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Preface

This thesis is submitted in fulfilment of the requirements of the degree of Docteur És Sci-

ences at the Ecole Doctorale in Civil and Environmental Engineering (EDCEE) of the École

Polytechnique Fédérale de Lausanne (EPFL). It contains the candidate’s scientific work at the

Laboratory of Ecohydrology (ECHO) within the School of Architecture Civil and Environmental

Engineering (ENAC) that was carried out under my supervision over a period of three years

(October 2008 − October 2011).

The thesis blends and integrates the material published in a series of peer-reviewed publi-

cations, and is organized in seven Chapters. A general introduction outlines the conceptual

thread joining the various issues studied. The Chapters are tailored from the published mate-

rial as outlined in detail below. A set of conclusions, putting forth perspectives and further

possible developments, and the Appendices are integral part of the thesis work. Although the

contents of each Chapter rely on published material, they are revisited and edited for coher-

ence and are displayed in revised form for consistency and continuity. The original references,

almost entirely attributable to the leading role of the candidate and yet fully integrated into

the scientific production of the ECHO group at EPFL, are:

Chapter II S. Suweis, E. Bertuzzo, G. Botter, A. Porporato, I. Rodriguez-Iturbe and A. Rinaldo,

Impact of stochastic fluctuations in storage-discharge relations on streamflow distribu-

tions, Water Resources Research, 46 (3), 2010;

Chapter III S. Suweis, A. Rinaldo, S. Van der Zee, E. Daly, A. Maritan and A. Porporato, Stochas-

tic modeling of soil salinity, Geophysical Research Letters, 37, L07404, 2010;

Chapter IV and V 1) E. Bertuzzo, S. Suweis, L. Mari, A. Maritan, I. Rodriguez-Iturbe and A.

Rinaldo, Spatial effects on species persistence and implications for biodiversity, Pro-

ceedings of the National Academy of Sciences, 108 (11), 4346-4351, 2011;

2) S. Suweis, E. Bertuzzo, L. Mari, A. Maritan, I. Rodriguez-Iturbe and A. Rinaldo, On the

universality of species persistence time distribution, in review;

Chapter VI and VII 1) S. Suweis, M. Konar, C. Dalin, N. Hanasaki, A. Rinaldo and I. Rodriguez-

Iturbe, Structure and controls of the global virtual water trade network, Geophysical

Research Letters, Vol. 38, pp. L08405, 2011;

2) M. Konar, C. Dalin, S. Suweis, N. Hanasaki, A. Rinaldo and I. Rodriguez-Iturbe, Water
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for food: The global virtual water trade network, Water Resources Research, 47, W005520,

2011.

Appendix A S. Suweis, A.M. Porporato, A. Rinaldo and A. Maritan, Prescription-induced jump

distributions in multiplicative Poisson processes, Physical Review E, 83 (6), 061119, 2011.

All issues addressed in the thesis are referred to the current frontiers of ecohydrological

research. They cover a broad spectrum of open problems, using a probabilistic approach

based on stochastic processes. The results are noteworthy, as witnessed by the publication

output and by the breadth of methods and subjects involved.

Originality

The present thesis complies with the requirements of originality and relevance demanded by

the stringent standards of EPFL and of the Doctoral School EDCEE. The linkage of the various

issues, the search for ecohydrological footprints, serves as a manifesto for a new and emerging

discipline, environmental statistical mechanics, seen from the hydrological perspective – and

for this alont worth considering with special attention. Of particular importance in the the-

sis work submitted is the ubiquitous strive to achieve exact solutions to standing stochastic

problems, like occurred here in: i) the case of the stationary solutions of soil salinity under

stochastic hydrologic forcings; ii) the solution of a longstanding problem in multiplicative

Poisson processes; and iii) the proper framework for species’ persistence time distributions,

as a function of topological constraints provided by hydrologic networks and as providers of

important ecological spatial effects that allow a linkage with other macroecological laws. The

original analysis of form and function of the global virtual trade network, and of its global

ecohydrological footprints, literally opened a new field of great momentum.

In conclusion, the methodological basis for the treatment of the problems studied in the thesis

is impeccable. The scientific interest for the body of problems of ecohydrological footprinting

addressed here is remarkable. Overall, I deem outstanding the quality of the original work

leading to the present thesis1.

Lausanne, October 6, 2011

Prof. Andrea RINALDO

Thesis Director

1The research and the position of the candidate at EPFL have been funded by the ERC Advanced Grant Program
through the project RINEC-227612.
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Abstract

Ecohydrological footprints are defined as the response of ecosystem functions or services to

changes in their hydrologic drivers. In this thesis, several diverse footprints are addressed:

noise-driven effects on storage-discharge relations and catchment streamflow distributions,

that are important drivers of biodiversity; soil salinization and its ecohydrological implications;

topological effects of the ecological interaction networks on living communities (e.g. on their

species persistence); and form and function of the global virtual water trade network. The

coherence of the conceptual framework is provided by the study of drivers and controls of

ecohydrological variability using methodological approaches based on statistical mechanics.

In fact, this thesis work outlines a significant portion of environmental statistical mechanics,

an overarching discipline that is emerging in recent years, which applies mathematical tools

from statistical mechanics to model several ecohydrological processes.

The proposed relevance of this thesis lies in the major effects of hydrologic drivers on ecolog-

ical process. The view that emerges from current research in ecohydrology, that this thesis

supports, is that there exists a definite need for an integrated understanding of ecological and

hydrological processes. Because stochasticity is intrinsic to environmental and ecohydrologi-

cal variability, noise plays an important and constructive role in ecohydrological processes. In

this thesis, a stochastic approach is applied to analyze different ecohydrological processes,

ranging from green and blue water flows in river basins (part I), ecosystem dynamics affected

by the directional dispersal provided by river networks (part II) to water footprints of human

society (part III). Methods range from novel exact solutions to stochastic differential equations

to random graph theory applications, and imply the analysis of suitable field data.

An analytical framework for quantitative analysis is laid out to tackle complex problems and

to estimate the effects of environmental change on the interaction of the hydrologic processes

with the biota. The main results of this thesis are: i) the achievement of exact solutions for the

probability distribution of catchment streamflow, that takes in account stochastic fluctuations

in the storage-discharge relation and for the condition of a noise induced phenomena to the

streamflows regimes; ii) the stationary solutions of soil salinity under stochastic hydrologic

forcing; iii) a novel solution of the Ito−Stratonovich problem in multiplicative Poisson pro-

cesses; iv) the proper framework for species’ persistence time distributions, as a function of

topological constraints on the ecosystem, and its connection with other important macroeco-
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Abstract

logical laws. A related length-bias sampling problem is also solved. v) A statistical analysis of

the global virtual trade network and a semi-analytical model that is able to describe most of

the observed properties.

Keywords: Stochastic differential equations, noise-induced phenomena, storage-discharge

relation, soil salinity, macroecology, species persistence time distributions, neutral theory,

virtual water, complex networks, fitness model.
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Sommario

Le impronte ecoidrologiche sono definite come la risposta delle funzioni o dei servizi ecosis-

temici a cambiamenti nei loro driver idrologici. Questa tesi presenta lo studio di molteplici e

diverse impronte ecoidrologiche: gli effetti del rumore stocastico sulla relazione tra volume

invasato e portata del bacino e sulla distribuzione di deflusso, processi idrologici di vitale

importanza per la biodiversitá all’interno del bacino; la salinizzazione dei suoli e le sue im-

plicazioni ecoidrologiche; gli effetti della topologia delle interazioni ecologiche (per esempio

della topologia della rete fluviale) sulle comunitá ecologiche, e in particolare sui tempi di

persistenza delle specie all’interno del ecosistema; infine la forma e le funzioni della rete

mondiale di commercio dell’acqua virtuale tra nazioni. La coerenza del quadro concettuale

é fornita dallo studio dei drivers e dei controlli della variabilitá ecoidrologica utilizzando lo

stesso approccio metodologico basato sulla meccanica statistica. Infatti questo lavoro di

tesi delinea una parte significativa della meccanica statistica ambientale, una disciplina che

sta emergendo negli ultimi anni, e che applica strumenti matematici tipici della meccanica

statistica per modellare diversi processi ecoidrologici.

La rilevanza di questa tesi risiede nella grande importanza che ricoprono i processi idrologici

sui sistemi ecologici. Il panorama che emerge dall’attuale ricerca in ecoidrologia, e che questa

tesi sostiene, é che esiste una forte necessitá di una comprensione integrata dei fenomeni

ecologici e idrologici. Poiché la stocasticitá é intrinseca alla variabilitá ambientale ed ecoidro-

logica, il rumore stocastico ha un ruolo importante e costruttivo nei processi ecoidrologici. In

questa tesi, per analizzare i diversi processi ecoidrologici, che variano dai flussi d’acqua nei

bacini fluviali (parte I), alla dinamica spaziale degli ecosistemi, dovuta alla diversa struttura

spaziale dell’ambiente in cui l’ecosistema vive (parte II), agli effetti dello scambio di acqua vir-

tuale sulla societá umana (parte III). I metodi comprenderanno soluzioni esatte di equazioni

differenziali stocastiche, applicazioni della teoria dei grafi, e l’analisi di relativi dati empirici.

Un quadro analitico per l’analisi quantitativa di problemi complessi é quindi stato delieato, an-

che in modo da poter stimare gli effetti dei cambiamenti ambientali e climatici sull’interazione

tra processi idrologici e biota. I principali risultati di questa tesi sono: i) il raggiungimento

di soluzioni esatte per la distribuzione di probabilitá di deflusso in un bacino, che prende

anche in considerazione le fluttuazioni stocastiche nella relazione tra volume invasato e

portata, e per la condizione di attivazione di un fenomeno, indotto dal rumore stocastico,
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di cambiamento di regime del deflusso; ii ) la soluzione stazionaria della concentrazione

di sale nel terreno in presenza di eventi di pioggia casuali distribuiti Poissonianamente; iii)

una nuova soluzione per il dilemma di Ito−Stratonovich nel caso di equazioni differenziali

stocastiche con rumore Poissoniano e moltiplicativo; iv) la formulazione di un quadro teorico

adeguato per la definizione della distribuzione dei tempi di persistenza delle specie, anche in

funzione dei vincoli topologici presenti nell’ ecosistema, e la sua connessione con altre pattern

macro−ecologi. É stato risolto anche un connesso problema relativo al campionamento dei

tempi di persistenza misurati dai dati empirici. v) Un’analisi statistica della rete del commercio

di acqua virtuale tra nazioni e la presentazione di un modello semi−analitico che é in grado di

descrivere la maggior parte delle proprietá osservate della suddetta rete.

Parole chiave: Equazioni differenziali stocastiche, fenomeni indotti dal rumore stocatico,

relazione volume invasato−portata del bacino, salinizzazione del suolo, macro−ecologia, dis-

tribuzione dei tempi di persistenza delle specie, teoria neutrale, acqua virtuale, reti complesse,

modello di fitness.
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Chapter 1
Introduction

In the beginning and in the end we have

the Mystery...Math brings us closer to this

Mystery, but it cannot penetrate it.

E. De Giorgi

Ecohydrology is the field of scientific research that at its inception brought a first quantitative

hydrologic perspective of climate-soil-vegetation dynamics [Rodriguez-Iturbe et al., 1999b;

Rodriguez-Iturbe, 2000]. The stochastic treatment of soil moisture dynamics, the theme

of the original work, set the tone and the domain of subsequent developments aimed at

stochastically-driven mass balance of water resources, with a view to related controls on

basic ecologic patterns and processes. On broader scales in space and time, the study of the

water cycle has always been and is one of the main focus in water resources assessments [e.g.

Manabe et al., 1991; Brutsaert and Parlange, 1998; Jackson et al., 2001; Oki and Kanae, 2006]

largely because renewable freshwater, though comprising only a tiny fraction of the global

water pool, is the foundation for life in terrestrial and freshwater ecosystems [Jackson et al.,

2001]. If in the coming century climate change will produce a growing imbalance among

freshwater supply, arguably consumption and population increase will alter the water cycle in

a significant manner. This a problem hardly overestimated, especially in the regions of the

world already limited by the amount and quality of available water. It has been suggested that

in the next 30 years alone, accessible runoff is unlikely to increase more than 10% whereas

the earth’s population is projected to rise by approximately one-third. Unless the efficiency in

water uses rises, therefore, such imbalance will impair freshwater ecosystem services, increase

the number of aquatic species facing extinction, and further fragment wetlands, rivers, deltas,

and estuaries [Jackson et al., 2001]. The growing demand on freshwater resources thus urgently

calls for stronger links of ecohydrologic research with improved water management.

Evidence for intensification of the global water cycle is mounting [Huntington, 2006] and, with
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that, the concern about ecohydrological footprints. Indeed, if the climate warms in the future,

there will arguably be an intensification of the water cycle, with remarkable consequences. In

fact, such intensification may lead to changes in local and global water resources availability,

increases in the frequency and intensity of storms, floods, and droughts, and an amplification

of warming trends through the water vapor feedback. The current state of science regarding

historical trends in hydrologic variables, including precipitation, runoff, tropospheric water va-

por, soil moisture, glacier mass balance, evaporation, evapotranspiration, and growing season

length, provides evidence indicating an ongoing intensification of the water cycle [Huntington,

2006] . For instance, analysis of streamflow, snow mass temperature and precipitation in

snowmelt-dominated river basins in the western United States indicate an advance in the

timing of peak spring season flows over the past 50 years [Regonda et al., 2005]. The observed

trends in hydroclimatology over the western United States can indeed have significant impacts

on water resources planning and management therein.

The sensitivity of the global water cycle to the water-holding capacity of the plant-root zone of

continental soils has been estimated [Milly and Dunne, 1994] by simulations using a mathe-

matical model of the general circulation of the atmosphere, with prescribed ocean surface

temperatures and prescribed cloud. With an increase of storage capacity, evaporation from

the continents rises and runoff falls, because a high storage capacity enhances the ability of

the soil to store water from periods of excess for later evaporation during periods of shortage.

In addition to this direct effect, atmospheric feedbacks associated with the resulting higher

precipitation and lower potential evaporation drive further changes in evaporation and runoff.

Global evaporation from land was found to increase by about 7 cm for each doubling of

storage capacity in the range from less than 1 cm to almost 60 cm [Milly and Dunne, 1994].

Such results may have implications for global hydrology and climate dynamics, including the

effects of water resource development on global precipitation, climatic control of plant rooting

characteristics, climatic effects of tropical deforestation, and climate-model errors induced by

errors in land-surface hydrologic parameterizations. However, issues exist on global indicators

of accelerations of the water cycle. For example, the evaporation of water, measured using

evaporation pans, has been decreasing in the past few decades over large areas with different

climates. The common interpretation was that the trend relates to increasing cloudiness, and

that it provides an indication of decreasing potential evaporation and a decreasing terrestrial

evaporation component in the hydrologic cycle, but it was shown [Brutsaert and Parlange,

1998] that pan evaporation has not been used correctly as an indicator of climate change.

Development of models that describes the circulation of water between atmosphere, soil,

and plant life is important for a general understanding of the hydrologic cycle and the way

ecosystems operate and survive [Chow, 1988; Falkenmark et al., 2004]. Terrestrial ecosys-

tems play a crucial role in the water cycle. In particular, vegetation causes evaporative losses,

modulating and increasing precipitation. Therefore, in absence of vegetation the water cy-

cle would be much slower [Fraedrich et al., 1999]. The investigation of the spatiotemporal

linkage between the hydrologic and ecologic dynamics, from both theoretical and empirical

perspectives, are thus a crucial challenge for understanding the environment in which we
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live [Rodriguez-Iturbe, 2000]. The study of the interaction of the water cycle with the biota

has been termed ecohydrology [Zalewski, 2000; Rodriguez-Iturbe, 2000] and it is drawing the

attention of on an increasingly broad segment of the science community [Baird A. J. and Wilby,

1999; Rodriguez-Iturbe et al., 1999a; Gordon and Folke, 2000; Porporato and Rodriguez-Iturbe,

2002; Settin et al., 2007; Botter et al., 2008a]. In fact, ecohydrology is contributing to the

development of unifying concepts and new, testable theories for the understanding of the

interplay between vegetation, climate and soil [D’Odorico et al., 2010a].

A first step in this direction is in the work by Rodriguez-Iturbe et al. [1999b] who provided

an exact solution to a key probabilistic description of hydrologic controls on biota. In that

work, in particular, the steady state probability function of soil moisture has been exactly

obtained for rainfall of random and intermittent characteristics when both the infiltration as

well as the losses depend on the state of the system in a nonlinear manner. The feedback of

vegetation, in that context, proves crucial. The final product in Rodriguez-Iturbe et al. [1999b]

is the probabilistic description of soil moisture at a point as a function of climate, soil and

vegetation parameters. Shortly afterwards, a series of notable papers [Rodriguez-Iturbe et al.,

2001; Porporato et al., 2001b,a; Laio et al., 2001] followed and extended the same probabilistic

framework by analytically deriving the crossing properties of special relevance in the temporal

evolution of soil moisture (i.e. the soil moisture threshold below which the plant is under water-

related stress) and by applying the theoretical machinery to real-life applications. These works,

expanded by new analysis, resulted in the book Ecohydrology of Water-Controlled Ecosystems

[Rodriguez-Iturbe I. and Porporato, 2004] that is now a milestone in ecohydrology and from

which part of the research of the present thesis has been inspired. Soil moisture affects the

biota directly, by controlling the availability of resources for organisms, and indirectly, by

modifying abiotic process that, in turn, affect ecosystem dynamics.

Owing to these and other studies, a quantitative analysis of the so called green water flows, (i.e.

flows of water vapor or the rainwater lost from land in the form of transpiration, interception

and evaporation from the soil and vegetation) has been laid out. Green water supports most

terrestrial vegetation and food production because of its major impact on all physiological pro-

cesses and because of the relatively large quantity of water required for the proper functioning

of plants. Three main classes of stochastic models have been proposed in the last years. A first

group of model describes the vertically-lumped water balance at the daily time scale within

the root zone and it is suited for system of deep water tables. A second class of models includes

vertically distributed models, which describes the vertical profile of soil moisture in the root

zone [Laio et al., 2006]. Finally, a quantitative framework has been developed to investigate the

influence of shallow aquifers on soil moisture dynamics [Rodriguez-Iturbe et al., 2007; Pan and

Nakagoshi, 2008; Tamea et al., 2009]. The determination with these models of the analytical

expression for the steady-state probability distribution of soil moisture in different hydrologic

and climatic conditions have elucidated the complex and highly nonlinear interplay among

climate, soil and vegetation, and their impact on vegetation water stress.

In the very recent last years, also a theoretical framework for the blue water flows dynamics,
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based on the same stochastic analytical approach, has been developed Botter et al. [2007c,b,a].

Blue water flows, that refer to runoff and groundwater fluxes [Falkenmark et al., 2004], pro-

vide water and other resources to a number of organisms and societies. They also enhance

landscape connectivity , which is fundamental to the transport of nutrients and sediments

[Botter et al., 2010], the spread of species and the maintenance of biodiversity [Bertuzzo et al.,

2009; D’Odorico et al., 2010a]. Botter et al. [2007c] presented a stochastic approach that allows

to link the probabilistic structure of slow components of runoff with simple (pluviometric,

soil, vegetation, and geomorphologic) macroscopic parameters, with implications for the

ecohydrology of fluvial systems and for drought prediction in ungauged basins. The derived

analytical solution for the seasonal probability distribution function of daily streamflows

has allowed a physically based linkage between flow duration curves and the distribution

of annual minima through geomorphic, climatic, and ecological features of the basin, with

evident important ecological consequences [Botter et al., 2008a,b; Botter, 2010; Ceola et al.,

2010].

Hydrologic controls on the ecological quantity is also on the connectivity structure of the

space where the ecosystem lives. For instance river networks provide important resources

and services that are crucial to the functioning of ecosystems and societies. Fluvial networks

enhance the ecohydrological connectivity of the landscape. The commonalities existing

among all types of river basins and their drainage networks suggest the possible existence of

general rules commanding the role that their structure plays in ecological patterns. Moreover

the ecological corridors provided by river networks induce anisotropy in the spreading of

species, pathogenes or other agents along the waterways [Muneepeerakul et al., 2007; Bertuzzo

et al., 2007]. In fact, the last years a general theory on the effects of dendritic geometries on

ecohydrological processes operating at the scale of river basins has been developed (see

Rodriguez-Iturbe et al. [2009] for a review). Among its notable applications, the theory was

able to explain the spatial pattern of species dispersal in riparian corridors [Muneepeerakul

et al., 2008a] or of cholera epidemics [Bertuzzo et al., 2008, 2011; Mari et al., 2011].

Ecohydrology also promises to help our understanding of the complex interactions of bio-

sphere and hydrosphere with the "anthroposphere". The most critical interactions of ecohy-

drological processes with human societies are associated with food production. In fact food

production is by far the most freshwater-consuming process (80% of the total world water

resources [Rost et al., 2008]) and is largely performed to sustain the productivity of agroe-

cosystems (croplands and rangelands) [Falkenmark et al., 2004]. While the societal demand is

growing, water availability to ecosystems and societies is also changing as an effect of global

and regional climate change and land use dynamics [Hoekstra and Chapagain, 2008]. To study

how ecohydrological dynamics affect human societies, the concept of virtual water, defined as

the amount of water used to produce a certain food commodity, was first introduced by Allan

[1993], and then elaborated especially in the hydrologic milieu [Hoekstra, 2002; Chapagain

et al., 2006; Hanasaki et al., 2010]. International trade links the fortunes and resources of

countries, providing potentially important conduits for geographically limited water resources

to be transferred to water-stressed regions. The virtual water trade between regions [Hoekstra
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and Hung, 2005; Yang et al., 2006; Hanasaki et al., 2008b] and the gross virtual water flow of

nations [Hoekstra and Chapagain, 2008] have been quantified. These studies have primarily

focused on agricultural commodities [Liu et al., 2007; Rost et al., 2008; Hanasaki et al., 2008a],

including those used for bio-fuel production [Gerbens-Leenes et al., 2009], but the concept

has also been extended to include industrial products [Hoekstra and Chapagain, 2008].

Water 
availability  

Water 
demand 

Water for ecosystem and 
society 

Climate Change  Population growth  

Land use, land 
cover change 

and water 
management 

Storage-Discharge 
Relation  

Soil Salinization  

Food Security 
and ecosystem 

services 

Change in ecohydrological  interactions  

Ecological competition  
 

Species Persistence 
times 

Virtual Water  

Biodiversity  

Part I

Part II

Part III

Figure 1.1: Correlation among major factors affecting water availability to ecosystems and so-
cieties considered in the present work. The complex relations among biosphere, hydrosphere
and anthroposphere call for an integrated understanding of ecological and hydrological pro-
cesses and their interaction with human society. Population growth contributes to the increase
in water demand by humans. Climate variability and land-use change affect water availability
either directly (e.g. by modifying the rainfall regime), or indirectly, through their impact on
vegetation−water resource interactions. The competing needs for water by ecosystems and
societies affect food security, human health, as well as the amount of water, land, and other
resources available for natural ecosystems (freely redrawn from D’Odorico et al. [2010a]).

As we have just seen, ecohydrology studies the relation between hydrologic mechanisms and

the underlining ecologic patterns and processes. This broad definition includes a wide variety

of both ecological and hydrological processes, and therefore the signature of ecohydrological

footprints can be found in several complex systems very different among each other. Ecohy-

drological footprints can be thus defined as the response of ecosystem functions or services,

caused by the change in their hydrologic drivers. They are rooted in the analysis of the natural

capital and environmental impacts [Wackernagel et al., 1999].

The view emerging from current research in ecohydrology is that there is a need for an inte-

grated understanding of ecological and hydrological processes [Rodriguez-Iturbe et al., 2009;
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D’Odorico et al., 2010a]. In spite of the large work produced in the last decade, there still exist

open issues that need be addressed [D’Odorico et al., 2010a]. In particular, the present work is

focused on the following major challenges:

• the effect of stochasticity in the analysis of the blue water flow. Existing works, in

fact, have considered deterministic constitutive relations between catchment storages

and streamflows, while theoretical and practical considerations suggest that noise and

variability in this constitutive relation may be an important factor and the interplay

among several nonlinear phenomena call for more complex assumptions than strict

determinism between subsurface storage and discharge;

• Because most forms of terrestrial life depend directly or indirectly on soils, it is crucial

to understand the long term and long range effects of soil loss. However, we have just

begun to investigate how changes in soil moisture, fires, soil salinity or shifts in plant

community composition might affect soil susceptibility to wind and water erosion;

• The interaction between biodiversity loss, ecohydrological process and spatial struc-

ture of the environmental matrix has only started to be appreciated and remains and

important focus for future research;

• Although the stochastic frameworks developed in ecohydrology contribute to the under-

standing of the variability in natural resources, the understanding of the coupling with

societal dynamics remains a major research task for the study of the ecohydrological

interactions with human societies.

In the present thesis, steps in each of the above directions are pursued.

A major conceptual thread joining the various issues is the relation between ecohydrological

footprints and the role of stochasticity. In general, the dynamics of complex ecohydrological

system is affected by environmental variability. Stochasticity is inherent to weather patterns,

climate fluctuations, evapotranspiration, to name a few relevant processes, and therefore

a significant part of environmental variability is random [Lyon, 1973; Sole and Bascompte,

1996; D’Odorico et al., 2000; Rodriguez-Iturbe I. and Porporato, 2004; Raser and O’Shea, 2005].

Moreover, because stochasticity is intrinsic to environmental variability, noise can play an

important and constructive role in ecohydrological processes as it may induce new states,

enhance diversity, or lead to pattern formation [Ridolfi et al., 2011].

There exist three broad classes of approaches to handle process complexity: a) work at small

scale and fully resolve the complex processes (this usually doesn’t work because of the sig-

nificant data requirements) b) upscale the mathematical relationships from the small scale

to develop new deterministic relationships that work at a larger scale (macrodispersion is

the prototypical example of this for groundwater) c) employ a stochastic approach in which

the complexity is captured not explicitly but its effect is described probabilistically. In the
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Figure 1.2: Examples of environmental fluctuations in ecohydrological systems dynamics:
a)Precipitation recorded during the 2001 growing season at the Duke Forest site, North Carolina
[Laio et al., 2001] b) Time series of abundance Rivul population. Data are from Balata et al.
[2007]. d,e,f,g) Climatic time series from the same database of a).

thesis, the last approach has been confidently used to show how, in this way, analytical or semi-

analytical models are built that may help to take further steps forward in wide range of different

problems. Indeed, complex systems are characterized by a very high number of degrees of

freedom (the system can be achieve many possible states), and yet their emergent behavior

can be often largely independent of microscopic details of the system [Rodriguez-Iturbe and

Rinaldo, 1997; Barabási and Albert, 1999; Stanley, 2000].

In this thesis, a variety of new models are proposed to study ecohydrological footprints through

stochastic approaches where the intrinsic complexity is not captured explicitly but rather

described probabilistically. In this way analytical quantitative framework analysis are laid out

to facilitate progress in the estimation of the effects of environmental change on the interaction

of the hydrologic process with the biota. Tools provided by statistical mechanics are necessary

7



Introduction

in order to walk along this challenging path. In fact stochastic differential equations, master

equations, statistical ensembles and network theory, which will be the building bricks of our

models, are all mathematical tools familiar in this branch of theoretical physics. In particular

stochastic differential equations (SDE) will be a recurring theme in our methodology and the

first section in the Appendix is dedicated to give a short introduction on SDE to those that are

not familiar with stochastic processes.
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Figure 1.3: Comparison between biodiversity patterns in a savanna and in a network landscape
represented by species spatial patterns (upper insets) and species rank-abundance curves
(extracted from Rodriguez-Iturbe et al. [2009]).

In the present work, three different type of ecohydrological footprints will be studied. In part

I of the thesis we will study the effect of blue water flows on water controlled ecosystem. In

particular we will focus our attention on two topic: the relation between storage and discharge

in river basin, and the effect of the salinization of the root zone on the basin vegetation. In part

II we will focus on effects of the spatial structure of the environmental matrix on ecosystems

dynamics. For instance, Figure 1.3 shows how hydrologic controls on the ecosystem dynamics

is also on the connectivity structure of the space where the ecosystem lives. In particular we

will investigate these effects on a particular ecological quantity, namely the species persistence

times distributions. Finally in part III we will analyze the water footprints of human society.

In fact, by trading food, nations continuously make exchange of water. These trades are well

described by the global virtual water network, that takes in account all the fluxes of water

associated with the trades of foods among nations. In this part we will build, analyze and

model this network and also study its implication for human society. Each of these three parts

is introduced by a short overview that summarizes and contextualizes its content.
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Part I

Overview

Two problems are studied where hydrologic fluxes are crucial drivers of their ecosystem

dynamics. In both cases, the problem is tackled using a probabilistic approach based on

stochastic differential equations. In particular, it is shown from two different perspectives how

green and blue water flows provide important ecohydrological footprints.

In the analysis of the blue water flow, previous works had considered deterministic con-

stitutive relations between catchment storages and streamflows. Theoretical and practical

considerations, suggest that noise and variability in this constitutive relation may be an im-

portant factor [e.g. McDonnell, 1990; Beven, 2001; Berne et al., 2005; Morbidelli et al., 2006].

If runoff-production schemes, for instance, account for spatial variability in the parameters

characterizing the individual hydrologic processes, fluctuations inevitably emerge. For catch-

ment scale predictions, point-scale representations of infiltration have been challenged by

numerical approaches that have accurately explored infiltration processes including runoff-

runon, rainfall variability, spatial correlation in infiltration and rainfall fields [e.g Beven, 2001;

Berne et al., 2005; Morbidelli et al., 2006]. Moreover, connectivity patterns within a hillslope, or

within any runoff-generating volume, change erratically as complex activation of preferential

flowpaths may result in noise in the outflow discharge [e.g McDonnell, 1990; McGuire et al.,

2005; Fiori and Russo, 2008]. For all these reasons the impact of stochastic fluctuations in the

storage-discharge relation was deemed worth investigating. To this aim is devoted Chapter 2.

In Chapter 3, by means of similar mathematical treatments, another ecohydrological problem

of great societal and environmental importance is studied: the problem of soil salinization.

Salinity refers to excess concentrations of easily soluble salts present in soil water. It is one

of the major problems in agriculture, especially in semi-arid regions. Salt accumulation in

the root zone may be due to natural factors (primary salinization) or to irrigation (secondary

salinization). Detailed numerical models have been developed to model soil salinization [e.g.

Nour eldin et al., 1987; Schoups et al., 2006; Suarez and Simunek, 1991; Shah et al., 2011].

Generally, these models simulate unsaturated soil water flow via the Richards and solute

transport equations. These models are suitable for local and short-term simulations, as they

require precise soil characterization and are computationally demanding. Moreover, it is often

difficult to identify clear cause-effect relationships or to synthetically compare the effects of

different parameter scenarios from their numerical simulations. For this reason the proposed

exact solution to a minimalist stochastic model of primary soil salinity, is deemed of interest.

The long term probability distributions of salt mass and concentration are obtained by reduc-

ing the coupled soil moisture and salt mass balance equation to a single stochastic differential

equation. The novel analytical solutions provide insight on the interplay of the main soil, plant

and climate parameters responsible for long-term soil salinization. Mathematical spinoffs,

published independently, are in Appendix A.
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Chapter 2
The Impact of Stochastic Fluctuations in

Storage-Discharge Relations on

Streamflow Distributions

He used statistics as a drunken man uses

lampposts; for support rather than

illumination.

A. Lang

2.1 Why a Stochastic Approach?

The complete probabilistic characterization of streamflows in river basins is a because of the

noteworthy implications on water resources availability and management for human needs

and ecological services related e.g. to riparian plant nutrition, preservation of fish habitat,

irrigation, or storage management [e.g Brutsaert, 2005]. Streamflows at the closure of whole

river basins are the byproduct of many intertwined eco-hydrological and climatic processes,

such as infiltration from rainfall, evapotranspiration, runoff production and transport phe-

nomena occurring in channeled and unchanneled regions of the basin. The intrinsic temporal

variability embedded in the fluctuations of recorded runoff series thus reflects the vagaries

of rainfall patterns in space and time and the random character of several related hydrologic

processes and landscape morphologies [e.g Chow, 1988; Lamb R. and Beven, 1997; Brutsaert,

2005; Eng and Milly, 2007].

Stochastic fluctuations of streamflows have long been the subject of hydrologic and statistical

investigations, in particular through the synthetic generation of time series obtained by
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deterministic models of the hydrologic response driven by stochastic climate forcings [e.g

Kottegoda N.T. and Horder, 1980]. Effective rainfall series, seen as trajectories of a stochastic

process with prescribed statistical features [e.g Xu et al., 2002] or censored through soil-water

balances applied to stochastic point rainfall processes [e.g Rodriguez-Iturbe I. and Porporato,

2004], have also been studied. Specific assumptions or observations are needed down to

the scale of individual hydrologic processes, like recharge due to infiltration from rainfall,

losses (evapotranspiration and discharge) and storage variations related to residence time

distributions in channeled and unchanneled states [e.g Rodriguez-Iturbe I. and Porporato,

2004]. The temporal variability of streamflows thus reflects the stochastic nature of several

underlying processes, which induces complex causal relations [e.g Lamb R. and Beven, 1997;

McDonnell, 1990; McGuire et al., 2005]

In this general context, Botter et al. [2007c] have analyzed the linkage existing between stream-

flow distributions and the relevant soil moisture dynamics in catchments. A probabilistic

model of streamflow dynamics was developed therein, where the steady-state probability

distribution of the subsurface contribution to streamflows is analytically expressed in terms

of a few macroscopic rainfall properties, soil-vegetation parameters, and key geomorpho-

logical features. The approach was initially structured in a spatially lumped framework by

assuming average properties, as in the related literature on soil moisture dynamics [see e.g

Rodriguez-Iturbe et al., 1999b; Rodriguez-Iturbe I. and Porporato, 2004], and it has been later

extended to tackle spatially distributed soils, vegetation and morphological features and to

derive flow-duration curves [Botter et al., 2007b, 2008a].

Key to the exact solutions described above was the assumption of a linear, deterministic

relationship between the instantaneous outflow discharge and the water volume stored in

the subsurface. Such an assumption is often assumed in practice coupled with nonlinear

net precipitation schemes [e.g Chow, 1988; Beven, 2001], and is equivalent to assuming an

invariant exponentially-distributed residence time.

Nonlinear storage-discharge relations have also long been considered in conceptual models of

the hydrologic response [see, for a review Brutsaert, 2005]. Recent studies have revamped the

interest on the subject by applying the method of Brutsaert and Nieber [1977] to characterize

catchments as nonlinear dynamic systems, concluding that linear storage-discharge relations

are not expected in general at the scales of interest [Kirchner, 2009]. Interestingly, this applies

for the class of catchments in which discharge strictly depends on the volume of water stored

in the subsurface [Ceola et al., 2010].

These previous works however have all considered deterministic constitutive relations between

storages and streamflows, while stochasticity may play a crucial role in runoff formation.

Recently, Harman and Silvapalan [2009] examined how heterogeneity affects the flow response

of a hillslope as a whole through numerical simulation. Overall, hydrologic storages are seen

as random variables proportional to the probability of the travel times of rainfall particles

to their exit boundaries [e.g. Fiori and Russo, 2008], thus sustaining the idea that random
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fluctuations must affect the process of runoff formation.

The ratio of computed instantaneous discharge and stored volume for a heterogeneous system

mimicking a hillslope transport volume clearly suggests that a noisy relation is indeed the norm

rather than the exception, whether or not the mean behavior of the response of the system

may be approximated by a linear storage-discharge relation. Note that more than to a whole

watershed, the current control volume refers to a hillslope where a local storage-discharge

relation indeed makes sense. The catchment-scale complexity arises from the combined effect

of serial and parallel arrangement of runoff-generating control volumes like geomorphically

linked sources areas. At the chosen scale it is believed that indeed stochastically affected

hydrological processes result in greater variance of streamflows. Hydrologic connectivity [e.g.

Gomi et al., 2008] also complicates matters, because only a fraction of the runoff generated in

a catchment actually connects with the outlet during the rainfall event. As a result, hydrologic

processes are highly variable in space and time, and dynamic changes in the spatial extent

and the timing of runoff-runon phenomena call for more complex assumptions than strict

determinism between subsurface storage and discharge. Moreover, it can be shown theo-

retically that the effects of spatial heterogeneity in material properties can be accounted for

by adding a time-varying noise to the dynamic equations. Briefly, consider a system where

particles are traveling along many pathways, each with a mean velocity v̄ , perturbed by a

spatial random noise ε(x), so that v = v̄ +ε(x). In the limit of a large ergodic cloud of particles,

the approximation ε(x) = ε(v t ) ≈ ε(v̄ t ) ∝ ε(t ) can be done, and thus incorporate the effect of

the spatial variability using a time−dependent noise term.

2.2 Stochastic Model for Soil Moisture and StreamFlows Dynamics

In this section it is briefly reviewed the modeling scheme presented by Botter et al. [2007c,b]

based on stochastic water balance equations, which provides a linkage between the probabilis-

tic structure of streamflows and underlying eco-hydrological, climate and transport processes

in relatively small vegetated catchments (see Figure 2.1).

Following Rodriguez-Iturbe et al. [1999b] and Rodriguez-Iturbe I. and Porporato [2004], rainfall

is assumed as a marked point process with frequency λP [T −1]. This assumption implicitly

postulates catchment sizes (the spatial scale of the control volume sensu Kirchner [2009]), say

A, smaller than the spatial correlation scale of rainfall events and timescales of the process

of interest greater than or equal to daily (e.g., larger than the temporal characterization of

rainfall events). Furthermore, daily rainfall depths are assumed to be exponentially distributed

with mean 1/γP [L]. The catchment-averaged soil moisture dynamics is modeled assuming

constant (spatially and temporally averaged) soil and eco-hydrological parameters: effective

soil depth, Zr , porosity, n, maximum evapotranspiration rate, ETmax , which are assumed as

representative of a prescribed season [see e.g. Rodriguez-Iturbe et al., 1999b; Rodriguez-Iturbe

I. and Porporato, 2004]. The temporal evolution of spatially-averaged relative soil moisture,

s(t), is given by the mass balance equation within the topsoil layer of the catchment [for a
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Figure 2.1: Schematic representation of a)The vertically-lumped water balance at the daily
time scale within the root zone on which the stochastic model for soil is based b)The water
mass balance equation over the whole catchment that allow to extend the stochastic approach
also on the streamflow dynamics.

review see Rodriguez-Iturbe I. and Porporato, 2004]:

nZr
d s

d t
= −ET −Lt + Rt , (2.1)

where Rt represents the inflow, i.e., the stochastic increments due to infiltration from rainfall,

while the losses are the evapotranspiration ET (assumed to be linear in the range of soil

moisture comprised between the wilting point, sw , and a suitable soil moisture threshold

s1 for leakage to occur), and the leakage, Lt , due to deep percolation towards deeper layer

and ultimately streamflow. This model follows the minimalist probabilistic soil moisture

model described in detail by Rodriguez-Iturbe I. and Porporato [2004]. Figure 2.2a,b shows a

typical realization of the stochastic rainfall model and the resulting temporal evolution of soil

moisture s(t ).

Note that the timescales chosen require to focus only on subsurface contributions to stream-

flow, thus neglecting fast surface runoff possibly triggered by intense storms. In the absence of

pronounced topographic effects and of impervious areas, however, the surface contribution

to runoff is usually not significant with respect to the corresponding subsurface contribution

at large timescales [e.g. McDonnell, 1990; McGuire et al., 2005; Rinaldo et al., 2006]. The latter

is linked to percolation from the top soil layer, which in turn is assumed to be triggered by the

exceedance of the soil moisture threshold s1 (Figure 2.2b), whose value lies typically between

the field capacity and soil saturation. The temporal evolution of the water storage of the whole

catchment can thus be schematized as sum of the variation of the top soil layer, described by
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equation (3.1), and that of the catchment subsurface water storage, say S(t ), described by:

dS(t )

d t
= −Q(t ) + A ·Lt , (2.2)

where Q is the streamflow subsurface discharge and A the area of the catchment.

Under the given assumptions, the spatially-averaged percolation process Lt can be well

approximated by a marked Poisson processes ξt (λ,γP ) with frequency parameter λ [T −1] and

percolation depths exponentially distributed with parameter γP . The percolation interarrival

frequency can be expressed in terms of the underlying rainfall, soil and vegetation properties

as follows [Botter et al., 2007a]:

λ = η
exp(−γ) γ

λP
η

Γ(λP /η,γ)
; (2.3)

where Γ(a,b) is the incomplete gamma function of parameters a,b; η= ETmax /(nZr (s1 − sw ))

and γ = γP nZr (s1 − sw ). The mass balance equation for the catchment subsurface water

storage (2.2) can thus be expressed as

dS(t )

d t
=−Q(t ) + Aξt (λ;γP ) (2.4)

where ξt (λ;γP ) represents the time series of percolation inputs.

Water pulses deeply infiltrating into soil are assumed to be released toward the stream network

as subsurface or groundwater flow with a rate proportional to the instantaneous subsurface

water storage and thus S is connected to the streamflow discharge by the linear relation

Q(t ) = kS(t ), (2.5)

where k [T −1] is the inverse of the mean residence time in subsurface. Under the above

assumptions the steady-state pdf p(S) of the subsurface water storage is expressed by a

Gamma distribution with shape and scale parameters λ/k and 1/γP respectively [Botter

et al., 2007c]. By expanding the left hand side of equation (2.4) as dS/dQ ·dQ/d t , a stochastic

differential equation is derived for the temporal evolution of the streamflow discharge Q(t)
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Figure 2.2: Schematic representation of the soil moisture and streamflows dynamics: (a)
Temporal evolution of the overall rainfall depths (simulated data). The interarrivals and
the rainfall depths are exponentially distributed with a frequency λP = 0.3d−1 and with
normalized mean intensity 1/γP = 16.7mm, respectively. (b) Temporal evolution of the
(catchment averaged) relative soil moisture, s(t), which is commanded by the intermittent
rainfall forcing shown in Figure 2.2a and by the deterministic decay due to evapotranspiration
process, according to equation (3.1). The dash-dotted line represents the threshold s1, whose
up crossing determines the triggering of runoff events. Temporal sequence of rainfall excess,
driven by the exceedence of the threshold s1 for the soil moisture s(t ) are represented by the
red spikes. (c) Temporal evolution of the overall, specific (i.e., for unit area) discharge. The soil,
vegetation, and transport parameters employed for this simulations are n = 0.55, Zr = 30cm,
sw = 0.18, s1 = 0.6, ETmax = 0.35 cm/d , and k = 0.5d−1.

(Figure 2.2c):

dQ(t )

d t
=−k Q(t ) +k Aξt (λ;γP ), (2.6)

the stationary solution of which is [Botter et al., 2007c]:

p(Q, t →∞) = p(Q) ∼Q( λk −1) exp(−γQ Q), (2.7)

where γQ = γP /(k A) represents the mean runoff increment due to incoming percolation

events.
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2.3. Stochastic Storage-Discharge Relation

The probability distribution of Q is thus related to the underlying soil and vegetation properties

(through the parameter λ) and to key rainfall properties (through both the parameters γP and

λ), but it also depends on important geomorphic factors such as the mean residence time of

subsurface flow (1/k) and the size of the basin (A). In particular, according to equation (2.7),

the behavior of p(Q) is chiefly controlled by the ratio between the percolation frequency, λ,

and the inverse of the mean residence time in subsurface, k. When λ/k > 1 (‘wet conditions’)

the pdf of the storage (runoff) is hump-shaped with p(0) = 0 (i.e., a zero storage (runoff) is

characterized by zero probability), while for λ/k < 1 (‘dry conditions’) p(Q) goes to infinity for

Q → 0, and it monotonically decreases for Q > 0.

Although the simplifications made, p(Q) captures the observed behavior of the streamflow pdf

reasonably well in many cases of practical interest [e.g. Botter et al., 2007a; Ceola et al., 2010].

2.3 Stochastic Storage-Discharge Relation

In order to take into account the stochasticity in the relation between storage and streamflow

(due to transient connectivity, differential activation of preferential flowpaths, macroscopic

effects of spatially heterogeneous and hysteretic subsurface properties), a Gaussian colored

noise, l (t ), of the Ornstein−Uhlenbeck type [Gardiner, 2004] is added to the linear determinis-

tic relation described by equation (2.5):

Q(t ) =−k S(t ) + l (t )S(t ) . (2.8)

The Ornstein−Uhlenbeck process is chosen because it is the simplest model of correlated

noise. The property of non-zero correlation is physically meaningful, and is specifically

chosen to describe the nature of fluctuations in hydrologic processes that have non-negligible

correlation scales, both in space and time. Gaussian white noise is also recovered as the zero-

correlation limit of the Ornstein−Uhlenbeck process. At stationarity, l (t ) has mean 〈l (t )〉 = 0

and it is characterized by a correlation structure 〈l (t ) · l (s)〉 = (Dτ/2) e−|t−s|/τ. The relaxation

time τ indicates the characteristic time for which two fluctuations cease to be correlated, while

D is the equivalent of a diffusion coefficient which represents the amplitude of stochastic

fluctuations (note that 〈·〉 is the ensemble average operator). A colored noise, differently from

white noises that have infinite variance, does not suffer from this limitation [Gardiner, 2004]

and thus Q(t ) in equation (2.8) is well defined for all t ensuing to this variable an appropriate

hydrologic meaning. The Ornstein−Uhlenbeck process is described by the discrete Langevin

equation:

l (t +∆t ) = l (t )− 1

τ
l (t )∆t +

p
D ·∆W (t ), (2.9)
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where W is the Wiener process, i.e., ∆W (t) =W (t +∆t)−W (t) is a temporally uncorrelated

normal random variable with mean zero and unit variance. Thus the stochastic storage-

discharge relation can be studied by combining equations (2.4), (2.8) and (2.9). The evident

hydrologic consequence of equation (2.8) is that now the streamflow corresponding to a given

storage S can fluctuate around the deterministic value kS within a range that depends on the

variance of the Ornstein−Uhlenbeck process.

Figure 2.3a illustrates the typical scatter produced by the colored noise in the storage−discharge

relation (obtained by suitable MonteCarlo simulation), while Figure 2.3b shows the results

produced by the [Brutsaert and Nieber, 1977] method that probes the nature of the S −Q

relation via numerical manipulation of the recession curves. This method can be obtained by

differentiation of the axis of Figure 2.3a and it allows to estimate the mean residence time 1/k

solely from the measured discharge time series. Sampling effects due to the time step used

in the analysis, however, enhances the noise in the S −Q relation (see comparison between

Figures 2.3a and 2.3b). It is interesting to observe that the introduction of the artificial noise

qualitatively resembles field and numerically simulated data [Kirchner, 2009; Brutsaert and

Nieber, 1977].
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Figure 2.3: a)Storage−discharge relationship arising from addition of colored noise; b) Applica-
tion of the Brutsaert and Nieber [1977] method for 6 hour time-step that probes the nature of
the S −Q relation via numerical simulation of the recession curves. The parameters employed
are k = 0.5d−1 and V ar (l ) = 0.15k.

Figure 2.4 summarizes the main results of the numerical simulation. For the integration

of the Langevin equation (2.9) the Euler-Maruyama algorithm [Higham, 2001] is employed.

Because negative values of the streamflow Q have no physical meaning, in the simulation a

reflecting boundary conditions in zero for the process (l (t )+k) is imposed. It can be noticed

that the shape of the probability distribution of the storage p(S) is not significantly affected in

a broad range of noise conditions (Figure 2.5). On the contrary the noise has a major effect

on the streamflow distribution p(Q). In particular, the mode of p(Q) shifts towards zero as

the strength of the noise increases. The sensitivity of S and Q to noise in the Q-S relationship
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2.4. Noise Effects on the Streamflow Discharge Distribution

depends on hydrologic measures, such as the Index of Dryness ID = 〈ET 〉/〈Rt 〉. In fact, in

arid or semi-arid climates where ID ≈ 1 deterministic evapotranspiration drives the evolution

of S and thus p(S) and p(Q) are less affected by intrinsic random fluctuations in the storage-

discharge relation with respect to wet climates (see Figure 2.5). The limited effect of the noise

on the p(S) with respect to p(Q) can be explained as follows. From equations (2.4) and (2.8),

in fact, a realization of the trajectory of the storage as given by S(t ) ∼ exp(−∫ t
0 [k + l (u)]du) is

obtained. Thus for large t and for relaxation times τ short with respect to 1/k, the stochastic

contribution to the latter integral tends to zero (〈l (t)〉 = 0). This can be generalized for any

colored noise with zero mean. In fact, because of the nature of the mass balance equation, S

depends on the noise in an integral fashion thus regularizing its fluctuations.
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Figure 2.4: Probability distribution of a) the storage p(S) and b) the streamflow p(Q), calculated
taking into account different variances of the colored noise in the storage-streamflow relation
(equation (2.8)). The black curves correspond to the distributions derived from a deterministic
storage-streamflow relation Q = kS. The parameters employed are k = 0.5d−1, λ= 0.5d−1 and
τ= 1d . The noise appreciably affects the shape of p(Q) shifting the mode of the distributions
toward zero even in the case of relatives low values of its variance.

The above results suggest that the noise in the storage-discharge relation significantly and

interestingly influences the pdf of the streamflow. However this framework does not allow

further analytical investigation. In order to achieve exact solutions that can improve the un-

derstanding of the effect of the noise on the streamflow distribution, the stochastic fluctuation

in the storage-discharge relation by including a Gaussian multiplicative noise affecting the

discharge equation of a linear reservoir is mimicked. The reliability of this modelling scheme

is justified via numerical simulations (see Figure 2.5 and discussion in the following sections).

In this way the stochastic relation between S and Q still holds and the effect of the noise on

the discharge distribution can be deepened.

2.4 Noise Effects on the Streamflow Discharge Distribution

As discussed in the previous section, in order to mimic the stochasticity of the streamflow

generation process, a Gaussian white noise, ζ(t), is added to the temporal variability of the
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Figure 2.5: a) A comparison between different numerical streamflows probability density
functions p(Q) for wet climate (λ = 0.875d−1, 1/γP = 20mm and k = 0.5d−1). The effect
of both colored and white noise is to shift the mode of the distribution toward zero. The
parameters used for this calculation are respectively σ2 = 0.125d−1 for the white noise and
τ= 1d , D = 0.0625d−1 for the colored noise. A numerical simulation of typical trajectories
of streamflows discharge time series in a wet regime for the same cases is also reported as
an inset. Note that the parameters of the white noise are tuned to reproduce the pdf of the
colored noise simulation. This is deemed legitimate because it is simply claimed that white
noise with appropriate parameters reproduces p(Q) forced by colored noise. b) The same
comparisons, but for dry climate (λ= 0.2d−1, 1/γP = 10mm and k = 0.5d−1) and same σ2, τ
and D used in a). It is evident how, for dry climate, Q (and S) are much less affected by the
intrinsic random fluctuations.

outflow discharge equation:

dQ(t )

d t
=−k Q(t ) +k Aξt (λ;γP )+ ζ(t )Q(t ), (2.10)

where 〈ζ(t )〉 = 0 and 〈ζ(t )ζ(s)〉 = 2σ2δ(t − s); δ denotes the Dirac delta function. The physical

interpretation of equation (2.10) is that the discharge responds to an instantaneous increase

of the subsurface storage ∆S with an instantaneous increase of discharge ∆Q = k∆S, as in

the linear deterministic case, while between interstorms arrivals the linear decrease of the

discharge is perturbed by the noise ζ(t ). As a result, the generalized Langevin equation (2.10)

describes the streamflow dynamics taking into account both the variability due to the rainfall

filtered by the topsoil layer and the intrinsic stochasticity of the discharge generation processes.

Equation (2.10) is valid as long as storage discharge relation may be thought to hold (say, not

for overland-flow dominated regimes).

Note that equation (2.10) needs be to properly interpreted by a mathematical viewpoint (see

Appendix A.2). The correct mathematical interpretation is obtained by imposing the condition

of stationary storage reservoir. Taking the temporal mean of both sides of equation (2.4) the
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2.5. Results and Discussion

following result is obtained:

1

T

∫ T

0

dS

d t
d t =− 1

T

∫ T

0
Q(t )d t + A

T

∫ T

0
ξt (λ;γP )d t (2.11)

For T → ∞ the system reaches statistical steady state and therefore the left hand side of

equation (2.11) is equal to zero and 1
T

∫ T
0 xd t ≡ 〈x〉, thus equation (2.11) reads as 〈Q(t)〉 =

A〈ξt (λ;γP )〉. Analogously, from the generalized Langevin equation (2.10) the average discharge

〈Q(t )〉 = A〈ξt (λ;γP )〉+〈ζ(t )Q(t )〉/k is obtained. Therefore the condition of stationary reservoir

translate into 〈ζ(t)Q(t)〉 = 0. The latter condition is satisfied if the generalized Langevin

equation is interpreted in Itô sense [Gardiner, 2004] (Appendix A.2).

Following the Itô interpretation, the steady state solution of equation (2.10) for the streamflow

discharge pdf is (Appendix A.2):

p(Q) ∼ p(Q, t →∞) =Ce−QγQ Q−α+ β

2 −2Lβ
α− β

2

(QγQ ), (2.12)

where C is the normalization constant; α= k/2σ2 −1/2, β=
√

4λσ2 + (
σ2 +k

)2/σ2; and Lb
a(x)

is the generalized Laguerre polynomial [Abramowitz and I.A., 1965]. A remarkable property of

p(Q) is that it has a power-law tail, i.e. for Q →∞

p(Q) ∝Q−(2+k/σ2), (2.13)

and thus that just adding a multiplicative Gaussian noise to the linear decay of the discharge,

the tail of the streamflow distribution changes from the exponential (equation 2.7) to the

power-law (equation 2.13). This also induces a change in the mode of the distribution, thus

substantially altering the streamflow regimes with respect to the purely deterministic linear

case.

2.5 Results and Discussion

A comparison between numerical streamflows probability density functions corresponding to

three different cases (deterministic, white and colored noise) is shown in Figure 2.5. While for

wet case (Figure 2.5a) both colored and white noise produce the effect to shift the mode of

the distribution towards zero, in dry climates (Figure 2.5b) Q (and S) are much less affected

by the noise. The results shown in Figure 2.5 support the assumption of considering a noisy

storage-discharge relation as a byproduct of a memoryless stochasticity in the streamflow
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Figure 2.6: Analytical probability distribution of daily streamflow discharge (equation (2.12))
for: a) dry regime (λ/k = 0.04) and b) wet regime (λ/k = 1.75). Different lines represent
different values of the dimensionless parameter ratio σ2/k. Note that σ2/k = 0 refers to the
case of the deterministic reservoir (equation (2.7)).

generation processes. A numerical simulation of typical trajectories of streamflows discharge

time series for the same cases is also reported as an inset of Figure 2.5.

Figure 2.6 shows the effects induced by the white multiplicative noise on a dry streamflow

distribution (equation (2.12)). As the noise (σ2/k) increases the probability of observing low

values of streamflow increase, thus increasing the dryness on the streamflow regime. Notice,

however, that 〈Q〉 remain constant, i.e. 〈Q〉 does not depend on σ2, i.e. 〈Q〉 = 〈ξt (λ,γP )〉. The

higher probabilities for low Q are indeed balanced by increased probabilities of high discharge,

owing to their algebraic decay (see equation(2.13)). In other terms, the presence of the noise

does not modify the mean of the streamflow pdf, but it significantly increases its variance (see

Figure 2.7a).

The noise induces similar effects on the wet streamflow distribution as shown in Figure

2.6 b. As the noise strengthens, an increased probability of high discharge is observed and

it is balanced by a shift of the mode of p(Q) towards zero. Interestingly, above a certain
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Figure 2.7: a) Numerical calculation of the variance V ar (Q) = 〈Q2〉−〈Q〉2 of the streamflow
discharge pdf (for parameters λ= 0.875d−1 and k = 0.5d−1), as a function of the intensity of
the white noise σ2. For σ2 = 0, the variance of the Gamma distribution in equation (2.7) (with
the same parameters λ and k that refers to deterministic linear reservoir) is exactly obtained.
Different colors evidence the different contributions to V ar (Q).
b)Representation of the streamflow discharge distribution regime as function of the dimen-
sionless parameter λ/k and σ2/k. Notice that the noise induces a shift from wet to dry regime.

threshold of the noise, a shift from wet to dry regime occurs. According to equation (2.12)

the shift between the two different regimes is controlled by the exponent of the power in

equation (2.12). The function f (λ/k,σ2/k) = 3σ2+k −
p
σ4 +2kσ2 +4λσ2 +k2/2σ2 of the two

dimensionless parameters ratio λ/k and σ2/k defines such shift. When f (λ/k,σ2/k) < 0 the

pdf of the runoff is hump-shaped with p(Q = 0) = 0 (‘wet regime’), while for f (λ/k,σ2/k) > 0

(‘dry regime’) p(Q) goes to infinity for Q → 0, and it monotonically decreases for Q > 0. The

threshold between the two regimes is derived by imposing f (λ/k,σ2/k) = 0, from which one

finds (see Figure 2.7b):

σ2

k
= λ

2k
− 1

2
. (2.14)

Therefore taking a given value λ/k that would correspond to a wet regime when σ2 = 0, may

now correspond to dry regime if σ2 is above λ/2−k/2. This noise-induced shift, which is

similar to those noted in other contexts [e.g. Horsthemke and Lefever, 2006; Ridolfi et al., 2011],

occurs also for colored noise, as is has been verified numerically.

Notice that in the framework described in Section 2.4, for each realization of Q(t ) it is possible

to obtain the corresponding time series of S by integration of equation (2.4). It is worth to

underline the fact that, for a given time window, ∆Q/∆S is still free to fluctuate around its
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corresponding deterministic value k.

Underestimating hydrologic variability may have ecological consequences. Noise induced

wet−dry transitions (thought of as reproducing regime shifts from perennial to ephemeral

streamflows) are important because low−stage discharges are crucial to establish natural flow

conditions for the preservation of fish and riparian habitats. Note, in particular, that minimum

flows are the most used targets in water resources management to sustain aquatic ecosystems.

The following conclusions are thus worth emphasizing:

• Numerical simulation has shown that a physically meaningful colored noise in the

storage-discharge relation influences appreciably the discharge distribution. In particu-

lar, a shift of the mode of the pdf towards zero is observed. Noise in the storage-discharge

relation is assumed to possibly be surrogated by considering stochasticity directly in

the streamflow generation processes. In such a case, the analytical derivation of the

probability distribution of streamflows is obtained, and its properties reflect the results

obtained through numerical simulation by employing colored noise. The theoretical

framework couples a stochastic description of soil moisture dynamics with a trans-

port model that embeds the variability of the streamflow generation process through a

multiplicative Gaussian noise;

• The effect of the multiplicative Gaussian noise on the streamflow distribution is signifi-

cant. In particular, the tail of the streamflow distribution p(Q) changes from exponential

to a power-law type with heavy tail. As the noise increases, the probability of observing

low values of streamflow also increases and the mode of p(Q) shifts towards zero. Higher

probabilities for low Q are balanced by an increased probability of high discharge, i.e.

the power-law tail becomes fatter. Therefore the presence of the noise does not change

the mean of Q, but significantly increases its variance. Thus neglecting these addi-

tional environmental fluctuations may produce underestimations of the variability of

streamflows, with relevant ecohydrological consequences;

• Above a threshold in the noise magnitude, a shift from wet to dry regime occurs, implying

a major ecological impact owing to a change from perennial to ephemeral streamflows.

The transition between the two different regimes is controlled by parameters of clear

physical meaning, and an analytical expression for the related threshold is proposed.
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Chapter 3
Stochastic Modeling of Soil Salinity

The universe cannot be read until we

have learnt the language and become

familiar with the characters in which it is

written.

G. Galilei

3.1 Introduction

Large areas of cultivated land worldwide are affected by soil salinity. Szabolcs [1989] estimates

that 10% of arable land in over 100 countries, especially in arid and semi-arid regions [Tanji,

1989]. Salinity refers to large concentrations of easily soluble salts present in water and soil on

a unit volume or weight basis (typically expressed as electrical conductivity (EC) of the soil

moisture in dS/m, i.e. deciSiemens per meter at 25◦ C; for N aC l 1 mg/l ∼ 15·10−4 dS/m). High

salinity causes both ion specific and osmotic stress effects, with important consequences for

plant production and quality. Normally, yields of most crops are not significantly affected if EC

ranges from 0 to 2 dS/m, while above levels of 8 dS/m most crops show severe yield reductions

[Ayars et al., 1993; Hillel, 2000]. Prevention or remediation of soil salinity is usually done by

leaching salts, and has resulted in the concept of leaching requirement [Richards, 1954; Hillel,

1998; Schleiff, 2008]. Alternative amelioration strategies by harvesting salt-accumulating

plants appear to be less effective [Qadir et al., 2000].

Vertically-averaged soil moisture and salt balance equations have also been used [Allison et al.,

1994; Hillel, 2000]. Despite their simplicity, these models have the advantage of parsimony,

thus allowing a direct analysis of the interplay of the main processes, and provide an ideal

starting point to include external, random hydroclimatic fluctuations in the analysis of long-
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term salinization trends. The goal of this chapter is to offer a first step in this direction. With

this purpose, here a minimalist model of soil primary salinization, describing analytically

the long-term dynamics of salt in soils caused by wet (rain) and dry (aerosol) deposition is

presented. The aim of this work is to quantify the salt mass and concentration probability

density functions (pdfs) in the root zone, and the probability of crossing the crops salt tolerance

threshold as a function of the main hydro-climatic parameters. The model framework is

potentially extendible to systems including salt input from groundwater and irrigation.

3.2 Methods

The starting modelling scheme is a spatially lumped model [Bras and Seo, 1987] for the ver-

tically averaged dynamics of soil moisture and salt in the root zone. As a first step input

of salt due by irrigation or groundwater upflow will not be considered. As in the previous

chapter, rainfall (Rt ) is modeled as a marked point process with frequency λP and with daily

rainfall depths exponentially distributed with mean 1/γP . Also here, the averaged soil moisture

dynamics are modeled assuming constant (spatially and temporally averaged) soil and ecohy-

drological parameters, i.e., root depth, Zr , porosity, n, and maximum evapotranspiration rate,

ETmax . Assuming a rain salt concentration CR and a constant input Md of salt mass per unit

ground area and per unit time by dry deposition, the root-zone mass balance for soil moisture

and salt mass m is given by:

nZr
d s

d t
= −ET (s) − L(s) + Rt , (3.1)

dm

d t
= CR Rt +Md −C L(s), (3.2)

where C is the salt concentration in the root zone; L(s) represents deep percolation, while

ET (s) represents the losses resulting from plant transpiration and soil evaporation. All the

rainfall input that cannot be accommodated is assumed to be lost as L(s) at s1 (an effective

field-capacity threshold).

The next section will investigate how reduction in evapotranspiration affects salinization

patterns (reduced evapotranspiration in turn increases the available soil moisture and thus

reduces the concentration of salt in the soil and increases leaching frequencies).

3.2.1 Feedback Effect of Evapotranspiration on Soil Salinity

The evapotranspiration ET represents the sum of the losses resulting from the plant transpi-

ration and evaporation from the soil. The effect of salinity on relative transpiration is called
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osmotic adjustment. This means that salts increase the energy to which water is held in the soil.

This can be taken in account by adding in the soil-water retention curve, given by the matric

potential ψ(s) =ψ(1)( s
ssat

)−τ [Brooks and Corey, 1966], the effect of the osmotic potential π(C ).

Assuming that the osmotic potential follows the Van’t Hoff’s law π(C ) = κC , then [Bras and

Seo, 1987]:

ET (s,C ) =
{

(ssat /s∗)ψm(1)
{
ψ(1)(s/ssat )−1/m +κC

}−mETmax , s ≤ s∗;

ETmax , s > s∗,
(3.3)

where the soil moisture threshold s∗ indicates the stomata’s plants closure point (to prevent

internal water losses), ssat is the soil moisture saturation point and τ is a parameter related to

the soil connectivity and tortuosity.

The effect of evapotranspiration on salinity is twofold. From one side, as evapotranspiration

increases, the average soil moisture content decreases and therefore the salt concentration in

the root zone increases. From the other side, there is a feedback effect of evapotranspiration

on salinity. In fact, because of the the osmotic adjustment, the increased salt concentration of

salt raises the actual content of water in the soil by decreasing the effective evapotranspiration.

In this way, the probability of having leaching events is in turn increased generating a feedback

effect on soil salinity that tends to diminish through percolation to deeper layer (groundwater).

Simulations show that this feedback effect has an important impact on soil salinization

(Figures 3.1a and 3.1b).
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Figure 3.1: a) Numerical simulation of soil moisture and salt concentration in the root zone
for given climate and soil parameters (λP = 0.1d−1,γP = 1cm−1,n = 0.45, Zr = 30cm). The
negative feedback of evapotranspiration drives down the salt concentration in the root zone.
b)Numerical salt concentration pdf s in the root zone for a given climate and soil parameters
(λP = 0.1d−1,γP = 1cm−1,n = 0.45, Zr = 30cm). The negative feedback included by taking in
account the osmotic adjustment shifts the mode of p(C ) towards zero.
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In non salty soil, the minimalist model for soil moisture dynamics assumes evapotranspiration

to be linear in the range of soil moisture comprised between the wilting point, sw , and s1, at

which ET occurs at the maximum rate ETmax [Porporato et al., 2004]:

ET (s) =
{

ETmax
s
s1

, sw ≤ s ≤ s1;

ETmax , s > s1,
(3.4)

In spite of this strong linear simplification, the effect of the osmotic adjustment on salinization

through an average reduction of ETmax can be taken in account. This is simply done here

by keeping the same ETmax in Eqs. (3.3) and (3.4) (previous studies [Viola et al., 2008] have

shown that, in the absence of osmotic effects, the minimalist model should have artificially

higher ETmax to account for percolation losses below s1).

A complete numerical model, in which the impact of osmotic stress in reducing ET is explicitly

included through Eq. (3.3), has been also studied. Moreover, in the detailed model runoff

takes place at saturation (ssat = 1), while percolation occurs for s > s f c (the soil moisture field

capacity), and it is proportional to the soil hydraulic conductivity Ksat sc , where c is a soil-pore

connectivity index and Ksat is the saturated hydraulic conductivity [Rodriguez-Iturbe I. and

Porporato, 2004]. A comparison between the results of the two soil moisture models, presented

in Figure 3.2a, suggests the viability of the simplified model. Simulations for wetter climates

confirm this result.

3.2.2 Analytical Stochastic Model of Soil Salinity

The system (3.1) and (3.2) can be further simplified if one considers that the typical timescales

for salt mass dynamics in the root zone are orders of magnitude larger than the ones character-

izing rainfall (and thus wet deposition). Moreover, soil moisture typically reaches steady-state

conditions within a growing season (e.g., < 5−7 months), while the salt mass balance only

does so on much longer times scales (e.g., > decades). Accordingly, at those long timescales,

say T , the salt mass input flux can be assumed to take place at a constant rate, Υ, that is∫ t+T
t (Md +CR Rt )d t ′ ∼ Md T +T CRλP /γP = ΥT , and be interrupted by instantaneous and

unfrequent leaching events induced by percolation. As a result, (3.2) can be rewritten as

dm

d t
=Υ − m

n Zr s
L(s). (3.5)

The previous chapter has already shown how leakage may be modeled as a marked point

process, with percolation depths exponentially distributed with parameter γP [Botter et al.,

2007c]. For reasons of analytical tractability, the percolation events are assumed to occur

according to a Poisson process with frequency λ given by the frequency of soil moisture

crossing the threshold s = s1. This can be expressed in terms of the soil moisture pdf as

λ= ρ(s1)p(s1), where the term ρ(s) = (ET (s)+L(s))/nZr represents the normalized catchment-
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Figure 3.2: Comparison of soil moisture and salinity models: (a) Temporal evolution (equation
(3.1)) of s(t), forced by intermittent rainfall (λP = 0.1 d−1 and 1/γP = 1.79 cm). The blue
dashed line refers to the minimalist model, while the continuous red line is the complete
numerical model (see text for details). (b) Temporal evolution of root-zone salt mass for
the complete numerical model (red line) and the minimalist model (blue dashed line). (c)
Temporal evolution of the corresponding specific salt concentration C (t ) = m(t )/nZr s(t ) in
the root zone for the same two cases of 3.2b. The unit of measure of C are transformed from
mg/(cm m2) to dS/m, by using mg/(cm m2) = 10−1 mg/l. The soil and vegetation parameters
employed for the simulation of the complete model are those typical for a sandy-loam soil,
while the free parameters of the minimalist model are s1 = 0.8, b = 0.6. In particular for both
models n = 0.45, Zr = 30 cm, sw = 0.1, ETmax = 0.35 cm/d, CR ≈ 3 mg l−1 and Md = 54 mg d−1

m−2 (coastal area) have been used.

scale loss function (i.e. the total losses from the system due to evapotranspiration and leakage

as a function of the soil moisture) [Rodriguez-Iturbe I. and Porporato, 2004]. Adopting the

soil moisture minimalist model, for which the pdf is a truncated gamma distribution [e.g.

Porporato et al., 2004], the leaching frequency is λ= ηexp(−γ)γλP /η/Γ(λP /η,γ) [Botter et al.,

2007c], where Γ(x, y) is the lower incomplete gamma function, η= ETmax /(nZr (s1 − sw )) and

γ= γP nZr (s1 − sw ). A leaching-efficiency parameter b is used to account for incomplete salt

dissolution, further assuming that the typical value of soil moisture during leaching events

can be approximated by the value s1. With the above assumptions, the dynamics of the salt

mass in the root zone can be described by a single equation

dm

d t
=Υ−mL′

t , (3.6)
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where L′
t is a marked Poisson noise [Van Den Broeck, 1983] with frequency λ, and (dimension-

less) exponential marks with mean

µ= b

n Zr s1γP

. (3.7)

Figures 3.2b and 3.2c compare the results of both salinity models. The free parameters s1 and

b are fitted with respect to the complete model of salt mass and concentration, respectively.

From a mathematical viewpoint, equation (3.6) is a stochastic differential equation with

multiplicative white (jump) noise. In this case, since the soil solution can be considered in

equilibrium during leaching events, one has to interpret (3.6) in the Stratonovich sense (see

Van Den Broeck [1983] and Appendix A.3 for all the mathematical details). Accordingly, the

normal rules of calculus are preserved, and equation (3.6) can be transformed into

d y

d t
=Υe−y −L′

t , (3.8)

where y(t ) = ln[m(t )].

3.3 Results and Discussion

The stationary solution of (3.8) can be obtain as in Rodriguez-Iturbe et al. [1999b]. Then using

the derived distribution for m, i.e., p(m) = p(y)d y/dm, the probability distribution for the

salt mass in the root zone is obtained

p(m) = N exp(−mλ

Υ
)m1/µ, (3.9)

where N = (λ/Υ)
1+µ
µ /Γ( 1+µ

µ ) and Γ(x) is the Gamma function. Equation (3.9) summarizes the

soil salinity statistics as a function of climate, soil and vegetation parameters.

Figure 3.3 is a graphical representation of the dependence of the mean salt concentration

〈C〉 = 〈m〉/nZr 〈s〉on the yearly rainfall and λP . The contour-lines connect equal values of the

mean salt concentration in the soil, for a given input of saltΥ. The latter has been calculated

for two different geographic regions. Typical salt inputs in coastal areas are 100−200 kg/(ha

yr) of salt, while values drop of an order of magnitude in continental regions [Hillel, 2000].

Between the black region and the light gray ones in Figure 3.3a, the behavior of 〈C〉 changes

substantially. Above a certain total rainfall per year, the input of salt related to rainfall frequency

becomes immaterial as leaching effectively washes out the salt mass from the root zone. For

lower total rainfall values, however, the salt in the soil increases with increasing λP . For a
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given annual precipitation depth, with low rainfall frequencies, rainfall events carry enough

water to trigger leaching. Conversely, if λP is high, evapotranspiration dominates, leaching is

largely reduced, thereby causing salt accumulation in the root zone. Therefore, 〈m〉 strongly

increases with λP . Relatively small reductions of rainfall at the transition between these two

regimes may entail a dramatic increase in long-term soil salinization. Figure 3.3 also shows the

threshold of soil salinity below which vegetation is practically unaffected (e.g., 〈C〉 < 2 dS/m)

and the thresholds above which regular (e.g. non-halophytic) vegetation is damaged (e.g.,

〈C〉 > 2 dS/m). For coastal areas soil salinization may occur even in relatively more humid

regions, especially when rainfall events are not very intense. On the contrary, in continental

regions only arid climates may begin to develop soil salinization (in the absence of irrigation

and groundwater input). Indeed, through the proposed model one can evaluate the risk of

soil salinization in rain-fed agriculture just by estimating the typical salt inputs, total rainfall

per year and the rainfall frequency. For example, a rain-fed crop in a semi-arid climate (e.g.,

rainfall depth of 70 cm/yr) in a continental region risks salinization only when rainfall events

are not very intense (e.g., γ−1
P

≤ 0.4 cm or λP ≥ 0.48 d−1 ). If the same crop is located in a

coastal area, salinization occurs for a wider range of rainfall parameters (e.g., γ−1
P

≤ 1 cm or

λP ≥ 0.18 d−1 ).

The solution (3.9) may be used in conjunction with soil moisture statistics to obtain a full

characterization of the salt concentration in the root zone. Because one may safely assume

that equations (3.1) and (3.5) are decoupled over short time scales, the soil moisture s(t ) and

the salt mass m(t ) may be treated as statistically independent random variables. By observing

that the salt concentration in the root zone is equal to C (t) = m(t)/nZr s(t) and assuming

sw ∼ 0, the stationary probability distribution of the salt concentration p(C ) as the quotient

distribution of two independent random variables [Curtiss, 1941] is achieved:

p(C ) =
λ(
ΥγP
Cλ +1)−1/µ(

ΥγP
Cλ+ΥγP

)
λP
η (Γ(

λP
η + 1

µ +1)−Γ(
λP
η + 1

µ +1,nZr s1(Cλ
Υ +γP )))

Γ(1+ 1
µ )(Cλ+γPΥ)(Γ(

λP
η )−Γ(

λP
η ,nZr s1γP ))

. (3.10)

The comparison between analytical solutions and numerical simulations (Figure 3.4) shows

that the analytical solution reproduces reasonably well the pdf of the complete model. By

integrating equation (3.10) from a given concentration value C∗ to infinity, one obtains the

cumulative pdf of C , P (C∗), which is the probability of having a salt concentration greater

than a certain critical concentration value, C∗, as a function of the soil-plant-atmosphere

parameters. The inset of Figure 3.4 confirms the impact that climate change may have on

soil salinity. Note, in particular, that such an impact is marked only for semi-arid or drier

climates (see Figure 3.3). For example with a reduction from λP = 0.2 to λP = 0.15d−1, the

probability of crossing C∗ = 6 dS/m is more than tripled. When coupled to a crossing analysis

of concentration levels, the previous results may be used to evaluate the risk of plant salt stress.

The analytical form of the results makes it suitable for computations of salinity risk at the
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global scale as a function of few measurable parameters, and facilitates their coupling with

other models of long-term soil-plant biogeochemistry.

In future works, this modeling framework will be extended to investigate additional salt inputs

from irrigation and groundwater by modifying accordingly the average salt input parameter

Υ and calculating the corresponding soil moisture pdfs (e.g. see Vervoort and Van Der Zee

[2008] for groundwater inputs and Vico and Porporato [2010] for irrigation).
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Part IIEffects of the spatial structure of the
environmental matrix on ecosystems

dynamics
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Overview

In this second part, it will be shown how hydrologic controls on the ecosystem dynamics are

extended also through the connectivity structure of the space where the ecosystem lives.

The commonalities existing among all types of river basins and their drainage networks

suggest the possible existence of general rules commanding the role that their structure plays

in ecological patterns. Moreover, the ecological corridors provided by river networks induce

anisotropy in the spreading of species, pathogenes or other agents along the waterways.

Natural ecosystems are characterized by striking diversity of form and functions and yet

exhibit deep symmetries emerging across scales of space, time and organizational complexity.

Species-area relationships [Brown, 1995] and species-abundance distributions [Preston, 1948]

are examples of emerging patterns irrespective of the details of the underlying ecosystem

functions.

In this context, the so−called neutral ecological theory [Hubbell, 2001; Bell, 2001; Vallade

and Houchmandzadeh, 2003; Volkov et al., 2003], assuming that all species are competitively

equivalent at a per capita level, offer a benchmark dynamics suggesting that many aspect

of real biotic system may not require a more complicated model [Stanley, 2000]. In fact a

general theory emerges on the effects of dendritic geometries on the ecological processes

and dynamics operating on river basins and it explain the spatial pattern of species dispersal

in riparian corridors [Muneepeerakul et al., 2008b; Rodriguez-Iturbe et al., 2009]. However,

emerging patterns consistent with the neutrality assumptions do not necessarily imply that

the underlying ecological processes are neutral [Harte, 2003].

The ability of the neutral theory to make testable predictions about a wide variety of ecosystem

properties is fully explored in Chapter 4. The reader will be briefly introduced to neutral theory

and a related lattice model that allow to calculate the local species persistence time (SPT)

distributions. SPT is defined as the timespan between local colonizations and extinctions in a

given geographic region and its distribution is proposed as a new macroecological pattern

emerging from ecosystem dynamics. In this chapter it is also theoretically investigated how

the scaling features of the SPT distribution depend on the structure of the spatial interaction

network. In Chapter 5 empirical SPT distributions pertaining to four different ecosystems will

be presented: North American breeding birds, Kansas grasslands, a forest in New Jersey and

marine fishes of Bristol channel. Data will be analyzed in a new theoretical framework that

accounts for length−biased sampling effects on the measurements. In spite of the differences

between taxa and spatial scales of analysis, the SPT distributions all exhibit a power-law

behavior limited by a cut-off determined by the rate of emergence of new species in that

particular ecosystems. Empirical scaling exponents of SPT distributions are reproduced by

the spatial neutral model. The framework developed in these chapters also allows to link the

cut-off timescale with the spatial scale of analysis, and the persistence-time distribution to

the species-area relationship.
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Chapter 4
Neutral Theory and Species Persistence

Time Distributions

The enormous usefulness of mathematics

in the natural sciences is something

bordering on the mysterious and that

there is no rational explanation for it

E. Wigner

4.1 Stochastic modelling of ecosystems dynamics

Neutral models are based on the assumption that, within a single trophic level, individual birth

and death rates are species-independent. Neutral theory has been proposed as an unified

context for understanding ecological patterns [Hubbell, 2001]. Since then, several studies

have focused their attention on it [Houchmandzadeh and Vallade, 2003; Chave, 2004; Alonso

and McKane, 2004; Azaele et al., 2006; Volkov et al., 2007; Chisholm and Lichstein, 2009].

Although the neutral hypothesis is easily falsifiable for specific cases, neutral models prove

able to explain several universal macroecological patterns. This is the case, for instance, of

the relative species abundance (RSA) distributions [McGill, 2003; Volkov et al., 2005], species-

independent beta diversity patterns [Condit et al., 2002; Zillio et al., 2005] and species-area

relationship [Brown, 1995; Zillio et al., 2008; O’Dwyer and Green, 2010]. Remarkably, this

happens by invoking only basic ecological processes such as birth, death, migration and

dispersal limitation. Although certain emergent ecological patterns are independent of the

fine ecological details and often well predicted by neutral theory [Bell, 2001], it has been

observed that this does not imply that the underling ecological processes are neutral [Harte,

2003; Purves and Pacala, 2005]. For these reasons, although the persistence biogeography
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framework does not require neutral process as well, it will be kept as a reference frame for the

theoretical speculations presented in this chapter.

According to the assumption of neutrality [Hubbell, 2001], the dynamics of a species in the

ecosystem is fully specified by its effective birth and death rates b(n) and d(n) that depend

exclusively on the population size n. Species abundance dynamics is described by the so

called birth-death master equation (ME) [Volkov et al., 2003; Houchmandzadeh and Vallade,

2003]:

dP (n, t )

d t
= b(n −1)P (n −1, t )+d(n +1)P (n +1, t )− (b(n)+d(n))P (n, t ), (4.1)

where P (n, t) is the probability, for a given species, of having a population of n individuals

at time t . The birth and death rate, b(n) and d(n) respectively, take into account several

ecological processes that may increase or decrease the number of individuals in a species over

time as, for instance, immigration or emigration.

The continuum approximation of the dynamics described by the ME (4.1) exist. If the popula-

tion of a species at time t is treated as a continuous variable, x(t ) (assumption which is valid

when the population varies smoothly with time and is not too small), then it can be proved that

the species abundance dynamics is described by the generalized Langevin equation [Pigolotti

et al., 2004; Azaele et al., 2006]:

d x

d t
= 2b(0)−x(t )(d(1)−b(1))+

√
(d(1)+b(1))x(t )/2ξ(t ), (4.2)

where ξ(t) is a Gaussian white noise with zero mean value. From Eq. (4.2) one can derive

the corresponding Fokker-Planck equation for the probability distribution function p(x, t ) of

finding x individuals at time t in the community.

Although the dynamics generated by Eqs. (4.1) and (4.2) are equivalent (if the continuum

assumption is valid), it is preferred to proceed using the discrete neutral model given by the

ME (4.1).

4.2 Theoretical Persistence-Time Distributions

In this context, study of species persistence times (SPT) of trophically equivalent co-occurring

species in relation to the spatial scale of observation is here adressed. The persistence time τ

of a species within a geographic region is defined as the time incurred between its emergence

and its local extinction (see Keitt and Stanley [1998]; Pigolotti et al. [2005] and Figure 4.1).

At a local scale, persistence times are largely controlled by ecological processes operating at

short timescales (e.g. population dynamics, dispersal, immigration, contraction/expansion

of species geographic ranges) as local extinctions are dynamically balanced by colonizations

[MacArthur and Wilson, 1967; Ricklefs, 1987]. At a global scale, originations and extinctions

are controlled by mechanisms acting on macroevolutionary timescales.
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Figure 4.1: SPT τ within a geographic region is defined as the time incurred between a species’
emergence and its local extinction. Recurrent colonizations of a species define different
persistence times. The number of species in the ecosystem as a function of time (gray shaded
area) crucially depends on species emergences and persistence times. The inset shows the
observational routes of the Breeding Bird Survey, a long-term dataset that it will be analyzed in
the next chapter. Aggregating local information comprised in a given geographic area, species
presence-absence time-series that allow the estimation of persistence-time distributions is
reconstructed.

From a theoretical viewpoint, the simplest baseline model for population dynamics is a

random walk without drift, according to which the abundance of a species in a geographic

region has the same probability of increasing or decreasing by one individual at every time

step. According to this scheme, local extinction is equivalent to a random walker’s first passage

to zero, and thus the resulting persistence-time distribution has a power-law decay with

exponent 3/2 [Chandrasekhar, 1943].

A more realistic description can be achieved by accounting for basic ecological processes

through the neutral mean field schemes, as follows. Consider a community of N individuals

belonging to different species. At every time step a randomly selected individual dies and space

or resources are freed up for colonization. With probability ν the site is taken by an individual

of a species not currently present in the system; ν is equivalent to a per-birth diversification

rate and it accounts for both speciation and immigration from surrounding communities. With

the residual probability 1−ν the died individual is replaced by one offspring of an individual

randomly sampled within the community [Durrett and Levin, 1996; Chave et al., 2002]. As

such the probability of colonization by a species depends solely on its relative abundance in

the community. This model is known as voter model [Holley and Liggett, 1975].
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Considering b(n) = n(1−ν) and d(n) ∝ n, the abundance dynamics in the voter model (in

the limit of infinite number of nodes) is exactly described by Eq. (4.1). Assuming absorbing

boundary conditions in n = 0, the probability density distribution (pdf) of the theoretical

persistence time pτ can be expressed as [Pigolotti et al., 2005]:

pτ(t ) = dP (0, t )

d t
. (4.3)

The asymptotic behavior of the resulting persistence-time distribution (i.e. pτ(t )) exhibits a

power-law scaling limited by an exponential cut-off:

pτ(t ) ∝ t−α f (νt ), (4.4)

with f (z) = (z/(1− e−z ))2e−z and α= 2 [Pigolotti et al., 2005]. In Eq. (4.4), time is expressed

in generation time units [Hubbell, 2001], i.e. it has been rescaled such that the birth rate is

equal to one. Notably, in the mean field scheme the probability distribution pτ(t) depends

solely on the diversification rate which accounts for speciation and migration processes and

imposes a characteristic timescale 1/ν for local extinctions. While per-birth speciation rates

are not expected to vary with the spatial scale of analysis, per-birth immigration rates are

argued to decrease as the spatial scale increases. In fact, the possible sources of migration

(chiefly dependent on the geometrical properties of the boundary and the nature of dispersal

processes) are argued to scale sub-linearly with the community size [Chisholm and Lichstein,

2009], which in turn is typically linearly proportional to geographic area [MacArthur and Wil-

son, 1967; Brown, 1995]. As continental scales are approached, migration processes (almost)

vanish and the diversification rate ultimately reflects only the speciation rate.

Another issue of interest concerns the effects of the structure of the environmental matrix

[Ricketts, 2001]. In particular, the role of the connectivity structure of environmental matrix

on the SPT distribution is investigated.

4.3 Spatial Effects on Persistence-Time Distributions

In this section, a theoretical rationale for the universality of the scaling behavior of persistence-

time distributions with respect to the topology of the interactions allowed by the environmen-

tal matrix is provided. In particular, evidences are presented on how non-trivial exponents

(α 6= 1.5 or α 6= 2) can be reproduced by the neutral voter model once dispersal limitation and

the actual network of spatial connections are taken into account.

The neutral game described above in regular one-, two- and three-dimensional lattices in

which every site represents an individual [Durrett and Levin, 1996; Chave et al., 2002] have been

implemented. Patterns emerging from the application of the model to dendritic structures

mimicking riverine ecosystems where dispersal processes and ecological organization are

constrained by the network structure have also been explored. Indeed, many features of

riverine ecosystems have been shown to be affected by the connectivity of river networks
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[Grant et al., 2007; Rodriguez-Iturbe et al., 2009]. In particular, river geometry has been

studied in relation to extinction risk [Fagan, 2002], migration processes [Campos et al., 2006],

persistence of amphibian populations [Grant et al., 2010], macroinvertebrate dispersal [Brown

and Swan, 2010] and freshwater fish biodiversity [Muneepeerakul et al., 2008b; Bertuzzo

et al., 2009]. For general calculations of the topological structure and metric properties

relevant to dendritic ecological corridors, the features of Optimal Channel Networks (OCNs)

[Rodriguez-Iturbe et al., 1992] are employed. They hold fractal characteristics known to

closely conform to the scaling of real networks [Rinaldo et al., 1992]. Among the advantages

of the use of OCNs, one recalls the possibility to fit one such construct into any assigned

domain (e.g. a square, Figure 4.2), thus allowing exactly the same size and number of nodes

of a two-dimensional lattice to be endowed with altered directionality of connections. To

account for limited dispersal effects, only the offsprings of the nearest neighbors of the died

individual to possibly colonize the empty site is allowed. In the networked landscape the

neighborhood of a site is defined by the closest upstream and downstream sites. Limited

dispersal promotes the clumping in space of species, which enhances their coexistence and

survival probability [Chave et al., 2002; Kerr et al., 2002]. Indeed, it is found that in all the

considered landscapes, persistence-time distributions is still compatible with a power-law

now limited by an exponential cut-off

pτ(t ) ∝ t−αe−νt , (4.5)

with α = 1.92 for the 3D, α = 1.82 for the 2D, α = 1.62 for the OCN, α = 1.50 for the 1D

landscape, Figure 4.2) limited by an exponential cut-off.

4.4 The Role of the Dispersal Range

The effects of dispersal ranges wider than nearest neighbors on persistence-time distributions

are also investigated . To that end, the individual-based neutral [Hubbell, 2001; Chave et al.,

2002] model with uniform-dispersal with varying radii r is implemented. The model in regular

lattices in d spatial dimensions comprising N sites each or them occupied by one individual

is thus simulated. To avoid edge effects, periodic boundary conditions have been prescribed.

The model assumes neutral dynamics, therefore all the basic ecological processes reproduced

in the model (birth, death, dispersal, colonization, and diversification) are equivalent for all

the individuals of all species. The system is assumed to be always saturated, i.e., no available

resources or sites are left unexploited. At each time step, a randomly selected individual dies

and the resources are freed up and available for colonization by another individual. With

probability ν, the diversification rate, the empty site is colonized by individual of a species not

currently present in the system. The diversification is a rate per-birth that accounts for both

speciation and immigration from surroundings communities. With the residual probability

1−ν the empty site is occupied by on offspring of an individual randomly sampled among

all the sites that are less distant than r from the empty site, where r is measured in units

of lattice spacing. For r = 1 the voter model reduces to the nearest-neighbor dispersal case
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Figure 4.2: Persistence-time distributions are dependent on the structure of the spatial inter-
action networks. (a) Persistence-time exceedance probabilities Pτ(t ) (probability that species’
persistence times τ be ≥ t ) for the neutral individual-based model [Durrett and Levin, 1996;
Chave et al., 2002] with nearest-neighbor dispersal implemented on the different topologies
shown in the inset. Note that in the power-law regime if pτ(t ) scales as t−α, Pτ(t ) ∝ t−α+1. The
scaling exponent α is equal to 1.50±0.01 for the one-dimensional lattice (red), α= 1.62±0.01
for the networked landscape (yellow), 1.82±0.01 and 1.92±0.01 respectively for the 2D (green)
and 3D (blue) lattices. Errors are estimated through the standard bootstrap method. The
persistence-time distribution for the mean field model (global dispersal) reproduces the exact
valueα= 2 (black curve). For all simulations ν= 10−5 and time is expressed in generation time
units [Hubbell, 2001]. Bottom panels sketch the color-coded spatial arrangements of species
in a networked landscape (b), in a two-dimensional lattice with nearest neighbor dispersal (c),
and with global dispersal (d).

(von Neumann neighborhood). After the system has reached a statistically steady state, the

persistence times of 105 species, are measured by tracking their abundances from emergence

to extinction.

Figure 4.3 shows the persistence-time exceedance probability distribution for different dis-

46



4.5. Competition-Survival Trade-Off Model

10
−2

10
0

10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Time

 

r=1

r=4

r=16

r=32

P
τ
(t

)

Figure 4.3: Persistence-time exceedance probability distributions Pτ(t ) for the neutral model
implemented in a one-dimensional lattice. Different colors refer to different uniform dispersal
radii. For all simulations ν= 10−5 and time is expressed in generation time units [Hubbell,
2001].

persal radii. When the range of dispersal is small compared to the typical size of species’

cluster, the persistence-time distributions tend to have, after a transient regime, the same

scaling found in the nearest neighbor case. As expected, as the radius of dispersal increases,

persistence-time distributions approach the scaling of the global dispersal.

4.5 Competition-Survival Trade-Off Model

The resulting persistence-time distributions once the neutral assumption is relaxed and

differences among species are considered are finally analyzed . In this context, a competition-

survival trade-off model [Tilman, 1994; Buttel et al., 2002; Chave, 2004], where species have

different mortality rate µ, has been implemented on regular lattices. A trade-off between mor-

tality and competitive advantage is assumed, so that species with higher mortality rates have

an higher probability of outcompeting species with lower mortality rate in the engagement for

the colonization of an empty site. Operationally, each species s is labeled by its mortality rate

µs . At every time step an individual, randomly selected among all the individuals in the system,

dies with a probability equal to the mortality rate of the species it belongs to. If a death occurs

the empty site is colonized by one individual of a species not currently present in the system

with probability ν, the diversification rate. The mortality rate of the new species is sampled

from a uniform distribution between 0 and 1. With the remaining probability 1−ν, the empty

site is colonized by an offspring of an individual chosen among the nearest neighbors with

probability proportional to their mortality rate.

Figure 4.4 shows the comparison between persistence-time distributions emerging from the

neutral and the competition-survival trade-off model implemented in a two-dimensional
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lattice. Also in the trade-off model the persistence-time distribution, after a transient regime,

exhibits a power-law behavior with an exponent (α= 1.80±0.03) close to that obtained under

neutrality (α= 1.82±0.01). Noticing that persistence time in the trade-off model has a larger

mean value 〈τ〉 and recalling that the mean number of species S in the system at a certain time

is S = νN〈τ〉 [Rodriguez-Iturbe et al., 1987], the it can be concluded that trade-off mechanisms

can facilitate the coexistence of species, a result already suggested in the literature [Chave

et al., 2002; Tilman, 1994].

This confirms the expectation that a power-law distribution for SPT is the result of emergent

behaviors independent of fine ecological details, thus supporting the neutral assumption

that effective interaction strength among species is weak [Volkov et al., 2009] and does not

significantly constrain the dynamics of ecosystems. It also worth to note that the above results

are not seen as a test for the neutrality hypothesis for breeding birds or herbaceous plants

dynamics, but rather as tools to reveal emerging universal and macroscopic patterns [Solé

et al., 2002; Pueyo et al., 2007].
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Figure 4.4: Comparison between the persistence-time exceedance probability distribution
Pτ(t ) for the neutral (green) and the competition-survival trade-off (blue) model implemented
in a two-dimensional lattice. Note that in the power-law regime if pτ(t ) scales as t−α, Pτ(t ) ∝
t−α+1. The scaling exponentα in the range 103 <Time< 104 is equal to 1.82±0.01 for the neutral
model and 1.80±0.03 for the trade-off model. Errors are estimated through bootstrap method
(random sampling with replacement). For all simulations ν= 10−5 and time is expressed in
generation time units [Hubbell, 2001].

4.6 Sampling Effects on SPT Distribution

Empirical real data on persistence times for different species are available, especially from

succession studies and long term ecological databases [Pigolotti et al., 2005; Bertuzzo et al.,

2011]. However, before testing the theory against the empirical data, length−bias sampling
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4.6. Sampling Effects on SPT Distribution

effects on SPT are needed to be taken in account.

In fact, when dealing with observational data, the effect of the finiteness of the observed

time window on the measured SPT must be properly taken into account. In this section,

the analytical derivation of the distribution of two variables that can actually be measured

from empirical data is presented: i) the persistence times τ′ of species that emerge and go

locally extinct within the observed time window ∆Tw ; and ii) the variable τ′′ that comprises

the persistence times τ′ and all the portions of SPT that are partially seen inside the obser-

vational time window but start or/and end outside (Figure 4.5). By matching analytical and

observational distributions for pτ′(t) and pτ′′(t) it is possible to infer the persistence-time

distribution pτ(t ). In the theoretical framework described in the main text, the probability ν of

having a diversification event in a time step is constant, thus species emergence in the system

due to migration or speciation is a uniform point Poisson process with rate λ= νN , where

N is total number of individuals in the system and λ has the dimension of the inverse of a

generation time. t0 is the emergence time of a species in the system, and T0 and T f = T0+∆Tw

the beginning and the end of the observational time window, respectively. A species emerged

at time t0 will be continuously present in a geographic region for its persistence time τ until its

local extinction at time t0 +τ. The distribution of τ′′, the most complex case is first analyzed.

The distribution of τ′ will follow easily.

τ''ab
un

da
nc

e

τ

τ''

τ''

T0
Tf

Time

case 1 case 2

case 4

case 3

∆Tw

τ'

Figure 4.5: Schematic representation of the variables that can be measured from empirical
data over a time window∆Tw : τ′ (persistence times that start and end inside the observational
window) and τ′′ (which comprises the persistence times τ′ and all the portions of SPT that are
partially seen inside the observational time window but start or/and end outside ). Cases 1,2,3
and 4 refer to the description provided in the text.

The variable τ′′ can be expressed as function of the random variables τ and t0, which are

probabilistically characterized. Four different cases (Figure 4.5) can be distinguished:

1. the species emerges and goes locally extinct within the time window;
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2. the species emerges during the observations and it is still present at the end of the time

window;

3. the species emerges before the beginning of the observations and goes locally extinct

within the time window;

4. the species is always present for all the duration of the observations;

or, mathematically:

τ′′ =


τ, if T0 ≤ t0 ≤ T f and t0 +τ≤ T f

T f − t0, if T0 ≤ t0 ≤ T f and t0 +τ> T f

t0 +τ−T0, if 0 < t0 < T0 and T0 ≤ t0 +τ≤ T f

T f −T0, if 0 < t0 < T0 and t0 +τ> T

(4.6)

The probability of observing τ′′ conditional on a persistence time of duration τ is express as:

pτ′′ (t |τ) =
1

N

(
〈δ(τ− t )Θ(t0 −T0)Θ(T f − (t0 +τ))Θ(T f −T0 −τ)〉+

+〈δ(T f − t0 − t )Θ(t0 −T0)Θ(T f − t0)Θ(t0 − (T f −τ))〉+

+〈δ(t0 +τ−T0 − t )Θ(t0)Θ(T f − t0 −τ)Θ(T0 − t0)Θ(t0 −T0 +τ)〉+
+〈δ(T f −T0 − t )Θ(t0)Θ(T0 − t0)Θ(t0 − (T f −τ))Θ(τ− (T f −T0))〉

)
, (4.7)

where the operator 〈·〉 is the ensemble average with respect to the random variable t0, δ(x)
andΘ(x) are the delta of Dirac distribution and the Heaviside function, respectively. N is the
normalization. Solving the ensemble averages, the previous equation reads:

pτ′′ (t |τ) = 1

N

(
δ(t −τ)

∫ T f −τ

T0

Θ(T f −T0 −τ)d t0 +

+Θ(T f −T0 − t )Θ(τ− t ) +

+Θ(T f −T0 − t )Θ(T0 + t −τ)Θ(τ− t ) +
+δ(t − (T f −T0))min[T0,T0 − (T f −τ)]Θ(τ− (T f −T0))

)
. (4.8)

Marginalizing with respect to τ, the probability distribution of τ′′ is obtained:

pτ′′ (t ) =
∫ ∞

0
pτ′′ (t |τ)pτ(τ)dτ. (4.9)
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Eq. 4.8 combined with Eq. 4.9 yields:

pτ′′ (t ) = 1

N

(
(T f −T0 − t )pτ(t )Θ(T f −T0 − t ) +

+Θ(T f −T0 − t )
∫ ∞

t>0
pτ(τ)dτ+

+Θ(T f −T0 − t )
∫ T0+t

t>0
pτ(τ)dτ+

+δ(t − (T f −T0))
∫ ∞

T f −T0

min[T0,T0 − (T f −τ)]pτ(τ)dτ
)

. (4.10)

The last term of Eq. 4.10 gives an atom probability in t =∆Tw = T f −T0 corresponding to the

fraction of species that are always present during the observational window.

Recalling Eq. 4.7 and 4.9, the normalization constant N reads:

N =
∫ ∞

0

(
〈Θ(t0 −T0)Θ(T f − (t0 +τ))Θ(T f −T0 −τ)〉+

+ 〈Θ(t0 −T0)Θ(t0 − (T f −τ))Θ(T f − t0)〉+

+ 〈Θ(t0)Θ(T f − (t0 +τ))Θ(T0 − t0)Θ(t0 − (T0 −τ))〉+
+ 〈Θ(t0)Θ(T0 − t0)Θ(t0 − (T f −τ))〉

)
pτ(τ)dτ, (4.11)

which simplifies to

N =
∫ T f −T0

0
(T f −T0 −τ)pτ(τ)dτ +

+
∫ ∞

0
min[T f −T0,τ]p(τ)dτ +

+
∫ ∞

0
(min[T0,T f −τ]−max[0,T0 −τ])p(τ)dτ +

+
∫ ∞

T f −T0

min[T0,T0 −T f +τ)pτ(τ)dτ. (4.12)

When comparing analytical and observational distributions, it is assumed that the system
is at stationarity and unaffected by initial conditions, i.e. T0 is far from the beginning of the
process. Mathematically this is obtained taking the limit T0,T f →+∞ with T f −T0 =∆Tw in
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Eq.4.10, which finally takes the form:

pτ′′ (t ) = 1

N

(
(∆Tw − t )pτ(t )Θ(∆Tw − t ) +

+ Θ(∆Tw − t )
∫ ∞

t>0
pτ(τ)dτ +

+ Θ(∆Tw − t )
∫ ∞

t>0
pτ(τ)dτ +

+ δ(t −∆Tw )
∫ ∞

∆Tw

(τ−∆Tw )pτ(τ)dτ
)

, (4.13)

where N simplifies to:

N =∆Tw +〈τ〉−2∆Tw Pτ(∆Tw )+2
(∫ ∆Tw

0
(Pτ(t )− t pτ(t ))d t

)
, (4.14)

with Pτ(t) = ∫ +∞
t pτ(τ)dτ being the exceedance cumulative distribution of the persistence-

time probability density function.

The variable τ′ comprises only the first of the four cases listed in Eq. 4.6. Thus the probability
distribution pτ′(t ) follows directly from the first term of Eq. 4.13

pτ′ (t ) = 1

N ′ (∆Tw − t )pτ(t )Θ(∆Tw − t ), (4.15)

where the normalization constant N ′ is equal to

N ′ =
∫ ∆Tw

0
(∆Tw −τ)pτ(τ)dτ, (4.16)

which completes the derivation.
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Empirical species persistence time

distributions and implications for

biodiversity

...he who does not admit to the

unfathomable mystery cannot even be a

scientist.

A. Einstein

5.1 Introduction

Empirical SPTs are defined as the number of consecutive years in which the measurements

reveal the presence of the species in that geographic region (see figure 4.1) Assume that species

abundance (or presence-absence) time series for a given single trophic ecosystem are available

from field campaigns carried on in a time period of ∆Tw = T f −T0 years. From the collected

data, SPT can be measured and the empirical SPT obtained.

From an empirical viewpoint, species and genera persistence times deducted from fossil

record data have been suggested to follow either power-law (with non-trivial exponents in the

range 1.5−2 [Sneppen et al., 1995; Sole and Bascompte, 1996; Newman and Sibani, 1999]) or

exponential distributions [Van Valen, 1973; Sole and Bascompte, 1996]. It has been argued,

however, that data quality, in particular for species, precludes a critical assessment [Pigolotti

et al., 2005]. Also, local analyses of species persistence over ecological timescales suggest

power-law distributions with non trivial exponents [Keitt and Stanley, 1998]. In what follows

new empirical evidences for power-law behavior shall be provided. Results on empirical
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SPT distribution will be compared with neutral model predictions on SPT distribution, and

implications on emerging macroecological patterns will be examined, with special attention

to possible biogeographical effects.

The problem of the scale of observation becomes a central one in this framework. In fact, at the

local scale, say the observation site for presence/absence of breeding birds, persistence times

of a species are controlled by ecological processes operating a short timescales, like population

dynamics, dispersal, immigration, or contractions (expansions) of geographic ranges. At such

scale local extinctions are dynamically balanced by colonizations [MacArthur and Wilson,

1967; Tilman, 1994; Ricklefs and Scheuerlein, 2003; Muneepeerakul et al., 2008b]. At the global

scale, origination and extinctions are controlled by mechanisms acting on macroevolution-

ary timescales [Brown and Kodricbrown, 1977; Diamond, 1989]. For intermediate scales of

observations, transitions from one regime to the other prove smooth. The scaling behavior

proposed in the previous chapter to govern the transition from local to global scales is unsuit-

able to provide detailed descriptions about a specific species or a particular patch inside the

ecosystem, and yet is capable of effectively describing the overall dynamical evolution of the

ecosystem diversity. It also allows to predict SPT distributions for wide geographic areas from

measures of persistence on smaller, way more tractable or observable areas. A biogeography

of species persistence has thus been introduced.

5.2 Empirical SPT Distributions

SPT distributions are empirically characterized by analyzing four long-term datasets covering

very different spatial scales: i) a 41-year survey of North American breeding birds [North

American Breeding Bird Survey, 2008]; and ii) a 38-year inventory of herbaceous plants from

Kansas prairies [Adler et al., 2007]; iii) a 44-year long study from the Buell-Small Succession

(BSS) Study of plants in New Jersey [Institute of Ecosystem Studies, 2008] ; and iv) a 28-year long

database of British marine fish collected at Hinkley Point (headland on the Bristol Channel

coast of Somerset, England) [Henderson and Magurran, 2010].

North American Breeding Bird Survey Database

The North American Breeding Bird Survey consists of a record of annual abundance of more

than 700 species over the 1966-present period along more than 5000 observational routes.

The spatial location of the routes analyzed is shown in Figure 4.1. Only routes with a latitude

less than 50◦ are considered, because density of routes with a long surveyed period drastically

decreases above the 50th parallel. Noting that in many regions the survey started only in

1968, the first two years of observations are discarded in order to have simultaneous records

for all the regions in the system. The spatial extent of the observational routes allows us to

analyze species persistence times at different spatial scales. 20 different scales of analysis are

considered, with linearly increasing values of the square root of the sampled area starting

from A = 10000 km2 to A = 3.8 ·106 km2. The whole system, which corresponds to an area of
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A = 7.8 ·106 km2, is also analyzed. For every scale of analysis A several overlapping square cells

of area A inside the system are considered. A three-dimensional presence-absence matrix

P is thus built. Each element pstc of the matrix is equal to 1 if species s is observed during

year t in at least one of the observational routes comprised in cell c, otherwise pstc = 0. For

every scale of analysis the cells that (i) do not have a continuous record for the whole period

(41 years) or (ii) have more than 5% of their area falling outside the system are discarded. For

every cell and every species persistence times from presence-absence time series derived

from the second dimension of matrix P are measured. Persistence time is defined as the

length of a contiguous sequence of ones in the time series. For every scale of analysis all the

measured persistence times, regardless of the species they belong to and the cell where they

are measured, are considered.

Kansas Grass Prairies Database

The herbaceous plant dataset [Adler et al., 2007] comprises a series of 51 quadrats of 1 m2 from

mixed Kansas grass prairies where all individual plants were mapped every year from 1932 to

1972. In order to meet the data quality standard required for the analysis as discussed above

for the breeding bird data, 10 quadrats are discarded and the first three years of observations.

Due to the limited number of observational plots in the herbaceous plant dataset, the analysis

is limited to quadrat spatial scale A = 1 m2. Analogously to the previous case, the matrix P

from presence-absence data for every species, year and quadrat, is reconstructed.

New Jersey BSS Field Study

The BSS study [Institute of Ecosystem Studies, 2008] includes ten fields that were released

from agriculture and used to study succession dynamics. Permanent plots, measuring 48 m2

each, were established in every field. The permanent plots were sampled every year from 1958

to 1979, after which they were sampled alternatively every other year to the present day. The

fields differ in the year of release, thus only data collected after the latest field abandonment

year (1968) are considered. In order to avoid missing data in alternate years, the minimum

sampled area (afterwards named cell) considered in the calculation of the empirical SPT

distributions comprises two adjacent fields (96 m2). In this way each cell is populated with

presence-absence records for each year. The same analysis is repeated for 3 other different

scales: 4,6,8 adjacent fields (A=192, 288, 384 m2, respectively). The whole system, which

corresponds to an area of A = 480 m2, is also analyzed. For every scale A of analysis, the

presented results refer to the average over all possible combinations of adjacent plots within

the system (moving average procedure). Again, the three-dimensional presence-absence

matrix P is thus built and empirical SPT are calculated at every cell scale.
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Bristol Channel Fishes Database

Fish samples were collected from the cooling-water filter screens at Hinkley Point B Power

Station, situated on the southern bank of the Bristol Channel in Somerset, England. A full

description of the intake configuration and sampling methodology is given in Henderson

and Magurran [2010]. Only marine fish species (not crustaceous organisms) are considered.

Empirical SPT pd f ’s can be computed as described for the previous datasets. Note, however,

that this time there is not spatial scale variability, in fact the samples were collected in a single

point in the space. Therefore the analysis is limited to a single spatial scale.

5.3 Comparison with Model Results

5.3.1 Fitting Results

Note that, when dealing with empirical survey data, the effect of the finiteness of the observa-

tional time window on the measured species persistence times must be properly taken into

account, as explained in detail in the previous chapter. To this end, by matching analytical

and observational distributions for pτ′(t ) and pτ′′(t ) (described by Eqs (4.15) and (4.13)), it is

possible to infer the persistence-time distribution pτ(t ).

The scaling exponent and the diversification rate have been determined with a simultaneous

nonlinear fit of observational and analytical pτ′(t) and pτ′′(t), giving a higher weight to the

atom probability (the last point in each SPT distribution). Confidence intervals are equal

to the standard error of the fit. For breeding birds and BSS forest plants, the nonlinear fit

for different spatial scales of analysis is repeated. The reported scaling exponent and the

confidence interval have been obtained by averaging results across spatial scales. Table 5.1

summarizes the results of the fit. Remarkably, in all cases the scaling exponents derived

empirically are consistent with those predicted by the neutral voter model.

The SPT of breeding birds at different spatial scales of analysis and of herbaceous plants

prove to be best fitted by a power-law distribution with an exponent α = 1.83± 0.02 and

α= 1.78±0.08, respectively (Figure 5.1), very close to that one predicted by neutral theory for

ecosystem that live in 2D environment. On the other hand, for BSS forest plants and Bristol

Channel marine fishes ᾱ= 1.97±0.12 and α= 1.97±0.06 are obtained, which are compatible

with the exponent α= 2 predicted by the mean field voter model. In the case of the analyzed

fishes (screened at Hinkley Point B Power Station), this result would be expected, not being any

spatial information embedded in the empirical data. On the contrary, the negligible effects

of the dispersal limitation on the ecosystem dynamic in the BSS plants community is quite

unexpected and it suggests that the average plants dispersal radius R is most comparable with

the linear dimension of the total sampled area, i.e. R ≈p
A, and thus the net result is a mean

field evolution not affected by spatial interaction as shown in the previous chapter by studying

the effect of dispersal radius on the neutral Voter model. The fact that the total sampled area

of the ecosystem is very small (total area of 480 m2) strongly supports this interpretation of
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Figure 5.1: Comparison between empirical distributions for (a) North American Breeding
birds, (b) Kansas grasslands, (c) New Jersey BSS forest, (d) marine fish community and the
corresponding theoretical SPT probability density functions p(t ) of τ′ (green), τ′′ (blue). Filled
circles and solid lines show observational distributions and fits, respectively. The spatial scale
of analysis is A = 10,000 km2 and ∆Tw = 41 years for (a), A=1 m2 and ∆Tw = 38 years for (b),
A=480 m2 and ∆Tw = 44 years for (c) and ∆Tw = 28 years for (d) (for details on the analysis
of the databases relevant to (a) and (b) see supplementary material in Bertuzzo et al., 2011).
The finiteness of the time window imposes a cut-off to pτ′(t) and an atom of probability in
t =∆Tw to pτ′′(t ), which corresponds to the fraction of species that are always present during
the observational time. pτI (t ) and pτ′(t ) have been shifted in the log-log plot for clarity. (d) A
schematic representation of the variables that can be measured from empirical data over a
time window ∆Tw : τ′, persistence times that start and end inside the observational window,
and τ′′ , which comprises τ′ and all the portions of persistence times seen inside the time
window that start or/and end outside. Times to local extinction τe are also presented.
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the data.

ecosystem ᾱ AIC
Breeding Birds 1.83±0.02 4
Kansas plant 1.78±0.08 11
BSS forest 1.97±0.012 15
Marine fishes 1.97±0.06 16

Table 5.1: Scale invariant exponent from the simultaneous best fitting of Eqs (4.15) and (4.13)
on empirical SPT distributions.

5.3.2 Persistence-Time Distributions for Breeding Bird Passeriformes Species

In order to test the robustness of the SPT pattern, the persistence-time distribution of a subset

of the breeding bird data are characterized. Specifically, the passeriformes species, which

comprise 282 out of the 644 species included in the dataset, are analyzed. Remarkably, also

the persistence times of the passeriformes species prove to be best fitted by a power-law

distribution with an exponent (α= 1.76±0.05, Figure 5.2) close to the scaling exponent of the

whole dataset (α= 1.83±0.02)
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Figure 5.2: Persistence-time distributions of breeding bird passeriformes species. Probability
density function of τ′ (green), τ′′ (blue) and persistence times τ (red) (see main text for expla-
nation). Filled circles and solid lines show observational distributions and fits, respectively.
The values of the best fit exponent is α= 1.76±0.05.

5.3.3 Imperfect Detection

While studying animal communities on the basis of presence/absence (or count) data, imper-

fect detection of species is a source of concern, because animal species are routinely sampled

with a detection probability < 1. This represents a well-known issue for the breeding bird

dataset under analysis, as convincingly shown in the literature [Boulinier et al., 1998; Nichols
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et al., 1998a,b; Cam et al., 2000; Boulinier et al., 2001; Cam et al., 2002; Alpizar-Jara et al., 2004].

The aggregation procedure of breeding bird data from route to cell level explained in the main

text reduces the probability of imperfect detection. By terming pr the route-level detection

probability, i.e. the probability that a species is recorded given that it is present in the surveyed

route. The probability of a pseudo-absence is therefore one minus the detection probability.

Following [Alpizar-Jara et al., 2004], the detection probability at cell level pc can be expressed

as pc = 1−(1−pr )n , where n is the number of routes comprised in the cell where the species is

present. Therefore, the probability of detection at cell scale increases rapidly with n. Note that

the in finest scale of the analysis (A = 10000 km2), cells comprise an average of 6 routes. The
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Figure 5.3: Imperfect detections in the breeding bird dataset. Comparison between the
probability distributions of the variables τ′ (A) and τ′′ (B) (see main text for explanation)
derived from the original data (red) and those derived after the addition of possibly undetected
species (green).

sensitivity of the achieved results to imperfect detection have been explicitly tested. Starting

from the data at route level, for every year and every route, species randomly chosen among

the assemblage of species observed in that route in the whole observational window (41 years)

have been added. The number of species added is chosen so that the resulting route-level

detection probability has a constant value pr . The data so modified have been then aggregated

at cell level and analyzed to derive the persistence-time distribution. Given the randomness

in the choice of the added species, the operation has been repeated 1000 times. An analysis

on species imperfect detection in the Breeding Bird Survey dataset [Alpizar-Jara et al., 2004]

has estimated an average route-level detection probability of about 0.8 for rare species and

pr ' 0.9 for more common species. The analysis have been run with the conservative value
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pr = 0.8 for all species. Figure 5.3 shows the comparison between the probability distribution

of the variables τ′ and τ′′ derived from the original breeding bird data and those derived after

the addition of possibly undetected species as explained above. The Figure refers to the finest

scale of analysis, the more affected by imperfect detections. As expected, even with a low

route-level detection probability (pr = 0.8) imperfect detections have no significant impact on

the resulting persistence-time distribution. The same procedure may be applied to the marine

fishes databases. The problem of imperfect detection is far less relevant for the herbaceous

plant dataset, given the sampling methodology and the small spatial scale of analysis [Adler

et al., 2007].

5.4 Implication of the SPT pattern on Biodiversity

5.4.1 SPT and α diversity: the importance of being a river

In this section, SPT distribution, owing to its robustness and scale-invariant character, are

suggested as a synthetic descriptor of ecosystem dynamics and of biodiversity. In fact, other

key macroecological patterns are intimately related to the persistence-time distribution. A

first clear example is the direct link with ecosystem diversity, as explained below. In the

theoretical framework, species emerge as a point Poisson process with rate λ= νN and last

for a persistence time τ. The mean number of species S in the system at a given time is

therefore S =λ〈τ〉 where 〈τ〉 is the mean persistence time. Therefore, the smaller exponents

obtained, say, for networked environments with respect to two-dimensional ones, imply

longer mean persistence and, in turn, higher diversity. This echoes recent results suggesting a

higher diversity of freshwater versus marine ray-finned fishes [de Aguiar et al., 2009; Moyle

and Chech, 2003].

5.4.2 SPT and SAR

Another evidence of the effective way in which SPT distribution can characterize ecosystem

diversity is the link with the species-area relationship (SAR), which characterizes the increase

in the observed number of species with increasing sample area.

The scale invariant character of pτ indicates that α depends only on the spatial connectivity

of the environment (i.e. 1D,2D, ..), and not on the area A where the species are considered.

On the contrary ν, which accounts for immigration processes from species outside the local

community, is argued to decreases with increasing sampled area A, thus being the only

signature of the geographic scale in the analysis (see Figures 5.4a,b and 5.5a). The SAR

characterizes how the average number of observed species increases with increasing sample

area and it is usually characterized by a power law, i.e. S ∼ Az [Brown, 1995]. The theoretical

framework allows the linkage between the the cut-off timescale ν to the spatial scale of analysis,

and the persistence-time distribution to the SAR.
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In fact, as shown in the previous subsection, 〈S〉 = νN〈τ〉, and thus yy deriving the scaling

behavior of ν, N and 〈τ〉 with respect to A, a connection between SPT and SAR can be made.

Scaling laws for breeding birds

The large spatial extent of the breeding bird datasets and the tools developed for the data

analysis allow us to study with precision how the SPT distribution depends on the spatial scale

of analysis. As expected, while the scaling exponent remains the same, the diversification

rate ν decreases with the geographic area A and is found to closely follow a scaling relation

of the type ν∝ A−β, with β= 0.84±0.01 in the case of breeding birds (Figure 5.4b) and , for

a wide range of areas. This scaling form of the cut-off timescale 1/ν can be related to the

species-area relationship. Assuming that the number of individuals scales isometrically with

the sampled geographic area [MacArthur and Wilson, 1967; Brown, 1995], i.e. N ∝ A, and

given that 〈τ〉 = ∫
t pτ(t )d t ∝ να−2 one gets:

S = λ 〈τ〉 ∝ A1−β(α−1) = Az . (5.1)

The observational values β= 0.84±0.01 and α= 1.83±0.02 give an exponent z = 0.30±0.02

which is close to the species-area relation measured directly on the data for the same range of

areas (z = 0.31±0.02, Figure 5.4c). Conversely, one could have used the observed species-area

exponent to infer the scaling properties of the diversification rate.

Scaling laws of BSS plants community

To infer with better precision the relation between ν and A from the few observational data,

the information of the fraction of species always present in the ecosystem during ∆Tw are

exploited. In fact the last term in Eq. (4.13) represents the analytical expression of this quantity,

defined as S (∆Tw ). To estimate with precision the diversification rate ν from the empirical

SPT pd f , the value of ν that minimizes S (∆Tw ) at every different spatial scales A (and using

the scaling exponent ᾱ) is numerically obtained. The best fit of the scaling law between ν and

A obtained in this way gives ν∼ A−β, with β= 1±0.1.

While for breeding birds the simple isometric relation N ∝ A [MacArthur and Wilson, 1967]

assumption holds, the abundance data on the New Jersey plant community show that this

is not the case in the BSS forest. In fact the average total species coverage percentage over

all the plots is 165%. Samplers start with the topmost layer, usually the trees, and work their

way down to the species closest to the ground [Institute of Ecosystem Studies, 2008]. Thus

the exceedance in the coverage percentage is due to the overhanging among species. In order

to evaluate the scaling relation between N and A, a minimalist model is then built, in which

species are classified by their typical average size. Assuming biotic saturation, i.e. that each

species covers completely the sampling region, in a plot of area A, at most [A/a] individuals of

characteristic size area a ¿ A can be found ([x] denotes the smallest integer not greater that
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Figure 5.4: Biogeography of species persistence time. (a) Observational distributions pτ′(t)
and pτ′′(t ) (interpolated solid circles) for the breeding bird dataset and corresponding fitted
persistence-time distributions pτ(t) ∝ t−αe−νt (solid lines) for different scales of analysis:
Area A = 8.5 ·104 km2 (green), A = 3.4 ·105 km2 (blue), A = 9.5 ·105 km2 (red). ν(A) provides
the cut-off for the distribution, whose scaling exponent is unaffected by geographic area. Note
that the position of the cut-off of pτ(t ) is inferred from the estimate of the atom of probability
of pτ′′(t ) which is more sensitive to the scale of analysis; (b), Scaling of the diversification rate
ν with the geographic area ν∝ A−β, β= 0.84±0.01; (c), Empirical species-area relationship
(SAR). The plot shows the mean number of species S obtained in moving squares of size A.
S ∝ Az , z = 0.31±0.02 has been obtained. Slope and confidence interval have been obtained
averaging 41 SARs, one per year of observation.

x), [A/2a] individuals of characteristic area 2a and so forth. In general, the total number of

individuals N in a region of area A scales as

N (A) ∝
[A/a]∑
n=1

A

na
∼ A

a
HA/a , (5.2)

where Hq =∑q
n=1 1/n is the harmonic number and HA/a ∼ ln(A/a). The constant of propor-

tionality in Eq. (5.2) depends on the arbitrary choice of a. However since HA/a ∼ ln(A/a)+sub-

leading terms, a change of a in λa leads to Hλa = 1
λHA/a+sub-leading terms and so its precise

value is irrelevant since it can be absorbed in the proportionality constant (see below) to be

determined from the best fit of the data.

Putting all these scaling results together, the mean-field (α ≈ 2) neutral framework for this

ecosystem predicts a power-law SAR with logarithmic correction:

〈S(A)〉 = K A1−β ln(A) HA , (5.3)

where K is the constant of proportionality. The constant K is determined in three different

ways: 1) through the best fit of Eq. (5.3) on the empirical SAR data; 2) by imposing that in
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the total area A∗ the total number of species S∗ is found; 3) by finding the value of K that

gives the exact number of species in the smallest area (A = 96 m2) and then predicting the

complete SAR curve (upscaling). Remarkably, all three methods yield K ≈ 3.46. The best fit of

the power-law SAR
(
S ∼ Az

)
on the empirical data has also been performed, giving z = 0.34.

Therefore, in this range of areas, it is not distinguishable with the mean field solution given by

Eq. (5.3).

In the special case of mean field interactions, the endemic-area curve (EAR) can also be

calculated. EAR is defined as the relation between the number of species endemic to a region

and area of that region [Green and Ostling, 2003]. The EAR has been recently proposed by

[He and Hubbell, 2011] as the correct approach in order to estimate extinction from habitat

losses. Results on SPT and SAR suggest that in the BSS ecosystem the phenomenon of spatial

aggregation or clustering is noneligible and species can be considered randomly distributed

in space. Therefore, the EAR curve can be can evaluated [He and Hubbell, 2011]:

〈E(A)〉 = S∗−〈S(A∗− A)〉 = S∗−K ln(A∗− A) HA∗−A . (5.4)

Figure 5.5 summarizes all the above results and makes the comparison between the empirical

and theoretical results of the SAR and EAR.

5.5 Conservation perspective and universality of the SPT pattern

Finally, from a conservation perspective, a meaningful assessment of species’ local extinction

rates is deemed valuable. The distribution of the times to local extinction τe (Figure 5.1A)

are proposed as a tool to quantify the dynamical evolution of the species assembly currently

observed within a given geographic area. Mathematically, τe is defined as the time to local

extinction of a species randomly sampled from the system, regardless of its current abundance.

When Eq. 4.4 holds for persistence times, the distribution of the times to local extinction pτe (t )

is shown to scale as pτe (t ) ∝ t 1−αe−νt . Therefore, not only do the developed theoretical and

operational tools allow to infer the scaling behavior of persistence times, but also of the time

to local extinction even from relatively short observational windows. Although these patterns

cannot provide information about the behavior of a specific species or of a particular patch

inside the ecosystem considered (e.g. a biodiversity hot-spot) they can effectively describe

the overall dynamical evolution of the ecosystem diversity. In particular the scaling behavior

allows to extrapolate SPT distributions for wide geographic areas, which are hard to estimate,

from measures of persistence on smaller areas, which are, on the contrary, more practical and

feasible. Empirical evidences that support the hypothesis of the existence and universality of

the SPT pattern have been presented. Four different ecosystems have been analyzed: breeding

birds, two plants community and marine fishes. In all cases the observed SPT distributions

display a power-law shape with a cut-off due to the finiteness of the observational time

window, which are well reproduced by the neutral theoretical model. The specific value of the

exponents depends only a few key ingredients, namely the spatial dimension of the embedding
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Figure 5.5: Comparison between a) Diversification rate for different areas (black dots) and
scaling law ν∼ A−1 (dashed blue line); b) mean persistence time for each sample area (black
dots) and logarithmic relation τ∼ ln(A) (dashed red line) predicted by the neutral model for
the mean field case (α= 2); c) Empirical SAR and EAR relation (black points), power law fitting
of the SAR and the corresponding EAR (gray continuous line) and the mean field SAR and EAR
given by Eqs. (5.3) and (5.4) (green dashed).

ecosystem and the presence of dispersal limitation, or the lack of them. Because of the scale

invariance character of SPT, only limited by biogeographical finite−size effects, and its relation

with other important macro−ecological pattern, it is suggested that SPT distribution can be
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considered as a syntectic descriptor of ecosystems biodiversity and dynamic.

For these reasons, field biologists and ecologists should perhaps invest renewed efforts in col-

lecting improved long-term datasets of ecosystem dynamics at different spatial and temporal

scales and under different dispersal conditions (for instance, archives beyond presence/ab-

sence of species within networked environments like riverine ecosystems for freshwater fish)

as they prove crucial for a deeper understanding of universal patterns in macroecology. The

present study shows that long-term datasets can be profitably used to highlight crucial proper-

ties and spatial effects of ecosystem dynamics, including the role played by the underlying

connectivity structure in shaping SPT distributions.

New data would allow for the investigation of other implications of the theoretical predictions.

For instance, the neutral voter model predicts that the scaling exponents of the SPT distri-

butions of riparian ecosystems (i.e. networked environments where directional, anisotropic

dispersal is forced by the structure of the fluvial environmental matrix) should be lower than

those of 2D, 3D or mean-field ones. This result, if proven, would have remarkable conse-

quences for conservation ecology, because it suggests that species that disperse isotropically

have shorter average persistence times than species that are constrained to disperse along

spatially constrained and anisotropic ecological corridors, like those provided by river net-

works. This, in turn, calls for long-term analysis of riparian ecosystems to test empirically the

effects of river morphology on ecosystem dynamics.

The biogeographical characters of species persistence, stemming from the structure of the

spatial interaction networks and from local constraints to species emergence rates, add a new

ingredient to a rich literature bearing major implications for the inventory of life on Earth.
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Overview

The human society may be considered a very peculiar ecosystem. Human "species" is of course

unique and yet its existence depends crucially on water availability; not only for drinking

purposes, but in particular because of its impacts on food production.

Therefore, recurrent or ephemeral water shortages are a crucial worldwide challenge. The

global character of this challenge is reflected in the trade among nations of virtual water,

defined as the amount of water used to produce a given commodity. Virtual water may be

seen as footprints of human society, as many key aspects of a given country are related to its

population [Bettencourt et al., 2007], which sustainability depends in turn upon water.

In this part, complex network theory is utilized to analyze the structure of the global virtual

water trade associated with the international food trade. In its complete representation,

the global virtual water trade forms a weighted and directed network, in which the nodes

correspond to nations and the links represent the flows of virtual water from the country of

export to the country of import.

In Chapter 6, the topological and weighted properties of the undirected representation of this

network are quantitatively characterized using statistical measures from complex network

theory. In particular implications and consequences of the structure of the network will be

discussed.

In Chapter 7, it is shown how all the key features of the directed and undirected network

are well described by a stochastic model. It is able to reproduce both the topological and

weighted properties of the global virtual water trade network, by assuming as sole controls

each country’s gross domestic product and yearly rainfall on agricultural areas. The high

degree of globalization of water trade is captured and quantitatively described and it is shown

how a small group of nations play a key role in the connectivity of the network and in the global

redistribution of virtual water. Finally, examples of prediction of the structure of the network

under future political, economic and climatic scenarios are illustrated, suggesting that the

crucial importance of the countries that trade large volumes of water will be strengthened.

The above analysis provides the necessary framework for the development of a model of global

virtual water trade aimed at applications ranging from network resilience analysis, to climate

change impact evaluations.
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Chapter 6
The Structure of the Global Virtual

Water Trade Network

Science is facts; just as houses are made of

stones, so is science made of facts; but a

pile of stones is not a house and a

collection of facts is not necessarily

science.

J.H. Poincaré

6.1 Trade, food and water: a network to share resources

Food production is by far the most freshwater-consuming process (80% of the total world water

resources [Rost et al., 2008]). Due to population growth and economic development, water

shortage is thus subject to increasing pressure at local and global scales. Several studies have

recently focused on the issues of globalization of water [e.g. Hoekstra, 2002; D’Odorico et al.,

2010b], using the concept of virtual water (VW) [Allan, 1993], defined as the volume of water

used to produce a given commodity. They have highlighted the importance of tackling water

management problems not only at the basin or country scales, but rather through a worldwide

perspective [Hoekstra and Chapagain, 2008]. In fact, international trades link fortunes and

resources of countries, providing potentially important conduits for geographically limited

water resources to be transferred to food and water-stressed regions.

The virtual water trade between regions [Hoekstra and Hung, 2005; Chapagain et al., 2006;

Yang et al., 2006] and the gross virtual water flow of nations [Hoekstra and Chapagain, 2008]

have been quantified. These studies have primarily focused on agricultural commodities

[Hoekstra and Hung, 2005; Rost et al., 2008], including those used for bio-fuel production
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[Gerbens-Leenes et al., 2009], but the concept has also been extended to include industrial

products [Hoekstra and Chapagain, 2008]. However, the global properties of virtual water

trade have not yet been quantified or explored. In this chapter, complex network methods

are utilized to characterize the global structure of the virtual water trade associated with the

international food trade.
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Figure 6.1: Backbone of the global Virtual Water Trade Network (GVWTN). Only 4% of the total
number of links accounting for 80% of the total flow volume are shown. Resulting isolated
nodes are consequently removed. The blue nodes represent the net exporter nations, while
the red ones are the net importers. The weights of the links are color-coded by the grayscaling
in the edge’s colors (black is the link carrying the highest volume of VW.)

The origin of complex network theory can be traced back to the work of Erdös and Rényi [1961]

on random graphs. Recently, much research has been devoted to the field of complex network

analysis, both theoretically and as applied to real-world systems [Barabási and Albert, 1999;

Newman et al., 2006]. This recent interest in complex networks is largely due to the discov-

ery of organizing principles in networks, such as community structure [Watts and Strogatz,

1998] and scale-free properties [Barabási and Albert, 1999]. Additionally, network analysis

has become increasingly popular due to its flexibility and generality for representing many

natural structures [Barabasi, 2002; Newman, 2002], including street systems [Costa et al., 2007],

the internet and world wide web [Park and Newman, 2003], international tourism [Miguens
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and Mendes, 2008], international trade web [Fagiolo et al., 2008], financial transactions [Gar-

laschelli et al., 2005], Hollywood actors and scientific collaborations [Newman, 2002], among

others.

6.2 H08 Model and Virtual Water Content Data

VW flows of 5 major crops (barley, corn, rice, soy, and wheat) and 3 livestock products (beef,

poultry, and pork) has been calculated. The VW content of such commodities are calculated

for each nation using a state-of-the-art global water resources model [Hanasaki et al., 2008a,

2010], at a spatial scale of 0.5o ×0.5o . A brief description of the H08 model [Hanasaki et al.,

2008b,a, 2010] is provided here. The H08 model is a global water resources model composed

of six modules: land surface hydrology, river routing, crop growth, reservoir operation, envi-

ronmental flows requirements estimate, and anthropogenic water withdrawal. It simulates

both natural and anthropogenic water flows globally on a daily basis at a spatial resolution

of 0.5o ×0.5o (longitude and latitude) with water and energy balance closure. In order to run

the H08 model two types of input data are needed: meteorological forcing and land use. The

former is provided by the near-surface meteorological database (NCC [Ngo-Duc et al., 2005]),

while the latter is obtained by compiling published land-use data (for details see [Hanasaki

et al., 2010]). Once the inputs are known simulations can be performed. First the meteoro-

logical forcing for the initial year of the simulation period (1980) was iteratively fed to the

H08 model until the state variables of the model (such as soil moisture, river channel storage,

and storage of large and medium-size reservoirs) reached equilibrium. Then twenty years

were simulated. Finally, the amount of evapotranspiration from irrigated and non-irrigated

cropland was obtained for each grid cell and averaged over decades. The virtual water content

of raw crops is defined as the kg of water used to produce a kg of crop yield, while the virtual

water content of livestock products is calculated as the water consumption per head of live-

stock divided by the livestock production per head. Thus combining the averaged outputs of

the H08 model, the required livestock feed per head (estimated taking in account the life cycle

of livestock) and the trade food data allowed us to calculate the virtual water flows between

countries for each single food product.

6.3 Network Construction and Properties

Data on international food trade from the year 2000 and concerning the N=184 nations

under study, have been obtained from FAO [2000a]. In there, 58 commodities from 8 major

products (barley, corn, rice, soy, wheat, beef, chicken and pork) are considered. Eight 184×184

matrices (food trade matrices) F T M (k) with k = 1,2, ..,58 are built, each one referring to the

k-th commodity. The entry F T M k (i , j ) is the volume of the k-th commodity exported from

countries i to j . In order to avoid discrepancies in the trade volumes, the average of the values

reported by the exporter and by the corresponding importer is taken. An exception was made

where one of the two nations reported a trade while the other one does not: in this case the
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reported values are used. The FAO reported trade data are considered to reflect the actual

trade that is occurring among nations.

The weighted architecture [Barrat et al., 2004] of the undirected network (for a given food

product) is described by the matrix W , whose elements (wi j = w j i ) represent the total volume

of VW exchange between nodes obtained by summing the corresponding import and export

fluxes (edges). The topological structure of the network is fully specified by the adjacency

matrix a with elements ai j =Θ(wi j ), whereΘ is the Heaviside function.

The network is characterized by the following node’s properties:

ki ≡
N∑

j=1
ai j , node degree (6.1)

si ≡
N∑

j=1
wi j , node strength (6.2)

knn,i ≡ 1

ki

N∑
j=1

ai j k j , average nearest neighbor degree (6.3)

snn,i ≡ 1

ki

N∑
j=1

ai j s j , average nearest neighbor strength (6.4)

sW
nn,i ≡ 1

si

∑
j

wi j s j , strength-strength correlations (6.5)

Ci ≡ 1

ki (ki −1)

N∑
j ,k=1

ai j a j k aki , clustering coefficient. (6.6)

The generalization of Eqs. (6.1)-(6.6) for the directed network is straightforward.

In this work the countries are ranked based on the total volume of transfers si . However,

some countries may have low water transfers because they have small populations. Some of

these countries are more reliant on imports then the large volume countries. In order to study

the virtual water transfers also related to population sizes, one may define, besides the total

strength of the node s, also the pro-capite strength of node i

spr oC = si

popi
, (6.7)

where popi is the population of country i . Countries as United Arab Emirates, Qatar, Kuwait

and Oman are found to be in the top ranks of highest spr oC , while they have very low total

s. This show how also small volumes of VW but in water scarce low populated countries are

very important to understand as these nations are likely to get into a bind with global water

resources.
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6.4. Undirected GVWTN

6.4 Undirected GVWTN

Key statistical characterizations of the undirected GVWTN are here presented and interpreted.

The global properties of the directed network will be briefly presented in the next chapter.

The undirected network is characterized by the symmetric matrix W , whose elements (wi j =
w j i ) represent the total volume of VW exchanged between countries (nodes) and obtained by

summing the corresponding import and export fluxes (Figure 6.1).

The global topology of a network is described by its degree probability density function

(pdf) p(k), i.e. p(k)dk is the probability that the degree of a given node is k [Newman et al.,

2006] (Figure 6.2a). It provides the number of edges connected to a given node regardless of

the identity of the neighbors. To investigate how nodes are connected, the average nearest

neighbor degree knn is studied. It shows a tendency of the nodes with high degree to provide

connectivity to small degree nodes (Figure 6.2c). Such trend (known as disassortative behavior)

denotes, differently from purely random networks, non-trivial nodal degree correlations

[Newman, 2002]. Another interesting indicator is the local clustering coefficient Ci (0 ≤Ci ≤ 1)

which describes the ability of node i to form cliques, i.e. triangles of connected nodes. Figure

6.2d shows that poorly connected nations i tends to form connected trading food sub-markets

(Ci ≈ 1). On the contrary, high degree vertices j connect otherwise disconnected regions

(C j ¿ 1). The average clustering coefficient is very high (C̄ = 0.747) and the graph has, in

analogy to many real networks [Newman et al., 2006], an average node-to-node topological

distance (dnn) smaller than 5 (dnn = 4). The GVWTN thus exhibits a small-world network

behavior [Watts and Strogatz, 1998], providing a quantitative measure of the globalization of

water resources [Hoekstra and Chapagain, 2008; D’Odorico et al., 2010b].

The hydrological features of the network are given by its weighted properties. The total volume

imported and exported by nation i is quantified by its strength si , defined as the total VW

volume exchanged by node i . The strength distribution shows a heavy-tailed pdf suggesting

high heterogeneity of the volumes of traded VW (Figure 6.2b): only 4% of the total number of

links accounts for 80% of the total flow volume, indicating established bonds among countries

that rule the main fluxes in the GVWTN (Figure 6.1). Strengths between neighboring nodes

are correlated. In fact, the average nearest neighbor strength snn [Serrano, 2008] displays a

decreasing trend as a function of s (Figure 6.2e). Strength-strength correlations disentangled

from degrees (sW
nn) [Serrano, 2008] are not significant, i.e. sW

nn does not depend on s. A

power-law relation s ∼ kb with exponent b = 2.6±0.03 (R2 = 0.982) (see Figure 6.3) indicates a

non-trivial correlation between node degrees and strengths [Barrat et al., 2004]. The above

suggests that we live in a global water world where, on average, the export of VW from few

water rich countries increases the food locally available to the connected nations. At the

same time, there exist preferential VW routes, mainly driven by geographical, political and

economical factors, through which most of the VW volume flows.

In the next Chapter a theoretical network model that robustly describes the topological and

weighted properties of the global VW trade network (GVWTN) will be proposed.
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Figure 6.2: Topological and weighted properties of the GVWTN. a-b) Cumulative pdf of the
node’s degree P>(k) in linear scale and node strength P>(s) in log-log scale; c-d) average
nearest neighbors degree knn and cluster coefficient C as a function of the nodes degree k; e-f)
average nearest neighbors strength snn and strengths-strengths correlation sW

nn(s) ∼ const in
semilog-x and log-log scale, respectively.
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Chapter 7
Controls of the Global Virtual Water

Trade Network and Future Scenarios

With four parameters I can fit an

elephant, and with five I can make him

wiggle his trunk .

J. von Neumann

7.1 The Fitness Model

The complexity of all factors (political, economical and environmental) involved in shaping

the GVWTN structure is remarkable, and calls for investigating whether key variables and

linkages exist through which the emerging structural properties of the network could be

revealed. A model that can concisely describe all the above features of the GVWTN is developed.

Specifically, it is assumed that the topological and weighted features of the network can be

determined, respectively, by two external characteristics of each node: namely, the gross

domestic product [World Bank, 2010] (GDP ) and the (average) yearly rainfall [mm/yr] on

agricultural area [km2] (denoted by R A A [mm·km2/yr]).

A ’fitness model’ is a conventional definition for a general class of network models where

vertices are labeled by an intrinsic quantity (i.e. the fitness, or hidden variable) that determines

their connection and/or strength probability [Bianconi and Barabási, 2001; Caldarelli et al.,

2002; Boguna and Pastor-Satorras, 2003; Garlaschelli and Loffredo, 2004]. Here a model of

the global virtual water trade network (GVWTN) is described. It consists of: i) a fitness model

describing the topological properties of the network, and ii) a fitness model, independent

of i), characterizing its weights. Although both models are based on the individuation of the

appropriate set of fitness variables, they have a different role and meaning.
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The null hypothesis for the functional shape of the fitness function p(xi , x j ) (i.e. that giving the

probability that node i and j – endowed respectively with fitness xi and x j – are connected)

can be obtained through an entropy optimization principle [Park and Newman, 2004]. In

particular, let G ∈G represent a graph – chosen within a specified ensemble G – constrained

to have a specified degree sequence {kl }l=1,2,.. (specifically, the sequence of node degrees from

the real-life empirical GVWTN). If P (G) is the probability of that graph within the ensemble,

one may choose P (G) such that the expected values of the degree sequence of G , {〈kl 〉}l=1,2,..,

equal the observed empirical values {kl }l=1,2,.. [Park and Newman, 2004; Garlaschelli and

Loffredo, 2009]. A choice of a P (G) satisfying this requirement is obtained by maximizing the

Gibbs entropy defined as S ≡−∑
G∈G P (G) log[P (G)]. The solution of the entropy optimization

problem subject to the constraints:

∑
G∈G

P (G)kl (G) = 〈kl 〉 l = 1,2, ... (7.1)∑
G∈G

P (G) = 1, (7.2)

is [Park and Newman, 2004]:

P (G) = eµL−H(G)

Z
, (7.3)

where H(G) ≡∑
l αl kl is the graph Hamiltonian, {αl }l=1,2,.. are the Lagrange multipliers, Z =∑

G e−H(G) is the partition function, and µ is a parameter, analogous to the chemical potential,

that controls the number of edges [Park and Newman, 2004; Garlaschelli and Loffredo, 2009].

More generally, the graph Hamiltonian can be defined as [Garlaschelli and Loffredo, 2006]

H = ∑
i< j

εi j ai j , (7.4)

where ai j is the adjacency matrix and εi j =αi +α j is the coupling parameter between i and

j that can be interpreted as the energy necessary to establish a link between i and j (that

have fixed degree ki and k j , respectively). Consequently, the following partition function is

obtained:

Z = ∑
{ai j }

eµL−∑
i 6= j εi j ai j = ∏

i< j
Zi j , with Zi j = 1+eµ−εi j (7.5)

where the first sum is over all possible configurations of {ai j } = 0,1. Note that the relation

L =∑
i< j ai j has been employed. Finally, the free energy of the network can be obtained as:

Ω=− log(Z ) =−∑
i< j

log((1+eµ−εi j )), (7.6)

and from Eq.(7.6) many properties of the network can be obtained exactly [Park and Newman,

2004; Garlaschelli and Loffredo, 2006]. For instance, the probability pi j of having an undirected
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link from i to j is

pi j = 〈ai j 〉 =−∂Ωi j

∂µ
= σe−εi j

1+σe−εi j
, (7.7)

where σ= eµ.

The null hypothesis is that the fitness variable xi (that is, the external quantity xi =GDPi /(
∑

j GDP j )),

determines the topological importance of node i by driving the number of its connections.

Moreover, all graphs with degree sequence {kl }l=1,2,.. must appear in the ensemble with equal

probability [Park and Newman, 2003]. For these reasons εi j are set as

eεi j =−xi · x j , (7.8)

and thus Eq. (7.7) becomes:

pi j = p(xi , x j ) = σxi x j

1+σxi x j
. (7.9)

From Eq. (7.9), all topological properties can be computed: the node degree

〈ki 〉 =
N∑

j 6=i
p(xi , x j ), (7.10)

the average degree of the nearest neighbors

〈knn,i 〉 =
∑N

j 6=i

∑
l 6= j p(xi , x j )p(x j , xl )

〈ki 〉
, (7.11)

and the cluster coefficient

〈Ci 〉 =
∑N

j 6=i

∑N
l 6= j ,i p(xi , x j )p(x j , xl )p(xl , xi )

(〈ki 〉−1)〈ki 〉
. (7.12)

Although generalizations of the model exist [Garlaschelli and Loffredo, 2009], it is found that

they are not suitable to describe the weights in the GVWTN. For instance, it is found that the

null model for the weighted network in which the entropy is maximized by constraining both

the degree and strength sequences, does not describe the properties of the empirical network.

For this reason, a weighted fitness function [Caldarelli et al., 2002] q(yi , y j ) is built. It assigns

a value (interpreted as the average weight 〈wi j 〉) to the link connecting i to j . Therefore, in

this case, the weight 〈wi j 〉 is not interpreted as the number of edges between node i and j ,

but rather as a number associated with the assigned link between the two nodes ranking its

importance.

The functional shape of q(yi , y j ) is in principle arbitrary. For sake of simplicity, and generaliz-

ing the concept of weighted configuration model [Serrano and Boguna, 2005; Garlaschelli and
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Loffredo, 2009], the following expression for q(yi , y j ) is chosen:

q(yi , y j ) = 〈wi j 〉 = ηyi y j , (7.13)

where η is the parameter controlling the total flux of the network and yi is the normalized

fitness variable.

7.2 The Fitness Variables and Results

Each of the 184 countries (nodes) is assigned its corresponding normalized value of the GDP

(x) and R A A (y) based on data from 2000 [United Nations, 2010; World Bank, 2010] (i.e.,

xi = GDPi /
∑N

j=1 GDP j , yi = R A Ai /
∑N

j=1 R A A j ). These variables are referred as fitness (or

hidden) variables [e.g. Bianconi and Barabási, 2001; Caldarelli et al., 2002; Boguna and Pastor-

Satorras, 2003; Garlaschelli and Loffredo, 2004; Park and Newman, 2004]. They measure the

relative importance of the vertices in the GVWTN. GDP and R A A are assumed to be good

candidates to explain the structure of the GVWTN. In fact the country GDP is closely related

to its trade activity [Garlaschelli and Loffredo, 2004] and drive the numbers of trading partners

that a country has. On the other hand, volumes of virtual water traded by a country in general

does not crucially depend on its GDP , but rather on the amount of crops and meat produced

in that country (even if they were correlated). For instance, Thailand has a GDP much lower

than that of Japan, but it exports much more virtual water. Thailand is in fact a nation based

on agriculture, and it is one of the major rice exporter in the world. Two important factors

determine the virtual water productivity of a country. They are mean annual rainfall (in

arid or semiarid climates agriculture and livestock holdings are unfavored) and the extent

of agricultural areas. The latter plays a key role. In fact, without agricultural areas obviously

no crop is produced. A good agreement between data and model results will support these

assumptions.

Given the simple functional shape of Eq. (7.13), if an analytical approximation for the distribu-

tion of y exists, exact results can be obtained on the properties involving node strengths. The

empirical cumulative distribution of y is well fitted (R2 ≈ 0.998) by a stretched exponential

ρ>(y) = exp
(
−( y

γ )β
)

(Figure 7.1). Then using the continuum approximation [Caldarelli et al.,

2002], 〈s(y)〉 = N
∫ ∞

0 q(y, z)ρ(z)d z = N〈y〉ηy = N F (y) is obtained, and for large enough N one

has: p(s) = ρ[N F−1(s/N )] d
d s F−1(s/N ) = 1

ηρ(s/η), yielding:

P>(s) = e−( s
ηγ

)β . (7.14)

Finally, the strength−strength correlation is obtained as:

〈sW
nn(y)〉 = N

∫ ∞
0 q(y, z)〈s(z)〉ρ(z)d z

〈s(y)〉 = Nηγ2Γ[1+2/β], (7.15)

and it is found that it that does not depend on y . Although the same procedure cannot be
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Figure 7.1: Best fit of the cumulative distribution function ρ>(y) = e−( y
γ

)β of the fitness
variable y . The dots represent the empirical distribution constructed from the data yi =
R A Ai /(

∑
j R A A j ), while the dashed line is ρ>(y). The best fit (R2 ≈ 0.998) gives β≈ 0.482±

0.005 and γ≈ 0.00236±0.00003.
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Figure 7.2: Comparison between empirical cumulative distribution function of the nodes
degree (black dots), an exponential function e−k/〈k〉 (blue dashed line) used as null hypothesis
H0 and the compressed stretched exponential P>(k) (null model H1) obtained from P>(s)
using the derived approach distribution (in red). Computing the Kolmogorov Smirnov test,
the null hypothesis H0 is rejected for any confidence interval, while H1 is accepted with
P − value = 0.05.

repeated for the fitness variable x, a qualitative analytical behavior for the distribution of

the node degree can be obtained by using the empirical relation s = akb through a derived

distribution approach, i.e. p(k)dk = p(s)d s. It is then obtained:

P>(k) = e−( a
ηγ

)βkbβ

, (7.16)

which is a compressed exponential distribution, confirming the exponential−like tail observed
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from the empirical analysis of the degree distribution (Figure 7.2).
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Figure 7.3: Topological and weighted properties of the GVWTN compared with the results of
the fitness model (red line). a−b) Cumulative pdf of the node’s degree P>(k) in linear scale
and node strength P>(s) in log−log scale; c−d) average nearest neighbors degree knn and
cluster coefficient C as a function of the nodes degree k; e−f) average nearest neighbors
strength snn and strengths−strengths correlation sW

nn(s) ∼ const in semilog x and log−log
scale, respectively.

The parameters σ and η are determined through the normalization conditions (and not fitted):

1

2

∑
i

∑
j 6=i

f (xi ; x j ) = L,
1

2

∑
i

∑
j 6=i

q(yi , y j ) =Φ, (7.17)

where L and Φ are the total number of edges and the total flux in the network, respectively.

σ= 331892 and η= 1.306×1012 are numerically obtained.

The agreement between Eqs. (7.10)−(7.12) and the topological data of the GVWTN, can be

interpreted as the consequence of two independent factors, both necessary. First, the topology

of the network is fully explained by its degree sequence: once it is fixed, all the topological net-

work properties are established. Secondly, the degree of a nation in the GVWTN is determined

by the hidden variable x. In particular, the normalized country’s GDP (xi =GDPi /(
∑

j GDP j ))

is chosen. The good agreement between data and model (shown in the main text) confirms

that the GDP plays indeed a major role in the connectivity of the nations in the GVWTN, as

observed for the world trade web [Garlaschelli and Loffredo, 2004]. Analogously, by using

the weighted fitness model a clear signature of the importance of rainfall on agricultural area

(R A A) on the volume of virtual water traded between countries is found.
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tionship between strengths s∗ and degrees k∗ in the GVWTN (s∗ ∼ k∗q ) implies a power−law
correlation between GDP and R A A. The red line represents the best fit obtained from k
and s 〈si 〉 and 〈ki 〉, i = 1,2, ..., N generated by the fitness model. In this case b = 2.69±0.03
(R2 = 0.98) is obtained. All the plots are in log−log scale.

7.3 Analysis and Modelling of the Complete Directed Virtual Water

Network

The GVWTN can be also studied as a directed network, that is, a graph where the links in-

corporate the information on the direction of the traded virtual water. In brief, consider two

nodes i and j . It is possible to have either only a link that goes from i to j (or from j to i ), or

two edges, one from i to j and one from j to i . If the network has only one link between each

pair of nodes, then it is a pure unidirectional network. If instead it has always double edges

between each pair of nodes, it is a pure bidirectional graph, that is, every country is both an

exporter and an importer.

A usual way of quantifying where a real network lies between such extremes [Garlaschelli

and Loffredo, 2006] lies in measuring its reciprocity coefficient r , defined as the ratio of the

number of links pointing in both directions
↔
L to the total number of links L =↔

L +→
L +←

L

r =
↔
L
L

. (7.18)

For the international virtual water trade network it is found r = 0.49.

In general the topological structure of a directed network is described by the adjacency matrix

a =↔
a +→

a +←
a , (7.19)

where
↔
a i j= 1 means that there is a bidirectional link between node i and j .

↔
a is symmetric,

while
→
a i j (

←
a i j ) is equal to 1 when there is a nonreciprocated edge from (to) i to (from) j .
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Note that the possible configurations of a are {(0,0,0), (1,0,0), (0,1,0), (0,0,1)}, i.e. nonzero

adjacency matrix elements are mutually excluding. The reciprocated and nonreciprocated

degree of the network are defined as

↔
k i≡

∑
j

↔
a j i

→
k i≡

∑
j

→
a i j

←
k i≡

∑
j

←
a i j . (7.20)

In order to describe the non trivial reciprocity of the VWN, an existing general framework

[Garlaschelli and Loffredo, 2006] is used. Reciprocated and nonreciprocated links are con-

sidered as different "species", each governed by the corresponding parameter. In particular,

for each pair of vertices i , j (considered only once, i.e., i < j ) a nonreciprocated link from i

to j ( j to i ), → (←), is regarded as a link, whose total number is controlled by the parameter
→
σ= e

→
µ (

←
σ= e

←
µ), while two mutual links between i and j as a single edge of type ↔ which total

number depends on
↔
σ= e

↔
µ. The Hamiltonian defined in Eq.(7.4) can be thus be generalized

to:

Hr =
∑
i< j

(
→
ε i j

→
a i j +←

ε i j
←
a i j +↔

ε i j
↔
a i j ). (7.21)

The generalization of the partition function Z and of the free energyΩ easily follow from Eqs.

(7.4)−(7.5) using Eq. (7.21).

The reciprocity of the network can be calculated from the model from Eq. (7.18) as:

→
L=−∂

→
Ωi j

∂
→
µ

;
←
L=−∂

←
Ωi j

∂
←
µ

;
↔
L=−2

∂
↔
Ωi j

∂
↔
µ

; (7.22)

Note that because (→) and (←) lead to the same species which has been split in order to

consider each pair of vertices only once,
→
Q i j=

←
Q j i and

↔
Q i j=

↔
Q j i for i > j is set, where Q is a

given property of the network [Garlaschelli and Loffredo, 2006].

In order to constrain the degree sequence {
↔
k l ,

←
k l ,

→
k l }l=1,2,...

→
ε i j=αi +β j and

↔
ε i j= γi +γ j is

set. Finally, the fitness variables x, y and z are introduced. xi , yi are the values determining

the outgoing and incoming non−reciprocated links from (and to) node i , while zi drives the

reciprocated ones. To do so

e−(αi+β j ) = xi · y j e−(γi+γ j ) =−zi · z j , (7.23)

is set, from which the following expression is achieved

→
pi j=

→
p (xi , x j ) =

→
σ xi y j

Zi j

↔
pi j=

↔
p (zi , z j ) =

↔
σ zi z j

Zi j
, (7.24)
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where Zi j = 1+xi y j
→
σ +x j yi

→
σ +zi z j

↔
σ is the normalization factor. Eventually from Eq. (7.24)

the expected degrees of the directed network is computed:

〈↔k i 〉 =
∑
j 6=i

↔
p (zi , z j ) 〈→k i 〉 =

∑
j 6=i

→
p (xi , y j ) 〈←k i 〉 =

∑
j 6=i

→
p (x j , yi ), (7.25)

and using Eq. (7.25) the distribution of the expected degrees is built.

zi =GDPi /(
∑

j GDP j ) is chosen to be the fitness variable for the reciprocated part of the VWN,

as in the undirected case (the pure bidirectional part is equivalent to an undirected network).

On the other hand, the non−reciprocated edges are determined by the normalized GDP and

the normalized average yearly rainfall (R̄) of the countries, i.e. x = GDPi /(
∑

j GDP j ) and

y = R̄i /(
∑

j R̄ j ). Again, the predicted results are in good agreement with the empirical results

obtained from the virtual water directed network (see Fig. 2 a−c).

Similarly, the complete directed weights matrix is defined as:

W = ↔
W + →

W + ←
W , (7.26)

describing the flux of the GVWTN through the corresponding reciprocated or non−reciprocated

links. Accordingly, the definitions of the node strength are generalized as:

→
si≡

∑
j

→
Wi j

←
si≡

∑
j

→
Wi j

↔
si≡

∑
j

↔
Wi j (7.27)

The weighted fitness model for the complete network follows easily from Eq. (7.13). Assum-

ing that the fitness variable controlling the flux on the reciprocated edges is t , while those

determining the flux on the non−reciprocated links are u and v :

→
q (ui , v j ) =→

η ui v j
↔
q (ti , t j ) =↔

η ti t j , (7.28)

where
↔
η and

→
η are the parameters controlling the total flux of the reciprocated and non−reciprocated

network, respectively. Interestingly, the node strengths, both reciprocated and non−reciprocated

and i n and out (i.e.
←
s ,

→
s and

↔
s i n ,

↔
s out ) are all well described by using only mean annual

rainfall on agricultural area as fitness variable, i.e. ui = vi = ti = R A Ai /
∑

j R A A j .

The external data sets on GDP , R̄ and R A A are sufficient to reproduce the global topological

and weighted properties of both the reciprocated and non−reciprocated network described

by the degree and strengths pdfs, respectively. The parameters
↔
σ,

→
σ,

↔
η and

→
η are evaluated by

fixing respectively the number of links (
→
L ,

↔
L ) and the total fluxes (

→
Φ,

↔
Φ) of the GVWTN. All the

results are summarized in Figure 7.5 corresponds to this single choice of parameters.
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Figure 7.5: Comparison between empirical analysis (black points) and fitness model (in red)
of a) reciprocal node degree (kR ) cumulative distribution; b−c)cumulative distribution of
nonreciprocated (ka) in and out degrees, respectively; d) Reciprocated in and out nodes
strength (sR ); e−f) cumulative distribution of nonreciprocated (sa) in and out nodes strength.
Plots (a)−(b)−(c) are in natural scale, while plots (d)−(e)−(f) are in log−log scale.

7.4 Future Scenarios

The theoretical framework is suitable to investigate future scenarios of the GVWTN structure.

To this aim, the annual rainfall for 2030−2050 from the A2 socio−economic scenario of the

World Climate Research Programmes (WCRPs) Coupled Model Intercomparison Project Phase

3 (CMIP3) multi−model dataset [Meehl et al., 2007] is evaluated. 11 different climate change

projections utilizing data from the CMIP3 archive[Meehl et al., 2007] are computed for the

case of the most extremes scenarios (IPCC A2 scenarios) and in a 2o ×2o spatial scale. The

results presented here are obtained from the GISS−E−R scenario. It should be noted that

the results for the other scenarios show the same general trends. The spatial mean is then

calculated for each country in the network over this time horizon.

Then by using published projections of the GDP and agricultural area [FAO, 2000b; Fonseca

et al., 2009] for 2030, the fitness functions p(xT
i , xT

j ) =σ′xT
i xT

j /(1+σ′xT
i xT

j ) and q(yT
i , yT

j ) =
η′yT

i yT
j are built, where xT and yT are the projections of the fitness variables at year T = 2030.

The parameters σ′ and η′ are to be determined by the future total number of connections L′

and fluxΦ′. In the simulation is assumed that L′ = L andΦ′ =Φ, but in general they may be

part of the scenarios under study. All A2 climate change scenarios [Meehl et al., 2007] yield a

decrease in rainfall at a global scale, but the total arable land is predicted by [FAO, 2000b] to

increase around 1%, thereby leading to an increase of the total R A A. Figure 7.6 summarizes the

results of the structure of the GVWTN under the driest climate change scenario. The structure
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of the GVWTN topology is robust with respect to these particular scenarios. A heavier tail in

the strengths pdf is observed suggesting a rich−gets−richer phenomenon [Newman et al.,

2006], where the nodes with large strengths benefit from the changes in R A A, becoming

even stronger. The node independent relation s∗ ∼ k∗q , (where the vectors k∗ and s∗ are the

sorted degrees and strengths in the GVWTN) is also observed to increases from q = 2.69±0.03

(R2 = 0.982) to q = 2.77±0.02 (R2 = 0.986) (see Figure 7.6). The disassortative behavior of the

nearest neighbors average strength snn in the future scenario does not change. Through Eq.

(7.15), it can be shown that sW
nn increases of about 2%. Note that these results are valid for

future total number of connections L′ and total flux Φ′ that are equal to the present values,

i.e. L′ = 4550 andΦ′ = 6.24 ·1011. For this case, σ= 285505 and η= 1.3174×1012 are obtained.

Other constraints would yield different scenarios.

These results suggest that economic and climatic future scenarios will likely enhance the

globalization of water resources, giving to water−rich countries even more inroad for reaching

poorly connected nodes. At the same time, the observed rich−gets−richer phenomenon will

intensify the reliance of most of the nations on the few VW hubs. As a consequence it will

reduce the ability of the GVWTN to respond to disturbances whose impact may be dramatic

when the VW trade supports carrying capacities beyond those supported by local resources

[D’Odorico et al., 2010b]. Finally this study highlights how agricultural land management may

indeed remarkably impact the future structure of the GVWTN.
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Figure 7.6: An example of predictive application of the fitness model of GVWTN for the driest
case scenario: comparison between the global properties of the network for the year 2000
(dashed black) with those predicted by the fitness model for the year 2030 (green line): a)
Cumulative degree pdf. Inset b): Relationships between sorted strengths and degrees); c)
Cumulative pdf of the nodal strengths.

This work opens new quantitative and predictive perspectives in the study of stability and

complexity of the GVWTN coupled to social, economic and political processes related to

the international food trade. Ongoing research incorporates scenarios where L′ and Φ′ are

different from values of the year 2000 and reflect the evolving and dynamic character of the

global network.
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Chapter 8
Summary and Conclusions

The important thing is not to stop

questioning. Curiosity has its own reason

for existing. One cannot help but be in

awe when he contemplates the mysteries

of eternity, of life, of the marvelous

structure of reality. It is enough if one tries

merely to comprehend a little of this

mystery every day. Never lose a holy

curiosity.

Albert Einstein

This thesis provided a set of coordinated attempts using methods of statistical mechanics to

effectively study ecohydrological footprints. In particular, this work is focused on: the effect

of stochasticity of green and blue water fluxes on water controlled ecosystems (Part I); the

imprinting of the spatial structure of the environmental matrix on macroecological measures

of ecosystems dynamics (Part II); water footprints of human societies through the analysis of

the global virtual water trade network (Part III).

In Chapter 2 the impact of stochastic fluctuations in the storage-discharge relation defining

the hydrologic response has been investigated. It is shown through numerical simulation that

a physically meaningful, colored noise in the storage-discharge relation influences appreciably

the discharge distributions. In particular, by assuming that noise in the storage-discharge

relation may be surrogated by considering stochasticity directly in the streamflow generation

processes, the probability distribution of streamflows, whose properties reflect the results

obtained by numerical simulation, has been analytically derived. The theoretical framework

couples a stochastic description of soil moisture dynamics with a transport model that embeds

the variability of the streamflow generation process through a multiplicative Gaussian noise.
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Its effect on the streamflow distribution is significant. In particular, the tail of p(Q) changes

from exponential to a power-law type with heavy tail. As the noise increases, the probability of

observing low values of streamflow also increases and the mode of p(Q) shifts towards zero.

Higher probabilities for low Q are balanced by an increased probability of high discharge, i.e.

the power-law tail becomes fatter. Therefore the presence of the noise does not change the

mean of Q, but significantly increases its variance. Above a threshold in the noise magnitude,

a shift from wet to dry regime occurs, implying a major ecological impact owing to a change

from perennial to ephemeral streamflows. Thus neglecting these additional environmental

fluctuations may produce underestimations of the variability of streamflows, with relevant

ecohydrological consequences.

In Chapter 3, by means of the same mathematical approach, the problem of primary soil

salinization has been studied. In particular, an analytical model for soil salinization has

been presented, where the complexity of the problem is reduced by employing simplifying

assumptions that permit us to describe high-dimensional components via random terms. By

assuming time-averaged inputs of salt and instantaneous percolation processes, a decoupling

from the soil moisture equation results in a simplified stochastic mass balance equation for

the soil salt mass amenable to exact solution. Soil salinity statistics are obtained as a function

of climate, soil and vegetation parameters. These can be combined with soil moisture statistics

to obtain a full characterization of soil salt concentrations and the ensuing risk of primary

salinization.

In Part II, theoretical and empirical evidences supporting the broad validity of a new macroe-

cological pattern, namely the species persistence-time distributions, have been presented.

Specifically, in Chapter 4 the neutral framework that allow us to model the relevant ecosystem

dynamics and to obtain an analytical shape for the species persistence-time distributions,

has been presented. A related length−bias sampling problem has also been proposed and

solved. In Chapter 5 four rather diverse ecosystems (hosting respectively breeding birds,

herbaceous plants, forest plant and marine fishes) have been statistically analyzed. In all cases

the observed SPT distributions display a power-law shape with a cut-off due to the finiteness

of the observational time window, which is reproduced by the theoretical model. These results

confirm the expectation that power laws, observed for SPT distributions, are the result of

emergent behaviors independent of fine details of the system dynamics.The specific values

of the scaling exponents of the SPT distributions have been shown to depend only on a few

key factors, namely the spatial dimension of the embedding ecosystem matrix and the nature

of dispersal limitation. Because of the assessed, robust scale invariance character of the SPT

distribution (limited only by biogeographical finite-size effects), and because of its relation

with other macro-ecological patterns, the SPT distribution have been proposed as a powerful

synthetic descriptor of ecosystem biodiversity and of its associated dynamics.

In Part III complex network theory has been utilized to analyze the structure of the global

virtual water trade network associated with the international food exchanges. In Chapter 6,

the topological and weighted properties of the undirected representation of this network have
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been quantitatively characterized using statistical tools from complex network theory. The

network is shown to be connected small-world-like, with compressed exponential degree

distribution and displays disassortative behavior for correlation and clustering coefficients.

Differently, node strengths follow heavy-tail stretched exponential distribution and a power

law relation with non-trivial exponent holds between node degrees and strengths. All these

properties suggest that few dominant nations connect otherwise disconnected portions of

the network and form tight clusters with each other. The majority of the nations reside on

the periphery of the trade network and participate in relatively small volume trade. In other

words, the high degree of the globalization of water trade has been proven and evidences for

the existence of the weighted rich-club phenomenon, i.e. a small group of nations that play

a key role in the connectivity of the network and in the global redistribution of virtual water,

has been provided. In Chapter 7 all the above key features of the network have been shown to

be well described by a stochastic model that assumes as sole controls each country’s gross

domestic product and yearly rainfall on agricultural areas. The model has been presented

in details and examples of prediction of the structure of the network under future political,

economic and climatic scenarios have been illustrated. These scenarios suggest that the

crucial importance of the countries that trade large volumes of water will be strengthened.

The results mentioned above suggest that a probabilistic approach to model ecohydrologi-

cal systems and their footprints may be very effective in producing analytically manageable

results. Exact results are important to lay down general principles to provide quantitative

frameworks which, in turn, facilitate progress in our understanding of complex problems.

Minimalist models, as simple as possible but not simpler – dubbing the famous say – address

the simplest scheme of a given universality class of behaviors, and as such have received much

attention is many fields. The present work attempts to handle ecohydrological complexity

using minimalist− probabilistic approaches in a consolidated procedure derived from statisti-

cal mechanics, the science that translates such precepts into mathematical language. Several

studies based on this approach have made, in fact, quite interesting progresses in the domain

of ecohydrology, jointly with other fields of environmental science. Further developments lie

ahead in several related areas. With regards to the topics presented in this thesis, the results

that are planned for future research deal with, in particular:

• Comparing the theoretical probability distribution of streamflows with data from real

basins, and finding empirical and theoretical methods in order to estimate the intensity

of stochastic fluctuations in storage-discharge relations;

• Adding in the salinity model the effect of groundwater upflow and irrigation. In fact

these two processes seems to be the main responsible of salinization in dry regions.

Moreover, the problem of sodic soils could also be incorporated in the presented stochas-

tic theoretical framework. If the total dissolved salts are not in a critical concentration in

the soil, but N a levels are high or not balanced with the C a and M g , soil tilth can also

be effected (alkali salinization or sodicity problem). In these conditions, the positively

charged clay particles in the soil attach the negatively charged clay particles in the
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soil, causing the soil to be sticky when wet, and hard and impermeable when dry with

dramatic consequences on the vegetation;

• Incorporating an evolutionary framework in the neutral theory of biodiversity. Light will

be thrown on how species and their fitness landscapes dynamically coevolve, through

the study of evolutionary trajectories that causally emerge using a variational principle

proposed in a spin-model-like setup of evolutionary systems. Game theory can also be

used to estimate the effects of selection versus fluctuations in ecosystems dynamics;

• Developing a modeling framework and data analysis to study the effect of the trade of

food products on the resilience of human societies with respect to drought and famine.

Using existing data sets of water use, food consumption, population growth, and virtual

water trade, this research will assess if and how virtual water is related to population

growth in water poor country and how societal resilience varies with an increase in the

interconnectedness of the global network of virtual water trade.
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Appendix A
Itô−Stratonovich Dilemma in

Generalized Langevin Equations

Everything should be made as simple as

possible, but not simpler.

A. Einstien

A.1 Introduction

While dealing with the mathematical treatments of ecohydrologic footprints on soil salinity, it

becomes necessary to face a particular class of mathematical problems generically referred

to stochastic differential equations with multiplicative noise. Some mathematical methods,

somewhat technically involved, have been developed to that end. Such results have been

published independently in a technical journal of statistical physics. It has seen therefore

deemed appropriate to include them in the thesis as an appendix: because they were originally

developed as a part of the doctoral work, and because they can be seen as a methodological

section of general nature.

In this section the reader is thus first briefly introduced to stochastic differential equations

(SDE). As main references to this topics the books by Gardiner [2004] and Van Kampen [2007]

are suggested.

In general a SDE is a differential equation in which one or more of the terms are a stochastic

process. Therefore, the solution of a SDE is not a deterministic function or trajectory, but

a stochastic process itself. SDEs can be used to model a large diverse class of phenomena

ranging from fluctuating stock prices [Mantegna and Stanley, 1999], to biology [Azaele et al.,
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2009], to ecology [McKane et al., 2000], and to several physical systems [Gardiner, 2004].

The most widespread type of noise used to model a wide class of random perturbations is

the (continuous−time) Gaussian white noise (GWN), which can be thought as the derivative

of Brownian motion (or the Wiener process) [Gardiner, 2004]. Another stochastic process

that is well studied in the literature is the so called Ornstein−Uhlenbeck process [Uhlenbeck

and Ornstein, 1930]. It is a continuous−time noise characterized by a non trivial correlation

structure and a finite variance. It belongs to the class of noise known as Gaussian colored noise

(GCN, in contrast to GWN, that lacks in correlation) and it describes the velocity of a massive

Brownian particle under the influence of friction [Van Kampen, 2007]. SDEs characterized by

these type of noises (both GWN and GCN) are also known as Langevin equations (LE).

Nevertheless, environmental variability is also often due to discrete−time random events. For

instance rainfall, in first approximation, can be modeled as a compound Poisson process, i.e.

a random sequence of discrete events (precipitations), characterized by random amplitude

(rainfall depth). Intense and concentrated (state−dependent) forcing events may often be

modeled as (multiplicative random) jumps, taking place according to an underlying point

process (e.g. Poisson). In this case, the SDEs are termed generalized Langevin equations

(GLE).

In a very general settings it can be assumed that, from a mathematic point of view, the

evolution equation of a given system dynamics is governed by the deterministic differential

equation

ẋ(t ) = a(x, t ). (A.1)

If, in addition, the system is subjected to random perturbations, it is natural to use a Langevin

kind of model in which a noise ζ(t ) is added to the deterministic equation. The resulting SDE

for white noise ζ(t ), which can be either Gaussian or non Gaussian, can be written as

ẋ(t ) = a(x, t )+ b(x)ζ(t ), (A.2)

where b(x) = 1 if the perturbations do not depend on the state of the system (additive noise).

The solution of Eq. (A.2) is not a given deterministic trajectory x(t ), but rather a probability

distribution function P (x, t) that provide the probability of finding the system in the state

x at time t . In order to find this distribution the SDE (A.2) must to be transformed into a

deterministic partial differential equation for P (x, t ):

∂P (x, t )

∂t
= L (x,∂x ,∂2

x ,
∫

x
)P (x, t ), (A.3)

where L (x,∂x ,∂2
x ,

∫
x ) is an appropriate intregro−differential operator that depends on Eq.

(A.2). If x is a continuous variable, Eq. (A.3) is known as Fokker−Plank Equation (FPE).

Sometimes it is more convenient to work with discrete state variables, in this case Eq. (A.3) is
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A.2. Analytical Solution of the GLE with Multiplicative Gaussian Noise and Additive
Poisson Noise

called Master Equation (ME).

For instance, if in Eq. (A.2) b(x) = 1 and ζ(t ) is a GWN, then the corresponding FPE (A.3) reads

as

∂

∂t
P (x, t ) = − ∂

∂x

[
a(x, t )P (x, t )

] + D
∂2

∂x2 P (x, t ). (A.4)

Instead, if in Eq. (A.2) b(x) = 1, but ζ(t ) is a compound Poisson process (ζ(t ) =∑N
i+1 ziδ(t − ti ),

with zi ∼ ρ(z) random variables drawn from a given pd f ρ(z), and δ is the Dirac delta), then

the corresponding ME (A.3) is

∂P (x, t )

∂t
= − ∂

∂x

[
a(x, t )P (x, t )

] + ν

∫ x

0
ρ (x − z)P (z, t )d z − νP (x, t ). (A.5)

For generalization and mathematical details on how to reach Eqs. (A.4) and (A.5) from the

SDE (A.2), see Gardiner [2004].

A.2 Analytical Solution of the GLE with Multiplicative Gaussian Noise

and Additive Poisson Noise

In this section the derivation of the analytical solution of the generalized Langevin equation

dQ(t )

d t
=−k Q(t ) +ζ(t )Q(t ) + k Aξt (λ;γP ) (A.6)

that we used in Chapter 2 to describe the dynamics of the streamflows Q(t ) affected by intrinsic

stochasticity ζ(t), and external noise (i.e. rainfall infiltration) ξt . In there, ζ(t) is a Gaussian

white noise with mean 〈ζ(t )〉 = 0 and correlation 〈ζ(t )ζ(s)〉 = 2σ2δ(t − s); and

ξt (λ;γP ) = 1

k A

N (t )∑
i=1

∆Qi δ(t − ti ) , (A.7)

is a compound Poisson process [Snyder, 1975], where {N (t ), t ≥ 0} is an homogeneous Poisson

counting process of rate λ, and {Qi } is a sequence of mutually independent and also indepen-

dent of N (t ), identically distributed random variables with a probability density function b(Q).

In this particular case b(Q) is an exponential distribution with parameter γQ = γP /A k. From

a mathematical point of view equation (A.6), as it stands, is meaningless [Gardiner, 2004].

In fact, according to equation (A.6), each pulse in ζ(t) gives rise to a pulse in Q̇ and hence a

jump in Q. Thus, the value of Q in the right hand side of equation (A.6) is undetermined. The
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incremental form of equation (A.6) is:

dQ(t ) =−k Q(t )d t +dW (t )Q(t ) +k Aξt (λ;γP )d t , (A.8)

where W (t ) = ∫ t
0 ζ(t ′)d t ′ is the well known Wiener process. The solution of (A.8) can be written

in the integral form:

Q(t ) =Q(t0)−k
∫ t

t0

Q(t ′)d t ′−
∫ t

t0

dW (t ′)Q(t ′) +
∫ t

t0

ξt ′(λ;γ)d t ′. (A.9)

The second integral in the right hand side of equation (A.9) is a stochastic integral and it is

defined as the limit of the partial sum [Gardiner, 2004]

Sn =
n∑

i=1
Q(τi )[W (ti )−W (ti−1)], (A.10)

where t0 ≤ t1 ≤ ... ≤ tn−1 ≤ t and ti−1 ≤ τi ≤ ti . It can be shown that Sn depends on the particu-

lar choice of τi [Gardiner, 2004] and thus its value depends on the particular interpretation

chosen for (A.10). One of the most famous interpretations is that of Itô [Ito, 1951]:

Sn(I t ô) =
n∑

i=1
Q(τi = ti−1)[W (ti )−W (ti−1)]. (A.11)

Different interpretation lead to different results and so the correct and coherent interpretation

of equations (A.6),(A.8), (A.9) is crucial both for analytical and computational calculations.

In particular let us emphasize the fact that if equation (A.6) is interpreted in the Itô sense,

then 〈Q(t )ζ(t )〉I to = 〈Q(t )〉〈ζ(t )〉 = 0. The former property straightforwardly derives from the

observation that in the Itô interpretation Q(t ) at time t does not depend on the noise ζ(t ) at

the same time.

Accordingly, equation (A.6) corresponds to the forward Chapman-Kolmogorov equation [Gar-

diner, 2004]

∂

∂Q
p(Q, t ) = k

∂

∂Q

[
Q ·p(Q, t )

]+σ2 ∂2

∂Q2

[
Q2p(Q, t )

]−λp(Q, t )+λ
∫ Q

0
γQ e−γQ (Q−z)p(z, t )d z,
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(A.12)

which in turn can be written in a form of a continuity equation

∂

∂Q
p(Q, t ) =− ∂

∂Q
J (Q, t ), (A.13)

where the probability current J (Q, t ) is [Daly and Porporato, 2006]:

J (Q, t ) =−kp(Q, t )−σ2 ∂

∂Q

[
Q2p(Q, t )

]+λ∫ Q

0
e−γQ (Q−z)p(z)d z. (A.14)

Imposing natural boundary the probability current vanishes in steady-state conditions and so

have that the steady-state solution p(Q, t →∞) satisfies J (Q) = 0 ∀Q. Multiplying both sides

of the former equation by eQγQ and differentiating with respect to Q, one gets the steady state

equation:

Q2p ′′(Q)+
((

k

σ2 +4

)
Q +γQ Q2

)
p ′(Q)+

((kγQ

σ2 +2γQ

)
Q +

(
2+ k

σ2 − λ

σ2

))
p(Q) = 0. (A.15)

The solution of equation (A.15) is [Polyanin and Zaitsev, 2003]:

p(Q) = e−QγQ Q−α+ β

2 −2
(
C1U

[
β

2
−α,β+1,QγQ

]
+C2Lβ

α− β

2

[QγQ ]

)
, (A.16)

where α= k
2σ2 − 1

2 , β=
√

4λσ2+(σ2+k)2

σ2 , C1,C2 are integration constants and U [a,b, z] and Lνn[z]

are the confluent hypergeometric function and the generalized Laguerre polynomial respec-

tively [Abramowitz and I.A., 1965]. For C1 6= 0 all moments of p(Q) are infinite, then for physical

reasons C1 = 0 is taken. Thus the appropriate solution of (A.6) is:

p(Q) =C2e−QγQ Q−α+ β

2 −2Lβ
α− β

2

[QγQ ], (A.17)

where C2 can be determined by the normalization condition,
∫ ∞

0 p(Q)dQ = 1. Finally notice
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that in the limit σ2 → 0 the Chapman-Kolmogorov equation (A.12) becomes:

∂

∂Q
p(Q, t ) = k

∂

∂Q

[
Q ·p(Q, t )

]−λp(Q, t )+λ
∫ Q

0
γQ e−γQ (Q−z)p(z, t )d z, (A.18)

that correspond exactly to the equation for the streamflow pdf previously derived [see Botter

et al., 2007c] and with state solution p(Q) ∼ Q( λk −1) exp(−γQ Q) .

A.3 State−dependent discrete Poisson jumps processes

Unlike the cases of continuous−time (white or colored) Gaussian noise, which are described in

all basic texts of stochastic processes [e.g. Gardiner, 2004; Van Kampen, 2007], state−dependent

discrete jumps have been less investigated [Van Den Broeck, 1983; Denisov et al., 2009]. For

instance, in general Eq. A.2 is ill−defined unless a prescription for the evaluation of the stochas-

tic term b(x)ζ(t ) is specified [Hanggi and Thomas, 1982]. While this issue is well understood

for GWN [Kampen, 1981], a precise characterization of the noise prescriptions and a clear

connection between the different interpretations are still missing for other kind of noises. The

generalized Langevin equation (GLE) for white multiplicative noise ζ(t ), which can be either

Gaussian or non Gaussian,

ẋ(t ) = a(x, t )+ b(x)ζ(t ), (A.19)

is ill-defined unless a prescription for the evaluation of the stochastic term b(x)ζ(t ) is specified

[Hanggi and Thomas, 1982].

In this appendix it is shown how different prescriptions corresponding to the Itô (I) and

Stratonovich (S) interpretation of a stochastic differential equation (SDE) arise naturally for

multiplicative jumps, depending on the relevant time scales of the process. The Master

Equation (ME) for a GLE with multiplicative compound Poisson process in both the I and

S prescriptions will be also presented. Moreover, it will be shown how, in the linear case

b(x) ∝ x, the difference between prescriptions is properly interpreted as a transformation of

the jump size PDFs.

A.3.1 Connection between different prescriptions of a GLE and time scales of the
process

Let us begin with a pedagogical example of a particle that experiences multiplicative impulsive

forcing events, proportional to Θ̇τ(t), of duration τ, in a field characterized by a friction

coefficientψ. The following analysis is inspired by the work in references Graham and Schenzle

[1982]; Kupferman et al. [2004]. Θτ(t) = ϑ(t/τ) with ϑ(z) → 1(0) in the limit z →∞(−∞) is

chosen, so that Θ̇τ(t ) → δ(t ) in the τ→ 0 limit (in the distribution sense). Let us first consider
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the case of a single jump event at t = t0 > 0, where the dynamics is described by the Newton

equation

m ẍ(t ) = −ψẋ + ψb(x)wΘ̇τ(t − t0), (A.20)

where the random jump w is drawn from the jump size pdf ρ(w). Thus in Eq. (A.20) we have

two time scales, σ = m/ψ and τ. The former is associated with the relaxation time toward

stationarity, while the latter is related to the characteristic duration of the impulsive forcing.

Different prescriptions of Eq. (A.19) arise depending on how the two emerging timescales σ

and τ in Eq. (A.20) go to zero, i.e. σ→ 0 followed by τ→ 0 or viceversa (see Figure A.1). For

this reason, writing ẋ(t ) = b(x)wδ(t − t0) is ambiguous, being the result of two different limit

procedures with different physical and mathematical meaning.

When σ¿ τ and then the zero limit of τ is taken in Eq. (A.20), the S prescription of the

SDE (A.19), which preserves the usual rules of calculus, is obtained [Stratonovich, 1963; Van

Kampen, 2007]. For example if b(x) = x, the resulting S-equation d ln(x)/d t = wΘ̇τ(t − t0),
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 τ<<σ
 I limit
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Figure A.1: Comparison between trajectories of a particle that undergoes impulsive multiplica-
tive forcing in a viscosity field for different timescales (τ and σ), and the trajectories that result
from the SDE ẋ(t ) =−x(t )

∑5
i=1 wiδ(t − ti ) interpreted in the I and S prescriptions. The jumps

in this case are given by wi =±0.4.

after performing the limit τ→ 0, has formal solution x(t) = (1+Θ(t − t0)(ew −1)) x0, where

x0 = x(0) andΘ is the Heaviside function. The corresponding pdf is

pS(x, t ) = δ(x −x0)(1−Θ(t − t0))+Θ(t − t0)
ρ

(
ln( x

x0
)
)

x
Θ(

x

x0
), (A.21)
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with initial condition ρS(x,0) = δ(x−x0). If otherwise τ¿σ, then Eq. (A.20) becomes σẍ+ ẋ =
b(x)wδ(t − t0). Imposing the conditions of continuity and right and left differentiability in t0,

the initial conditions x(t−0 ) and ẋ(t−0 ), and taking the limit σ→ 0, the solution is (again for the

case b(x) = x) x(t ) = x0 +x0wΘ(t − t0). Note that the latter corresponds to the solution in the

Itô prescription of the SDE (A.20). From the formal Itô solution of Eq. (A.20), the corresponding

pdf in the I sense is obtained

p I (x, t ) = δ(x −x0)(1−Θ(t − t0))+Θ(t − t0)
ρ

(
x−x0

x0

)
x0

. (A.22)

The latter equation can not be made to correspond to Eq. (A.21) for any choice ofΘ(0). It is

in fact interesting to observe that if Θ(0) =α is set, then the parameter α defines where the

b(x) that multiplies the jump is evaluated: when α= 0 b(x) is evaluated before the jump, while

α= 1/2 corresponds to calculating b(x) in the middle of the jump. In the literature on GWN,

these choices are associated to the I and S prescriptions, respectively [Gardiner, 2004; Van

Kampen, 2007]. Conversely, as just seen for a discrete jump process, the S interpretation of the

SDE (A.20) does not correspond to any of the α prescriptions. In other words, there is not an

immediate intuitive interpretation of the S prescription.

A.3.2 Multiplicative Compound Poisson noise

Let us generalize now the above analysis to a process described by the following SDE,

ẋ(t ) = a(x, t ) + b(x)ξτρ(ν, t ), (A.23)

where ξτρ(ν, t ) =∑N (t )
i=1 wΘ̇τ(t − ti ) is a colored compound Poisson processes (CP), with jump

heights w , each time drawn from a generic pdf ρ(w), and {ti } are random times whose se-

quence is drawn from a homogeneous Poisson counting process {N (t), t ≥ 0} of rate ν. The

case in Section 2 corresponds to the special case of a finite deterministic number of jumps.

As before, the I interpretation consists of taking τ= 0 and, should a jump occur at time t , of

evaluating b(x) at the r.h.s of Eq. (A.23) before the jump occurrence, i.e. x = x(t−), while the S

interpretation of Eq. (A.23) corresponds to performing the zero limit of the correlation time τ

of the colored Poisson noise.

Derivation of the S Master Equation

The S ME associated with the GLE (A.23) can be derived through the generating function of

ξτρ(ν, t )

The stochastic process under study is described by the GLE (A.23) presented previously. For

simplicity in the following ξτρ(t ,ν) = ξ(t ) has been set. The CP is characterized by the correla-
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tion structure ( 〈·〉 denotes the ensemble average)

〈ξ(t )ξ(t +τ)〉 ∼ e−
t
τ , (A.24)

where τ is the characteristic time of the process and all the sub- and super- scripts have been

omitted to simplify the notation. IfΦt is the generating function of CP at time t , then

Φt [v] =
〈

e i
∫ t

0 v(s)ξ(s)d s
〉
= eΨt [v] (A.25)

=
+∞∑
n=0

e−νt (νt )n

n!

∫
d wρ(w)

∫ n∏
j=1

d t j

t
e i

∑n
j=1 w j

∫ t
0 v(s)Θτ(s−t j )d s

=
+∞∑
n=0

e−νt ν
n

n!

[∫ t

0
dr

∫
d wρ(w)exp

[
i

n∑
j=1

w j

∫ t

0
v(s)Θτ(s − t j )d s

]]
.

Moreover if ρ̂ = ∫ +∞
−∞ e i v wρ(w)d w is defined as the characteristic function of ρ(w), then

Φt [v] = exp
[
−νt +ν

∫ t

0
dr ρ̂

(∫ t

0
v(s)Θτ(s −τ)dτ

)]
, (A.26)

and thus

Ψt [v] = lnΦt [v] = ν

∫ t

0
dr

[
ρ̂

(∫ t

0
v(s)Θτ(s −τ)dτ

)
−1

]
. (A.27)

The Stratonovich interpretation of Eq. (A.67) arises when the limit Θτ(t − τ) → δ(t − τ) is

taken [Stratonovich, 1963; Kampen, 1981], that is considering a white Poisson process (WP) as

the zero limit of the correlation time of the corresponding CP. For a WP the logarithm of the

generating function thus reads

Ψt [v] = ν

∫ t

0
dr

[
ρ̂(v(r ))−1

]
. (A.28)

Finally because of the Kubo theorem [Kubo, 1962]

Ψt [v] =
∞∑

n=1

i n

n!

∫ t

0
d s1 · · ·d sn v(s1) · · ·v(sn)〈〈ξ(t1) · · ·ξ(tn)〉〉n , (A.29)

where 〈〈· · · 〉〉 j is the j-th cumulant, i.e., 〈〈·〉〉1 = 〈·〉, 〈〈··〉〉2 = 〈··〉−〈·〉〈·〉, etc...
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From Eqs. (A.28) and (A.29) the explicit formula to calculate the cumulants is obtained

〈〈ξ(t1)〉〉1 = δΨt

iδv(t1)
= ν

i
ρ̂′(v)|v=0 (A.30)

〈〈ξ(t1)ξ(t2)〉〉2 = δ2Ψt

i 2δv(t1)δv(t2)
= ν

i 2 ρ̂
′′(v)|v=0δ(t2 − t1) (A.31)

〈〈ξ(t1) · · ·ξ(tn)〉〉n = δnΨt

i nδv(t1) · · ·δv(tn)
= ν

i n ρ̂
(n)(v)|v=0δ(t2 − t1) · · · ·δ(tn − tn−1).(A.32)

In this way, once ρ(w) is given, a complete description of the WP is achieved. For example in

the case of exponential distributed jumps, i.e. ρ(w) = 1
〈w〉e−

w
〈w〉 , the WP is fully characterized

by the moments

〈〈ξ(t )〉〉1 = ν〈w〉 (A.33)

〈〈ξ(t1)ξ(t2)〉〉2 = ν〈w2〉δ(t1 − t2) (A.34)

〈〈ξ(t1)...ξ(tn)〉〉n = ν〈wn〉δ(t1 − t2)...δ(tn−1 − tn). (A.35)

Once all the moments of the WP process have been calculated, the ME corresponding to the

GLE (A.67) can easily be achieved. For a given realization of ξ the solution of Eq. (A.23) is

pS(x, t |ξ) = δ(x −x(t )). (A.36)

To obtain the general solution of Eq. (A.67), the ensemble average of different trajectories is

taken

〈pS(x, t |ξ)〉 = P S(x, t ). (A.37)

Differentiating both sides of Eq. (A.36) and using Eq. (A.67) it follows that

∂t pS(x, t |ξ) = ∂xδ(x −x(t ))[−ẋ(t )] (A.38)

= −∂xδ(x −x(t ))[a(x(t ), t ) + b(x(t ))ξ(t )] (A.39)

= −∂xδ(x −x(t ))[a(x(t ), t ) + b(x(t ))ξ(t )], (A.40)

and thus the forward ME for the pdf conditioned by a given realization of the WP is obtained

∂

∂t
pS(x, t |ξ) = −O (x,∂x , t ) pS(x, t |ξ), (A.41)

where O (x,∂x , t) = ∂x [a(x(t), t)+ b(x(t))ξ(t)] is the forward time evolution operator. The
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solution of Eq. (A.41), for the initial condition pS(x(0),0|ξ) = δ(x −x(0)) is

pS(x, t |ξ) = T

(
exp

[−∫ t

0
(∂x a(x,τ)+∂x b(x(τ))ξ(τ))dτ

])
δ(x −x(0)), (A.42)

where T is the T-product operator. Using Eq. (A.37) and the Kubo relation (A.29), an explicit

formula for the general formal solution of the GLE (A.67) in the Stratonovich prescription is

obtained

P S(x, t ) = T
(

exp
[−∫ t

0
∂x a(x,τ)dτ−

∞∑
n=1

∫ t

0
d t1 · · ·

∫ t

0
d tn∂x b(x(t1)) · · ·∂x b(x(tn))×(A.43)

× 〈〈ξ(t1) · · ·ξ(tn)〉〉])δ(x −x(0)). (A.44)

Thanks to Eqs. (A.30), (A.31) and (A.32) complete characterization of the cumulants is obtained,

and thus substituting Eq. (A.32) into Eq. (A.43) we have

P S(x, t ) = T

(
exp

[−∫ t

0
∂x a(x,τ)dτ+

∞∑
n=1

ν

∫ t

0
(−∂x b(x(τ)))n ˆρ(0)

(n)
dτ

])
= T

(
exp

[−∫ t

0
∂x a(x,τ)dτ−ν

∫ t

0
dτ〈e−∂x b(x(τ)) −1〉ρ(w)

])
(A.45)

Eventually, differentiating Eq. (A.45) with respect to t , the ME corresponding to the GLE (A.67)

in the Stratonovich interpretation is obtained:

∂P S(x, t )

∂t
= [− ∂

∂x
a(x, t )+ν〈e−w ∂

∂x b(x) −1〉ρ(w)

]
P S(x, t ), (A.46)

where 〈·〉 denotes the ensemble average operator. The same result can also be obtain through

a more formal derivation [Hanggi, 1980; Sancho et al., 1987].

A simpler alternative derivation of the ME (A.46), can be obtained using the fact that in the S

prescription the rules of calculus are preserved. In fact, the GLE (A.23) can be written as

ẋ(t ) =
{

a(x, t ), with probability 1 − νd t ;

b(x) w hτ(t ), with probability νd t ,
(A.47)

where hτ(t ) = Θ̇τ(t ). Let us now consider only the effect of the jumps on x. From Eq. (A.47) it

follows that d x/b(x(t )) = w hτ(t )d t , and setting

dη(x)

d x
= 1

b(x)
⇒ η(x) =

∫ x d x ′

b(x ′)
, (A.48)

Eq. (A.47) becomes

dη(x(t )) = w hτd t , (A.49)
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which integrated between t and t +d t reads

η(x(t +d t )) = η(x(t )) + w∆Θτ(t ) ⇒ x(t +d t ) = η−1[η(x(t )) + w∆Θτ(t )
]
, (A.50)

where ∆Θτ(t) = Θτ(t + d t) −Θτ(t). Finally, discrete ME corresponding to the GLE (A.67)

interpreted in the Stratonovich sense can be written

P S(x, t +d t ) = (1−ν)d t
∫ ∞

0
d x ′ P S(x ′, t )δ

(
x − (a(x ′)d t +x ′)

) + (A.51)

+νd t
∫ ∞

0

∫ ∞

0
ρ(w)P S(x ′, t )δ

(
x − (η−1[η(x ′) + w])

)
d w d x ′,

where the limit τ→ 0 of the GLE (A.23) has been performed and the fact that limτ→0∆Θτ(t ) = 1

has been used. The integral in the r.h.s of Eq. (A.51) can be rewritten, inverting the Dirac Delta

with respect to w and using the rule of the inverse function, as
∫ ∞

0

∫ x
0 ρ(w)P S(x ′)δ(w−(η(x)−η(x ′)))

|1/η′(x)| d w d x ′

and thus, after taking the continuum time limit, the Master Equation (A.51) becomes

∂P S(x, t )

∂t
= − ∂

∂x

[
a(x, t )P S(x, t )

] + ν

∫ ∞

−∞
ρ(η(x)−η(x ′))

|b(x)| P S(x ′, t )d x ′ − νP S(x, t ). (A.52)

Derivation of the I Master Equation

In the I prescription, x(t) at time t does not depend on the noise ξτ=0
ρ (ν, t) ≡ ξρ(ν, t) at the

same time [Ito, 1951]. From this it follows that

〈b(x)ξρ(ν, t )〉 = 〈b(x)〉〈ξρ(ν, t )〉. (A.53)

Therefore, if (A.23) with τ= 0 is interpreted in the I sense, the size of the jumps can be changed

from w to b(x)w , and the corresponding ME can be derived without ambiguity [Hanggi, 1980;

Denisov et al., 2009]

∂P I (x, t )

∂t
= − ∂

∂x

[
a(x, t )P I (x, t )

] + ν

∫ ∞

−∞
ρ

(
x −x ′

b(x ′)

)
P I (x ′, t )

|b(x ′)| d x ′ − νP I (x, t ). (A.54)

Alternatively, a different form of the I ME (A.54), that is the I analogous of the S ME (A.46), can

be achieved

∂P I (x, t )

∂t
= − ∂

∂x

[
a(x, t )P I (x, t )

] +ν〈 : e−w ∂
∂x b(x) : −1〉ρ(w)P

I (x, t ), (A.55)

where : : is an operator (analogous to the normal order operator in quantum field theory)

which indicates that all the derivatives must be placed on the left of the expression, i.e. :

e−w ∂
∂x b(x)F (x) :=∑+∞

n=0
(−w)n

n! ( ∂
∂x )n(b(x)nF (x)).
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To derive Eq. (A.55), the integral in the ME (A.54) is rewritten as∫ ∞

−∞
ρ

(
x −x ′

b(x ′)

)
P I (x ′, t )

|b(x ′)| d x ′ =
∫ ∞

−∞

∫ ∞

−∞
ρ(w)δ(x −x ′−wb(x ′))P I (x ′, t )d x ′d w. (A.56)

Formally expanding the Dirac delta

δ(x −x ′−wb(x ′)) =
+∞∑
n=0

(−w)n

n!
(
∂

∂x
)nb(x ′)nδ(x −x ′) (A.57)

and substituting Eq. (A.57) in (A.56) it follows that∫ ∞

−∞
ρ

(
x −x ′

b(x ′)

)
P I (x ′, t )

|b(x ′)| d x ′ = 〈(: e−w ∂
∂x b(x) :)P I (x, t )〉ρ , (A.58)

where (:e−w ∂
∂x b(x):)P I (x, t ) ≡∑+∞

n=0
(−w)n

n! ( ∂
∂x )nb(x)nP I (x, t ). Using the expression (A.58) in Eq.

(A.54) the ME (A.55) is obtained.

It is worth to note that when b(x) = b is constant, by using e−b w ∂
∂x P S(x, t ) = P S(x −bw, t ) the I

and S MEs become coincident, as expected.

A.3.3 FPE in the Limits of infinite frequency and infinitesimal amplitudes of the
jumps

It is now shown that, taking the limit ν→∞, 〈w〉→ 0, i.e. infinite frequency and infinitesimally

small jumps, such that ν〈w〉2 = D remains constant, Eqs. (A.46) and (A.55) reduce to the well

known I and S Fokker-Planck equation (FPE) for GWN, respectively [Gardiner, 2004].

In particular, the well known FPE corresponding to the GLE (A.23) is derived when ξ(t) is a

GWN with mean 〈ξ(t)〉 = 0 and correlation 〈ξ(t)ξ(s)〉 = 2D δ(t − s), from the MEs (A.46) and

(A.55). The results are generalized to any jump size pdf of the form

ρ(w) = γ f (γw), (A.59)

with γ> 0 and
∫

wnρ(w)d w = 〈wn〉ρ <∞∀n. The latter condition implies γ
∫

d w w n f (γw) =
γ−n

∫
d zzn f (z) = γ−n〈zn〉 f <∞∀n.

Stratonovich Eq. The case for the Stratonovich prescription has been first presented in Van

Den Broeck [1983]. The FPE corresponding to multiplicative GWN process interpreted in the

Stratonovich sense is

∂

∂t
P S(x, t ) = − ∂

∂x

[
a(x, t )P S(x, t )

] + D
∂

∂x
b(x)

∂

∂x
b(x)P S(x, t ). (A.60)
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Once a zero mean WP process is considered, the ME (A.46) reads as [Van Den Broeck, 1983]

∂P S(x, t )

∂t
= − ∂

∂x

[[
a(x, t )−ν〈w〉b(x)

]
P S(x, t )

]
+ ν〈e−w ∂

∂x b(x) −1〉ρP S(x, t ) (A.61)

= − ∂

∂x

[
a(x, t )P S(x, t )

] + ν
+∞∑
n=1

(−1

γ
)n 〈zn〉 f

n!

( ∂
∂x

b(x)
)nP S(x) (A.62)

where the integral in the r.h.s of Eq. (A.61) has been expanded as

〈e−w ∂
∂x b(x)〉ρP S(x) =

+∞∑
n=0

(−1)n 〈wn〉
n!

( ∂
∂x

b(x)
)nP S(x) =

+∞∑
n=0

(−1

γ
)n 〈zn〉 f

n!

( ∂
∂x

b(x)
)nP S(x). (A.63)

Taking the limit ν,γ→∞, such that ν
γ2 = D ′, then ν

γn → 0 for n > 2 and the latter ME (A.62)

corresponds exactly to the FPE (A.60) with D = D ′ 〈z〉 f

2 .

Itô Eq. The FPE corresponding to multiplicative GWN process interpreted with the Itô pre-

scription is

∂

∂t
P I (x, t ) = − ∂

∂x

[
a(x, t )P (x, t )

] + D
∂2

∂x2

[
b(x)2 P I (x, t )

]
. (A.64)

Let us now repeat the same procedure as before, starting from the zero mean I ME

∂P I (x, t )

∂t
= − ∂

∂x

[
[a(x, t )−ν〈w〉b(x)]P I (x, t )

] + ν〈(: e−w ∂
∂x b(x) :)−1〉ρP I (x, t ). (A.65)

Expanding the r.h.s. and remembering that the operator :: means that all the derivatives must

be placed on the left of the expression

ν〈(: e−w ∂
∂x b(x) :)−1〉ρP I (x, t ) =−ν〈w〉ρ ∂

∂x
[b(x)P I (x, t )]+ν

+∞∑
n=2

(−1

γ
)n 〈zn〉 f

n!

( ∂
∂x

)n[b(x)nP I (x, t )]

(A.66)

Eventually, inserting Eq. (A.66) in the I ME (A.65) and taking ν,γ → ∞ with ν
γ2 = D ′ and

D = D ′ 〈z〉 f

2 the I FPE (A.64) is obtained.

A.3.4 Prescription-induced jump distributions

It is clear from the previous MEs (A.52) and (A.54) that the I and S prescriptions of the GLE

ẋ(t ) = a(x, t ) + b(x)ξρ(ν, t ) (A.67)

lead to different MEs. Let us now determine the connection between the two different inter-

pretations. Specifically, the two jump PDFs in the I and S interpretation, ρI and ρS , which give

rise to the same process are sought. Is also sought how to obtain one form when the other is
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given. To this purpose it is sufficient to equate the two MEs, (A.52) and (A.54) for simplicity,

from which

1

|b(x ′)|ρI (
x −x ′

b(x ′)
) = 1

|b(x)|ρS(η(x)−η(x ′)). (A.68)

As a result, if Eq. (A.68) can be solved, given the jumps pdf and choosing the S (I) prescription

for Eq. (A.67), the solutions ρI (ρS) of Eq. (A.68) give the equivalent corresponding I (S) GLE

and ME. This is one of the main results of the paper and it provides the connection between

the prescription-induced jump distributions ρI and ρS , allowing link the Itô ME and the

Stratonovich ME corresponding to a GLE with multiplicative white Poisson noise.

The previous equation however has a solution only when b(x) is a linear function of x. To

show this Eq. (A.68) is rewritten as

ρI (y) = |b(x ′)|
|b(x)| ρS(η(x)−η(x ′)) ≡ F (x ′, y), (A.69)

where y = (x − x ′)/b(x ′). Because the l.h.s. of Eq. (A.69) does not depend on x ′, it must be
∂F
∂x ′ = 0, that explicitly read as

0 = ρS(η(x)−η(x ′))
[
sg n[b(x ′)]

b′(x ′)
|b(x)| − sg n[b(x)]

b′(x)

|b(x)|2 |b(x ′)|(1+ yb′(x ′))
]+

+ ρ′
S(η(x)−η(x ′))

|b(x ′)|
|b(x)|

[
η′(x)(1+ yb′(x)−η′(x ′))

]
. (A.70)

The latter, using Eq. (A.48), can be expressed as

ρ′
S(η(x)−η(x ′))

ρS(η(x)−η(x ′))

( 1

b(x)
(1+ yb′(x ′))− 1

b(x ′)
)+ b′(x ′)

b(x ′)
− b′(x)

b(x)
(1+ yb′(x ′)) = 0. (A.71)

Eq. (A.71) must hold for all ρS , then the solution of Eq. (A.71) is given by the function b that

satisfies the conditions

b(x ′)(1+ yb′(x ′)) = b(x) (A.72)

b(x ′)b′(x)(1+ yb′(x ′)) = b(x)b′(x ′). (A.73)

Combining Eqs. (A.72) and (A.73) and using x = b(x ′)y+x ′, the equation b′(b(x ′)y+x ′) = b′(x ′)
is obtained. If the derivative of both side with respect to the independent variable y is taken,

then it follows that b′′(b(x ′)y + x ′)b(x ′) = 0. This implies b′′(x) = 0 ∀x, which solution is

b(x) = kx (with k any constant). For other functional shape of b(x) the jumps pdf ρI (w)

depends also on the state of the system, i.e., the dependence on x ofρI (w |x) cannot be factored
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out. In this case, is not even clear to what a Stratonovich prescription would correspond to.

Finally, the distribution of the impulses that may be measured from the time series of the

process is derived (see inset in Figure A.2). In fact, if a random jump (drawn from ρ(w)) occurs

at time t , then the size of the impulse that the whole process experiences is yt = x(t+d t )−x(t ).

From the GLE (A.23) follows that with probability νd t , ẋ = b(x) wΘτ(t ). Taking the limit τ→ 0,

and using the definition of η(x) it follows

y(t ) =
{

w b(x), (I)

η−1(η(x)+w)−x (S)
(A.74)

and thus

P̂ I (y, t ) = 〈δ(y − yt )〉 =
∫ +∞

−∞
dxdw

1

|b(x)|P
I (x, t )ρ(w)δ(w − y/b(x)) (A.75)

P̂ S(y, t ) =
∫ +∞

−∞
dwdxP S(x, t )ρ(w)

δ(w − [η(x + y)−η(x)])

|b(x + y)| , (A.76)

is obtained, i.e. the prescriptions characterize the pdf of the impulses of the whole process.

Summarizing, an approach to solve the Ito-Stratonovich (I-S) dilemma for GLE with multi-

plicative WP noise has been here proposed. It has been shown how different interpretations

lead to different results and that choosing between the I and S prescriptions is crucial to

describe correctly the dynamics of the model systems, and how this choice can be determined

by physical information about the timescales involved in the process. Moreover, the related

issue of finding a connection between the I and S interpretations in the case of linear WP noise

has been addressed. Differently from the introduction of a drift previously proposed [Zygad\lo,

1993; Pirrotta, 2007], such connection has been found in a transformation of the jumps PDFs

and tested these results numerically. The results are also consistent with the physics of the

random forcing, which takes place at specific points in time, whereas a continuously-acting

spurious drift would conceptually violate the causality of the process. In particular, once the

GLE (A.67) is given, its I and S interpretations are shown to be equivalent if ρI and ρS satisfy

the prescription-induced jumps pdf Eq. (A.68).

A.3.5 Application to Soil Salinization

The above mathematical problems naturally arise in the context of the process of soil salin-

ization. This is an extremely relevant environmental problem as four million km2 in arid and

semi-arid lands are affected by soil salinization, causing vegetation dieoff and possible deserti-

fication [Hillel, 1998]. In natural salinization (unlike the anthropogenic one due to irrigation),

salt may accumulate in surface soils by dry and wet deposition due to wind and rain. In this

problem, state-dependent Poisson jumps arise naturally when writing the salt mass balance

110



A.3. State−dependent discrete Poisson jumps processes

equation at the daily-to-monthly time scale for soil root zone used as the control volume. Salt

inputs due to rainfall and wind act almost continuously in time, while the state-dependent

losses of salt occur through negative jumps due to the leaching caused by intense rainfall

events. Schematically, the salt mass at time, x(t ), in the root zone is described by the GLE:

d x

d t
= Υ − x ξρ(ν, t ), (A.77)

whereΥ is the time-averaged salt mass input flux, ξρ(ν, t ) is the leaching flux toward deeper

layers, which can be approximated by a WP process with ρ(w) = µexp(−µw)Θ(w). The

leaching parameters ν (frequency of leaching events) and µ (mean jump) can be expressed

in terms of the climatic, soil and vegetation properties. Because the typical duration of

leaching events is on the order of a few hours, while the equilibration times of salt in the soil

solution (proportional to the inverse of its dissolution rate) tend to be smaller (minutes to

hours), this means that the inertia in the dynamics is small (σ¿ τ) and the physically correct

interpretation is likely to be the Stratonovich one.
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Figure A.2: Comparison of the steady state pdf of Eq. (A.77): S solution (solid line, obtained
analytically from Eq. (A.78)), I solution (dash-dot, from numerical simulation), I solution
using the jump distribution given by Eq. (A.80) (dotted line, from numerical simulation).
The numerical simulations confirm the analytical results. Inset: simulated trajectory of the
salt mass under the two different prescriptions. Note that if artificial reflecting barriers are
not imposed, the salt mass given by the I prescription of Eq. (A.77) may assume unphysical
negative values. The parameters used for the simulation are µ = 0.463, ν = 0.15d ay−1 and
Υ= 30mg /d ay .

The stationary solution of Eq. (A.46) in the S prescription is a Gamma distribution (Figure A.2)
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[Van Den Broeck, 1983]

P S(x) = N e−(xν/Υ) x1/µ, (A.78)

for x > 0 and where N = ( νΥ )
1+µ
µ /Γ( 1+µ

µ ) is the normalization constant and Γ(z) the complete

gamma function of argument z. Eq. (A.78) summarizes the soil salinity statistics as a function

of climate, soil and vegetation parameters, which may in turn be used in conjunction with

the soil moisture statistic to obtain a full characterization of the salt concentration in the root

zone and the ensuing risk of salinization.
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Figure A.3: Comparison between a jump exponential distribution ρ(w) with mean 1/γ= 0.8,
and the solutions ρI (z), ρS(z) of the prescription induced jumps corresponding to Eqs. (A.80)
and (A.81) respectively, corresponding to the given ρ(w).

From Eq. (A.76) it is possible to derive the pdf of the impulses of the process for the S interpre-

tation as

P̂ S(y) = εeεyΘ(−y), (A.79)

which is an exponential distribution controlled by the parameter ε= ν/Υ, given by the ratio

between the rate of leaching events and the average rate of salt input. Thus if time series

of the process are available, the Stratonovich assumption can be checked by backtracking

information on the physical timescales involved in the process, via a comparison with ex-

perimental data. A further support for the S interpretation of Eq. (A.77) is given by the fact

that x must remain positive after a jump, a fact that is not ensured by the I interpretation

unless a reflecting boundary in x = 0 is imposed (see Figure A.2). The prescription-induced

jump distributions correspondence for this case (b(x) =−x) is computed, and corresponds to
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ρS(ln | x ′
x |) = | x

x ′ |ρI (1− x
x ′ ), where x ′ and x are the variables before and after the jump, respec-

tively. By taking into account that in the S prescription x, x ′ > 0, the I-jump pdf equivalent to

ρS(w) = γe−γwΘ(w) is

ρI (z) = γ(1− z)γ−1, z ∈ [0,1]. (A.80)

This equivalence is indeed remarkable because it considerably facilitates the numerical sim-

ulation of the salinity equation in the S formulation (see Figure A.2). On the other hand, if

the GLE (A.77) were interpreted in the I sense, the ratio x/x ′ could also be negative and the

solution of Eq. (A.68), for ρI = γΘ(w)e−γw , would read

ρS(w) = γe−γ−w
[
Θ(w)eγe−w +e−γe−w

]
w ∈]−∞,+∞[. (A.81)

This implies that possible negative jumps (that occur for x < 0) in the I prescription for the

given ρI (w), would be explicitly present in the corresponding equivalent S-jump pdf ρS(w)

(see Figure (A.3)).

For further details on the soil salinization modelling scheme see Chapter 3.
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