification.

A d-dimensional isotropic Gaussian can be used for the estimation kernel Kε. In this

case, the algorithmic complexity of discretizing pi(a) on N sampling bins in O(MN) where

M is the number of pixels. Among other methods to approximate a discrete sum of Gaus-

sian kernels, the Fast Gauss Transform, proposed by Greengard and Strain [78], reduces the

complexity to O(M +N) with a controlled error bound. Histogram smoothing by Gaussian

convolution, which we rely upon in our current implemention, is a cruder approximation

that works reasonably well in practice if the the scale ε is sufficiently larger to the bin size.

In all experiments, we use 64d bins and ε is set to 5% of the intensity range.
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Figure 3.6 — Synthetic image segmentation with non-parametric distributions: In rows, we present
3 synthetic 2D experiments where foreground and background have been artificially generated by
a global intensity probability density. In each row, from left to right: original image; initial mem-
bership function u; two intermediate states of u; result at convergence; corresponding boundary
overlaid on the image; the initial (dashed) and final (solid) distributions of the foreground (white)
and background (black). First row shows uni-modal densities of distinct mean and variance, a Gaus-
sian foreground over a uniform background. Second row shows a uni-modal Gaussian foreground
over a bi-modal Gaussian background, both distributions having the exact same mean and variance.
Last row shows a tri-modal Gaussian foreground on a bi-modal uniform background, of equal mean
and equal variance, with artificially-generated spatial correlations.

In Figure 3.6, the Fuzzy Region Competition algorithm with non-parametric distribu-

tions is shown on a set of synthetic gray-level images, using (3.70) to periodically re-evaluate

the distributions. The method is able to cope with non-Gaussian, multi-modal, overlapping

probability density functions. In the last two examples, both distributions have identical

mean and variance, making the foreground virtually invisible.
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(a) evolution of the membership function u

(b) evolution of the level {u = 0.5}

Figure 3.7 — Fuzzy Region Competition with a non-parametric probability distribution on the
ultrasound breast lesion image. (a) evolution of the membership function, (b) segmentation bound-
ary at level 0.5, Initialization and all parameters are the same than in Fig. 3.4 for visual comparison
with the piecewise-constant model.

In Figure 3.7, the ultrasound breast lesion image is segmented with a non-parametric

probability distribution to underline the difference with the piecewise-constant model. Con-

trary to Figure 3.4, the lesion is now well separated from the surrounding inhomogeneous

tissue.

In Figure 3.8 and 3.9, foreground/background separation is realized on a set of photo-

graphic images to illustrate the multivariate case with d = 3. We have chosen as feature

space A ∈ R3 the CIEL*a*b* color space for its ability to mimic the logarithmic response of

the eye and linearize the perception of color differences. The algorithm takes advantage of

all channels simultaneously to discriminate regions that have a compact joint distribution

composed of an arbitrary number of modes.

Contrary to the supervised case, the dependence on initial conditions of this unsupervised

model is underlined on the two last rows of Figure 3.8. With different initial guesses for

the membership function, the method extracts either the bear in the foreground or pieces

of the background. Recall that the Fuzzy Region Competition functional (3.54), in this

case F (u, p1, p2), is only convex in u, and not globally convex, with respect to the triplet

(u, p1, p2). Consequently, it is not surprising that initial p1 and p2 select the most prominent

feature modes for each region and influence the final result.
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Figure 3.8 — Color images: the global non-parametric model in the multivariate case. The
images are samples from the Berkeley segmentation database [118]. Feature space A is CIE L*a*b*,
chosen for its ability to mimic the logarithmic response of the eye and linearize the perception of
color differences. Simple euclidean distance can be used in A, hence the covariance M for the
kernel K can be set diagonal. In each row: (left) original image, evolution of the segmentation
throughout the minimization process at iteration k = 0, k = 50, k = 100 and final k = 250. The
membership function u is used as an alpha transparency map to visualize both the color image and
the segmentation: the foreground object appears while its background becomes fully transparent
(white). Last row: an example of initialization dependence; problem is only convex with respect to
the membership function, hence initial density functions influence the result by selecting the most
prominent feature modes in each region.
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Figure 3.9 — Color images: the global non-parametric model in the multivariate case. Other
examples from Berkely segmentation database. In each column: (left) original image, evolution of
the segmentation throughout the minimization process at iteration k = 0, k = 50, k = 100 and
final k = 250. The membership function u is used as an alpha transparency map to visualize both
the color image and the segmentation: the foreground object appears while its background becomes
fully transparent (white). The algorithm takes advantage of all channels and discriminates between
regions that have a compact and multi-modal distribution in the 3D feature space (L*,a*,b*).
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3.4.2 The Piecewise-Smooth Case

As in section (3.2.3), we assume that the piecewise-constant hypothesis holds locally, i.e. at

a certain scale, to account for slowly varying intensities. In order to keep the advantages of

the convex framework, we introduce a symmetric window function W : Ω 7→ R+ and build

a continuous sum of locally piecewise-constant models. This is achieved by choosing the

region terms from Eq. (3.31) in each phase: αi = {si}

ri(x, si) =

∫
Ω
W (x− y) (I(x)− si(y))2 dy

(3.71)

where the previously constant approximation c1 becomes a function s1(y). The foreground

classification error becomes:

E1(u, s1) = −
∫

Ω
u(x)

∫
Ω
W (x− y) (I(x)− s1(y))2 dydx (3.72)

(3.72) corresponds to the specific settings α = (s1, s2) ∈ L1(Ω)2 and ri(x, si) in the general

Fuzzy Region Competition framework (3.54). The convexity in u, the binarization expected

from Proposition 1 and the minimization scheme with Chambolle’s projection algorithm are

still valid. Therefore, we only need to specify how to minimize with respect to each unknown

approximation. As in section 3.2.3, we can show that the update formula for s1 and s2 is:

s∗1 =
W ∗ [uI]

W ∗ u
and s∗2 =

W ∗ [(1− u)I]

W ∗ (1− u)
(3.73)

The smooth case is analogous to the constant case: weighted averages c1 and c2 have

been replaced by fuzzy normalized convolutions s1 and s2. They can be interpreted either

as local averages or as smooth approximations of the image within each region. Normalized

convolutions naturally depend on the fuzzy membership u and (1−u) as certainty measures

throughout the alternate scheme:

(A) Fixing u , compute normalized convolutions s1 and s2 using (3.73)

(B) Fixing s1 and s2, perform a few iterations of the projection algorithm to update the

membership u with the competition function r given by:

r = r1(s1)− r2(s2) = W ∗ (s2
1 − s2

2)− 2I.W ∗ (s1 − s2) (3.74)

At convergence, final segmentation is obtained by thresholding u∗ at any level in [0, 1].

Figure 3.10 shows the segmentation of the ultrasound lesion with this piecewise-smooth

algorithm. The lesion boundary is better delineated than with piecewise-constant (Fig.3.4)

and non-parametric (Fig.3.7) models, in the same parameter setting and initial conditions.

W is chosen to be a Gaussian window so that its scale σ relates to the spatial extent of

expected intensity variations. The scale could optionally take different values in foreground

and background.



3.4. UNSUPERVISED FUZZY REGION COMPETITION 63

(a) evolution of the membership function u

(b) evolution of the level {u = 0.5}

(b) evolution of the optimal approximation Î = us1 + (1− u)s2

Figure 3.10 — Fuzzy Region Competition with a piecewise-smooth model on the lesion image of
size 3002, with a scale σ = 8 pixels for the Gaussian window W . Parameter setting is identical to
previous models (λ = 0.1 and θ = 0.01) to show that the localized model provides more accurate
boundaries and a single connected component in this case.

As shown on the gray-level photograph in Figure 3.11 in which the algorithm isolates

a pandanus tree from its background, the final function Î = u∗s1 + (1− u∗)s2 yields a

piecewise-smooth approximation of the original image I at convergence. Indeed, bina-

rization of u prevents smoothing across the boundary. In this respect, our approach relates

to geometric methods derived from the Mumford-Shah functional [126] and a piecewise-

smooth image model, with two significant advantages: the approximations are obtained by

convolution and the functional is convex with respect to the membership function.

These computational advantages are particularly beneficial in 3D. Interestingly, the

piecewise-smooth assumption is capable of modeling intensity variations due to the presence

of contrast agent in angiography and its diffusion in irrigated tissues. In Figure 3.12, the

algorithm is applied to extract a liver vascular tree from a Computerized Tomography image.

In this experiment, a mask of the liver parenchyma was previously available. Within this

liver mask, two-phase hypothesis (veins + tissue) is approximately valid, and the algorithm

is able to capture the main branches of the vascular tree. However, besides the modeling of

intensity variations, this algorithms is not specifically designed for vessel segmentation. In

Chapter 4, dedicated constraints for vascular structures are developed in the Fuzzy Region

Competition framework.
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(a)

(b)

(c) (d) (e)

Figure 3.11 — An example of piecewise-smooth segmentation on a photograph of a pandanus tree:
(a) evolution of the membership function u, (b) evolution of the piecewise-smooth approximation
obtained with normalized convolutions: Î = us1 +(1−u)s2, (c) original gray-level image I, (d) final
segmentation, (a) final approximation. Parameter setting is λ = 0.2, θ = 0.01, σ = 8
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(a)

(b) (c)

Figure 3.12 — Piecewise-smooth segmentation of a 3D medical image. The algorithm is applied
to extract a liver vascular tree from a 294x215x101 CT angiography [156]. In this experiment, a
mask of the liver parenchyma was available (c). Within this mask, two-phase hypothesis (veins +
tissue) is approximately valid. In (a) two parallel evolutions of the membership function u for 100
iterations are shown using volume rendering. For two different initializations, the result is almost
binary at convergence and independent of the initial conditions. Computation time is in the order
of 15 sec. (b) shows the vessel mesh by rendering the surface {u = 0.5}. (c) shows an axial slice
of the volume and the contours of the final segmentation overlaid on the masked liver. Parameters
are, λ = 0.5, σ = 16 mm. A slightly larger value of the decoupling θ = 0.05 is used to accelerate
convergence.
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3.4.3 Local Non-Parametric Distributions

To conclude the list of region classification errors from the catalog given in Table 3.2.5,

we now address the most general case of local non-parametric distributions, from which all

previously-described models can be derived. Following section 3.2.4, local non-parametric

distributions are again obtained with a sliding window W , choosing: αi = {pi ∈ Ω× R}

ri(x, pi) = −
∫

Ω
W (x− y) log pi (y, I(x)) dy

(3.75)

which corresponds to a total classification error for the foreground of:

E1(u, p1) =

∫
Ω
u(x)

∫
Ω
W (x− y) log pi (y, I(x)) dydx (3.76)

With the additional constraint that ∀y,
∫
R
p1 (y, a)) da = 1, the optimality conditions of

E1(u, p1) yield the update formula for p1 as:

p∗1(y, a) =

∫
Ω
W (x− y)u(x)Kε (I(x)− a) dx∫

Ω
W (x− y)u(x)dx

(3.77)

and a similar expression for p2, replacing u by 1− u. These correspond to local, weighted,

kernel density estimates. In the following, we show that they can be approximated using a

Gaussian convolution in a n + 1 dimensional space. Assuming the estimation kernel Kε is

of the form:

Kε(t) = [K ∗ δε] (t) =

∫
R
K(b)δε(t− b)db, (3.78)

The numerator of (3.77) becomes:

N(y, a) =

∫
Ω
W (x− y)u(x)

(∫
R
K(b)δε(I(x)− a− b)db

)
dx (3.79)

After a simple change of variable and using the symmetry of K and W ,

N(y, a) =

∫
Ω
W (x− y)u(x)

(∫
R
K(b− a)δε(I(x)− b)db

)
dx

=

∫
Ω

∫
R
W (y − x)K(a− b)︸ ︷︷ ︸

K

u(x)δε(I(x)− b)︸ ︷︷ ︸
hu(x, b)

dbdx
(3.80)

where hu : Ω × R → R is essentially a sparse counting function that can be discretized by

assigning the value u(x) at each grid point (x, I(x)) in a (n+ 1)-dimensional lattice. Now,

if we choose window W and kernel K as Gaussian functions so that their external product

K = W ×K is still a Gaussian of dimension n+ 1, (3.77) reduces to convolutions:

p∗1(y, a) =
[K ∗ hu] (y, a)

[W ∗ u] (y)
and p∗2(y, a) =

[K ∗ h1−u] (y, a)

[W ∗ (1− u)] (y)
(3.81)
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Figure 3.13 — Local non-parametric distributions on the cameraman image. Left column, results
of the global model, original image (top), global distributions pi (center) and final membership
function u (bottom). Right column, results of the local model, solid final contours with a dashed
representation of the window W at two pixel locations (top), local distributions pi (center) and final
u (bottom).
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Figure 3.13 illustrates on the cameraman image the advantages of using local probabili-

ty densities. The overall intensity distribution is mainly composed of 3 modes of increasing

intensity, corresponding to the cameraman, the grass and the sky, respectively. On the

bottom left, the global model easily extracts the first mode, but the boundary lacks pre-

cision. On the right, the result serves as initial guess for a subsequent refinement step by

re-running the algorithm with local non-parametric distributions, which allows to recover

more accurately the legs and the camera. The competition between foreground and back-

ground distributions implicitly selects optimal spatially-adaptive thresholds, which is visible

on the plots of p1 and p2 on the right. Although the background seems to locally follow a

Gaussian distribution, the model does not make that assumption explicitly.

Among all proposed models in this chapter, local probability distributions offer the most

accurate, piecewise-smooth representation of statistical intensity properties. However, it is

also the one that is by far the most sensitive to initial conditions. Based on our experience,

we recommend to use it only as a final refinement step in a hierarchical strategy in which

first stages rely on more robust models such as the piecewise-constant or the global non-

parametric model. In Figure 3.4.3, we show an example of such a hierarchical algorithm

in 3D to extract the lungs and their vascular structures from a CT image, in a recursive

fashion. To satisfy the two-phase assumption, lungs are first separated from the rest of

the body using Fuzzy Region Competition with global non-parametric distributions in the

foreground and background. Then, the same algorithm is re-launched inside the mask of

the lungs to coarsely separate the vessels from the lung tissue. Finally, local non-parametric

distributions are used in a refinement step to improve precision and capture smaller distal

branches of the vascular tree.
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Figure 3.14 — Hierarchical segmentation of a 3D Computerized Tomography volume of the lungs.
The global non-parametric model is used to extract the lung from the background, composed of
all surrounding organs. Initial u is set to a small cube inside the lungs. At convergence, the exact
same process with global distributions is recursively applied inside the lungs in order to separate
pulmonary vessels from the lung tissue. sice the vascular tree exhibit a spatially-varying intensity
distribution, the local model provides more precise boundaries if used as a final refinement step. On
the left, coronal and axial views of the volume, with overlaid lung and vessel contours. Corresponding
triangular meshes are rendered on the right: in the first column, the outer surface, alone (top) and
mixed with the final vessels (bottom); in the second column, the vessels before (top) and after
(bottom) local refinement for sake of comparison.
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3.5 Conclusion

In this chapter, we introduced a general variational framework and methodology for two-

phase image segmentation on which many existing approaches are derived. In this thesis, we

follow this common methodology for the design of new algorithms and numerical schemes.

Choosing a unified formulation is key for software re-usability, rapid prototyping and in-

teroperability of the algorithms that often need to be combined to meet the diversity of

clinical application requirements.

From this general formulation, specific segmentation algorithms essentially differ by

their mathematical representation for the foreground region and by the chosen objective

measure to assess the quality of the segmentation. Using Bayesian principles, the latter can

be interpreted as a statistical classification error or equivalently as a region homogeneity

criterion. We enumerated a number of valid choices and proposed new localized piecewise-

smooth approximations. Since special care is devoted to computational complexity, we rely

exclusively on normalized convolutions so that 3D applications are readily possible. In

the following chapters, we will refer to this list of global or local region descriptions when

concrete examples are shown.

As for the choice of an appropriate representation of the foreground region, we explore in

this work a number of possibilities with the objective to cover a large spectrum of application

requirements. As a first example, we have shown that a fuzzy membership function is

particularly adapted if a geometric constraint on the region perimeter is imposed, like in

most active contours and level-set algorithms. This induces a minimization problem in the

space of functions of bounded variations that can be interpreted as a convex relaxation of

the original formulation and guarantees to obtain, in the supervised case, a globally-optimal

binary solution with a fast and stable numerical scheme. In the unsupervised case, we used

this so-called Fuzzy Region Competition approach to illustrate on a variety of photographic

and clinical images the versatility and potential applications of the new localized region

intensity models.

While convexity effectively reduces sensitivity to initial conditions, it should nonetheless

be slightly mitigated in the unsupervised setting. Indeed, the problem is only convex with

respect to the membership function, for fixed region parameters, not globally convex with

respect to all unknown variables. Therefore, the proposed model does not completely relieve

the algorithmic chain of a careful initialization, in particular when local region-based criteria

are involved.

In addition, convexity also relates to topological flexibility, a property that is often

advocated as a major advantage of implicit representations over explicit curve/surface

evolution schemes. The use of a membership function enables to go beyond standard

merging/splitting changes of topology of level-sets in order to reach a global minimum.

Spontaneous creation of holes or new regions may occur all over the image domain during

minimization of the convex problem, resulting in a final segmentation that is free of any

topological constraint. Depending on the application, this may or may not be an desirable

feature. As guideline, we would recommend to use this convex formulation as a spatially-
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constrained alternative to clustering methods. Indeed, Fuzzy Region Competition can be

interpreted as a geometric, total-variation based regularized version of a locally-adaptive

Expectation-Maximization (EM) algorithm.

More importantly, convexity and global minimization of a variational segmentation

problem also has to be comprehended together with the complex notion of robustness and

reproducibility in the clinical context. By definition, a globally-optimal solution is robust

to initial conditions and reproducible, which unfortunately in most cases does not imply

that it is a clinically-relevant one. For the automatic delineation of anatomical structures

that often requires some knowledge that goes far beyond the image itself, the convex op-

timization framework induces a considerable requirement on the criterion to ensure that

its minimum is indeed a reliable answer. Consequently, the convex framework remains

limited to the applications in which this requirement can be met. Among others, one of

these applications is the extraction of entire vascular structures from an already-segmented

organ such as the lungs or the liver. In this case, the piecewise-smooth classification error

is particularly adapted to model spatial variations of intensity due to the contrast product.

This is the motivation behind the next chapter that describes our attempt to complement

the convex formulation with vessel-specific constraints on the membership function as well

as a new implicit representation for tubular shapes using convolution surfaces.
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Tubular Constraints and

Implicit Convolution

Surfaces 4
In this chapter, we propose two novel and complementary approaches for segmentation of

tubular shapes in 3D, with applications in angiography.

In the past, level-set representations have proved useful to separate vascular structures

from their surrounding tissue in 3D, for their ability to capture an arbitrary and unknown

topology [85, 86, 112, 116, 175]. Consequently, the first approach consists in applying the

convex variational formulation of Chapter 3, with local regional information to model the

spatial intensity variations that appear in angiography. We propose the incorporation of

dedicated constraints to take into account the contrasted nature of vascular structures as

well as their geometry, with very limited complexity overhead. As a result, the algorithm

keeps advantages over level-set representations in terms of numerical stability and efficiency.

Even though the new constrained problem is not convex anymore, sensitivity to initial con-

ditions is still minimal. Illustrative experiments are shown on liver veins in Computerized

Tomography.

We also consider a second, model-based approach to vessel segmentation, expected

to be more robust when the topology is known in advance. The idea is to model each

vessel branch as a generalized cylinder, implicitly represented with a convolution surface

around its centerline. To our knowledge, this representation was successfully used for the

purpose of rendering complex vascular structures [132], but not in the variational context

of image segmentation. Within the unsupervised region-based formulation, we develop all

the necessary components to perform a joint optimization of the vessel centerline curve and

the corresponding scales, defined along the curve. We only address the case of a single

branch, but the principle readily extends to vascular trees, as soon as knowledge on the

configuration of the branches is available.

73
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4.1 Introduction

Over the last two decades, technological improvements have led to the generalized use of

3D imaging tools for vascular studies. Clinicians are nowadays confronted with the task

of analyzing considerable amounts of 3D data in a rather limited time. The topological

complexity of vascular structures further increases the difficulty. The segmentation of the

vascular system of an organ with manual or standard semi-automatic tools is a tedious, time-

consuming and non-reproducible task. Fully automatic tools are thus strongly demanded

for most frequent studies.

Vascular image processing is a very active field of research. We refer the reader to

the recent review by Lesage et al [105] on 3D vessel segmentation, with a comprehensive

survey of the published techniques in terms of models, features and extraction schemes.

In particular, scale-space theory [110], medial representations [142] and front propagation

methods [133] have helped the development of now well-established algorithms for vessel

enhancement [68, 98] and robust centerline extraction [10, 58, 100, 108]. Most often relying

on a multi-scale analysis of ridge-like curvilinear structures, they may however not suffice

to obtain an accurate delineation of vessel boundaries. To fulfill this need, mathematically

sound variational segmentation methods have been proposed as a complement to former

approaches. For their ability to capture complex topologies in 3D, implicit surface evolution

schemes with level-sets, minimizing boundary-based [112, 116, 146, 176] or robust and

reliable region-based [85, 86, 116, 121, 175] criteria, are of particular relevance. In this

chapter, we also propose means of segmenting vessels in 3D by optimizing a region-based

objective functional, but without relying on a boundary evolution scheme.

We consider vessel segmentation as an optimal two-phase separation problem, where the

two phases correspond to the vessel lumen and its background, respectively. Due to both

spatial variations of the contrast agent density in blood and its diffusion into surrounding

tissues, the usual assumption of approximately constant intensities in each phase is too re-

strictive. It is more valid to expect the observed intensity variations to be slowly-varying and

smooth. Under this assumption, existing so-called piecewise-smooth segmentation models

[126, 170, 177] are natural candidates for the vessel extraction task. However, those bound-

ary evolution schemes require solving diffusion equations with new boundary conditions at

each step, hence are seldom used in 3D due to their complexity. In the previous chapter, we

described a much faster alternative for piecewise-smooth image segmentation, having not

only very similar properties but also a weaker dependence on initial conditions. Within the

region-based general formulation,

min
Ω1,α1,α2

{
F (Ω1,α1,α2) = R(Ω1) + λ

∫
Ω1

r1(x,α1)dx + λ

∫
Ω\Ω1

r2(x,α2)dx

}
(4.1)

the localized classification error is designed to describe piecewise-smooth structures corre-

sponds, as in section 3.2.3, to the choice : αi = {si}

ri(x, si) =

∫
Ω
Wa(x− y) (I(x)− si(y))2 dy

(4.2)
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where Wa is for instance a Gaussian window of scale a controls the expected spatial intensity

variations. We propose in this chapter two different, complementary specializations of (4.1)

for vascular structures, in which the difference stems from the chosen representation for

the foreground region Ω1. The first one is a membership function u(x), as in the previous

chapter, with dedicated constraints to favor tubular shapes. The second one is a totally

different representation, with a convolution surface Φ{m,σ} built around a parameterized

medial curve m(s), with varying scales σ(s) defined along the curve.

This chapter is divided into two parts. In section 4.2, we provide the Fuzzy Region Com-

petition algorithm and the convex framework with proper contrast and volume constraints

and derive an algorithm for extracting vascular tress in 3D volumes. Even though the ad-

ditional constraints break the convexity of problem, sensitivity to initial conditions is still

minimal. Illustrative experiments are shown on liver veins in Computerized Tomography.

In section 4.3, we propose a second representation with implicit generalized cylinders and

perform the calculus of variations to jointly optimize a centerline and varying scales. The

method is applied to model-based segmentation of the Inferior Vena Cava. In conclusion,

we discuss the advantages and limitations of each representation.

4.2 Piecewise-Smooth Fuzzy Region Competition

Recall that the Fuzzy Region Competition algorithm, presented in chapter 3, realizes a

minimization of 4.1 through a convex relaxation given by:

min
u,α1,α2

{∫
Ω
|Du|+ λ

∫
Ω
u(x)r1(x,α1)dx + λ

∫
Ω

(1− u(x))r2(x,α2)dx︸ ︷︷ ︸
F1(u,α1,α2)

}
(4.3)

where u(x) ∈ [0, 1] is the membership function to the foreground region. Combined with the

intensity model with local averages (4.2), this algorithms has several attractive properties

for segmentation of vessels in 3D angiography. First, it has the ability to capture the

varying intensities induced by contrast agent diffusion. The scale parameter of Wa in (4.2)

directly controls those variations. Moreover, the convexity in u significantly alleviates the

model sensitivity to initial conditions. In practice, the segmentation of complex structures

such as branching, stenoses and multiple disconnected trees can be properly handled, while

these would constitute typical local minima in many non-convex variational approaches.

As any implicit method, it readily extends to 3D, but also benefits from the computational

advantages of the minimization scheme described in section 3.3.3.

Nevertheless, the method is not specific to vessels. Other positively or negatively con-

trasted non-vascular structures such as diffusion in tissues, lesions or movement artifacts,

often satisfy the underlying piecewise-smooth assumption. Additional constraints need to

be added in order to impose the expected contrast sign and better control the foreground

geometry.
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4.2.1 Contrast constraint

In most two-phase region competition models, foreground and background play symmet-

ric roles. In the piecewise-constant case, with ri(x, ci) = (I(x)− ci)2, the functional F1

satisfies:

F1(u, c1, c2) =

∫
Ω
|Du|+ λ

∫
Ω
u r2(c1) + λ

∫
Ω
(1− u)r2(c2)

= F1(1− u, c2, c1).

(4.4)

The final choice between symmetric solutions is driven by the initial conditions. While this

property does not influence the final boundary in the piecewise-constant case, its conse-

quences can be critical in the smooth case, since symmetry also holds locally. Depending

on initial conditions, the model may take inconsistent background/foreground decisions for

distant areas of the same object (see Fig. 4.2.b). Note that this drawback, found in other

piecewise-smooth approaches and seldom studied, can sometimes be overcome by putting

more efforts in the initialization strategy to ensure that the spatial inconsistencies illustrated

in Figure 4.2.1 do not occur.

a synthetic image without the constraint imposing s1(x) ≥ s2(x)

Figure 4.1 — Piecewise-smooth foreground/background segmentation results on a synthetic image
with spatial inconsistencies due to local symmetry of the functional with respect to s1 and s2.

In the case of vessels, foreground is expected to be the lumen. Assuming that it is

locally brighter than surrounding tissues due to contrast agent injection, the symmetry can

be broken so that the ambiguities of the membership function u are removed. Indeed, as al-

ready mentioned, smooth approximation functions s1 (foreground) and s2 (background) are

defined everywhere in the image domain contrary to classical piecewise-smooth approach-

es [170, 177]. Thus adding the inequality constraint

s1(x) ≥ s2(x) ∀x ∈ Ω (4.5)

will automatically impose the foreground (u = 1) to be the vessel lumen.

4.2.2 Local Volume constraint

The foreground being unambiguously determined, geometrical constraints penalizing unde-

sirable shapes can be now introduced in the membership function u.
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(a) Evolution of the membership u using the piecewise-constant model (scale a = +∞)

(b) Unconstrained, piecewise-smooth, (scale a = 16). Inconsistent foreground decisions may occur.

(c) Piecewise-smooth with contrast constraint s1 > s2, but without volume penalization (β = 0)

(d) Piecewise-smooth with both contrast constraint s1 > s2 and volume penalization (β = 0.5)

(e) Piecewise-smooth (same parameters), initialized with a random membership function

(f) Piecewise-smooth (same parameters), initialized with a circle

Figure 4.2 — Evolution for various constraint settings and initial conditions.
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The total variation of u is already a geometric constraint on the perimeter, but it

only inlfuences the smoothness of the foreground boundary, not its shape. The idea is to

use an additional constraint on the volume. It is reasonable to assume that 3D vascular

structures occupy a small fraction of the volume of the corresponding organ. Hence a

global penalization of the foreground volume could be a way to limit possible leakages in

surrounding tissues. Unfortunately, this is known to produce a global shrinking effect that

indubitably also removes the smallest vessels.

A more suitable approach is to locally penalize the foreground volume beyond a given

scale in order to limit leakages in the background while keeping the smallest structures.

In [128], Nain et al. proposed such an algorithm imposing a spherical volume constraint

within a classical level-set boundary evolution framework. In the following, we present a

generalization where the constraint is expressed directly on the fuzzy membership function u

and the local volume measure is computed using any given window function. An advantage

of this generalization is then shown by deriving a fast minimization scheme based on linear

filtering.

A local measure of the fuzzy foreground volume at any point x ∈ Ω is:

Vρ(u,x) =

∫
Ω
u(y)Bρ(x− y)dy = [Bρ ∗ u](x), (4.6)

where Bρ is an isotropic and symmetric window function of scale parameter ρ, such as a

ball of radius ρ or a Gaussian of standard deviation ρ. Hence, ρ acts as a geometrical scale

parameter. The penalization term to add to the functional in order to limit the appearance

of large-scale structures is obtained by integrating Vρ on the fuzzy foreground:

V (u) = β

∫
Ω
u(x)Vρ(u,x)dx = β

∫
Ω
u(x)

∫
Ω
u(y)Bρ(x− y)dxdy (4.7)

where β controls the degree of volume penalization.

The sum of the total variation regularization, the local minimal variance error functions

(3.31) and the local volume penalization (4.7) gives the complete expression of the functional

to minimize. Adding the contrast inequality constraint, the vessel segmentation problem

becomes:

minimize F2(u, s1, s2)

subject to ∀x ∈ Ω,

{
u(x) ∈ [0, 1]

s1(x) ≥ s2(x)

(4.8)

with

F2(u, s1, s2) =

∫
Ω
|Du| + λ

∫
Ω
u(x)

(∫
Ω
Wa(x− y)(I(x)− s1(y))2 dy

)
dx

+ λ

∫
Ω

(1− u(x))

(∫
Ω
Wa(x− y)(I(x)− s2(y))2 dy

)
dx

+ β

∫
Ω
u(x)

(∫
Ω
u(y)Bρ(x− y)dy

)
dx

(4.9)
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4.2.3 Minimization Scheme

We shall now describe a strategy to carry out the minimization of Problem 4.8. To avoid re-

lying on curvature computations, we follow, as in Chapter 3, the auxiliary variable strategy

proposed by Bresson et al. [26]. In the following, we only insist on the specific adapta-

tions that are needed to take into account the two new volume and contrast constraints.

Introducing an auxiliary variable v and a relaxation parameter θ, we consider the following

approximation of F2:∫
Ω
|Du|+ 1

2θ

∫
Ω
|u− v|2 + λ

∫
Ω
v r(s1) + λ

∫
Ω

(1− v) r(s2) + V (v) (4.10)

where r(si) are given by (3.31), V by (4.7), and θ is chosen to be small enough so that

the two components of any minimizing couple (u∗, v∗) are almost identical. Chambolle’s

projection algorithm [36] can be used to minimize w.r.t. u while the other variables are kept

fixed (the first two terms). Considering each variable successively, we now only need to find

optimal solutions for s1, s2 and v taken independently. In turns out that these solutions

can be computed without resorting to additional iterative schemes.

Optimal s1 and s2 should be updated by the normalized convolutions given in Eq. (3.73),

replacing u by v. Although the inequality constraint s1 ≥ s2 should be imposed through

constrained optimization technique such as the Augmented Lagrangian used in Chapter 6,

it is in practice sufficient to choose point-wise s1(x) = max {s1(x), s2(x)} after computing

the normalized convolutions.

As for the optimization of the auxiliary variable v, the corresponding Euler-Lagrange

equation can be efficiently solved by inverse filtering. Indeed, the optimality conditions

obtained by calculus of variations are:

v + 2θβ[v ∗Bρ] = u− θr (4.11)

with r = λ(r(s1) − r(s2)). Taking the Fourier transform of (4.11) yields the inverse filter

to obtain v as a function of u ( f̂ denotes the Fourier transform of f):

v̂ =
û− θr̂

1 + 2βθB̂ρ
(4.12)

In our implementation, we further take advantage of the assumption that θ must be small

in order to find an even faster and simpler approximation. Assuming 2βθB̂ρ << 1, (4.12)

reads:

v̂ =
û− θr̂

1 + 2βθB̂ρ
≈ (û− θr̂)

(
1− 2βθB̂ρ

)
(4.13)

After an inverse Fourier trasnform, we finally use the following update formula for v, taking

the saturation constraint into account:

v = min (max (w − 2βθ [Bρ ∗ w] , 0) , 1) with w = u− θr (4.14)
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This minimization algorithm is first applied in 2D in Figure 4.2 in which we illustrate

the effect of both the contrast constraint and the volume constraint and the low sensitivity

to initial conditions (chessboard/random/circle). In Figure 4.3, we show the piecewise-

smooth reconstruction obtained a the end of the convergence. In particular, the background

function s2, defined on the whole domain, is reconstructed by extrapolation with normalized

convolution behind the foreground vessel.

(a) original (b) original (zoomed) (c) s2 (zoomed)

(d)final contours of u (e) contours (zoomed) (f) u.s1 + (1− u).s2

Figure 4.3 — Piecewise-Smooth vessels on a 2D synthetic image. On the right, a piecewise-smooth
reconstruction at convergence is shown. In particular, the background function s2, defined on the
whole domain, is reconstructed by extrapolation with normalized convolution behind the foreground

4.2.4 Extraction of liver veins in CTA

Computerized tomography angiography (CTA) of the liver is a routine examination in which

the visualization of vessels is crucial. Imaging is performed using a radio-opaque contrast

material injected intravenously. Acquisitions at different time intervals produce various

volumetric images due to the diffusion and the transport of the contrast agent by blood.

Adequate timings allow to image arteries and veins whose segmentation is very relevant for

a tumor’s nature assessment, intervention planning and follow-up [156].

In this clinical context, we use the Fuzzy Region Competition algorithm with the new

constraints to segment the hepatic and portal veins in the liver. Typical results are shown

in Figure 4.4, after performing the minimization scheme given in section 4.2.3 inside a

previously-available mask of the liver.

The new constraints help to reduce the sensitivity to inconsistent initial conditions

(s1 ≥ s2), limit the appearance of possible leakages with the term V (u) and do not add any

significant complexity overhead (only 1 more convolution in (4.14)). However, besides these
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Figure 4.4 — Fuzzy Region Competition with vascular constraints in 3D liver CTA. First row
shows on the left a portion of an axial slice of a 512x512x256 CT volume. Image domain has been
restricted to a previously available segmentation of the liver, shown in dashed. Superimposed in
solid are the contours of the segmentation obtained by the proposed algorithm, also represented
as a surface rendering on the right. Second row shows a more difficult case, sagital view with
superimposed contours on the left and corresponding segmentation on the right. Third row shows
additional examples for two other cases.

additional constraints, applicability of Fuzzy region Competition for vessel segmentation

remains limited to the cases where only the vessels satisfy the piecewise-smooth image-

based assumption. Due to the simplicity of the local volume constraint, the method would

not be able to discriminate vessels from other structures based solely on their geometry.

In the following section, we rely on a tubular model that is much more specific to vascular

branches, with an implicit representation of generalized cylinders.
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4.3 Implicit Convolution Surfaces

Convolution surfaces refer to a special type of implicit surfaces introduced by Bloomenthal

[21] and mainly used in computer graphics for object modeling. They correspond to a

generalization of popular models such as blobs, metaballs [20] and soft objects [182] to

other skeletal primitives such as line segments, polygons and planes.

In this section, we introduce a possible use of this modeling technique in the context

of variational image segmentation. We consider as an example the case of a single vessel

branch and compute the derivatives of the region-based functional with respect to the free

parameters of the representation. Yet, the modeling capabilities can be extended to more

complex cases such as branching vascular structures.

4.3.1 Generalized Cylinder Implicit Representation

Assuming a circular cross-section, a vessel branch is often modeled by an open parameterized

medial curve m(s) : [0, 1] → R3, with a set of corresponding point-wise radii. For recent

examples of the use of generalized cylinders for vessel segmentation, we refer the reader to

[105, 121] as well as the work on 4D minimal paths of Li and Yezzi [108]. Compared to

previous works, the original feature of the model described in the following is the definition

an implicit analytical representation of such a generalized cylinder.

Figure 4.5 — Analytical implicit representation of a 2D vessel. Φm, σ) is obtained by integrating
a smooth radial function ω centered all over the curve m(s), with continuously-varying scales σ(s)

The scalar field is obtained by integrating a smooth decreasing radial function ϕ centered

all over the medial curve m(s), with continuously-varying scales σ(s), as shown in Fig. 4.5.

This yields the following expression for Φm,σ,

Φm,σ(x) =

∫ 1

0
ϕ

(
‖x−m(s)‖

σ(s)

)∥∥m′(s)∥∥ ds− C (4.15)

where x is any point in the domain Ω, C an arbitrary positive constant and ϕ is typically a

Gaussian function. Note that the above expression is valid in any dimension, which enables
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the same approach to be applied in 2D and 3D. The term ‖m′(s)‖ ensures invariance with

respect to parameterization.

In [132], Oeltze at el. used a similar representation for visualization and rendering of

complex vascular structures, in particular in the liver, for their nice blending properties.

However, the parameterized centerline m(s) and scales σ(s) in (4.15) were assumed to

be known and provided by other means, such as extraction of the skeleton of a binary

segmentation. This surface reconstruction process with convolution surfaces is illustrated

in Fig. 4.6. In contrast, we propose to use directly this model to perform segmentation,

treating m and σ as the unknown variables and integrate the representation in the region-

based functional.

Figure 4.6 — Using convolution surfaces for visualizing complex vascular structures. The method
proposed in [132] is used to clean a segmentation of the portal veanous tree in the liver. On the
left, two examples of raw result obtained with the algorithm in section 4.2. On the right, after
skeletonization of the binary segmentation, we have reconstructed the vessel tree with implicit
medial convolution surfaces, in which each vessel branch is modeled by (4.15)

4.3.2 Problem Formulation

Under the general framework presented in section 3.2, we consider the optimal partition of

the image in two phases as the best trade-off between the foreground shape regularity and
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the homogeneity of some features within each region:

min
Ω1,α1,α2

{
R(Ω1) +

∫
Ω1

r1 (x,α1) dx +

∫
Ω\Ω1

r2 (x,α2) dx

}
(4.16)

Recall that an implicit representation of Ω1 can be used, defining a real function Φ,

positive in the foreground. Using the Heaviside function H, H(Φ) is the characteristic

function of the foreground region Ω1, and (4.16) is equivalent to

min
Φ

{
R(Φ) +

∫
Ω
H(Φ(x))r (x)) dx

}
with r(x) = r1 (x,α1)− r2 (x,α2)

(4.17)

Substituting the vessel representation (4.15) into the objective criterion (4.17) and asso-

ciating specific regularization terms to the unknown centerline m(s) and scales σ(s) yields:

min
m,σ

{
R(m, σ) +

∫
Ω
H(Φm,σ(x))r(x)dx

}
, (4.18)

where R(m, σ) is designed to penalize both the length of the centerline and the variations

of scale along it, controlled by the positive scalar parameters λ and µ respectively:

R(m, σ) = λ

∫ 1

0

∥∥m′(s)∥∥+ µ

∫ 1

0

∣∣σ′(s)∣∣2 (4.19)

Figure 4.7 — Joint regularization of both the length of the centerline m (curvature flow) and the
variations of scales σ(s) (1D heat equation) along the centerline, in the effect of minimizing the
term R(m, σ) (4.19), for fixed end-points. The scales σ(s) are color-coded on the surface to better
visualize the diffusion process.
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4.3.3 Minimization Scheme

The Euler-Lagrange equations of the functional in (4.18) can be found by calculus of vari-

ations, taking advantage of the analytical expression of the implicit representation. The

details of these calculations can be found in Annex C . They result in gradient-descent

evolution equations for both the centerline and the scales, of the form:

∀s ∈]0, 1[
∂m

∂t
(s) = κ(s)

λ+

∫
{Φ=0}

r(x)

‖∇Φ(x)‖
C(x, s)dx

N (s)

−
∥∥m′(s)∥∥ ∫

{Φ=0}

r(x)

‖∇Φ(x)‖
N(x, s)dx

∂m

∂t
(1) = −

λ+

∫
{Φ=0}

r(x)

‖∇Φ(x)‖
C(x, 1)dx

T (1)

∂m

∂t
(0) =

λ+

∫
{Φ=0}

r(x)

‖∇Φ(x)‖
C(x, 0)dx

T (0)

∀s ∈]0, 1[
∂σ

∂t
(s) = µσ′′ −

∥∥m′(s)∥∥ ∫
{Φ=0}

r(x)

‖∇Φ(x)‖
B(x, s)dx

∂σ

∂t
(1) = −µσ′(1)

∂σ

∂t
(0) = µσ′(0)

(4.20)

where κ is the curvature of the centerline, T its tangent, N its normal, Φ = Φm,σ and

functions, C(x, s), N(x, s) and B(x, s) are given by

C(x, s) =
σ(s)

2 ‖x−m(s)‖
ϕ′
(
‖x−m(s)‖

σ(s)

)

N(x, s) = C(x, s)
x−m(s)

σ2(s)

B(x, s) = −
〈

N(x, s),
x−m

σ

〉
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Figure 4.8 — Left: vector field N(x, s) plotted only on the boundary {Φm,σ = 0}, and B(x, s),
color-coded. Right: Evolution of a centerline point with Eq.(4.20) as the sum of all forces −r.N
computed on the boundary, for a simple image term r(x) shown in gray.

The advantages of these coupled evolution equations for m and σ are as follows:

• the centerline (skeleton) is jointly estimated with the boundary of the vessel, instead

of considering one after the other.

• the model can be used with free extremities, with specific terms that naturally appear

to handle the motion of m(0) and m(1), and similarly for σ.

• it is the exact same formulation in 2D and 3D, contrary to other approaches based

on generalized cylinders.

Figure 4.9 — 2D joint centerline and vessel boundary extraction on a ultrasound image of a vessel
in the liver. Top left: initization, Top right: final result. Joint the centerline curve m, shown in red,
as well as the scales σ(s) along the curve. Observe that the model naturally extends in the structure
and stops due to the longitudinal contrast found at the extremities. The region intensity model is
the piecewise-smooth error term given in (4.2).
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Figure 4.10 — 3D Evolution of a medial convolution surface on synthetic data - In gray, a rendering
of the surface of a binary synthetic object. In color, the implicit convolution surface with a centerline
and continuous scales is extending inside the object.

These properties are illustrated in Figures 4.11, 4.9 and 4.10. Figure 4.11 shows an

evolution of an implicit convolution surface in the Left Anterior Descending (LAD) and

Circonflex coronary arteries of a cardiac X-Ray angiography image. Robustness to branch-

ing vessels and to the aorta back-flow is observed, thanks to the long-range diffusion of σ(s)

along the centerline. With free extremities, the model is also capable of naturally extending

in the arteries and stops, in this case, when the border of the image is attained. In Fig-

ure 4.9 and 4.10, image contrast at the end of the structure enables a natural equilibrium

of the extremities.

4.3.4 Inferior Vena Cava Segmentation

The Inferior Vena Cava (IVC) is the large vein that carries de-oxygenated blood from the

lower half of the body into the right atrium of the heart. Before reaching the heart, the

IVC passes through the liver without irrigating it. In the context of liver clinical diagno-

sis, pre-operative planning and therapy, IVC segmentation from CT scans plays a crucial

role. This role is twofold. First, the accuracy of liver volumetry is critical for liver donor

transplantation, and considering the IVC as part of the liver significantly overestimates the

volume of its parenchyma. Second, the IVC is an essential landmark for the segmentation

of the hepatic and portal vascular trees (brightest vessels in Fig.4.12) which are the base

for the definition of liver segments, following a Couinaud anatomical model [5].

In clinical practice, manual segmentation by radiology experts is time-consuming, sub-

jective and difficult. Recently, several fully automatic algorithms for liver segmentation have
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evolution of the centerline (red) and boundary (yellow) following (4.20)

(e) initialization (zoomed) (f) final result (zoomed)

Figure 4.11 — 2D joint centerline and vessel boundary extraction on a X-Ray coronary angiog-
raphy. The model is initialized as in (e) the centerline curve m, shown in red, as well as the scales
σ(s) along the curve are jointly optimized. Observe the robustness to branching and to the aorta
back-flow due to the long-range diffusion of σ(s) along the centerline. The model is also capable
of naturally extending in the main vessel branch, thanks to free extremities. Similarly as in the
previous section, the region intensity model is the piecewise-smooth error term given in (4.2).
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IVC
liver

Figure 4.12 — Sagittal/axial views of a contrast-enhanced liver CT scan, showing lack of clear
boundaries between the Inferior Vena Cava (IVC) and liver parenchyma.

been proposed and validated against manual segmentation references [5, 82]. However, on-

ly few attempts to automatically exclude the IVC from the liver segmentation have been

carried out [41, 150]. Automatic IVC segmentation remains difficult given the anatomical

inter-patient variability, the lack of well-defined boundaries with the liver parenchyma, the

possible presence of nearby tumors and the effect of non-uniform distribution of the con-

trast agent. Consequently, existing approaches weakly perform under non-ideal scenarios,

and the problem remains unresolved up to now. To cope with the aforementioned difficul-

ties, our contribution is twofold: (1) a model of the IVC as an implicit representation of a

generalized cylinder, as a direct application of the previous section and (2) a vessel-specific

local region-based criterion along the centerline.

Local Statistics along the Centerline

These general evolution equations can be adapted to vessel segmentation by designing

homogeneity measures r1 and r2 that capture the local variations due to the complex

space-varying statistics of the outside tissues.

In this case of the IVC, the piecewise-smooth assumption does not suffice for the back-

ground, because the IVC is surrounded by too many structures of very distinct intensities.

Neither do global non-parametric probability distributions apply due to the important con-

trast variations from the higher part (close to the heart) and the lower one (see Fig. 4.12).

We already described a method to estimate local-non-parametric distributions in a way that

is consistent with the variational formulation, in section 3.2.4.

In the following, we further specify their expression for vessels to avoid computing the

distributions everywhere in space. The idea is to define a local probability density pi(I(x), s)

at each point m(s) of the curve, instead of at each point y ∈ Ω. The classification error at

a given point x ∈ Ω is obtained by a weighted integration of the contributions of each local

probability densities pi(I(x), s) along the centerline,

ri(x, pi) = −
∫ 1

0
Wa (x−m(s)) log pi(I(x), s)‖m′(s)‖ds (4.21)
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where the blending scale a of W is related to the intensity variations along the vessel.

Consistently with chapter 3, we define the total classification error Ei(pi) of region Ωi as:

Ei(pi) =

∫
Ωi

ri(x, pi)dx = −
∫

Ω

∫ 1

0
Wa (x−m(s)) log pi(I(x), s)‖m′(s)‖dsdx (4.22)

With very similar calculations to section 3.2.4, the optimality conditions of Ei(pi) subject

to the constraint ∀s ∈ [0, 1],

∫
R
pi(a, s)da = 1 reveal that probability densities pi should be

updated periodically during optimization using:

p∗i (a, s) =

∫
Ωi

Wa (x−m(s)) Kε(I(x)− a) dx∫
Ωi

Wa (x−m(s)) dx

, (4.23)

Combined with this local region-based criterion that accurately represents the intensity

statistics along the centerline, the implicit generalized cylinder has the required ability

to follow image evidence where it is available (upper and lower parts) and extrapolate the

tubular surface where it is missing (parts touching the liver). For the sake of robustness and

control, we use the model with fixed extremities, setting the derivatives at the end-points

to 0, in order to automatically segment the Inferior Vena Cava in contrasted CT images.

The initialization strategy, based on an analysis of the surrounding anatomy to locate the

extremities, is described in [104], and some typical results are shown in Figure 4.13 and

Figure 4.14.

Figure 4.13 — Front and side views of IVC + liver veins segmentation, from the CT image shown
in the introduction chapter. Ths Inferior vena Cava, segmented with a convolution surface Φm,σ, is
shown in green. The liver veins, represented with a membership function u as in section 4.2, is shown
in blue. The mask of the liver in which the segmentation of the veins is performed is transparent.
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(a) (c) (e)

(b) (d) (f)

Figure 4.14 — Segmentation of the IVC in two different CT volumes, in each row. (a)-(b) show
a 3D surface rendering, (c)-(d) sagittal views and (e)/(f) axial views, showing the algorithm perfor-
mance in the absence of clear boundaries with the liver parenchyma.

4.4 Conclusion

In this chapter, we considered in the same region-based variational framework two complete-

ly different representations to extract vessels in 3D angiography. The common hypothesis

is that vessel segmentation is viewed as a two-phase optimal separation problem where each

phase (vessels/tissues) is assumed to show smoothly-varying intensities.

The first method uses the convex formulation of chapter 3 with a membership function,

aimed at partitioning a volume into two non-overlapping smooth components subject to

a perimeter constraint. We proposed additional constraints in order to control both the

contrast of the vessel lumen and its geometry. The new constraints reduce the sensitivity

to inconsistent initial conditions and limit the appearance of possible leakages, without any

significant complexity overhead. We illustrated these advantages on 3D CT images of the

hepatic vascular system. The advantage is that the topology of the target structures can

be arbitrarily complex. However, besides the additional constraints, applicability remains

limited either to the cases where there are mostly well-contrasted vessels in the image, or

to a controlled spatial domain (here the pre-segmented liver).
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The second representation is an implicit surface that is specifically adapted to tubular

shapes and borrowed from computer graphics and modeling. It is a smooth approximation

of a generalized cylinder, with a parameterized curve as skeleton primitive and varying-scale

Gaussian elements blended along the curve. The smooth implicit representation enables to

compute the derivatives of the region-based criterion with respect to the curve and the

scales, which are expressed as boundary integrals over the surface with specific terms for

the end-points. Consequently, extremities can either be free to move or fixed a priori,

depending on the application. It would be interesting to extend the same principles to

hierarchical tree structures, in particular to handle the case of evolution equations for the

bifurcation points.

Since this second technique is based on a tubular model, it is more robust to missing

contrast and imaging artifacts than the first one. However, robustness comes at the price

of a fixed topology, here considered to be a single branch. Another consequence is that the

result of the segmentation is not allowed to derive from a generalized tube with a circular

cross-section, while vessels can have in reality more flattened shapes.

Recently, Pizaine et al. proposed an extension of the method presented in section 4.3.1

in [141]. The authors represent vessels with an implicit function built from the convolution

of a centerline function with localized kernels of continuously-varying scales. Rather than

modeling centerlines with explicit parameterized curves m(s), the authors use a second

implicit function, which gives the topological flexibility to create new branches.



Interactive Segmentation

with Non-Euclidean

Radial Basis Functions 5
In this chapter, we propose a new implicit surface representation that is specifically de-

signed to add interactive capabilities to 3D segmentation algorithms.

The main idea is to span a finite-dimensional subset of implicit functions with linear

combinations of a small number of spatially-localized kernels that follow image features.

This is achieved by replacing the Euclidean distance in conventional Radial Basis Func-

tions, recently proposed in the context of image segmentation by Gelas et al. in [73], with

non-Euclidean, image-dependent distances. For the minimization of a region-based criteri-

on, this representation yields more accurate results with much fewer control points than its

Euclidean counterpart, leading to a very small number of variables is to optimize.

If the user positions the control points, the non-Euclidean distance enables to further

specify the local kernels for a target object in the image. Moreover, taking advantage of

implicit representations in which the sign determines the membership to the object, in-

teractive control over the segmentation result is obtained by casting inside/outside labels

as inequality constraints. We use a variant of the Active Sets algorithm to solve the con-

strained optimization problem, since the constraints turn out to be linear with respect to

the optimization variables.

Finally, we discuss several algorithmic aspects to achieve a responsive interactive work-

flow with instant feedback in 3D. Using this technique, the delineation of whole anatomical

structures of moderately complex shape can be obtained in a few intuitive interactions.

93
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5.1 Introduction

In the hope of reproducing human skills to localize and identify specific objects in images,

many research efforts have been focused on the development of fully automatic segmentation

algorithms. This goal can sometimes be reached, for instance when the shape of the object

is known and modeled, by exploiting far more information than the image alone provides.

Unfortunately, in many cases, such prior information is not available and the user has to

be involved in the segmentation process. In medical imaging for instance, the knowledge

of an expert practitioner is often irreplaceable. To be accepted in daily medical practice,

in particular with volumetric data, general-purpose segmentation tools should not only be

interactive but also provide intuitive, robust and responsive control.

In the past few years, fast interactive segmentation algorithms have been proposed [11,

53, 91, 127, 148, 186]. User interactions are typically handled in 2D by drawing so-called

”scribbles”, associating inside/outside labels to parts of the image. In this work, we present

an interactive segmentation framework based on the selection of only a few points, inside

or outside the object of interest. Our technique relies on the minimization of an objec-

tive criterion over a sensible, low-dimensional subset of possible implicit functions. This

subset is spanned by a novel class of non-Euclidean Radial Basis Functions, built from

image-dependent metrics using local image features such as intensity distributions or edge

information. To the best of our knowledge, this is the first introduction of image-dependent

non-Euclidean distances into Radial Basis Functions.

For segmentation with implicit surfaces, spatially-localized image-adaptive kernels achieve

better accuracy with far fewer basis elements, as soon as they are properly positioned. Con-

sequently, we propose an interactive scenario in which the dimension of the basis, hence

the complexity of the optimization problem, increases progressively as the user introduces

control points, depending on the difficulty of the segmentation task.

Moreover, the association of inside/outside labels to control points is formulated through

additional linear inequality constraints. Finally, as the objective criterion may have local

minima, we introduce an auxiliary quadratic programming problem that, solved in linear

time, allows the user to guide the process toward a local minimum of his or her choice.

Minimizing over a restricted low-dimensional space bears some similarities with the GeoS

algorithm [53], in which optimization is performed over a two-dimensional space built from

two geodesic morphological operators.

In section 5.2, we recall the implicit representation framework and the variational prin-

ciples involved in the optimization of a region-based criterion. Recent formulations using

Radial Basis Functions are also discussed. In section 5.3.1, we introduce an extension with

non-Euclidean distances in order to build an image-adaptive basis of implicit functions.

In section 5.3.2, we cast user interactions into linear inequality constraints. Finally, we

describe in section 5.4 the complete sequential workflow of a real-time 3D interactive tool.
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5.2 Segmentation with Radial Basis Functions

Recall from Chapter 3 that a variational formulation for partitioning a n-dimensional image

I : Ω ⊂ Rn 7→ R into two disjoint homogeneous regions Ω1 ⊂ Ω and Ω2 = Ω\Ω1 typically

involves the choice of two application-specific components: a pixel-wise classification error

for each region (r1, r2) and a representation for the foreground region with an associated

regularity constraint R. Formally, the minimization problem reads:

min
Ω1,α1,α2

{
R(Ω1) + λ

∫
Ω1

r1(x,α1)dx + λ

∫
Ω\Ω1

r2(x,α2)dx

}
(5.1)

In this chapter, we concentrate our efforts on the design of a representation for the fore-

ground region that is particularly adapted to interactive segmentation. As an example, we

use as region descriptors for all illustrations the global non-parametric classification error

from section 3.2.2: {
αi = {pi}
ri(x, pi) = − log pi (I(x))

(5.2)

With an implicit representation, the foreground Ω1 is defined as the zero super-level set

of a scalar function Φ, Ω1 = {x ∈ Ω,Φ(x) ≥ 0}. Focusing on the supervised case where α1

and α2 are fixed, without loss of generality, and setting r(x) = λr1(x,α1),−λr2(x,α2) the

criterion (5.1) can be re-formulated as a minimization over a functional set F :

min
Φ ∈ F

{
R(Φ) +

∫
Ω
H(Φ(x))r(x)dx

}
(5.3)

where H is the Heaviside step function. F is generally defined as an infinite-dimensional

space such as Lipschitz functions. But relatively early in the history of implicit models,

the idea of building F as a space spanned by a finite basis was proposed [166], using for

instance hyper-quadrics [42, 80]. Recently, this approach has regained interest and authors

have proposed to generate F with B-Splines [14, 15] or Radial Basis Functions [73, 124, 160].

Widely used for scattered data interpolation and surface reconstruction [22, 67, 101,

164, 180], Radial Basis Functions offer intrinsic smoothness and do not require a regular

sampling of the image domain. The implicit function Φ is built up as a linear combination

of translated and scaled versions of a radially-symmetric non-negative kernel ϕ centered

around N points xi (see Fig.5.1):

Φρ(x) =

N∑
i=1

λiϕ

(
‖x− xi‖

σi

)
=

N∑
i=1

λiϕi(x) (5.4)

The scalar weights λi, positions xi and scales σi constitute the discrete set of parameters

ρ = {λi,xi, σi}. The functional in (5.3) becomes a function of ρ:

min
ρ

{
F (ρ) =

∫
Ω
H(Φρ)r(x)dx

}
(5.5)
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Figure 5.1 — An implicit contour with Euclidean RBFs. On the left, few basis functions with
positive (red) and negative (blue) weights. On the right, an implicit function obtained by linear
blending.

The regularization term R is usually omitted since the basis functions are intrinsically

smooth. Obviating regularization and minimizing F over a finite set are the key advantages

of this parametric formulation. Compared to infinite-dimensional level-set techniques, this

low-dimensional representation yields more efficient optimization algorithms while keeping

topological flexibility in 2D and 3D.

Along these lines, Gelas et.al [73] have successfully used compactly-supported radial

functions for segmentation, optimizing the weights λi for given positions xi and scales σi.

However, as pointed out in the context of surface reconstruction [60], radially-symmetric

kernels fail to model the asymmetric nature of sharp features such as straight edges. For

image segmentation applications, this tends to compromise the low-dimensionality advan-

tage, as the number of basis functions rapidly grows to accurately recover high curvature

objects. To overcome this limitation, Slabaugh et.al [160] have proposed to use anisotropic

Gaussian kernels and optimize their orientation as well as their weight, position and scales.

Their 2D experiments show a better capture of image details at the price of increasing the

dimensionality of the optimization space (6N parameters).

5.3 Proposed Algorithm

5.3.1 Switching to Non-Euclidean Distances

In order to obtain more accurate segmentation results without increasing the number of

parameters, we believe that the basis functions should be designed according to the actual

image content. This is a key difference with previous works in which the kernels were purely

geometric (spherical or elliptical). The basic idea is to span the space of implicit functions

Φ by a richer basis in which each element ϕi is localized in space and also incorporates

meaningful image information for segmentation. This can be obtained in the RBF frame-

work by a modification inspired by front propagation theory [114]. By construction, Radial
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Basis Functions only depend on the distance to their center. Their spherical shape is only

a consequence of the choice of the Euclidean distance. Instead, we propose to switch to an

image-dependent non-Euclidean distance to build the kernels. This extension opens up the

design of basis functions with iso-levels that are no longer spherical and naturally follow

the image features (see Fig.5.3). Each ϕi becomes:

ϕi(x) = ϕ

(‖x− xi‖gi
σi

)
. (5.6)

To each control point xi can correspond a different metric function gi : Ω 7→ R, required

to be strictly positive and smooth. A physically meaningful definition of the associated

non-Euclidean distance is:

‖x− xi‖gi = inf
C∈Γ(xi,x)

∫ 1

0
gi (C(s)) ‖C′(s)‖ds (5.7)

where the infimum extends over the set Γ of all differentiable curves C beginning at xi and

ending at x. This definition allows a rather intuitive design of gi so that the level-sets of

‖x− xi‖gi tend to fit the image features. Indeed, as shown in [45], they have a physical

interpretation of fronts propagating from xi with the image-dependent speed function 1/gi,

the Euclidean case being re-obtained by setting gi = 1. A popular choice [45] that would

snap level-sets to salient contours of the image is gi(x) = 1 + ‖∇I‖2, but an essential

property arises from the fact that each metric gi can also be adapted to the local image

content around each control point xi. Prior assumptions on the targeted class of images

should drive the choice of adapted metrics, such as gi(x) = 1 + (I(x) − I(xi))
2 in the

simple case of piecewise-constant images. In more general situations, we use the local

image intensity distribution Pxi estimated in the neighborhood of xi to define

gi(x) = 1− β logPxi (I(x)) (5.8)

where β > 0 controls the non-Euclidean part of the metric: the smaller β is the more

spherical the basis function will be. This is illustrated in Fig.5.2 where we show various

basis functions obtained with increasing values of β. The numerical computation of geodesic

distances is very efficient, using fast marching [133] or sweeping methods [169, 179]

By construction, such non-Euclidean distances are meaningful only in a local neigh-

borhood of the control point xi. As a consequence, the function ϕ must not only be

non-negative as in the Euclidean case but also monotonically-decreasing, to discard mean-

ingless high distance values. The localization of each basis function ϕi in (5.6) can then be

controlled by its scale parameter σi. A Gaussian kernel would be a valid choice, but we use

for complexity reasons the C2 compactly-supported Wendland function [73, 180]:

∀a ∈ R, ϕ(a) =

{
(a− 1)4(4a+ 1) if a ≤ 1

0 otherwise
(5.9)
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Figure 5.2 — Switching to non-Euclidean distances: From left to right, increasing the image
adaptation of the non-Euclidean metric gi turns each basis element ϕi from a spherical-shaped RBF
(β = 0, left) into feature-aligned kernels (β > 0, middle/right).

Non-Euclidean distances have a long history in image segmentation, but not for the

purpose of generalizing radial basis functions to build and represent implicit surfaces. In

1998, Malladi and Sethian had already used Non-Euclidean distances for Medical Shape

Recovery [115] in 3D. In their algorithm, a front was propagated from a set of seed points

with the Fast Marching algorithm [133] inside the structure of interest, further refined with

a level-set algorithm. More recently, Bai et al. have used competing geodesic fronts from
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Figure 5.3 — Implicit contour based on non-Euclidean RBFs. Top: Two different basis functions
on the zebra image, localized fronts propagated using local intensity distributions (5.8) estimated
in the small circles. Bottom: on the left, several basis functions with positive (red) or negative
(blue) weights λi; on the right, the implicit function Φλ obtained by a linear blending of the basis
functions.

scribbles inside and outside the target object for interactive segmentation of natural images

and in temporal sequences [11]. Criminisi et al. defined geodesic morphological operators

to reconstruct object boundaries from user-drawn scribbles in 2D and 3D [53].

A notable difference of the proposed technique is that segmentation is not directly

obtained from a front propagation. Instead, multiple propagations serve to span a restricted

set of admissible solutions for an independent, region-based, optimization problem. Any

function Φλ of this finite-dimensional set is obtained by blending multiple localized fronts

propagated at possibly different speeds:

Φλ(x) = λ0 +
N∑
i=1

λiϕ

(‖x− xi‖gi
σi

)
(5.10)

where xi, σi are given control points and scales (see Fig.5.3). The weights λi are the only

unknown parameters, with an additional negative scalar λ0 < 0 introduced as boundary

condition. Indeed, we can assume that away from all control points, every pixel should

eventually be included in the background region {Φλ < 0}. Since, as already mentioned,

the function ϕ is required to vanish, then Φλ(x)→ λ0 as ‖x− xi‖gi → +∞, which imposes

the sign of λ0. With the above definition of the implicit function Φλ, we can now formulate
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the segmentation criterion (5.5) as

F (λ) =

∫
Ω
H

(
λ0 +

N∑
i=1

λiϕ

(‖x− xi‖gi
σi

))
r(x)dx (5.11)

where r(x) is the competition function, a pixel-wise likelihood test. The framework can

be applied with any of the suitable homogeneity models presented in Chapter 3 . Finally,

since multiplication by a positive scalar does not change the sign of the implicit function,

∀α > 0, F (αλ) = F (λ), minimizing F is an ill-posed problem. This can be fixed as in [73]

by an arbitrary normalization of the vector λ, such as ‖λ‖ = 1.

Fig.5.4 illustrates that switching to non-Euclidean kernels significantly increases seg-

mentation accuracy, with the exact same control points.

5.3.2 Interactions as Linear Inequality Constraints

As in the case of Euclidean RBFs, a good positioning of the scattered points is essential

to reach a correct segmentation with a minimal number of basis functions. Deriving an

automatic scheme to optimally position the control points is a challenging research topic.

However, in many cases, in particular in medical applications, the subjectivity of the seg-

mentation task is such that this challenge is unreachable without additional prior knowledge.

Within the framework introduced in the previous section, giving the user the possibility to

position each control point, a dedicated shape space can be built that is not only adapted

to the current image but also to the specific target object. Moreover, additional control

and robustness can be offered if the user indicates whether control points lie inside or out-

side the object of interest. The low-dimensionality of our representation with few basis

functions is a key feature to keep this interactive selection and labeling process easy and

simple, in particular in 3D. With an implicit representation, the inside/outside labeling can

be formalized as constraints on the sign of Φλ at the precise location of the control points:

∀k ∈ 1..N Ck(λ)
∆
= γkΦλ(xk) ≥ 0 (5.12)

with γk = 1 (resp. −1) for inside (resp. outside) points. Note that in contrast to scattered

data interpolation methods, only the sign of Φλ at control points is important, not its value.

Developing Φλ yields N linear inequality constraints for the vector λ = {λi}[i=0···N ]

∀k ∈ 1..N γk

(
λ0 +

N∑
i=1

λiϕ

(‖xk − xi‖gi
σi

))
≥ 0 (5.13)

Adding the background constraint at infinity λ0 ≤ −ε, where ε is an arbitrary small

positive constant, the N + 1 constraints can be rewritten in matrix form:

Aλ+ b ≥ 0 (5.14)
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Figure 5.4 — Non-Euclidean kernels increase segmentation accuracy. Control points xi are shown
as black dots. From top to bottom: Maximum-likelihood segmentation of the zebra image with
N = 30 control points, using Euclidean RBFs (left) and non-Euclidean RBFs (right) built as in
Fig.5.3; Corresponding optimal implicit functions, with Euclidean (left) and non-Euclidean (right)
RBFs; segmentation of the baby bear image with N = 12 control points, with Euclidean (left) and
non-Euclidean (right) RBFs; segmentation of a lesion in 3D Ultrasound with only N = 3 control
points, with Euclidean (left) and non-Euclidean (right) RBFs.
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with A =


−1

γ1 (0)

(0)
. . .

γN




1 0 · · · 0

... M

1



and M =

[
ϕ

(
‖xi − xj‖gj

σj

)]
1≤i,j≤N

, b =


−ε
0
...

0


Putting together the objective criterion (5.11) and the constraints (5.14) yields the

minimization problem:

min
λ∈RN+1

F (λ) =

∫
Ω
H

(
N∑
i=0

λiϕi(x)

)
r(x)dx

subject to Aλ+ b ≥ 0

(5.15)

where the function ϕ0 is constant with value 1.

5.3.3 Minimization Scheme with Active Sets

The general formulation (5.15) is a non-linear optimization problem with N+1 variables and

the same number of linear inequality constraints. In numerical textbooks, this corresponds

to a particular case of linearly constrained programming [131]. Its feasible set, the set of

λ satisfying the constraints, is a cone (as many constraints as variables) with hyperplane

boundaries. As soon as the matrix M is invertible, this cone is non-empty and contains the

summit −A−1b. From a user perspective, this ensures that a segmentation can be found

that satisfies the labeling constraints.

To solve (5.15) numerically, we use a variant of the Active Set method (see Algorithm

3), which generalizes unconstrained non-linear gradient-descent to handle inequality con-

straints.

Algorithm 3 relies on the computation of the gradient ∇E. Since the Heaviside function

is not differentiable in the usual sense, the most popular technique consists in introducing

a smooth approximation Hε [40] satisfying lim
ε→0

Hε = H. Noting δε the derivative of Hε, an

approximated gradient ∇εE would be:

∇εF (λ) =

[
∂E

∂λi

]
i

=

[∫
x∈Ω

δε (Φλ)ϕirdx

]
i

(5.16)

In classical level-set implementations, Φ is usually a signed distance function and δε(Φ)

defines around the zero level set a narrow band of constant width controlled by ε. In

contrast, parametric implicit functions built over RBFs are not distance functions and

‖∇Φλ‖ may undergo strong variations around the zero level-set. As shown in Fig. 5.6, the

width of the band δε(Φλ) is no longer uniform. The numerical precision of the integral
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Algorithm 3: Principles of the Active Set Algorithm

A constraint Ck ≥ 0 (5.12) is active at λ if Ck(λ) = 0.

Let nk = [ϕk(xi)]i be the normal to the hyperplane {Ck(λ) = 0}.
The Active Set AS(λ) is the set of indices of all the active constraints at λ:

{k|Ck(λ) = 0}.
Given a starting feasible λ0 and its AS(λ0),

repeat

Compute the function gradient −∇F (λn)

Compute its orthogonal projection on the space spanned by [nk]k∈AS(λn):

P⊥(−∇F (λn)) =
∑

k∈AS(λn)

eknk

Compute a feasible direction by subtracting blocking components of the active

set (ek < 0)

dn = −∇F (λn)−
∑

{k∈AS(λn)|ek<0}

eknk

Find optimal step α∗ ≥ 0 by a bounded line search

λn+1 = λn + α∗dn

Update the Active Set at λn+1: AS(λn+1)

until
∥∥λn+1 − λn

∥∥ < ε

Figure 5.5 — Principles of Active Sets Algorithm

computation (5.16) is strongly affected by the choice of ε and might lead to unexpected

results such as unwanted topology changes. To find a better approximation and avoid this

arbitrary choice, one can study the limit of ∇εE as ε goes to 0. Each component of this

limit gradient consists of a domain integral of the form lim
ε→0

∫
Ω δε(Φ(x))f(x)dx. This limit,

developed in the Appendix, reveals the generalized scaling property of the δ function:

lim
ε→0

∫
Ω
δε(Φ(x))f(x)dx =

∫
{Φ=0}

f(s)

‖∇Φ(s)‖
ds (5.17)
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This yields the exact expression of the gradient:

∇F (λ) =

[∫
{Φλ=0}

ϕi(s)r(s)

‖∇Φλ(s)‖
ds

]
i

(5.18)

where the domain integral (5.16) reduces to a boundary integral. This suggests a fast com-

putation that does not involve any approximation of δ nor arbitrary choice of ε: extract

the zero-level of Φλ by any standard algorithm and numerically integrate (5.18) over this

boundary using interpolated values of ϕi, r and ‖∇Φλ‖. Note that omitting the denomina-

tor in (5.18) would be justified for a distance function (‖∇Φλ‖ = 1) but leads to a wrong

approximation in the general case.

Figure 5.6 — Approximation δε(Φλ) for ε = 0.01, 0.05 and 0.15

5.4 3D Interactive Application Workflow

Our goal is to provide as much control of the 3D segmentation process as possible with

minimal and intuitive interactions in real-time. A direct application of the previously-

described framework would consist in first collecting user given labeled (inside/outside)

points, then launching the constrained optimization algorithm. However, this workflow

would not be optimal.

In this section, we describe a more responsive sequential workflow in which dimension-

ality increases progressively as the user introduces corrections. At each step, a non-convex

multidimensional minimization problem (5.15) should be solved, potentially facing many

local minima. Unlike fully automatic segmentation algorithms for which the non-convexity

is generally considered problematic, interactive methods can turn local minima into an ad-

vantage. The rationale behind the proposed workflow is to let the user drive seamlessly the

optimization algorithm toward a minimum of his or her choice by deducing sound initial

conditions from previous stages.

This iterative workflow is described in Algorithm 4. The user has to give the first control

point required to be set inside the object of interest. The first step will propose an initial

segmentation on which the user will interact to introduce corrections. It corresponds to

solving problem (5.15) for two unknowns λ = [λ0, λ1] under constraints λ0 + λ1ϕ1(x1) > 0

and λ0 < 0. Since ϕ1 ∈ [0, 1] (5.9), a non-empty segmentation requires λ1 > 0. Thus,
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Algorithm 4: Sequential WorkFlow

From single inside point x1 compute g1 and ϕ1 (N=1)

Perform 1D optimization (5.19) −→ λ̃
(1)

= [λ̃
(1)
0 , λ̃

(1)
1 ]

repeat

New control point xN+1 and constraint CN+1

Compute gN+1 and ϕN+1

Solve Constrained Quadratic Programming (5.20)

[λ̃
N
, 0] −→ λN+1

Run non-linear Active Set, Algorithm 3

λN+1 −→ λ̃
N+1

N −→ N + 1

until User is satisfied

as already mentioned, F (λ) = F (λ/λ1) and (5.15) is equivalent to the following one-

dimensional thresholding problem

min
θ∈R+

F (θ) =

∫
Ω
H

(
ϕ

(‖x− x1‖g1

σ1

)
− θ
)
r(x)dx (5.19)

Since ϕ is monotonous, selecting a threshold θ corresponds to a choice of the front propa-

gated from the seed point x1 at the image-dependent speed 1/g1. This is related to methods

based on the choice of propagated front [114], with a fundamental difference: the chosen

front is not arbitrary and minimizes an objective region-based criterion F (Ω1) over the

one-dimensional embedding defined by the levels of the propagation.

This ”one-click” step often provides already a good initial guess in case the metric g1 can

be designed to capture most of the image features, for instance with objects of homogeneous

intensity distribution if a log-likelihood metric as (5.8) is used (see Figure 5.7).

Subsequently, until the user is satisfied with the result, corrections can be made by intro-

ducing a new labeled point xN+1 and hence a new constraint. Typically, the user can drop

a new outside point where a leakage occurred, or an inside point where under-segmentation

is observed (see Fig.5.8 and Fig.5.9). In both cases, the new constraint is violated by the

current segmentation. Since Algorithm 4 has to be initialized from a feasible position, the

difficulty now lays on finding a suitable initialization λN+1 that satisfies not only the new

constraint but also the previous ones. This choice is critical, because Algorithm 4 will find

the closest local minimum of the non-convex function F (5.15). To go further, we assume

that an intuitive and stable correction should not only satisfy the constraints but also stay

close to the current segmentation. Therefore, a sensible strategy is to find a feasible λN+1

so that ΦλN+1 is as close as possible to the previous optimal implicit function Φ
λ̃
N , in the

L2 sense. Formally, this corresponds to solving after each interaction:

λN+1 = argmin
AλN+1+b≥0

∥∥∥ΦλN+1 − Φ
λ̃
N

∥∥∥2

2
(5.20)
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Figure 5.7 — ”One-Click” initialization, segmentation of a brain volume in CT to extract the
region enclosed by the skull. Optimizing over a one-dimensional embedding of shapes (5.19) can be
enough if the metric g1 captures most of the image features.

Expanding functions over the basis (ϕi) we have:

∥∥∥ΦλN+1 − Φ
λ̃
N

∥∥∥2

2
=

∫
Ω

(
N+1∑
i=0

(
λ̃Ni − λN+1

i

)
ϕi

)2

= (λ̃
N
− λN+1)T G (λ̃

N
− λN+1)

with G =

[∫
Ω
ϕi(x)ϕj(x)

]
(i,j)∈[0,··· ,N+1]

(5.21)

(5.20) is a low-dimensional constrained quadratic programming problem, if G is not singular

its unique solution can be found in linear time [131]. Solving this problem is extremely fast,

since it only depends on the scalar products between the basis functions, not on the image.

The next optimal segmentation of the image that satisfies all the constraints is presented to

the user after applying the non-linear Active Set method from this sound initial condition.

5.5 Conclusion

In this chapter, we described a flexible framework for interactive image segmentation based

on the selection of a few points inside and outside the object of interest. Our variation-

al formulation is based on the minimization of a broad class of two-phase segmentation

functionals, which includes the well-known maximum-likelihood criterion, taken here as an

example.

The crux of the technique stems from performing the minimization over a low-dimensional,

image-adaptive subset of implicit functions. This subset is spanned by localized kernels,

constructed with a novel extension of Radial Basis Functions with image-dependent non-

Euclidean distances, using local image information around each control point.
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Figure 5.8 — 2D interactive segmentation of the Left Ventricle in a Cardiac CT slice. Top-left:
original image. Top-right: one single click inside (blue) the ventricle captures most of its shape
but also the atrium, which has a very similar intensity distribution. Bottom-left: one single outside
(red) click on the mitral valve removes the atrium. Bottom-right: Two final control points allow as
fine corrections to include the papillary muscles of different intensity.

This extension opens up the design of non-spherical, feature-aligned basis functions with

the immediate consequence that far fewer control points are needed to accurately recover

sharp details such as straight edges or corners. Fully automatic segmentation algorithms

can already benefit from this representation, but if a user provides the control points,

the basis functions can be made even more specific to the targeted object. In such an

interactive scenario, the inside/outside labeling can be expressed through simple linear

inequality constraints in the parameter space.

We applied this constrained formulation to build a general-purpose 3D segmentation

tool based on a sequential workflow in which the dimension of the optimization problem

increases progressively as the user interacts.
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Figure 5.9 — General-purpose 3D interactive segmentation tool, tested on a 2 GHz processor on
images of typical size 2563. Response time after each user interaction is about one second. Left
column: Segmentation of the left ventricle in a cardiac CT volume. As in Fig.5.8, a single click in
the ventricle extracts most of the 3D shape but also the atrium. The atrium is first removed with
an outside click on the valve. 4 subsequent clicks increase the accuracy and include the papillary
muscles in the ventricle (N = 6).
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Figure 5.10 — General-purpose 3D interactive segmentation tool. Segmentation of the kidneys
in a CT volume with N = 10 control points. Note that the second kidney, with similar intensity
distribution, can easily be obtained after the first one, thanks to the topological flexibility of the
implicit representation.
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Non-Rigid Implicit

Template Deformation

with User Constraints 6
In this chapter, we develop an algorithm for 3D interactive segmentation by non-rigid

deformation of an implicit template towards the image, with three main features.

First, we formulate region-based template-to-image registration in a way that is con-

sistent with the notion of shape. This enables a natural decoupling of global and local

components of the unknown geometric transformation as well as a joint estimation of both

contributions. Moreover, regularization of the non-rigid component is intrinsic to the shape

and invariant with respect to the pose. The pose can for instance correspond to a similarity

transformation that encodes the object position, scale and orientation.

User input is incorporated through inside/outside labeled points, as in chapter 5, to

drive the deformation and improve clinical reliability. Contrary to the previous chapter,

the resulting inequality constraints are here non-linear. The overall problem of recovering

jointly the optimal pose and the non-rigid deformation field, subject to a set of non-linear

inequality constraints, is solved using an Augmented Lagrangian approach.

Finally, we use a fast version of non-rigid deformation by considering smoothness as a

built-in feature of the displacement field, directly expressed as a Gaussian convolution in

the functional to minimize. This relates to Thirion’s well-known Demons image registration

algorithm [168], here applied in the context of shape deformation and template-to-image

registration. Mainly motivated by efficiency reasons, this choice allows to impose arbitrary

long-range smoothness in real-time, which enables easy interactions in 3D with a live visual

feedback of the deformation.

Results are shown on 3D medical images of various anatomical structures acquired from

several modalities, with execution times of the order of a few seconds, including surface

deformation rendering and user interactions.

111
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6.1 Introduction

Segmentation of images subjected to noise, occlusions and low-contrasted regions can be

significantly facilitated by the incorporation of some prior knowledge. This approach has

been extensively studied in terms of shape prior by constraining the solution to remain close

to a given pre-defined shape. For instance, statistical methods have been proposed to model

shapes, such as the Active Shape Models [48]. Such models require careful preliminary train-

ing to capture the variability of the shape. In the level-set framework, shape priors have also

been introduced by penalizing the dissimilarity between the implicit object representation

and the one embedding the prior shape, via an additive shape constraint [38, 50, 136, 144].

The model of Leventon et al. [106] and further works along the same line [27, 171] combine

the two approaches by embedding a PCA of training shapes in distance functions and defin-

ing a linear statistical model for the shape term. Non-linear versions have been explored

as well [51]. In some cases, in particular for objects composed of multiple components,

these methods may however suffer from the uncontrollable topology changes allowed by the

implicit representation.

A possible alternative to control the topology is to apply a geometric deformation to the

prior shape, using the principle of variational template-to-image registration [7, 151, 162].

In this approach, two-phase segmentation is performed by deforming a binary template

towards the image. The prior is the template itself, and the shape constraint consists in a

regularization of the deformation. The optimization is guided by the likelihood maximiza-

tion of user-defined intensity models, given the pixel values observed in both the foreground

and the background. This approach, sometimes referred to as non-rigid template matching

has been recently applied by Saddi et al. in [152] for liver segmentation in CT.

In pathological cases presenting extreme variabilities of image features and organ shapes,

shape priors may be helpful but insufficient; expert input is then essential to guide the seg-

mentation. Designing intuitive and reliable interactive tools remain a key challenge, partic-

ularly in 3D. Few attempts to combine shape priors and interactivity have been made [69].

Along the same line, we propose to incorporate user input in the form of inside/outside label

constraints that must be strictly satisfied. A fast implementation results in an application

that provides instant visual feedback of the current non-rigid deformation and intuitive live

interactions.

In section 6.2, we recall the principles of region-based segmentation with template non-

rigid deformation. In the general framework, this corresponds to a specific choice of repre-

sentation for the implicit function Φ as a geometrically-transformed version of a template

shape Φ0. In section 6.3, we propose a new approach to add interactive capabilities with

additional inequality constraints and choose a transformation model that enables the joint

recovery of a global shape alignment and a non-rigid deformation field. Finally, in sec-

tion 6.4, we illustrate the versatility of this template deformation framework by segmenting

many anatomical structures with a known expected shape, in various imaging modalities.

An experimental validation of the effectiveness of user interactions is performed for the

segmentation of kidneys in Contrast-Enhanced 3D ultrasound images.
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6.2 Region-Based Implicit Template Deformation

Let us start with a brief reminder on the region-based segmentation variational formulation

followed throughout this thesis. With an implicit representation Φ, positive in the fore-

ground, the minimization problem involves a regularization R (Φ) and a volume integral

measuring the classification error, of the form:

min
Φ

{
R(Φ) +

∫
Ω
H(Φ(x))r (x)) dx

}
with r(x) = r1(x,α1)− r2(x,α2)

(6.1)

For sake of simplicity, the optimization with respect to the region parameters αi is

ommitted, but we would like to emphasize that the template deformation framework devel-

oped in the following sections can be used both in a supervised and unsupervised setting,

with any for the region quality measures ri that were developed in Chapter 3, such as

the piecewise-smooth model with normalized convolutions from section 3.2.3, or the non-

parametric maximum-likelihood term:

r(x) = − log
p1(I(x))

p2(I(x))
(6.2)

In the literature on image segmentation with shape prior in the level-set framework,

the regularization R(Φ) in (6.1) is often complemented with an additional shape term

that enforces the solution to remain close to a predefined implicit representation. For

instance, Paragios et al. in [136] constrain Φ to be a distance function in order to penalize

its L2-distance to a globally transformed template. Nevertheless, this technique does not

guarantee that the zero level-set of the solution preserves the topology of the shape prior.

Moreover, R(Φ) is classically chosen to penalize the perimeter of the region boundary, which

is counter-productive since it inevitably smooths out possible important details of the prior

shape.

To cope with these problems, an alternative approach is to rather deform a template

shape, assumed here to be defined in its own referential Ω0, with a geometric transformation

ψ : Ω0 → Ω. The template is implicitly represented by a function Φ0 : Ω0 → R, while the

segmentation boundary is given by the zero-level of:

Φ = Φ0 ◦ ψ (6.3)

The unknown becomes the transformation ψ and the penalization R(Φ) in (6.1) is

replaced by a shape term S(ψ), consisting in a regularization constraint acting on ψ. This

is illustrated in Fig. 6.2 where we show a star-shaped template in 2D, deformed with a

regular transformation ψ. Note how the deformed template keeps its sharp details after

transformation, which can be a desirable feature in some applications.

Thus, going back to the optimization problem (6.1), the problem of region-based image

segmentation by implicit template deformation can be formalized as follows:

min
ψ

{
S(ψ) +

∫
Ω
H(Φ0 ◦ ψ(x))r (x) dx

}
(6.4)
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(a) implicit template Φ0 (b) deformed Φ = Φ0 ◦ ψ

Figure 6.1 — Implicit template deformation

Compliance with the shape prior is determined by both the deformation model ψ and its

associated constraint S(ψ), which must therefore be chosen carefully. In a related context, a

similarity transformation was used by An and Chen [7], excluding more local deformations.

In the non-rigid case, Saddi et al. [151] regularized the deformation with a diffeomorphic

fluid model with no specific shape constraint, thus enabling the result to strongly deviate

from the prior shape. Somphone et al. proposed deformations based on finite elements

with partition of unity as a compromise between global and local models [162]. Huang and

Metaxas have proposed to use Free Form Deformations, with B-Splines, in the Metamorphs

algorithm [88].

6.3 Proposed Algorithm

We would like to address the two following limitations that are common to all above ap-

proaches:

1. There is no way to easily integrate user interactions in any of the existing template

deformation schemes. In section 6.3.1, we cast user interactions as additional non-

linear inequality constraints, turning the method into a semi-automatic technique in

which both the user input and the shape constraints drive the template deforma-

tion towards image features, in real-time. The principle is exposed in section 6.3.1,

and further developed in section 6.3.4 with an Augmented Lagrangian approach to

minimize the constrained formulation.

2. The shape constraint S(ψ) is not intrinsic to the shape, in particular it is not invariant

with respect to the pose of the object. Consider the scaling factor for instance, a

transformation ψ changing only the shape size should not induce a change in the

value of S(ψ), otherwise the relative balance with the image term in (6.4) would
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also change. Intuitively, global transformations should be differently handled than

actual shape deformations. In practice, pose-invariance is required to enable a single

shape model to be used for segmenting objects of the same class in a variety of image

acquisition conditions, with the same parameter settings. A general framework based

on group theory is presented in section 6.3.2 to ensure pose-invariance of the shape

term S(ψ), consistently with the notion of shape.

6.3.1 Interactions as Non-Linear Inequalities

Additional control and robustness can be obtained by offering to the user the possibility to

indicate whether some specific points shall lie inside or outside the surface to extract.

Denoting {xk ∈ Ω}k∈{0,...,N−1} these labeled points, user input can be translated into N

constraints on the sign of the transformed template Φ = Φ0 ◦ ψ, at {xk}:

∀k ∈ {0, . . . , N − 1} γkΦ0 ◦ ψ(xk) ≥ 0 (6.5)

where γk = 1 (resp. −1) for inside (resp. outside) points. Fig. 6.2 illustrates the constraint

induced by an inside point (in blue) and an outside point (in red) on the deformation of

the star-shaped object of Fig. 6.2.

(a) Φ = Φ0 ◦ ψ violating constraints (b) Φ = Φ0 ◦ ψ satisfying constraints

Figure 6.2 — User constraints as inside/outside labeled points

Putting together the criterion (6.4) and the constraints (6.5) yields a general formulation

of implicit template deformation with user interactions, as the minimization problem:

min
ψ

{
E(ψ) = S(ψ) +

∫
Ω
H(Φ0 ◦ ψ(x))r (x) dx

}
subject to γkΦ0 ◦ ψ(xk) ≥ 0, ∀k ∈ {0, . . . , N − 1}

(6.6)

Note that forcing the resulting surface Φ−1(0) to pass through a specific point x can be

obtained by adding at this same point both inside/outside constraints.
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6.3.2 Algebraic Definition Of Shapes

In this section, we present a transformation model that is specifically designed for non-rigid

shape deformation and ensures pose-invariance of the shape term S. One may intuitively

comprehend a shape as a set of objects that share the same visual aspect. In particular, a

shape shall be invariant to some simple geometric transforms such as translation, rotation,

scaling or shearing, depending on the application. For instance, 3D rigid objects projected

onto a 2D image plane from a pinhole camera are known to be subject to perspective

transformations, which was exploited for 2D segmentation with a 3D shape prior by Raviv

et al. in [144]. When dealing with organs and other structures in 3D medical images,

transformations preserving the aspect ratio, such as similarities, should often be preferred.

In the following, such a global transformation will be referred to as the pose.

To set up a clear distinction between shape pose and subsequent shape deformation,

it is natural to design the template transformation model ψ as a combination of global

and non-rigid local components, that we denote G and L respectively. As we will see,

the mathematically correct way of combining both components is through a functional

composition, such that:

ψ(x) = L ◦G(x) (6.7)

Considering a point x in the image domain, this composition can be interpreted as successive

realizations of a change of referential x 7→ y = G(x), reflecting the shape pose (top diagram

in Fig. 6.3), followed by the actual template deformation y 7→ L(y). Note that if Φ is an

implicit representation of a surface Γ, then G−1(Γ) is the zero-level of Φ ◦G.

We shall now briefly present a formal justification of this transformation model with an

algebraic definition of shapes, as well as describe some of its advantages regarding pose-

invariant template deformation.

Let C be the set of all closed surfaces in Rd and (G, ◦) a group generated from a set G of

given geometric transforms of Rd, associated with the composition operation. Considering

the group action of G on C, we define a shape as an orbit with respect to this action, i.e. a

class of the equivalence relation RG defined on C by:

Γ1 RG Γ2 ⇐⇒ ∃ G ∈ G, Γ2 = G (Γ1) (6.8)

for any Γ1,Γ2 in C. Thus, the orbits form a partition of C, meaning that any closed

surface belongs to one and only one shape; this partition – and hence the shape space –

depends on the choice of G. We consider groups of global, parametric transforms, typically

the similarity or affine transforms.

In practice, the prior shape is provided as a particular surface Γ0 of the orbit, together

with an associated shape domain Ω0, defined as a subdomain of Rd containing Γ0. In

formulation (6.4), Γ0 is represented by an implicit function Φ0 defined on Ω0. At this point,

it is important to distinguish between the image referential Ω, that embeds the image to

segment as well as all the elements of C, and the shape referential Ω0, centered on Γ0 and

serving as the referential for deformations. This distinction is illustrated on Fig. 6.3 in the

2D case.
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Figure 6.3 — Image and shape referentials in R2. The shape prior is provided as a particular
contour Γ0. (Top) Contours from the orbit of the shape prior: Γ1, Γ2 and Γ3 can be exactly matched
to Γ0 with global transforms from G. (Bottom) Contours from another orbit. A deformation of the
optimal pose is necessary to exactly match Γ0.

On the top diagram, several contours of an orbit are represented in the image referential.

Since Γ1, Γ2, Γ3 can be exactly matched to Γ0 with transforms G1, G2 and G3 belonging

to G, no further deformation in the shape referential is needed. On the bottom diagram,

contours Γ′1, Γ′2 and Γ′3 belonging to another orbit are shown. Since they cannot be exactly

matched to Γ0 with transforms from G, a deformation L in the shape referential is necessary

to complete the matching so that L(Γ′0) = Γ0.

A similar definition of shapes was previously introduced by Soatto and Yezzi in the

context of shape averaging [161, 184]. For segmentation with template deformation, de-

composing the unknown transform as ψ = L ◦ G proves essential since it allows to define

the shape term in a unique referential (namely the shape referential Ω0). All surfaces

(Γ′1,Γ′2,Γ′3,...) of a same orbit, once globally aligned, result in a same optimal surface (Γ′0).

The cost to reach the exact match is then equal to S(L) and is intrinsic to the shape. A pose

will be qualified as optimal when the associated deformation is minimal with respect to S.

Designing S such that it penalizes L only yields a constraint which is independent of the

pose. Moreover, S is also independent of the image referential, domain and discretization.
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6.3.3 Transformation Model

In accordance with the previous section, we set up a clear distinction between the pose and

the subsequent shape deformation by designing the template transformation model as:

ψ = L ◦G (6.9)

Fig. 6.4 illustrates this composition on an implicit sphere in 3D. The template surface,

a sphere (in green in Fig. 6.4.a), is transformed to reach a target shape, undergoing first

a global transformation (scaling and translation, in yellow in Fig. 6.4.b), followed by a

non-rigid deformation (in red in Fig. 6.4.b).

(a) implicit template {Φ0 = 0}
(green) and target shape (blue)

(b) optimal pose {Φ0 ◦G = 0} (yellow)

and deformation {Φ0 ◦ L ◦G = 0} (red)

Figure 6.4 — Transformation decomposition into pose and deformation

Pose

G : Ω→ Ω0 is chosen as a parametric transform that coarsely aligns the template with the

target object in the image. For anatomical structures in 3D medical images, similarities

(which preserve the aspect ratio) are particularly adapted. G is thus represented by a

matrix in homogeneous coordinates defined by 7 parameters p = {pi}i=1···7 and noted Gp.

Deformation

L : Ω0 → Ω0 is expressed using a displacement field u in the template referential Ω0:

L = Id + u (6.10)

Similarly to image registration and optical flow algorithms [155], u should be smoothly-

varying in space. While adding penalizations on differential terms on u to S(ψ) is a valid

approach, fast implementations are often difficult to derive. Taking advantage of efficient

linear filtering, smoothness of the displacement u is set as a built-in property: u is defined

as a filtered version of an integrable unknown displacement field v,

u(x) = [Wσ ∗ v] (x) =

∫
Ω0

Wσ(x− y)v(y)dy (6.11)
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where Wσ is a Gaussian kernel of scale σ and the free variable of the representation

becomes the field v, before smoothing. By construction, u is regular. The scale σ in (6.11)

is the only critical parameter and corresponds to the spatial extent of the smoothness.

Fortunately, since the displacement is expressed in the template referential, regardless of

the pose, the scale selection will be naturally linked to the shape.

This deformation model relates to the Demons image registration algorithm [168], here

applied in the context of shape deformation and template-to-image registration. Mainly

motivated by efficiency reasons, this choice allows to impose arbitrarily long-range regularity

in real-time, using a recursive implementation of the Gaussian filter with a computational

complexity that is independent of σ. As shown in section 6.3.4, the computation of the

functional derivatives with respect to the unknown displacement field v is also expressed

as a convolution.

Shape Term

Decomposing ψ = L◦G allows to define the shape prior term independently from the pose:

S(ψ) = S(L). S thus quantifies how much the segmentation Φ deviates from the prior

shape Φ0. Using the L2 norm, we choose to compel L towards the identity Id:

S(L) =
λ

2
‖L− Id‖22 =

λ

2

∫
Ω0

‖u(x)‖2dx (6.12)

where λ is a positive scalar parameter controlling the strength of the shape prior. In the

absence of features in certain areas of the image, r(x) ≈ 0 in (6.4), this shape constraint

dominates and tends to locally extrapolate the transformation with the global transforma-

tion that is optimal with respect to the other areas. In the limiting case λ → +∞, the

technique reduces to a global template alignment algorithm.

6.3.4 Augmented Lagrangian Minimization Scheme

The constrained optimization problem to solve finally reads:

min
p,v

{
E(ψp,v) =

λ

2

∫
Ω0

‖Wσ ∗ v(x)‖2dx +

∫
Ω
H(Φ0 ◦ ψp,v(x))r (x) dx

}

subject to γkΦ0 ◦ ψp,v(xk) ≥ 0, ∀k ∈ 0..N − 1

with ψp,v = Gp + (Wσ ∗ v) ◦Gp

(6.13)
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Minimizing under constraints

Since E(ψp,v) is a non-convex functional to be minimized under a set of non-linear con-

straints, no specifically tailored algorithms are available. For this matter, we follow a general

Augmented Lagrangian methodology and define an equivalent unconstrained problem that

can be locally minimized by gradient descent [131]. Although we adopted ψ = ψp,v as

specified in (6.13), the following strategy generalizes to any transformation model.

The constrained problem (6.13) can equivalently be written as an unconstrained mini-

mization problem of the form

min
ψp,v

{
Ẽ(ψp,v) = max

α≥0

{
E(ψp,v)−

N−1∑
k=0

αkck(ψp,v)

}}
with ck(ψp,v) = γkΦ0 ◦ ψp,v(xk)

(6.14)

where αk is the Lagrange multiplier associated to the kth constraint. (6.14) has the same

set of solutions as the original problem (6.13): if ψp,v satisfies all the constraints ck (ψp,v

is feasible), then Ẽ(ψp,v) = E(ψp,v), otherwise Ẽ(ψp,v) is infinite. Since Ẽ jumps from

finite to infinite values at the boundary of the feasible set, a more practical minimization

requires to introduce a smooth approximation Ê. Within an iterative process, in order to

constrain the maximizers α = {αk}k=0,··· ,N−1 to finite values, one can explicitly introduce

at each iteration a quadratic penalty parameter µ and a set of Lagrange multipliers αj (at

the jth iteration) to define

Êµ(ψp,v,α
j) = max

α≥0

{
E(ψp,v)−

N−1∑
k=0

αkck(ψp,v)− 1

2µ

N−1∑
k=0

(
αk − αjk

)2
}

(6.15)

The maximizing Lagrange multipliers associated to each constraint ck(ψp,v) can then be

found as functions of previously estimated values:

αj+1
k =

{
0 if αjk − µck(ψp,v) ≤ 0

αjk − µck(ψp,v) otherwise.
(6.16)

Substituting (6.16) in (6.15) yields the expression of the smooth approximation Ê:

Êµ(ψp,v, α
j) = E(ψp,v) +

N−1∑
k=0

Ψµ

(
ck(ψp,v), αjk

)
(6.17)

with Ψµ(a, b) =

 −ab+
µ

2
a2 if µa ≤ b

− 1

2µ
b2 otherwise.

(6.18)

The alternate scheme described in Algorithm 3, in which the penalty parameter µ is grad-

ually increased, will provide a local minimizer of (6.13) that eventually satisfies the user

constraints.
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Algorithm 5: Augmented Lagrangian Scheme For Inequality Constraints

given starting penalty parameter µ0, and α0 = 0,

repeat

choose µt > µt−1,

repeat

(1) ψp,v being fixed, update the Lagrange multipliers αj+1 (6.16)

(2) αj being fixed, update ψp,v by minimizing Êµt(ψp,v,α
j) (6.17)

until convergence;

until a local minimum of E(ψp,v) satisfying ∀k, ck(ψp,v) ≥ 0 is found ;

Gradient-Descent

An important feature of the proposed technique is its interactivity. Therefore, iterations of

the gradient descent chosen to minimize the smooth approximation Êµ(ψp,v) = Ê(p,v) in

(6.17) should be fast enough to provide a real-time display of the surface evolution.

The gradient descent evolution equations are obtained by applying standard calculus of

variations; recall that

Ê(p,v) = E(p,v) +

N−1∑
k=0

Ψµ

(
ck(pi,v), αjk

)
⇒


∂pi
∂t

= −∂Ê
∂pi

∂v

∂t
= −∂Ê

∂v

(6.19)

By setting

Ai(x) =

〈
∇Φ0 ◦ L(x), (I + Ju ◦G)

∂G

∂pi
◦G−1(x)

〉
and bk = γk

∂Ψµ

∂a

(
ck, α

j
k

) (6.20)

where I is the Identity matrix, Ju is the Jacobian matrix of u, the final expression of the

evolution equations for pi and v reads

∂pi
∂t

= −
∫

Ω0

δ(Φ0 ◦ L)r ◦G−1Ai −
N−1∑
k=0

bkAi ◦G(xk)

∂v

∂t
= −Wσ ∗

[
λu +

(
δ(Φ0 ◦ L)r ◦G−1 +

N−1∑
k=0

bkδG(xk)

)
∇Φ0 ◦ L

]
shape image force constraints

(6.21)

A quick analysis of (6.21) reveals several key aspects for an efficient implementation.

Interpolating Φ0 ◦ L and ∇Φ0 ◦ L over the whole domain Ω0 would be extremely time-

consuming. Nevertheless, since it is multiplied either by δ(Φ0 ◦ L) or δG(xk), the warped

gradient field ∇Φ0 ◦ L is only needed on the set {Φ0 ◦ L = 0} and at a limited number of

points {xk} (Fig. 6.5.a) which highly reduces computational burden.
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(a) surface/pointwise forces (b) coarse-to-fine φ0 ◦ L (c) convolved deformation

Figure 6.5 — Fast gradient computation with coarse-to-fine distance function warping and convolutions

Moreover, precise knowledge of the warped template Φ0 ◦ L is only necessary near its

zero level set. Setting Φ0 to a distance function to the template surface Γ0 allows a coarse-

to-fine approach using octrees. At each level a decision is made to further refine the cell

depending on the distance measure (Fig. 6.5.b), drastically dropping complexity. Finally,

stemming from the displacement model (6.11), the extrapolation of image and point-wise

forces to the whole space boils down to a convolution with Wσ (Fig. 6.5.c).

In practice, our current 3D implementation supports up to 100 time steps per second

when discretizing Ω0 with a lattice containing 483 points. This execution speed allows a

visual feedback of the deforming surface with a live response to constraints.

6.4 Experiments and Validation

In this section, the versatility of this template deformation framework is illustrated with

the segmentation of anatomical structures with a known expected shape, in various imaging

modalities. In addition to the template shape, a source of prior information relates to the

image data itself, in the form of application-specific region quality measures. We discussed

some relevant choices for r(x) = r1(x)− r2(x) in Chapter 3, relying on global or spatially-

varying statistical models depending on the imaging modality.

A strength of the region-based paradigm stems from the possibility to combine different

intensity models, according to some image or physical evidence, with the option of setting

up different models for foreground and background. Similarly, the choice of the parametric

transform for the pose and the scale of the local deformations also participate to the flexi-

bility. Although the best models and parameters for a given target object within a specific

modality can be learned from statistical training, they can also be subject to heuristic tun-

ing and experience when large annotated datasets are not available.
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For pathological cases, the shape prior only might be insufficient, due to possible organ

defects inducing a change in shape that cannot be recovered by a moderate deformation of

the template; in that case, the user interactions are very helpful, as shown in section 6.4.2.

6.4.1 Applications Without User Interactions

(a) (b) (c) (d)

Figure 6.6 — Segmentation of cardiac ultrasound images in short axis view. The same prior
template, shown in yellow in (a), is used for the three cases. (a) template referential, in yellow Φ0,
in red Φ0◦. (b) initialization (green). (c) segmentation result (red). (d) visualization of the warped
template in the image referential - the deformed grid represents the transform ψ = L ◦G.

Incorporating shape information into segmentation algorithms is essential in cardiac ul-

trasound images to cope with poor quality images obtained on difficult conditions or with

loss of contrast due to shadows, the dark regions created by air or bones that may attenuate

the ultrasound beam almost totally. On Fig. 6.6, some results are shown on 2D short-axis

images, using a single template with two components for the left and right ventricles. A

piecewise-smooth intensity region model is used (3.31) to take into account the varying

echogenicity. The implicit template deformation approach is particularly adapted to such

cases of objects with multiple components for its topology-preserving feature.



124 CHAPTER 6. NON-RIGID IMPLICIT TEMPLATE DEFORMATION WITH USER CONSTRAINTS

We also conducted various 3D experiments on Ultrasound (US) and Computerized To-

mography (CT) volumes to test the ability of the approach to extract whole organs with

predictable shapes. In all cases, the two patients are different and the same template was

used in both modalities (CT and US). The algorithm runs in a few seconds, depending on

initial model placement, left here to the user, and the chosen intensity models. In particu-

lar, the piecewise-smooth model induces a slightly increased, though reasonable, complexity.

Three anatomical structures were considered in these simulations. The kidney (Fig. 6.7),

the left ventricle myocardium (Fig. 6.8) and the four chambers of the heart (Fig. 6.9).

The ability to preserve the topology is again essential to dissociate the cardiac chambers

(Fig. 6.9.b) or to prevent the endocardium and epicardium from collapsing in the absence

of contrast (Fig. 6.8.b).

(a) (b) (c)

Figure 6.7 — 3D kidney segmentation for two different patients in CT (first row) and Ultrasound
(second row). (a) Wireframe renderings, with optimal pose template in transparent yellow {Φ0◦G =
0}, as well as optimal deformation, {Φ0 ◦ ψ = 0}, in red. (b)/(c) coronal/axial slices, overlaid
segmentation results.
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(a) (b) (c)

Figure 6.8 — Myocardium segmentation for 3 different patients in 3D echocardiography (first &
second row) and cardiac CT (last row). Top left: synthetic truncated ellipsoid annular template,
used for all experiments (yellow). (a) Optimal deformation {Φ0 ◦ L = 0} in red, in the template
referential Ω0. (b)/(c) long/short axis, overlaid segmentation.
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(a) (b) (c)

Figure 6.9 — Cardiac segmentation of the 4 chambers (left/right ventricle and left/right atrium),
for 2 different patients in 3D echocardiography (first row) and cardiac CT (second row) with the
same template with 4 disconnected components. (a) Optimal pose in yellow and deformation in red,
in the template referential Ω0. (b)/(c) long/short axis, overlaid segmentation in red.

6.4.2 Applications With User Interactions

Workflow description & Liver Magnetic Resonance Imaging

The interactive workflow is illustrated through an example in pre-operative planning of liver

cancer treatment, in which the liver volume is measured in Magnetic Resonance Imaging.

Variability in liver shape as well as the presence of large lesions contribute to the difficulty

of the segmentation.

As illustrated in Figure 6.10, the user first manually places the model Φ0, which initial-

izes pose G (6.10.a). From this point and further on, the optimization algorithm is launched

as a background task. Thanks to real-time feedback, the user observes the surface evolution

based on image descriptors (6.10.b). At any time, constraints can be added by simple clicks

on 2D slices and integrated into the optimization algorithm. Live update of the effect of

each interaction enables the user to drive the segmentation process (6.10.c).
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In this application, the surface model Φ0 is generated from an average mesh built from

segmentations on good quality CT images, while the image-based terms r1 and r2 are set to a

convex combination of negative log-likelihoods as in (4.17) and gradient flux maximization,

as in (3.46). Note that even though image quality is fair, user interactions are necessary

for a correct surface extraction given the severe and protuberant lesion.

(a) initial template (b) unconstrained (c) with 3 constraints

Figure 6.10 — MRI of the liver for preoperative resection planning. A 3D template of the liver
(a) is deformed to extract most of the liver tissue (b). In this case, 3 inside user constraints are
required to include a severe and unpredictable protuberant lesion (c).

Carotid in Conventional Ultrasound

In the context of plaque measurements in ultrasound images of carotids, semi-automatic

segmentation of the carotid wall would generate significant time gains in daily practice.

For this application, the foreground term r1 assumes a Gaussian distribution while the

background term r2 is updated at each iteration with a non-parametric estimation of the

intensity distribution. The template Φ0 is set to a cylinder. User interactions are necessary

when significant plaque clogs up a large portion of vessel lumen (see Figure 6.11).
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(a) initial template (b) unconstrained (c) with 2 constraints

Figure 6.11 — Illustration on a 3D Ultrasound image of the carotid for atherosclerosis assessment.
A synthetic tubular template deforms towards the image to segment the artery wall. Two user
inputs allow to correct for under-segmentation due to a sclerotic plaque.

Figure 6.12 — 3D CEUS image of a kidney, here shown three orthogonal cross-sections (courtesy
of Prof. J.M. Correas, Hospital Necker - Paris, France)

Validation on Contrast-Enhanced Ultrasounds (CEUS) of kidneys

After the promising, though only illustrative, experiment results, we have also started to

perform a clinical validation of the method presented in this chapter. Contrast-Enhanced

Ultrasound (CEUS) images is a recent imaging modality for which automatic segmentation

algorithms are very challenging. CEUS is an imaging technique that has proven essential for

both its relatively low toxicity and cost, in particular during radio-frequency (RF) ablation

planning of kidney tumors. Comparing kidney and tumor volumes (before the operation)

with kidney and resection volumes (after the operation) is necessary to evaluate the success

of the intervention. However, segmenting the kidney in CEUS images is a particularly

difficult task: the presence gas-filled micro-bubbles as contrast agent generates noisy data,

the limited field of view of probes often prevents the acquisition of the whole kidney and
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the presence of lesions induces variations in the usual shape (see Figure 6.12).

(a) (b)

(c) (d)

Figure 6.13 — (a) and (b): Similarity between segmentation and the ground truth defined by
J(A,B) = |A ∩B|/|A ∪B|, as a function of the number of interactions. Left: each curve correspond
to a single image. Right: box plot summarizing curves.
(c) and (d): Example of two different images, with different segmentations superimposed: ground
truth (yellow), deformation result with no constraint (red) and final result (green) with interactions.
Blue/red dots indicate points marked as inside/outside.

In collaboration with the radiology department of Hospital Necker (Paris, France) - the

main medical center for renal RF ablation in Europe - we have quantified the benefits of our

method. For thirteen patients, a specialist was asked to produce a ground truth segmen-

tation to measure the quality of our algorithm as a function of the number of interactions.

The model surface Φ0 was set to an ellipsoid and ri to − log(pi(I)), i = 1, 2. G was ini-

tialized by the user and deformation L to identity (u = 0). The graphs in Figures 6.13.a

and 6.13.b show that without interactions, the minimization of E (see Eq (6.4)) already

considerably reduces the segmentation error. As the user interacts the closer the segmen-

tation gets to the ground truth, often less than three clicks are needed for a satisfactory
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result (in an average of 15 seconds). The ground truth is never exactly matched due to

high intra-operator variability. Figures 6.13.c and 6.13.d show two examples where image

features, shape prior and user interactions are all essential to the correctness of the final

segmentation.

6.5 Conclusion

Although proven a solid approach for medical image segmentation, template deformation

is still unable to cope with the wide spectrum of shapes that pathologies can generate.

Providing users with reliable interactions is essential for the general acceptance of these

segmentation tools. In this context, we introduced 3D interactions in a template deforma-

tion framework as points inside or outside the target anatomical structure. The formulation

inherits from the region-based variational principles of Chapter 3 the supervised and unsu-

pervised settings , with any global/local/flux classification error.

Our approach enforces compliance with a prior template through a pose-invariant shape

term, consisting in a constraint on the deformation that is intrinsic to the shape referential.

Moreover, this formulation results in a fast joint optimization scheme for both pose and de-

formation. Experiments were presented for several anatomical structures in various imaging

modalities to illustrate the advantages of pose-invariance and the robustness with respect to

the preservation of the template, with execution times of the order of a few seconds. A spe-

cial care has been devoted to algorithmic efficiency to provide an even more intuitive control

of the segmentation process with a real-time visualization of the evolution under constraints.

Since the Active Shape Models [48], shape priors through learning have been an ex-

tensive topic of research in image segmentation, in terms of statistical linear or non-linear

shape models [27, 38, 50, 51, 106, 136, 144, 171]. In this work, we focused our attention

on a consistent pose-invariant formulation for variational template-to-image registration,

without relying on any learning nor training phase. However, the two approaches are not

mutually-exclusive, but rather very complementary; in particular, since our pose-invariant

transformation model relies on an intrinsic shape referential, it seems particularly-adapted

to a subsequent learning of the deformation fields. The tedious process of constituting

ground-truth segmentation datasets in order to learn these deformations can be made eas-

ier by the real-time interactive capabilities offered by this approach.



Conclusion 7
To cope with a considerable variety of clinical needs in terms of application requirements,

practical approaches to image segmentation in medical imaging would benefit from both

unification and diversity. While general paradigms are important for software re-usability

as well as rapid prototyping and interoperability of the algorithms, only a diversity of object

representations that fit together in a unified formulation can be broadly useful. Throughout

this manuscript, we followed a methodology that derives from the mathematical framework

of variational image segmentation with implicit surfaces. In this conclusion, we summarize

our contributions and discuss some possible future extensions.

7.1 Unified Variational Formulation

In this thesis, we revisited a classical variational formulation for image segmentation based

on region-wise features. Denoting by a function u(x) ∈ [0, 1] the membership of pixel x to

the target anatomical structure, the involved minimization problem reads:

min
u,α1,α2

{
R(u) + λ

∫
Ω
u(x)r1(x,α1)dx + λ

∫
Ω

(1− u(x))r2(x,α2)dx

}
(7.1)

where both the function u and the parameters describing each region, α1 and α2, are un-

known.

Within this unified unsupervised formulation, our first contribution was to generalize

statistical criteria derived from Bayesian principles to localized and non-parametric clas-

sification errors, efficiently computed using Gaussian convolutions. We provided a large

number of illustrative examples to help the reader choose the most suitable classification

error ri(x,αi) for specific applications.
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If a standard geometric constraint on the perimeter of the region is chosen for the

regularization term R(u), problem can be solved with convex relaxation, which gives a

globally-optimal solution to the supervised segmentation process, when the region parame-

ters are known in advance. This approach has significant advantages in terms of robustness

to initial conditions and numerical stability over the alternative level-set implementations

of surface evolution equations.

7.2 Diversity of Representations

Nevertheless, we have also shown that implicit representations of 3D surfaces can also be

very powerful for interactive image segmentation. We considered more constrained settings

by restricting the solution space to take specific forms according to some prior knowledge

on the object shape.

With a scalar field Φ(x) describing the surface {Φ = 0}, the membership function

in (7.1) becomes u(x) = H(Φ(x)), where H denotes the Heaviside step function. The

minimization problem becomes non-convex due to the presence of H and the optimization

scheme depends on how the function Φ is represented.

Interactions as Inequality Constraints

Our contribution to the field of interactive image segmentation with implicit surfaces was

to formalize user interactions as additional inequality constraints. Giving an expert the

opportunity to locate inside (γk = 1) or outside (γk = −1) points xk, for instance by

clicking on the image, user interactions mathematically translate as:

[
γkΦ(xk) ≥ 0

]
k∈{0...M} (7.2)

These additional constraints are either linear or non-linear depending on the chosen repre-

sentation for Φ. In general, dedicated constrained optimization algorithms from numerical

textbooks can be used to ensure that user interactions are satisfied.

From chapter 4 to chapter 6, we proposed 3 examples of implicit representations in order

to address a large spectrum of typical anatomical structures of interest in medical imaging.

Implicit Generalized Cylinders

The first representation specifically targets the modeling and segmentation of vessels, a

fundamental problem in vascular imaging for visualization and measurements of stenoses

and aneurysms. Our contribution to this field was the first introduction of convolution

surfaces in a variational segmentation framework, although they were already proposed as

a visualization tool for complex vascular structures.
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From a curve m(s) and continuously-varying scales σ(s), a scalar field that approximates

an implicit generalized cylinder is expressed as:

Φ(x) =

∫ 1

0
ϕ

(
‖x−m(s)‖

σ(s)

)∥∥m′(s)∥∥ ds− C (7.3)

We calculated the derivatives of the region-based criterion 7.1 with respect to m(s) and σ(s)

in order to perform a joint optimization of the centerline and the vessel boundaries. This

smooth representation is the same in 2D and 3D and provides evolution equations for the

end-points, allowing expansion and shrinking consistently with the variational formulation.

As future work, we would like to consider the extension to hierarchical structures of im-

plicit tubular branches. The blending properties of convolution surfaces enable to smoothly

model the surface of entire vascular tree structures such as liver veins or arteries. The

simultaneous optimization of all branches would in particular involve the calculation of

derivatives at bifurcation points, with additional dedicated constraints.

Non-Euclidean Radial Basis Functions

The second representation specifically targets the interactive segmentation of approximately

spherical shapes such as lesions, even though we showed a number of other examples where

it is also applicable. It generalizes the notion of radial distance in the Radial Basis Func-

tions framework and constitutes the first introduction of non-Euclidean, image-dependent

distances in Radial Basis Functions for image segmentation. The scalar field is a discrete

sum of translated and scaled versions of a radially-symmetric kernel ϕ and is expressed as:

Φ(x) =

N∑
i=1

λiϕ

(‖x− xi‖gi
σi

)
− C (7.4)

where the new image-dependent geodesic distance gi extends the notion of radial symmetry

and enables the design of basis functions that naturally align with the salient image features.

An intuitive interpretation of this representation in terms of shape space is that the set of

admissible shapes is directly learned from the image.

For user-provided points xi and scales σi, the weights λi are the only free parameters.

The optimization problem is low-dimensional hence it can be solved with fast algorithms.

In this case, the constraints (7.2) are linear with respect to the variables λi. We used a

variant of the Active Sets algorithm to solve the non-convex optimization problem (7.1)

under a set of linear constraints.

In Chapter 5, the control points xi are provided by an expert, in an interactive fashion.

In the future, it would be worth trying to automatically position the control points as well

as optimize the scale of each basis function. Although it is a relatively easy task in the

Euclidean case, the non-Euclidean Radial Basis Function framework poses the additional

difficulty that the geodesic distance ‖x− xi‖gi is not differentiable with respect to xi.
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Implicit Template Deformation

The last representation considered in this manuscript casts image segmentation into a

template-to-image registration problem. As such, it specifically targets anatomical struc-

tures that have a predictable shape as well as the applications in which the object of interest

has a topology that shall be preserved. The unknown scalar field Φ is obtained by a geo-

metric transformation ψ of a prior implicit template Φ0, expressed as:

Φ(x) = Φ0 ◦ ψ(x) with ψ = L ◦G (7.5)

where the unknown variables become the global alignment G and the non-rigid deformation

field L, jointly optimized. The regularization term R in (7.1) is chosen to penalize L only,

so that the shape constraint is invariant with respect to the pose G.

In this case, the inequality constraints (7.2) stemming from inside/outside labeled points

are non-linear with respect to L and G. We adopted an Augmented Lagrangian approach

to minimize the region-based criterion under the non-linear constraints.

Furthermore, we implemented a fast version of non-rigid deformation by considering

smoothness as a built-in feature of the displacement field, expressed as a Gaussian con-

volution. At tens of iterations per second, the method yields a real-time, interactive and

model-based 3D segmentation tool, providing experts with a live visual feedback in order to

drive the template deformation towards a solution that is more clinically-relevant.

Interestingly, the template Φ0 is itself an implicit function, hence it can be represented

with non-Euclidean Radial Basis Functions or implicit generalized cylinders. In the latter

case, the combination of non-rigid template deformation with the generalized cylinder model

would allow to deviate from the strict tubular constraint and thus provide a closer fit to

real vessels.



Proof of Proposition 1 A
Let F0 and F1 be defined by:

F0(Ω1,α1,α2) = Per(∂Ω1) + λ

∫
Ω1

r1(x,α1)dx + λ

∫
Ω\Ω1

r2(x,α2)dx

F1(u,α1,α2) =

∫
Ω
‖∇u‖ + λ

∫
Ω
u(x)r1(x,α1)dx + λ

∫
Ω

(1− u(x))r2(x,α2)dx

(A.1)

Proposition 1 Fixing α1 and α2, if u∗ ∈ BV[0,1](Ω) is a global minimizer of F1 then for

almost every t ∈ [0, 1], the characteristic function χ∗u(x, t) defined in Ω× [0, 1] by

χ∗u(x, t) =

{
1 if u∗(x) > t

0 otherwise
(A.2)

is also a global minimizer of F1. In addition, the set Ωt = {x ∈ Ω, u∗(x) > t} is a global

minimizer of F0.

Proof:

For sake of simplicity, we omit the fixed variables α1 and α2 in the following. For any

functions u ∈ BV[0,1](Ω) and r ∈ L1(Ω), both the co-area formula (A.3) and the layer-cake

formula (A.4) hold [65]: ∫
Ω
‖∇u‖ =

∫ 1

0

∫
Ω
‖∇χu(x, t)‖ dxdt (A.3)

∫
Ω
ur =

∫
Ω

(∫ u(x)

0
dt

)
r(x)dx =

∫
Ω

(∫ 1

0
χu(x, t)dt

)
r(x)dx =

∫ 1

0

∫
Ω
χu(x, t)r(x)dxdt (A.4)
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With r = r1(·,α1)− r2(·,α2), applying (A.3) and (A.4) to the minimizer u∗ yields:

F1(u∗) =

∫ 1

0
F1(χu∗(·, t))dt, (A.5)

or, equivalently: ∫ 1

0

{
F1(χu∗(·, t))− F1(u∗)

}
dt = 0. (A.6)

Since u∗ minimizes F1,

∀t ∈ [0, 1], F1(u∗) 6 F1(χu∗(·, t)),

Then, the thresholded characteristic function χu∗ has the same functional value than the

fuzzy minimizer u∗:

F1(χu∗(·, t)) = F1(u∗) for a.e. t ∈ [0, 1]

This proves the first part of Proposition 1: χu∗(·, t) is also a minimizer of F1 for almost

every t ∈ [0, 1].

In addition, assuming there exists a region A ⊂ Ω such that

F0(A) < F1(u∗)

then its characteristic function also satisfies:

F0(A) = F1(χA) < F1(u∗)

which is a contradiction with respect to the hypothesis that u∗ is a minimizer of F1. Since

for almost every t ∈ [0, 1] F0(Ωt) = F1(χu∗(·, t)) = F1(u∗), we finally have:

∀A ⊂ Ω, F0(Ωt) 6 F0(A)

�



Generalized Scaling

Property of δ B
Let Ω be a subdomain of Rd, f : Ω −→ R a continuous function and Φ : Ω −→ R a

Liptschitz-continuous function such that almost every of its level-sets is a smooth hyper-

surface. The generalized scaling property of δ reads:∫
Ω
δ(Φ)f =

∫
Φ=0

f

‖∇Φ‖
(B.1)

Proof. Let δε be a compactly-supported approximation of the Dirac distribution, having

its support in [−c, c]. Suppose ‖∇Φ‖ 6= 0 in any measurable subset of Φ−1([−c, c]). Using

the coarea formula [65]: ∫
Ω
F‖∇Φ‖ =

∫ +∞

−∞

(∫
{Φ=a}

F (s)ds

)
da

with F = δε(Φ) f
‖∇Φ‖ , where f is continuous, we have:

∫
Ω
δε(Φ)f =

∫ c

−c

(∫
{Φ=a}

δε(Φ(s))
f(s)

‖∇Φ(s)‖
ds

)
da

=

∫ c

−c
δε(a)

(∫
{Φ=a}

f(s)

‖∇Φ(s)‖
ds

)
da

(B.2)

Since by definition lim
ε→0

∫ c
−c δε(a)G(a) = G(0), for any continuous function G, we finally

obtain:

lim
ε→0

∫
Ω
δε(Φ(x))f(x)dx =

∫
{Φ=0}

f(s)

‖∇Φ(s)‖
ds. (B.3)
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Centerline and Scales

Derivatives C
In this annex, we give the technical details to obtain the gradient direction in order to

locally minimize the following problem:

min
m,σ

{
F (m, σ) = R(m, σ) +

∫
Ω
H(Φm,σ(x))r(x)dx

}
, (C.1)

with

Φm,σ(x) =

∫ 1

0
K

(
‖x−m(s)‖2

σ(s)2

)∥∥m′(s)∥∥ ds− C (C.2)

and where R(m, σ) is designed to penalize both the length of the centerline and the varia-

tions of scale along it, controlled by the positive scalar parameters λ and µ respectively:

R(m, σ) = λ

∫ 1

0

∥∥m′(s)∥∥+ µ

∫ 1

0

∣∣σ′(s)∣∣2 (C.3)

Kernel K is here of the form K = A. exp, which is coherent with the choice of a Gaussian

kernel ϕ used in chapter 4. In order to simplify notation we set:

‖x−m(s)‖2

σ(s)2
= d2

m,σ

Moreover, we take the usual definitions for the Frenet referential T ,N ,B defined on curve

m. That is, if curve m is parameterized with respect to its arc length a (which is not

the case in our computations): T = dm
da , N = κdTda and B = T ∧N , scalar κ being the

curvature of m. Note that if m is not parameterized with respect to its arc length, we have

T = m′

‖m′‖ and one can prove that second derivative m′′ belongs to the plane generated by

the couple (T ,N ).
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Calculus of Variations with respect to m

Let us consider an arbitrary perturbation η of the curve m, parameterized on [0, 1] and

infinitely differentiable. If m is a local minimizer of F , it should satisfy:

dF (m + tη)

dt

∣∣∣∣
t=0

= 0

Let us compute this derivative:

dF (m + tη)

dt

∣∣∣∣
t=0

=
dR(m + tη)

dt

∣∣∣∣
t=0︸ ︷︷ ︸

Rη

+

∫
Ω
δ(Φm,σ(x))

dΦm+tη,σ

dt

∣∣∣∣
t=0

r(x)dx︸ ︷︷ ︸
Aη

For the computation of the Attachment term (Aη) we have:

dΦm+tη,σ

dt

∣∣∣∣
t=0

=

∫ 1

0

dK
(
d2
m+tη,σ

)
dt

∣∣∣∣∣
t=0

∥∥m′(s)∥∥ ds
+

∫ 1

0
K
(
d2
m,σ

) d ‖m′(s) + tη′(s)‖
dt

∣∣∣∣
t=0

ds

Derivative of the first term is relatively straightforward, noticing that K ′ = K

dK
(
d2
m+tη,σ

)
dt

∣∣∣∣∣
t=0

∥∥m′(s)∥∥ =

∫ 1

0
K
(
d2
m,σ

)〈x−m

σ2
,η

〉∥∥m′(s)∥∥ ds
=

∫ 1

0

〈
K
(
d2
m,σ

) ∥∥m′(s)∥∥ x−m

σ2
,η

〉
ds

Computing the derivative of the second term involves integration by parts to expose η:

∫ 1

0
K
(
d2
m,σ

) d ‖m′(s) + tη′(s)‖
dt

∣∣∣∣
t=0

ds =

∫ 1

0

〈
K
(
d2
m,σ

) m′

‖m′‖
,η′
〉
ds

=

[〈
K
(
d2
m,σ

) m′

‖m′‖
,η

〉]1

0

−
∫ 1

0

〈
d

ds

{
K
(
d2
m,σ

) m′

‖m′‖

}
,η

〉
ds

and ∫ 1

0

〈
d

ds

{
K
(
d2
m,σ

) m′

‖m′‖

}
,η

〉
ds =

∫ 1

0

〈
d

ds

{
K
(
d2
m,σ

)}
T +K

(
d2
m,σ

)
κN ,η

〉
ds
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Combining these computations, we have:

dΦm+tη,σ

dt

∣∣∣∣
t=0

=

∫ 1

0

〈
K
(
d2
m,σ

) ∥∥m′(s)∥∥ x−m

σ2
− d

ds

{
K
(
d2
m,σ

)}
T −K

(
d2
m,σ

)
κN ,η

〉

+
[〈
K
(
d2
m,σ

)
T ,η

〉]1
0

This yields:

Aη =

∫ 1

0

〈 ∫
Ω
δ(Φm,σ(x))r(x)

(
K
(
d2
m,σ

) ∥∥m′(s)∥∥ x−m

σ2

−K
(
d2
m,σ

)
κN − d

ds

{
K
(
d2
m,σ

)}
T
)
dx

,η

〉
ds

+

〈(∫
Ω
δ(Φm,σ(x))r(x)K

(
d2
m(1),σ(1)

)
dx

)
T (1),η(1)

〉

−
〈(∫

Ω
δ(Φm,σ(x))r(x)K

(
d2
m(0),σ(0)

)
dx

)
T (0),η(0)

〉

Very similarly, the computation of the regularization part Rη gives

Rη = −
∫ 1

0
〈κN ,η〉+ 〈T (1),η(1)〉 − 〈T (0),η(0)〉

Bringing all together and using the general scaling property of δ (see appendix B)
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dF (m + tη)

dt

∣∣∣∣
t=0

=

∫ 1

0

〈∥∥m′(s)∥∥ ∫
{Φm,σ=0}

r(x)
K
(
d2
m,σ

)
‖∇Φm,σ(x)‖

x−m

σ2
−

λ+

∫
{Φm,σ=0}

r(x)
K
(
d2
m,σ

)
‖∇Φm,σ(x)‖

κN ,η

〉
+∫ 1

0

〈
d

ds

{
K
(
d2
m,σ

)}
T ,η

〉
+〈λ+

∫
{Φm,σ=0}

r(x)
K
(
d2
m(1),σ(1)

)
‖∇Φm,σ(x)‖

T (1),η(1)

〉
−

〈λ+

∫
{Φm,σ=0}

r(x)
K
(
d2
m(0),σ(0)

)
‖∇Φm,σ(x)‖

T (0),η(0)

〉

where the tangential part (second line) can be ignored since it only changes the parameter-

ization of the curve, not its geometry.
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Gradient descent equation for m

This yields the following gradient-descent equation for m, setting Φ = Φm,σ,:

∀s ∈]0, 1[
∂m

∂t
(s) = κ(s)

λ+

∫
{Φ=0}

r(x)

‖∇Φ(x)‖
C(x, s)

N (s)

−
∥∥m′(s)∥∥ ∫

{Φ=0}

r(x)

‖∇Φ(x)‖
N(x, s)dx

∂m

∂t
(1) = −

λ+

∫
{Φ=0}

r(x)

‖∇Φ(x)‖
C(x, 1)

T (1)

∂m

∂t
(0) =

λ+

∫
{Φ=0}

r(x)

‖∇Φ(x)‖
C(x, 0)

T (0)

C(x, s) = K
(
d2
m,σ

)
=
σ(s) ϕ′

(
‖x−m(s)‖

σ(s)

)
2 ‖x−m(s)‖

N(x, s) = C(x, s)
x−m(s)

σ2(s)
=
ϕ′
(
‖x−m(s)‖

σ(s)

)
2σ(s)

x−m(s)

‖x−m(s)‖
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Calculus of Variations with respect to σ

Similarly to computations made for m, we consider now a infinitely differentiable scalar

function η. If σ is a local minimizer of F we must have

dF (σ + tη)

dt

∣∣∣∣
t=0

= 0

And we have:

dF (σ + tη)

dt

∣∣∣∣
t=0

=
dR(σ + tη)

dt

∣∣∣∣
t=0︸ ︷︷ ︸

Rη

+

∫
Ω
δ(Φm,σ(x))

dΦm,σ+tη

dt

∣∣∣∣
t=0

r(x)dx︸ ︷︷ ︸
Aη

Moreover,

dΦm,σ+tη

dt

∣∣∣∣
t=0

=

∫ 1

0

dK
(
d2
m,σ+tη

)
dt

∣∣∣∣∣
t=0

∥∥m′(s)∥∥ ds
= −

∫ 1

0
K
(
d2
m,σ

) 2 ‖x−m‖2

σ3

∥∥m′(s)∥∥ ηds

So that

Aη = −2

∫ 1

0

(∥∥m′(s)∥∥∫
Ω
δ(Φm,σ(x))K

(
d2
m,σ

)
r(x)
‖x−m‖2

σ3

)
η ds

Along the same line, we have

Rη = 2

(
−
∫ 1

0
σ′′ η ds+ σ′(1)η(1)− σ′(0)η(0)

)
Putting everything together and using the general scaling property of δ

dF (σ + tη)

dt

∣∣∣∣
t=0

= −2

∫ 1

0

µσ′′ + ∥∥m′(s)∥∥ ∫
{Φm,σ=0}

r(x)
K
(
d2
m,σ

)
‖∇Φm,σ(x)‖

‖x−m‖2

σ3

 ηds

+ 2µ

(
σ′(1)η(1)− σ′(0)η(0)

)
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Gradient descent equation for σ

The previous computations provide the following gradient descent equation for σ

∀s ∈]0, 1[
∂σ

∂t
(s) = µσ′′ −

∥∥m′(s)∥∥ ∫
{Φ=0}

r(x)

‖∇Φ(x)‖
B(x, s)

∂σ

∂t
(1) = −µσ′(1)

∂σ

∂t
(0) = µσ′(0)

with

B(x, s) = −
〈

N(x, s),
x−m

σ

〉
= −

ϕ′
(
‖x−m(s)‖

σ(s)

)
2σ2(s)

‖x−m(s)‖
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[63] Khaoula Elagouni, Cybèle Ciofolo-Veit, and Benoit Mory. Automatic segmentation

of pathological tissues in cardiac mri. In International Symposium on Biomedical

Imaging, Proceedings, pages 472–475, 2010.



156 BIBLIOGRAPHY

[64] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based image segmentation.

International Journal On Computer Vision, 59(2), 2004.

[65] W. Fleming and R.Rishel. An integral formula for total gradient variation. Archiv

Der Mathematik, 11:218–222, 1960.

[66] L.R. Ford and Fulkerson. Maximal flow through a network. Canadian Journal of

Mathematics, 8:399–404, 1956.

[67] J.M. Fornefett, K. Rohr, and H.S. Stiehl. Elastic registration of medical images using

radial basis functions with compact support. In CVPR, pages 402–409, June 1999.

[68] A. Frangi, W. Niessen, R. Hoogeveen, T. van Walsum, and M. Viergever. Model-based

quantification of 3d magnetic resonance angiographic images. IEEE Transactions on

Medical Imaging, 18(10):946–956, 1999.

[69] D. Freedman and Tao Zhang. Interactive graph cut based segmentation with shape

priors. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-

puter Society Conference on, volume 1, pages 755–762 vol. 1, June 2005.

[70] Yoav Freund and Robert E. Schapir. A decision-theoretic generalization of on-line

learning and an application to boosting. Jounral of Computer and System Sciences,

55, 1997.

[71] Pascal Fua and Yvan G. Leclerc. Model driven edge detection. Machine Vision

Applications, 3(1):45–56, 1990.

[72] M. Gage and R.S. Hamilton. The heat equation shrinking convex plane curves. Jour-

nal of Differential Geometry, 23:69–96, 1986.

[73] A. Gelas, O. Bernard, D. Friboulet, and R. Prost. Compactly supported radial basis

functions based collocation method for level-set evolution in image segmentation.

IEEE Transactions on Image Processing, 16(7):1873–1887, 2007.

[74] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images. IEEE Transactions on Pattern Analysis And Machine Intelli-

gence, 1984.

[75] R Goldenberg, R Kimmel, E Rivlin, and M Rudzsky. Fast geodesic active contours.

IEEE Trans on Image Processing, 10(10):1467–1475, 2001.

[76] L Grady. Random walks for image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(11):1768–1783, 2006.

[77] Leo Grady and Eric L. Schwartz. Isoperimetric graph partitioning for image segmen-

tation. IEEE Transactions on Pattern Analysis And Machine Intelligence, 3:469–475,

2006.



BIBLIOGRAPHY 157

[78] L. Greengard and J. Strain. The fast gauss transform. SIAM journal of scientific and

statistical computing, 12(7):79–84, 1991.

[79] V. Guillemin and A. Pollack. Differential Topology. Prentice Hall, 1974.

[80] A.J. Hanson. Hyperquadrics: Smoothly deformable shapes with convex polyhedral

bounds. Computer Vision, Graphics, and Image Processing, 44:191–210, 1994.

[81] R. Haralick and L. Shapiro. Image segmentation techniques. Computer Vision, Graph-

ics, and Image Processing, 29:100–132, 1985.

[82] T. Heimann, B. van Ginneken, and Eds. M. Styner. 3D segmentation in the clinic: A

grand challenge. MICCAI, 2007.

[83] A. Herbulot, S. Jehan-Besson, M. Barlaud, and G. Aubert. Shape gradient for multi-

modal image segmentation using mutual information. Proc. of IEEE Int. Conference

on Image Processing (ICIP), 10(8):2729–2732, October 2004.
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