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We show that steel-magnesium alloy laminated metal composites (LMCs) can be produced by
gas pressure infiltration of a liquid magnesium alloy between layers of stacked dimpled steel
sheets. Resulting LMCs are amenable to subsequent warm rolling. The LMCs are free of pores
or brittle intermetallics and feature, in the as-cast condition, metal layers of uniform thickness
and spacing. The ultimate tensile strength of the as-cast LMCs, of 260 MPa, obeys the “rule-of-
mixtures”’ (ROM). The uniform tensile elongation, of around 20 pct, makes the infiltrated LMC
nearly as ductile as the bulk steel it contains, implying that the magnesium alloy in the as-cast
LMCs has a substantially increased tensile ductility in comparison to its metallurgically
equivalent bulk state. Rolling reduces the metal layer thicknesses, causes waviness in the
interface, and makes the LMCs stronger but less ductile, by factors in the vicinity of 2 for both
properties; the main cause for this is work hardening in the steel layers.
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I. INTRODUCTION

LAMINATED metal-(metal) composites (LMCs)
are made by bonding layers of two or more alternating
metals. These are some of the oldest composites known
to man: lamination has been used for well over a
millennium by blacksmiths to combine strength with
ductility in steel.['

One of the most attractive and interesting attributes
of LMC:s is their ductility. If one combines two ductile
metals that both fail in tension by necking, then the
laminated composite will not fail at the necking strain of
its less ductile phase. Rather, it will start necking at a
strain higher than that, the value of which depends in
nontrivial fashion on the properties and relative pro-
portion of the two bonded metals. The reason is that, if
the two phases are strongly bonded together, the more
ductile layers prevent necking in the other, less ductile,
metal, thus “coaxing” the latter to deform well beyond
the peak tensile strain that it would reach alone.* ' In
some cases, the tensile elongation of laminated compos-
ites can even exceed the ‘‘rule-of-mixtures” (ROM)
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volume average of ductilities displayed by individual
phases making the composite.[*

Lamination is therefore a strategy by which one may
drive certain metals and alloys to deform in tension well
beyond their normal performance range. An example is
with martensitic steel, which, despite its inherent brit-
tleness, can, in a laminated composite, experience tensile
strains as high as 20 pct.'!"") Magnesium alloys also
tend to exhibit relatively poor tensile ductility; therefore,
lamination may be an attractive strategy toward
improving its performance in structural applications,
particularly where deformability is required. To this
end, magnesium should be combined with another,
more ductile, metal; steel is attractive in this regard,
because it is often ductile and also because magnesium is
sufficiently inert in contact with iron (magnesium is
generally melted in steel crucibles).'>'3! There are, thus,
published explorations of composite structures combin-
ing steel with magnesium and examining the chemical
compatibility between iron and magnesium alloys;*'#!%!
however, none to the best of our knowledge concerns
laminated structures.

We present here a first exploration of the processing
and properties of laminated composites combining a
magnesium alloy with mild steel. There are many ways
to manufacture LMCs; these can be classified into
bonding- or deposition-based methods. Bonding meth-
ods include a wide array of processes such as roll
bonding, diffusion bonding, adhesive bonding, melt
bonding, reaction bonding, deformation bonding,
brazing, and soldering.”) Deposition methods, unless
combined with bonding methods, produce two- or three-
layer structures, and mainly include sputtering, physical
and chemical vapor deposition, electroplating, and
cocasting.””) On the other hand, infiltration seldom has
been explored as a method to make metal-(metal)
laminates; it has the advantage of relative speed,
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coupled with the fact that, unlike most solid-state
bonding methods such as colamination, the process
introduces no work hardening of the more refractory
phase, thus preserving its formability.'® In what fol-
lows, we demonstrate how infiltration can be used in the
production of laminated composites and explore the
structure and tensile properties of infiltrated laminated
composites combining magnesium with steel sheet.

II. EXPERIMENTAL PROCEDURES
A. Materials

The LMCs combined a ductile cold-rolled low-carbon
steel (SPCC steel, Japanese standard JIS G3141) with
ZM?21 magnesium alloy, a zinc and manganese-contain-
ing wrought magnesium alloy. The SPCC steel sheets
were cold rolled from 0.6-mm-thick steel sheets down to
0.1 or 0.2 mm. The elemental composition of the two
constituent alloys is given in Table I.

ZM21 alloy was chosen because it contains two
elements (Mn and Zn) known for their good compat-
ibility with steel and is free of other traditional alloying
elements known to form brittle intermetallics in contact
with iron, such as Al (which leads to the formation of
compounds such as Fe,(Al,Mg)C!" and AlsFe,(Zn)!").

B. Making LMCs by Infiltration

The approach we used broadly consists of stacking
steel sheets with a uniform spacing and infiltrating the
stack with a liquid Mg alloy, followed by solidification
of the Mg alloy between the steel layers. In this, a key
challenge is to maintain the (thin and, hence, flexible)
steel sheets straight and separate; to this end, we
punched small dimples into the steel sheets. Resulting
protrusions keep the steel sheets apart at discrete
locations, sufficiently small and remote not to strongly
influence laminate tensile properties (as will be seen
subsequently), yet sufficiently close for the steel sheets
to remain straight during the infiltration process
(Appendices A and B).

To prepare the stacks, steel sheets were ground to
clean and smoothen their surface and then cut to desired
dimensions (28 x 100 mm?) using automatic shears.
Steel pieces 40 x 60 mm?* wide were also cut to make
LMC:s for subsequent rolling.

The steel sheets were then punched to produce the
dimples and stacked. To this end, a small device
including a punch, two aluminum plates (one upper
and one lower), pins, and bolts was assembled to
introduce the dimples reproducibly (Appendix A). The
upper plate contains cylindrical holes 1.02 mm in
diameter, while the lower plate has matching conical

indentations, 1 mm in diameter and 0.5-mm deep. The
depth of the dimples is tailored by altering the length of
the punch relative to the upper plate thickness; this was
adjusted such that the resulting height of the dimples
was equal to the layer thickness, thus producing a 1:1
thickness ratio between the alternating layers in the
resulting LMC. The depth of the dimples was checked
with a micrometer, accepting a tolerance of 0.05 mm.
Finally, the dimpled sheets were stacked to make the
layered steel preform, which was infiltrated with ZM21
magnesium alloy. Note that the upper plate is designed
in such a way that the position of the holes be
asymmetric along its length (Figure A2). Therefore,
one can prevent alignment of the dimples of alternating
steel layers by simply rotating the sheets by 180 deg
when stacking these. The free distance between the
dimples was chosen based on an estimation of the
bending stresses acting on the steel sheets during
infiltration; the estimation is given in Appendix B.

The LMCs were produced with two different dimple
configurations. In the first group, the sheets were
punched in such a way that the dimples be positioned
within the gage section of tensile specimens machined
from the LMCs. This configuration is identified as the
dimpled configuration in the following. The second
group, in which the dimples were positioned outside the
tensile bar gage section, is identified as the nondimpled
configuration. This distinction is made to assess the
extent to which the dimples affect the mechanical
properties of the LMCs. Table II summarizes the
arrangement of the dimples and the laminate dimen-
sions.

Infiltration was carried out in a steel crucible coated
with boron nitride spray (Sindlhauser Materials GmbH,
Kempten, Germany) placed within a pressure vessel.
The stacked preform was infiltrated with ZM21 alloy,
superheated to 983 K (710 °C), by applying Ar gas up to
a maximum pressure of 0.2 MPa for 15 minutes, after
initial evacuation of the preform using a mechanical

pump.

C. Rolling

The LMCs made from 40 x 60 mm? steel sheets were
rolled using a Sandoz & Co. (La Chaux-de-Fonds,
Switzerland) laboratory-scale rolling mill, having a roll
diameter of 10.5 cm. The samples were held at 523 K
(250 °C) for 30 minutes prior to rolling and reheated at
that temperature for 10 minutes between the passes. The
rolls were heated with hot air to a surface temperature
around 343 K (70 °C). The samples were rolled in four
passes to a thickness reduction of 16 pct per pass to
reach a total thickness reduction between 50 and 55 pct.
The rolling speed was 10 cm/s. The rolled samples were

Table I. Elemental Composition (Weight Percent) of Constituent Materials

C Si Mn

P S Zn Mg Fe

SPCC steel 0.04 0.01 0.017
ZM21 (nominal) — — 1

0.013 0.010 — —
— — 2

balance
balance —
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Table II. Summary of the Laminate Dimensions and Dimple Arrangements

Thickness of the Width x Length Number of

Expected Thickness

Schematic of the

Steel Sheets (mm) (mm x mm) Steel Layers after Infiltration (mm) Dimpled Dimple Arrangement
0.1 28 x 100 11 2.1 no Fig. A3(a)
11 2.1 yes Fig. A3(b)
40 x 60 12 2.3 no Fig. A3(c)
12 2.3 yes Fig. A3(d)
0.2 28 x 100 6 2.2 no Fig. A2(a)
6 2.2 yes Fig. A2(b)
40 x 60 10 3.8 no Fig. A2(a)
10 3.8 yes Fig. A2(b)

finally annealed at 723 K (450 °C) for 2 hours under Ar
atmosphere. For simplicity, in what follows, the samples
are always designated with reference to the original layer
thickness prior to rolling (i.e., “0.2-mm rolled” and
“0.1-mm rolled’). Maximum strains that could be
reached in warm rolling were on the order of 60 pct;
at deformations higher than that, the LMCs tended to
debond.

D. Tensile Tests and Microhardness

Flat dog-bone tensile specimens (ASTM standard
E8M), with gage dimensions of 25 mm x 6 mm and a
thickness of 1 to 2.2 mm depending on the process
history (rolled or as-cast), were machined from infil-
trated LMCs. Tensile samples were also produced and
tested from (1) a 1-mm-thick SPCC steel sheet having
undergone a thermal treatment identical to the thermal
history of the infiltrated steel stacks; and (2) cast ZM21
alloy rectangular plates, 2-mm thick. Rolled LMCs were
tested along their rolling direction. Note that these
sample gage lengths are slightly too short to perfectly
meet the tensile stress conditions in the bars; this adds
some uncertainty to the data.

All tests were run on a Zwick (Ulm, Germany) screw-
driven machine with a 10-kN load cell at a nominal
strain rate of 6 x 10~* s~!. Longitudinal displacements
were measured with a double-sided clip-on extensometer
having a gage length between § and 10 mm. It should be
noted that this gage length is shorter than the 25-mm
sample gage length, such that the recorded fracture
strain depends on the location of the neck once
instability sets in. Uncertainty on stress is estimated
(based mostly on uncertainty on the cross-sectional
area) to be & 3 MPa, while uncertainty on elongations
is estimated at £ 0.7 pct. The Vickers microhardness of
steel and ZM21 layers within the LMCs, in as-cast and
rolled states, was measured using a Shimadzu HMV-
2000 microhardness instrument (Tokyo).

E. Microstructural Characterization and Fractography

Microstructural features of the LMCs at various
stages of processing were characterized using an optical
microscope, a scanning electron microscope (SEM)
(Philips XLF30, Eindhoven, The Netherlands), and
electron backscatter diffraction (EBSD) analysis (TSL
Solutions, Kanagawa, Japan). Fracture surfaces were
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also examined in the SEM. Samples being pore free, the
volume fractions of steel and magnesium alloy in the
LMCs were measured by densitometry, using a
Sartorius MC 210P microbalance and a Sartorius
Gravity Determination Kit YDKO.1 (IG Instrumenten-
Gesellschaft, Zurich, Switzerland).

III. RESULTS AND DISCUSSION

A. Laminate Structure

Figure 1 presents the microstructure of as-cast LMCs
made using (a) 0.2 mm and (b) 0.I-mm-thick steel
sheets, respectively. As seen, the stacks are well infil-
trated and free of porosity. Also, the steel sheets did not
bend during infiltration and the reproducibility of the
thickness of ZM21 alloy layers was satisfactory. The
volume fraction of steel deduced by densitometry is near
50 pct; this is only slightly lower than the value expected
were the dimples to hold steel plates apart by a distance
strictly equal to the steel plate thickness (nearer 53 pct).

Figure 2 presents a comparison of the grain structure
in the SPCC steel before and after infiltration, showing
that the elongated grain structure of the cold-rolled
SPCC steel (Figure 2(a)) recrystallized into a fine-
grained, equiaxed microstructure during infiltration
(mean grain size = 12 uym, Figure 2(b)). ZM21 alloy
grains, on the other hand, were large, on the order of
millimeters and, hence, well above the laminate layer
thickness. Figure 3 shows the large grain size in a ZM21
layer together with the local orientation of grains.
Monolithic ZM21 samples cast for tensile testing had a
similar grain size, on the order of millimeters. No second
phase was detected in the ZM21 layers. Statistically
significant grain size data were thus difficult to obtain, as
were conclusive texture data, since each layer is com-
posed of only a few grains.

Typical microstructures of the rolled LMCs are given
in Figure 4, corresponding to (a) 0.2- and (b) 0.1-mm
initial layer thicknesses, respectively. Rolled samples
also display a sound and crack-free interface, free of any
brittle reaction products. The grain structure of ZM21
layers was refined after rolling and subsequent annealing
at 723 K (450 °C) (Mg grain sizes were roughly 60 and
40 pm for 0.2- and 0.1-mm layer thickness, respectively),
with signs of recrystallization. Figure 5 shows the
{0001} pole figures of ZM21 layers in the rolled LMCs.
As seen, almost all c-axes of Mg grains in both LMCs
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200 um

Fig. 1—Optical micrographs of as-cast LMCs with (a) 0.2-mm and
(b) 0.1-mm layer thickness. The dark phase is steel and the light
phase is ZM21.

are aligned parallel to the rolling direction (which, as
mentioned, was also the tensile axis of the rolled
samples).

B. Interface

The interface is free of pores and reveals no interme-
tallic compounds. Figure 6 presents EDX line scan
profiles in the close vicinity of the interface of as-cast
LMCs. There is no segregation of Fe or Mg at the
interface, nor of Zn, which is the principal alloying
element of ZM21 alloy. On the other hand, there is
marked segregation of Mn, seemingly coming from the
ZM21 alloy, both at the interface and within the steel
(Figure 6).

Mn is added to Mg-Zn alloys mainly to improve their
corrosion resistance.!'”) The microstructure of cast ZM
series alloys generally shows a coarse grain size, due to
the lack of any grain refining elements (as do cast bulk
ZM21 tensile samples of this work, as previously
discussed). In the alloy, Mn is present in the form of
particles since it has essentially no solubility in solid
Mg 118!

EDX line scans through the interface of the LMCs
reveal that Mn migrates toward Fe in liquid Mg and
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50 um

100 um

Fig. 2—Grain structure of the SPCC steel (a) before and (b) after
infiltration. The elongated grain structure of the steel recrystallizes
into an equiaxed structure, with a mean grain size of 12 um.

Fig. 3—(a) Assembly of SEM micrographs of a ZM21 layer in an
as-cast sample after tensile testing, (b) together with its grain orienta-
tion image. Note the large grain size, together with the presence of
deformation twins.

then penetrates over a limited depth into the steel plates.
EDX line scan profiles indicate that Mn penetration into
steel is somewhat deeper compared to the thickness of
Mn that stays on the Mg alloy side, with no difference
visible in the depth of penetration between the two steel
plate thickness values (Figure 6). During solidification,
the remaining Mn in the Mg alloy side precipitates as
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Fig. 4—Micrographs of rolled LMCs with () 0.2-mm and (b) 0.1-
mm layer thickness. The dark phase is steel and the light phase is
ZM21.

Fig. 5—{0001} pole figures of ZM21 layers in the rolled LMCs with
(a) 0.2-mm and (b) 0.1-mm initial layer thickness.

Mn-rich particles (these are too small to be visible at the
magnification of Figure 3).

C. Tensile Behavior of the As-Cast LMCs

Table III lists the mechanical properties of the con-
stituent materials: E is the Young’s modulus, o, is the
proof stress, UTS is the ultimate tensile strength, and g,
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Fig. 6—Averaged EDX line scans through the interface of («a)
0.2-mm and (b) 0.1-mm as-cast LMCs. There is a clear segregation
of Mn at the interface in both samples.

Table III. Mechanical Properties of Monolithic SPCC Steel
and ZM21 Alloy

Material E (GPa) 09, (MPa) UTS (MPa) ¢, (Pct)
SPCC steel 200 260 320 25.7
As-cast ZM21 45 131 225 13.7

is the peak uniform true strain, computed where the
engineering stress-strain curves reach their maximum.
Tensile tests were conducted on two samples per
condition. Results, together with the corresponding steel
volume fraction within the LMCs (Vspcc), are given in
Table IV, where Z denotes the percent reduction in area
at fracture in the neck. Four typical tensile curves, two
for as-cast and two for rolled LMCs, are plotted in
Figure 7. As seen from the data, the presence of dimples
in the steel sheets does not affect noticeably the proof or
ultimate tensile strength of the LMCs, either in as-cast
or in rolled conditions. An influence of the dimples on
either the peak uniform strain, ¢, or on the local
reduction in area at fracture, Z, is also hard to detect:
variations in Z from sample to sample, or between
batches with and without dimples, are both around
7 pct. Overall, thus, dimples that were introduced in the
steel sheets to keep them apart during infiltration do
not, in the present data, exert an influence that could be
detected in tensile properties of the resulting LMCs.
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Table IV. Tensile Properties of Infiltrated Steel/Magnesium Alloy LMCs (by Sample)

tinitial Processing 09.,(MPa) UTS (MPa) &, (Pct) Euth Z (Pct)
(mm) History Dimpled Vspcc (Pct) £ 0.1 Pct + 3 MPa + 3 MPa £ 0.7 Pct (Pct) + 1 Pct

0.1 as-cast no 46.1 198 260 19.0 21.8 38

46.6 200 259 17.9 21.9 38

yes 48.6 201 266 19.4 22.1 36

48.1 183 265 24.1 22.0 40

rolled no 46.0 308 366 6.5 — 19

44.6 310 360 6.6 — 20

yes 46.9 328 374 6.7 — 22

479 329 371 5.5 — 16

0.2 as-cast no 52.5 209 263 22.4 22.5 42

52.1 233 261 22.2 224 39

yes 50.4 198 264 17.2 22.3 28

50.8 197 263 16.9 223 35

rolled no 51.5 349 386 6.2 — 26

50.5 334 385 8.0 — 29

yes 49.5 336 380 8.9 — 20

50.0 337 381 8.0 — 19
400 after lamination with the magnesium alloy. The
: improvement is more pronounced for rolled samples
350 m@ (94 pct), which have a specific proof stress around
a 300 ° 64 kN-m/kg. The strength enhancement due to rolling is,
2 7] however, offset by a lower ductility, as expected, since
§ 250 4 o the higher strength is mostly due to cold work in the

= 1 & steel.

(é’) 2oo-ﬂ Noting that the specific UTS of the SPCC steel is
T 50_' 41 kN-'m/kg, the corresponding improvements in specific
2 ] UTS are 29 and 86 pct (52 and 76 kN'm/kg) for the
UEJ’ 100 A 0.2 mm / non-dimpled / as-cast as-cast and rolled LMCS, respectivel)_/. Thesg enhance-
1 © 0.1 mm / dimpled / as-cast ments, although leading to a material having nonre-
%0 ggﬁ 22;5:25::3;2”: markable properties per se (specific strength/ductility
0 - values of the present LMCs are matched by many high
0.0 0.1 0.2 03 0.4 05 strength ductile steels), nonetheless constitute a proof-

Engineering Strain

Fig. 7—Typical uniaxial engineering stress-strain curves of as-cast
and rolled LMCs, for each of the two layer thicknesses explored.

The Young’s modulus E. of the present LMCs was
roughly 130 GPa for all present composites (£. deduced
from stress-strain curves; uncertainty in E. is, hence, too
high to capture variations that result from small
variations in relative phase volume fractions). This
corresponds roughly to the equistrain rule-of-mixtures,
in that this value is near the average of the tensile moduli
of the SPCC steel and the ZM21 phases, both present in
roughly equal proportions in the composites produced
here.

UTS values of all as-cast samples are within 95 to
98 pct of ROM predictions (a corresponding assessment
is difficult to make for the rolled LMCs, given the lack
of data on mechanical properties of rolled constituent
phases). The specific proof stress (stress divided by
density) of the as-cast LMCs is found to be around
40 £+ 2 kN'm/kg (varying with the small variations in
Vspcc). This value indicates an improvement by 21 pct
in the specific proof stress over SPCC steel (33 kN'm/kg)
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of-concept demonstration of the improvements that can
be achieved by the LMC approach.

“A direct ‘rule of mixtures’ estimate of the peak
homogeneous composite strain (at the onset of necking)
computed as the volume average of individual phase
peak homogeneous strains is, unlike the Younig’s mod-
ulus or flow stress, not supported by theory.” " Rather,
one must conduct a stability analysis on composite
deformation, using, for the present composites, the
equistrain rule of mixtures. Given that coarse-grained
magnesium is relatively strain-rate insensitive,l'>!?->"]
and given that monolithic materials and the composites
were tested at the same strain rate, we ignore for
simplicity strain-rate effects, and apply the simple
Considere criterion to predict the uniform tensile
elongation of the composites from properties of their
constituents.”

We use, to this end, larger-strain power-law fits*!! of
the true-stress/true-strain curves for the two constituent
phases to obtain

o%PCC = 59535077 1]
for the SPCC steel sheets, and
oM = 355171 2]
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Fig. 8—Considere constructions for the true-stress/true-strain behav-
ior of the constituent phases (ZM21 and SPCC steel) and the equi-
strain ROM predictions deduced by fitting constituent phase curves
with the Hollomon equation (resulting fits are given in the inset;
refer to text for details).

for the ZM21 magnesium alloy (neglecting the possible
influence of manganese diffusion from the ZM21 alloy
into the steel, which will only lower somewhat the
volume fraction of Mn precipitate in the alloy).
Applying then the Considere construction to the
equistrain  ROM LMC true-stress/true-strain curve
computed using Egs. [1] and [2], one can then deduce
the peak homogeneous strain of the composite at the
onset of necking, ¢, ,,; Figure 8 gives three examples,
and values corresponding to each sample tested are
given in Table IV. As seen, the predicted true strain at
necking varies from 0.217 to 0.226 as Vspcc increases
from 0.45 to 0.53. Computing the engineering strain at
peak engineering stress from the raw tensile curve data
(using a dedicated software routine) and converting
this to true strain values for each sample gives
experimental strain values at peak engineering stresses
reported as ¢, in Table IV. As seen, (1) experimental ¢,
values tend, on average, to be somewhat lower than
€. and (2) variations in experimental data exceed
variations in ¢,,, caused by the (slight) variations in
Vspcc.

In the LMC, thus, the magnesium alloy experiences
uniform tensile elongations near 20 pct. This value is not
exceptional for ZM21 (which can exhibit a uniform
elongation of 25 pct through refinement of the micro-
structure down to a mean grain size of 9 um"*?), but is
well in excess of what is characteristic of the large-
grained as-cast microstructure of the alloy (around
14 pct, Table III). In LMCs, deformation of the less
ductile metals is stabilized against necking by the more
ductile phase; other modes of failure, however, are also
possible. Tunnel cracking is one; in the present instance,
this failure mode is unlikely. Indeed, assuming an initial
defect size equal to the thickness of the ZM21 layers and
a fracture toughness of the 15 nb sf ;MPa+/m (charac-
teristic of magnesium alloys® %)), for steady-state
growth of tunnel cracks within the ZM21 layers, the
thickness of ZM21 layers should be larger than at least a
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Fig. 9—Cracks inside the ZM21 alloy layers after tensile testing in
an area remote from the fracture surface (secondary-electron SEM
image; the darker phase is the ZM21 magnesium alloy).

Table V. Vickers Microhardness of the SPCC Steel and
ZM21 Alloy Layers in As-Cast and Rolled LMCs

Load Hardness

LMC Component  (gf) (HV)
As-cast LMC—0.1 mm SPCC steel 50 234.4 £+ 6.8
ZM21 10 89.5+52
Rolled LMC—0.1 mm  SPCC steel 50 340.8 £ 13.8
ZM21 10 85.1 +£3.2
As-cast LMC—0.2 mm SPCC steel 50 204.8 £+ 8.0
ZM21 10 86.2 + 6.0
Rolled LMC—0.2 mm  SPCC steel 50 348.8 £ 15.5
ZM21 10 93.7 + 3.7

HYV values are presented as mean =+ standard deviation.

centimeter, regardless of whether one adopts the
elastic®® or the shear lag solution?” of the crack
tunneling problem.!'!?

Interestingly, in samples tested in tension to failure,
far from the fracture surface, one can nonetheless
discern a few cracks within the ZM21 layers (Figure 9).
Since analysis rules out the possibility of crack tunnel-
ing, these are probably shear cracks, resulting from slip
incompatibility between the large hexagonal crystals
(which deform by glide along the limited number of slip
systems characteristic of hexagonal crystals together
with twinning (Figure 3)) and the harder and more
ductile steel layers.

D. Mechanical Behavior of Rolled LMCs

Rolling enhances the strength and decreases the
ductility of the infiltrated LMCs (Figure 7). Vickers
microhardness measurements within the two phases of
the composite, given in Table V, reveal that rolling and
subsequent annealing work harden only the steel layers.
As mentioned previously, the ZM21 alloy grain struc-
ture is refined; however, tensile test data of rolled ZM21
sheets published by Nestler e al.*?! indicate that this
refinement can strengthen the ZM21 alloy by only up to
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Fig. 10—(a) Fracture surface and (b) fracture profile of a 0.2-mm
as-cast LMC observed in the SEM in secondary electron mode. The
light phase is steel and the dark phase is ZM21.

10 MPa. This leads to the conclusion that the rolled
LMCs are stronger only because the steel sheets harden
by rolling.

E. Fracture in Infiltrated LMCs

SEM images of a fracture surface and of a fracture
profile of a 0.2-mm as-cast LMC are shown in
Figure 10. The steel layers exhibit typical failure by
necking followed by ductile fracture by void nucleation,
growth, and coalescence. Conversely, the ZM21 alloy
fails by shear, without necking. A short zone of
delamination, which seems mostly linked to necking of
the steel, can be seen between the steel and as-cast ZM21
layers in Figures 10(a) and (b). A closer look at the
delaminated surfaces of the as-cast LMCs after fracture
(Figure 11) shows the presence of small particles,
obviously of manganese, that remain on the surface of
the steel layers. This indicates that manganese bonds to
steel more strongly than does the primary magnesium
phase of the alloy.

SEM images of a fracture surface and of a fracture
profile in a 0.2-mm rolled LMC are given in Figure 12.
Different from the as-cast samples, there seems to be less
void growth in the steel layers, as can be expected given
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Fig. 11—Close-up of the fracture surface of a steel layer in a 0.2-mm
as-cast LMC. On both sides of the wedge, Mn-rich particles are visi-
ble. Those particles adhere to steel upon delamination.

) b———— 100 m
0.4 1 ;

f—— 100 um
Mg

Fig. 12—(a) Fracture surface and (b) fracture profile of a 0.2-mm
rolled LMC observed in the SEM in secondary electron mode. The
light phase is steel and the dark phase is ZM21.

the lower strain to failure. Shear striations are visible
on fracture surfaces of both components. Fragments
of torn ZM21 alloy on fractured steel surfaces
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(Figure 12(b), indicated with an arrow) highlight the
strength of the interface, which now apparently exceeds
the cohesive strength of the ZM21 alloy. This difference
between as-cast and rolled samples might result from
interfacial roughening, itself creating a certain degree of
mechanical interlocking between the steel and magne-
sium phases.

IV. CONCLUSIONS

Laminated steel-ZM21 alloy composites with layers
of 0.2 and 0.1 mm can be produced by infiltration. This
is achieved by introducing small dimples in the steel
sheets that hold these apart during infiltration. No
influence of the dimples was detected in the UTS, proof
stress, or (within significant scatter) uniform elongation
of the LMCs.

The infiltrated composites are free of pores or
intermetallic compounds and show regularly separated
metal layers. Manganese in the magnesium alloy segre-
gates to the interface, forming Mn particles there and
diffusing into the steel along a band roughly 1-um wide.

Ultimate tensile strength and uniform elongations of
as-cast samples are only slightly lower than equistrain
ROM predictions based on tensile curves of individual
composite phases processed analogously to phases of the
composite. The ZM21 alloy in the as-cast LMCs thus
deforms uniformly up to a strain nearly twice that it
displays in the absence of steel. Resulting composites
can be rolled to a thickness reduction exceeding 50 pct;
this work hardens the steel, causing the LMC strength to
rise and its ductility to fall, in both cases by a factor of
around 2.
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APPENDIX A
Dimpling the steel

The steel sheets were dimpled using a small device
including a punch and two aluminum plates (one upper
and one lower, Figure Al). The upper plate contains
cylindrical holes 1.02 mm in diameter, while the lower
plate has matching conical indentations, 1 mm in
diameter at the top and 0.5-mm deep. A drawing of
the aluminum upper plate is given in Figure A2.
Arrangements of dimples in dimpled and nondimpled
specimens are given in Figures A3 and A4, for as-cast
and rolled samples, respectively.
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top plate
centering pins

Fig. Al—Photograph of the punching device.

@1.02

77

I
......... I .
——————— -&’——:—ﬁ—wag—a/ig—m-ﬁ'ﬂﬁ-ﬁa‘a-‘a—@
B T T R R R R
I
——————— —$- W I fESE i 44,
: s e e e s 38:
@ @ i s s s s 32,
N ._IG: e e sas 26:
- I| . e e e s zol
N .: T AL e o o) 14,
Y Nty ity Byt ) rr, geirtomiieeti. == .
I R » ®
________ Ly .
|
¥2g ) | ' :
3 .
Hole for pin @5F8 | 32 [ 1 : '
1 I 1}
60 | ! ]
! '
' '
L}

I
T
[
I

94
I n7
! 124

Fig. A2—Aluminum upper plate of the punching device (not to
scale). The bottom plate has conical indentations at exactly the same
locations with the holes of the upper plate. All dimensions are in
millimeters.

APPENDIX B

Assessment of steel sheet stability during infiltration

The resistance to flow of a channel varies as the
square of its width: if only for this reason, the molten
magnesium alloy is likely to infiltrate the various
channels defined between individual steel sheets at
different moments. As a result, one side of a steel sheet
may be in contact with pressurized molten magnesium
alloy while the other side is still under vacuum. This, in
turn, will drive the steel sheet to bend.

In order to assess whether this situation will cause the
steel sheets to undergo plastic deformation, bending
stresses were computed based on elementary linear
theory (considering small deflections and linear elastic-
ity). A simple yet realistic one-dimensional geometrical
model for the bending of the steel sheets in the present
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Fig. A3—Arrangements of the dimples used in the production of
tensile specimens of as-cast specimens: («) dimpled specimens and (b)
nondimpled specimens. The tensile samples were machined after
infiltration and solidification.
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Fig. Bl—Illustration of the deformation of a beam fixed at both
ends under a uniform load W applied over its entire span.

situation is a rectangular cross-sectional beam under a

uniform load W with both ends clamped (Figure B1).
The moment of inertia / of a rectangular cross-

sectional beam of width » and thickness ¢ is given by*”

b1
[=——
12

The maximum deflection of a beam of length / under a
uniform load W (i.e., under uniform applied pressure)
with both ends clamped is!*”)

[B1]
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Fig. A4—Arrangement of dimples used in the production of tensile specimens of rolled specimens: with () 0.1-mm thickness in the nondimpled
configuration, (b) 0.1-mm thickness in the dimpled configuration, (¢) 0.2-mm thickness in the nondimpled configuration, and (d) 0.2-mm thick-
ness in the dimpled configuration. All dimensions are in millimeters. The tensile specimens were machined after infiltration, solidification, and

rolling.
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Table Bl. Computed Maximum Deflection d,,,, of the Steel
Sheets and the Maximum Stress 6,,,x Imposed on the Steel
Sheets During Infiltration

l E W 51’]’1&)( Gmax
t (mm) (mm) (MPa) (N/mm) (mm) (MPa)
0.2 30 1.4 x 10° 0.2 4.520 2250
0.2 30 1.4 x 10° 0.03 0.678 338
0.1 30 1.4 x 10° 0.2 36.161 9000
0.1 30 1.4 x 10° 0.03 5.424 1350

Table B2. Required Distance Between Spacers to Maintain
the Stress on the Steel Sheets Below the Elastic Limit of Steel

(60 MPa)
Umax E W 51’1121)( l
t (mm) (MPa) (MPa) (N/mm) (mm) (mm)
0.2 60 1.4 x 10 0.2 0.002 4.5
0.2 60 1.4 x 10° 0.03 0.015 11.5
0.1 60 1.4 x 10 0.2 0.001 2.2
0.1 60 1.4 x 10° 0.03 0.007 5.8
-W-F [
Omax = =—=————at x = = B2
TT3R4 L E T 2 [B2]
where E is the Young’s modulus of the beam.
The maximum stress in the beam is?*”
Mmax -t
Om- = B3
mex = 2 B3]
where the maximum moment M,,,, is given as!>”)
WP
Mmaszatx :Oandx:1 [B4]

The temperature during infiltration was 983 K
(710 °C). As a result, both the Young’s modulus and
the proof stress of steel sheets are reduced compared to
room temperature; these are estimated as 140 GPal®"
and 60 MPa,P! respectively.

The maximum and minimum pressures applied during
infiltration were 0.2 and 0.03 MPa, respectively.
Table B1 summarizes maximum deflections and bending
stresses for these two values, for sheets either 0.2- or 0.1-
mm thick, with a free length between spacers equal to
30 mm, corresponding to the gage length of tensile
samples. As seen, in either case, bending stresses far
exceed the elastic limit of the steel. Predicted deflections
generally exceed those admitted by linear theory and
also exceed the distance between sheets. Therefore, it is
likely that uncontrolled deflection of the steel sheets will
occur during infiltration if no additional spacers are
used. Preliminary experiments confirmed this; without
dimples, composites contain stacked touching layers of
steel pushed apart by molten magnesium.

Spacers are thus required in order to prevent uncon-
trolled bending. Table B2 examines the placement of
additional spacers, created for example by dimpling the
steel sheets. Here, a maximum allowable bending stress
is set, at the elastic limit of the steel (60 MPa), and the

METALLURGICAL AND MATERIALS TRANSACTIONS A

maximum free distance between the dimples is com-
puted. Computed deflection values remain well below
the distance between the steel sheets. Depending on
sheet thickness and loading conditions, distances be-
tween dimples have to be below 11 mm down to 2 mm if
plastic deformation of the sheets is to be avoided.
Dimple spacings used in the present experimental work
are near 10 mm: the present computations suggest that
the steel sheets bend at the onset of pressurization (i.e. at
0.03 MPa), this spacer separation distance being just
short enough to avoid bending of 0.2 mm sheets, but not
of the 0.1 mm sheets. Experiments show no sign of
extensive bending with both steel thicknesses, Figure 1;
assumptions used in the calculations are thus apparently
conservative.
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