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The  global  structural  connectivity  of  the brain,  the  human  connectome,  is  now  accessible  at  millimeter
scale  with  the use  of  MRI.  In  this  paper,  we  describe  an  approach  to  map  the  connectome  by  constructing
normalized  whole-brain  structural  connection  matrices  derived  from  diffusion  MRI  tractography  at  5
different  scales.  Using  a  template-based  approach  to match  cortical  landmarks  of  different  subjects,  we
propose  a  robust  method  that  allows  (a)  the  selection  of identical  cortical  regions  of  interest  of  desired
rain connectivity
tructural networks
iffusion MRI
onnectomics
onnection matrix
ulti-scale

size  and location  in  different  subjects  with  identification  of  the associated  fiber  tracts  (b)  straightfor-
ward  construction  and  interpretation  of  anatomically  organized  whole-brain  connection  matrices  and
(c) statistical  inter-subject  comparison  of  brain  connectivity  at various  scales.  The  fully  automated  post-
processing  steps  necessary  to  build  such matrices  are  detailed  in  this  paper.  Extensive  validation  tests  are
performed  to  assess  the  reproducibility  of the  method  in  a group  of  5  healthy  subjects  and  its reliability
is  as well  considerably  discussed  in a  group  of  20 healthy  subjects.
. Introduction

The study of neuronal connections in the brain has been a
ifficult and demanding. Our current knowledge of brain connec-
ivity is largely based on the study of the relationship between
ymptoms and lesions as well as on post-mortem dissections of
arge fiber tracts. The former approach was pioneered by Broca
1861) and Wernicke (1906),  and the latter by Gall and Spurzheim
1810–1819) and others. More recently, however, great strides
ave been made in chemical tracing methods in the macaque
Schmahmann and Pandya, 2006) as well as in humans (Clarke et al.,
999; Di Virgilio et al., 1999; Stephan et al., 2008; Zaidel et al.,
995), which have allowed the identification of not only gross fiber
racts but also individual white matter connections. These efforts
ave resulted in the definitive mapping of a few tens of connec-
ions in humans and several hundreds in the macaque. Although
uch tracing studies are immensely useful and of high-resolution
hey are also very limited since they are confined to post-mortem

aterial and each study is limited to a few connections only. New

igh throughput techniques are needed. Important advances have
een made with the advent of diffusion MRI  tractography, which
ircumvents the drawbacks mentioned above by allowing not only

∗ Corresponding author. Tel.: +41 21 693 46 22.
E-mail address: leila.cammoun@epfl.ch (L. Cammoun).
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in vivo (Conturo et al., 1999; Hagmann et al., 2003; Mori et al., 1999;
Wedeen, 1996) but also post-mortem imaging (Schmahmann et al.,
2007) of a large number of fiber bundles, this, however at the cost
of lower resolution. These techniques have spurred many studies
related to normal or pathologic neuro-anatomy. More recently it
became clear that beyond the aim of characterizing individual fiber
bundles, the connectivity profile of the entire brain is of highest
importance in neuroscience. Following the pioneering work based
on chemical tracing of (Felleman and Van Essen, 1991) and oth-
ers (Hilgetag and Kaiser, 2004; Hilgetag et al., 2000; Sporns and
Zwi, 2004), similar connection matrices have been built from MRI
tractography, either by constructing large-scale networks of 1000
nodes (Hagmann et al., 2007) or more anatomically based con-
nection matrices (Gong et al., 2009, 2008; Iturria-Medina et al.,
2007, 2008; Li et al., 2009; Thottakara et al., 2006). Diffusion-
based connectivity has also been used in some studies (Behrens
and Johansen-Berg, 2005; Klein et al., 2007; Tomassini et al., 2007)
to parcellate gray matter. In order to emphasize the importance of
whole brain connectivity, the term connectome has been coined by
our group as early as 2005 (Hagmann, 2005; Hagmann et al., 2010;
Sporns, 2008; Sporns et al., 2005). It refers to the complete descrip-
tion of the structural connectivity of the brain. More recently our

group showed that cortical areas involving the default mode net-
work (Raichle and Snyder, 2007) correspond to highly connected
hubs defining the core of structural connectivity (Hagmann et al.,
2008). We also showed through computational modeling how low

dx.doi.org/10.1016/j.jneumeth.2011.09.031
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:leila.cammoun@epfl.ch
dx.doi.org/10.1016/j.jneumeth.2011.09.031
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requency BOLD oscillations can be predicted from structural con-
ectivity, highlighting once again the fundamental relevance of
onnectomic approaches (Honey et al., 2009).

Given the increasing interest in such approaches as well as
merging questions about the optimal scale and optimal repre-
entation of such connection matrices (Bassett et al., 2010; Fornito
t al., 2010; Zalesky et al., 2010), we take the opportunity to present
n detail our approach to map  the connectome at multiple scales
nd extensively test its reliability and reproducibility.

. Materials and methods

.1. Overview

Fig. 1 gives an overview of the methodology employed. Basi-
ally the processing pipeline was divided into two  pathways. On
ne side, the cortical surface was extracted from a high-resolution
1-weighted image and subdivided into 66 anatomical parcels by
atching the most important sulci using atlas-based segmenta-

ion. Each anatomical parcel was then subdivided into small cortical
OIs of equal area, 998 ROIs in total. Third, these 998 ROIs were
uccessively grouped in order to have 5 sets of embedded cortical
artitions with 66, 133, 241, 483 and 998 ROIs, respectively. These
ubdivisions and merging of ROIs necessary to obtain the 5 sets
f embedded cortical partitions are done only once on the tem-
late used for the atlas based segmentation and then applied on
he images to be analyzed. On the other side, we performed whole
rain tractography, which results in millions of virtual fibers spread
ver the brain. The combination of these two procedures allowed
he construction of connection matrices at multiple scales by com-
uting the connection density between each pair of ROIs at each
cale. The whole procedures described by the flow chart in Fig. 2
re detailed in the following paragraphs. This work is developed
asically in Matlab (http://www.mathworks.com), and with the
elp of Freesurfer software (http://surfer.nmr.mgh.harvard.edu)
nd its related distributed Matlab functions among other home-
ade developments.

.2. MRI  acquisition

After written informed consent and in accordance with our
nstitutional guidelines and ethics committee, we scanned twenty
ealthy right-handed male volunteers in the age range of 22–35
ears. The imaging protocol was performed using a Siemens
imTrio 3T whole body MRI  system (with a 32-channel receive
ead matrix coil). Parallel imaging was used with an acceleration

actor of 2 and a Grappa reconstruction. The sequence is based on
 Stejkal–Tanner spin echo EPI model, with a 90◦ filp angle, a TR of
000 ms  and a TE of 136 ms,  and a maximal b-value of 8000 s/mm2.
-space was sampled over a hemisphere in a cubic lattice with
58 points by varying the diffusion gradient intensity and direction

uch that q = aqx + bqy + cqz, with a,b,c integers and
√

a2 + b2 + c2 ≤
, qx,qy,qz denoting the unit diffusion sensitizing gradient vec-
ors in the three respective coordinate directions. The axial field
f view was set to 212 by 212 mm and the size of the acquisi-
ion matrix was 96 by 96, yielding an in-plane resolution of 2.21
y 2.21 mm.  34 slices of 3 mm thickness were acquired yield-

ng an acquisition time of 26 min. The reconstruction of the data
as done according to the standard Diffusion Spectrum Imaging

DSI) protocol (Wedeen et al., 2005). By taking the Fourier trans-

orm of the modulus of the q-space signal in every voxel, the
esulting probability density function was projected radially yield-
ng an Orientation Distribution Function (ODF) in every voxel. In
ddition a high-resolution T1-weighted (MP-RAGE) MRI  was
ce Methods 203 (2012) 386– 397 387

acquired in a matrix of 256 × 256 × 128 voxels of isotropic 1 mm
resolution.

We confirmed that head motion in the data sets was not sig-
nificant. Eddy current distortions were minimized by maximizing
parallel imaging using an acceleration factor of 3 and using com-
pensated diffusion gradient. Post hoc eddy current correction was
not felt to be useful.

2.3. Generation of normalized cortical ROIs by atlas based
segmentation

For each subject, each ROI had to be placed in the same anatom-
ical location such that connectivity could be compared locally.
Every piece of this cortical puzzle should form a relatively com-
pact surface of more or less constant size and should be as small as
reasonable.

2.3.1. Template creation
To fulfill these constraints our methodology relies on a

template brain or atlas that was  initially generated from 40
manually labeled brains where 66 anatomically typical cortical
parcels were defined using curvature-based information (Desikan
et al., 2006). These 66 cortical parcels available in FreeSurfer
(http://surfer.nmr.mgh.harvard.edu) were, however, not small
enough to obtain a high-resolution connection matrix. Ideally the
ROIs should be small enough to approach the size of a voxel, but
noise, partial volume effects, variance in the registration and brain
anatomical variability would hamper reproducibility. With these
issues in mind, we decided that ROIs should not be smaller than
1.5 cm2 implying that the whole cortex would be divided approx-
imately into 1000 cortical ROIs. Below is a description of how we
obtained such a partition.

2.3.2. Parcellation of the template cortical surface
To avoid any ambiguity in the text, we  call the original gyral-

based ROIs produced by Freesurfer ‘parcels’ and not ROIs. First, the
number of ROIs per parcel, denoted by Np, was  calculated based
on the relative surface area of each template parcel, as well as
the desired total number of ROIs. This ensured that the variation
of the ROI surface area between different parcels remains mini-
mal. Then, for each parcel p, we perform a region growing from a
randomly chosen point of p by aggregating the neighboring vox-
els, until it reached the desired surface area. This creates the first
ROI of parcel p. Next, the other ROIs were generated from starting
points located close to the already existing ROIs, until the parcel
was fully covered with ROIs. In the second phase, we  identified the
Np biggest ROIs of the parcel and computed their centers of gravity.
We started a second growing process from these points, but this
time with all ROIs growing simultaneously. Using this two-phase
partitioning heuristic, we obtained ROIs that were compact and
of similar size (Hagmann et al., 2007). As we forced the template
ROIs to reach the same size, the resulting number of ROIs gener-
ated on the template cortex was  actually 998 and not 1000. It is
also important to emphasize that each parcel was  subdivided indi-
vidually, thus preventing the ROIs from overlapping on different
parcels.

The original cortical partition is made up of N = 998 ROIs. How-
ever the most suitable resolution between 998 and 66 ROIs actually
depends on the application. Thus, we  created a hierarchical decom-
position between 66 and 998 ROIs by successive grouping. On the
template brain, 2 or 3 neighboring ROIs at the 998 scales were man-

ually grouped into one ROI to build a partition into 483 ROIs. This
grouping operation was repeated several times until the 66 parcels
were recovered. Using this heuristic, we ended up with 5 embedded
cortical parcellations with N = {998, 483, 241, 133, 66}. In practice,

http://www.mathworks.com/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Fig. 1. Construction of normalized connection matrices. After the acquisition of the diffusion and high-resolution T1-weighted images: the ODF map  is calculated from
diffusion MRI  and used to perform tractography. The T1-weighted image registered onto the space of diffusion data is segmented, and parcellated into 66 cortical parcels.
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ach  parcel is subdivided into smaller ROIs of approximately identical surface such
igger  ROIs such that in the end 5 scales of cortex parcellation are made available (6
ombined with the tractography result to create connection matrices of successive 

his means that every vertex of the mesh representing the cortex
n the Freesurfer environment, had 5 labels identifying to what ROI
t belongs for every resolution.

.3.3. Cortical registration
Once the template cortex had been partitioned into a mosaic of
OIs at several resolutions, this parcellation could be transferred
o the subject’s cortex by means of cortical surface-based registra-
ion. The Freesurfer software (http://surfer.nmr.mgh.harvard.edu)
ffers a very reliable registration technique that is based on

ig. 2. Flow chart describing all the procedural steps. Anatomical T1 is registered on B0 wit
ub-cortical nuclei are extracted in this step, as well as ventricles. A cortical parcellation is
n  this step is used with the constructed multi-resolution atlases (Fig. 1) to obtain the RO
rom  which we remove non cortical ROIs as well as ventricles. Using the ODF from diffu
onstruction of the multi-resolution connection matrices using the ROIs in each resolutio
he total number of ROIs is 998. The 998 cortical ROIs are regrouped iteratively into
, 241, 483, 998). The deep gray nuclei are added to cortical ROIs. Each set of ROIs is
.

curvature information, i.e., sulcus and gyrus (Desikan et al., 2006;
Fischl et al., 2004). The cortical registration was carried out on
every subject based on the high-resolution T1-weighted image.
Through the registration of an individual parcel, by matching the
sulcal boundaries, its mesh gets stretched and deformed but the
neighborhood of individual vertices is preserved and as a matter of

consequence of the ROIs lying in that parcel. It is worth mentioning
that prior to this operation the T1-weighted image had been regis-
tered onto the space of the diffusion data with an affine registration
technique (Van Leemput et al., 1999).

h affine registration. Using Freesurfer software, the registered T1 is first segmented;
 performed in a second step to obtain cortical parcels. The calculated transformation
Is in respective resolutions. The WM mask is constructed using the cortical ribbon
sion images, the tractography is performed in the WM mask. The final step is the
n and the virtual fibers.

http://surfer.nmr.mgh.harvard.edu/
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Fig. 3. The average connection matrix of five healthy subjects at resolution 133,
representing the fibers density between every pair of ROIs in logarithmic scale. The
red and green squares correspond, respectively to right and left intra-hemispheric
L. Cammoun et al. / Journal of Neur

.4. Tractography

.4.1. Building the tractography mask
In order to obtain consistent tractography results, the segmen-

ation of the brain into white matter, cortex and deep cerebral
uclei is an essential step. In fact, the virtual fibers should be gen-
rated only in the white matter. To construct the tractography
ask, the cortical surface obtained from FreeSurfer was first filled.
ext, the ventricles and the deep gray nuclei (thalamus, pallidum,
utamen, caudate nucleus accumbens, subthalamus) as well as the
ippocampus and the amygdala were removed from the mask. The

ocation of these structures was obtained by an atlas-based seg-
entation (Fischl et al., 2002), using the same software. Since all

hese structures except for the ventricles are relays for the cerebral
bers, they are furthermore considered as ROIs as well as the brain
tem base, increasing the number of ROIs, respectively to {1015,
00, 258, 150, 83}.

.4.2. White matter tractography
Tractography is a post-processing method based on the

iffusion-weighted images. It constructs 3-dimensional curves of
aximal diffusion coherence. These curves, called virtual fibers, are

he estimates of the real white matter axonal bundle trajectories
Hagmann et al., 2004). We  used a tractography algorithm specifi-
ally designed for DSI data to create a set of such fibers for the whole
rain (Hagmann et al., 2007; Wedeen et al., 2008). At each voxel, a
et of directions of maximum diffusion was defined as local max-
ma  of the ODF. Then in each white matter voxel the same number
f fibers for every direction of maximum diffusion were initiated.
or example, in a voxel with 2 main directions, 4 fibers along each
irection were initiated (total 8). The starting points were chosen at
andom within the voxel. Next, from each such point a growth of a
ber is started in two opposite directions with a fixed step of 1 mm.
hen entering a new voxel, the fiber growth continues along the

irection of the vector of the maximum diffusion (in the new voxel)
hose orientation is the closest to the current direction of the fiber.

f this resulted in a change of direction sharper than 45◦/0.5 mm,
he growth was stopped. The growth process of a valid fiber fin-
shed when both its ends left the white matter mask. In this paper

e used about 3 million initialization points of which only about
ne half to two thirds of the resulting fibers connecting the cortical
reas were retained.

.5. Construction of the connection matrix

Considering the cortical parcellation and the white matter trac-
ography described in the previous paragraphs, the fiber bundle
(i,j) connecting each pair of ROI i and j could be identified. The
alue of the connection matrix cell M(i,j) was the connection den-
ity between this pair of ROIs, defined as follows:

(i, j) = 2
S(i) + S(j)

∑
f ∈ B(i.j)

1
l(f )

here S(.) is the area of ROI (.) and l(f) is the length of fiber f along
ts trajectory.

The correction term l(f) in the denominator is needed to elim-
nate the linear bias towards longer fibers introduced by the
ractography algorithm (Hagmann et al., 2007) which uses each
oxel in the white matter mask as a seed point.

To facilitate the visual interpretation of the connection matrix,
e organized the matrix by taking into account as much as possible
he ROI neighborhood. Inspired by brain development, we arranged
he 33 parcels of each hemisphere in a fronto-caudal order. Then

 linear order of the ROIs inside a parcel is intuitively the one
orresponding to the direction of ‘previous parcel to next parcel’.
connections. Off diagonal squares represent the interhemispheric connections. X-
and Y-axis color bars represent the parcels with the same color as template brain
(see insert). The right side color bar indicates the logarithm of fiber density.

Since this organization was  set up only once on a template brain, it
remained identical when applied to different subjects.

As a result, we obtained for each individual brain a set of 5 matri-
ces (one per resolution) that were embedded in each other. The
lowest resolution matrix entails as many entries as parcels in the
standard FreeSurfer output, i.e., 66. The highest resolution matrix
had 998 entries corresponding to 998 small ROIs (Fig. 1).

Fig. 3 represents the average connection matrix of five healthy
subjects at resolution 133. The connection matrix was organized
such that the upper left quadrant (with the red border) rep-
resents the connections in the right hemisphere and the lower
right quadrant (with the green border) represents the left hemi-
spheric connectivity. This matrix is symmetric since the measured
connectivity is not oriented. The off-diagonal quadrants map  the
inter-hemispheric connections. The color bars at the left and bot-
tom of the matrix help make the correspondence between the
matrix entries and the 66 cortical parcels as displayed on the insert
images. The color bar on the right codes the connection density
seen in the matrix itself in logarithmic scale.

3. Results

3.1. Normalized connection matrices at multiple scales

Fig. 4 shows some of the connection matrices at different res-
olutions as they were computed in one subject. It is possible to
identify known bundles from the connection matrix. In Fig. 4 we
give several examples. We  have selected groups of ROIs that are
expected to correspond to language areas (Wernicke’s and Broca’s
Area). The connections between these areas can easily be identi-
fied on the matrix and correspond to the arcuate fasciculus. The
latter with the uncinate, the occipito-frontal, the middle longitu-
dinal and the superior longitudinal fasciculi form long distance
connections, which are accordingly far from the diagonal of the
matrix. The cingulum bundle, which is made up mainly of sets

of alternating short connections, is located close to the diagonal
of the matrix. Another example is the pathways connecting the
homotopic primary visual cortices, which are represented in the
off-diagonal blocs. The occipito-frontal connection is represented



390 L. Cammoun et al. / Journal of Neuroscience Methods 203 (2012) 386– 397

Fig. 4. Identification of different fiber bundles on the different connection matrices. The identified bundles are: cingulum (CI) and uncinate (UN) shown in panel A; superior
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ongitudinal fasciculus (SLF) and occipito-frontal (OF) shown in panel B; arcuate 

onnection (CC) shown in panel D. All these bundles are also represented on other 

y two squares in the matrix because not all the ROIs belonging to
he frontal cortical area are neighbors in an arbitrary linear arrange-

ent of the matrix entries. All these bundles are reported on higher
esolution matrices where we could see these bundles spread out
n the white boxes related to the corresponding ROIs.

As there is no in vivo brain connectivity gold standard, Fig. 4 is
ssentially considered as an illustration of some pathways in the
onnection matrix. Because we know that some of well-known
undles are large, imposing, connecting pairs of big regions, and
ome other are more subtle, connecting some small but known
natomical ROIs (from histology for instance), the multi-scale
pproach makes sense in this context. In fact, based on the cur-
ent knowledge of the well-known pathways, the low-resolution
atrices enable to map  the connection between big bundles, con-

ecting anatomical gyri. Nevertheless, the subdivision of the big
arcels into smaller ROIs, normalized across subjects, enables to
etail more and more one given bundle and see its ramification.
e show in Fig. 5 the probability of existence of same bundles in

hree various resolutions through all the set of subjects. This was
one by averaging the binarized matrices of all the subjects. We
otice in these matrices, some red cells indicating the existence of
undles for all the subjects (Fig. 5A). In the same figure, to empha-
ize the node scale effect, we present for a single case a part of the
rcuate fasciculus in various scales to show the power of the multi-
esolution to identify the ROIs connecting this specific part of this
ell-known bundle Fig. 5C. We  notice in Fig. 5B the existence of

his bundle in the same cells in the resolution 83, some dark red
ells still remain in resolution 258 but in the higher resolution we
bserve more variability among subjects.

.2. Robustness
Since the ultimate aim of the methodology presented here is
o study connectivity in groups of subjects, it is essential at this
tage to evaluate its repeatability and robustness. The evaluation
lus (AF) and middle longitudinal (ML) shown in panel C; and cuneus homotopic
atrices.

has been done at the level of the ROI registration and of the con-
nection matrix itself. We  have proceeded in 3 steps: (1) we have
processed 5 data sets twice and have compared both results. (2)
We  have scanned the same 5 subjects twice, processed the double
data sets and compared both outputs. (3) We  have scanned and
processed 15 other healthy subjects and analyzed the connection
matrices of the whole group of 20 subjects at all the different scales.

3.2.1. Repeatability

(a) Same scans processed twice
In order to evaluate the reproducibility of cortical ROI

registration, and the complex pipeline used to achieve the
connectome, we  ran the whole processing twice on the same
datasets for 5 subjects.

First, we  evaluated the reproducibility of the method for
the 5 scales by computing the Pearson correlation coefficient
between the connection matrices resulting from the double
processing of the same data set. Even if the matrices cells
are dependents, the correlation coefficient is still a reasonable
metric to compare individual connection matrices globally; fur-
thermore the matrices of different individuals are independent.

If x and y are, respectively the elements of two matrices of
size N by N, the Pearson correlation coefficient is calculated for
the half of the matrices as they are symmetric and expressed
as follows:

R(x, y) =

∑
i=1:N

∑
j=i:N

(xij − x̄)(yij − ȳ)

√∑
i=1:N

∑
j=i:N

(xij − x̄)2
∑
i=1:N

∑
j=i:N

(yij − ȳ)
2

where
x̄ =

∑
i=1:N

∑
j=i:N

xij

N(N + 1)/2
and ȳ =

∑
i=1:N

∑
j=i:N

yij

N(N + 1)/2
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Fig. 5. Multi-resolution and node effect: (A) the average of the binarized connection matrices of all the subjects in resolutions 500, 258 and 83. (B) Enlarged view of the
c  that a
a bjects
s ct on 
onnection matrices highlighted in yellow in A and representing the groups of ROIs
rcuate  fasciculus. The dark red cell corresponds to one meaning that for all the su
ubjects or one subject having this connection. (C) Illustration of the node scale effe

We  see in Fig. 6, that the matrices resulting from the two
independent processings for this sub group were highly corre-
lated, but actually not equal to one since the whole processing
pipeline contains some probabilistic processes. In fact, the
first part of the processing using the Freesurfer software is not
deterministic, as well as the initialization of the tractography
algorithm. The correlation coefficients ranged between 0.977
and 0.998 depending on the resolution of the matrix. They
decrease linearly when the number of ROIs increases, as
would be expected since the small inaccuracies of the ROIs
registration are more perceptible on small ROIs then in high
resolution connection matrices. The p-values corresponding to
the correlation coefficients are very low (p � 10e−5).

To assess whether the performance of the method is homoge-
nous across bundle sizes (i.e., connection densities), a scatter
plot of each pair of double connections is presented in Fig. 7A.

We can see in Fig. 7A that for all resolutions the repeated
processings of the same subject data sets are highly correlated.
The correlation coefficient of each double set is presented on
the same figure with the same color as the data. However,
a considerable difference in the scatter plot small indices
(corresponding to small number of bundles) and large indices
(corresponding to large number of bundles) is noteworthy.
To further investigate the difference between the results of

the reprocessing of the same subjects, the Bland–Altman plot
(Bland and Altman, 1986) is presented in Fig. 7B. The inter-
pretation of these two plots together points out that generally
the big (i.e., dense) bundles are more reliably mapped than
re expected to correspond to language areas (Wernicke’s and Broca’s area) and the
 the respective connection exists, and the light blue cell corresponds to only some
one single subject, on the part of arcuate fasciculus.

the small ones at all resolutions. We also note that low reso-
lutions yield the best correlation and the smallest difference
between the double reprocessed data sets. This is probably
due to the fact that at high-resolution, the small cortical
ROIs introduce more noise because of the registration error.
We can also see in this figure that the variance of observed
value is smaller in low-resolution matrices. In fact the fiber
numbers were averaged on bigger bundles linking bigger
ROIs in the low-resolution matrices, reducing the noise of
observations.

It is worth investigating whether some particular nodes of the
matrix have more influence on the method stability, and par-
ticularly to assess this variation relative to bundle properties.

To assess this, the correlation coefficient matrix is calculated
for every double set. An average correlation matrix is then
obtained from the five original subject’s correlation matrices.
This is done for all resolutions. For a given resolution, e.g.,
the highest one, the correlation between the double subject
processings is calculated for every cell connecting the original
parcels Pi and Pj. We are considering the set of bundles of
all the ROIs in Pi connected with those in Pj. The correlation
matrices are therefore the same size as the low-resolution
connection matrix for all the data arising from any resolution.

These new matrices of each reprocessed subject data are cor-
related two by two  to give five correlation coefficient matrices

as well as their corresponding p-values. The cells in the matri-
ces containing less than two values (corresponding to the set
of numbers of bundles connecting the pair of the parcels) and



392 L. Cammoun et al. / Journal of Neuroscience Methods 203 (2012) 386– 397

Fig. 6. Comparison of connection matrices. The red box plots show the correlation coefficients between connection matrices of same five subjects ‘scans processed twice to
a s acqu
i inear 

t the re

(

c
c
t

ssess  the method repeatability. The green ones are related to the same five subject
nter-subjects variability studied on 20 subjects. For the three tests, we  observe a l
he  lowest ones. (For interpretation of the references to color in this figure legend, 

those where the fibers are artificially removed with a mask1 are
not considered in the calculation on the correlation coefficient.
Nevertheless, the cells where no bundles are found in both
processings are completely correlated (cor = 1) and considered.
The average correlation between the five subjects double sets
is then calculated considering only the locations where the
correlation coefficient is significant for all the five double set
(where the corresponding p-values are p < 5% corrected for
the 5 correlation matrices). These correlation matrices are
illustrated in Fig. 9A. They show in both hemispheres very high
correlations in most of connections in the matrices, which is
consistent with the global correlation coefficients illustrated
in the scatter plot of the reprocessed data.

b) Same subject, scanned twice
Given that additional perturbation factors related to the MRI

acquisition need to be taken into account, such as noise, head
positioning and motion, susceptibility artifacts and head-coil
sensitivity, the same subjects was scanned a second time,
about one month later, following the same protocol. The two
scans for every subject were processed independently.

The Pearson correlation coefficients between every pair of
resulting connection matrices were calculated. The results
presented in green in Fig. 6 show high correlation ranging from
0.976 to 0.874, though slightly lower than in the above section
(p � 10e−5). The same evaluations as presented in (a) are used

in this section. Fig. 8 shows the resulting scatter plots as well as
the Bland–Altman plot. As expected the repeatability measure
is considerably affected by the scan noise. The straight lines at

1 The inter-hemispheric cells connecting all frontal part to pre-central, post-
entral and paracentral are forced to zeros; as well as the inter-hemispheric
onnections of the gray nuclei to the other ROIs. Only the homotopic connections of
halami, sub-thalami, hypo-campus and the amygdala are maintained.
ired twice to evaluate the intra-subjects variability. The blue box plots express the
evolution of the correlation coefficients increasing from the highest resolutions to
ader is referred to the web version of the article.)

45◦ in the Bland–Altmann plot, correspond to the matrix posi-
tions where one observation has a zero value (no connection)
and the other has a connection present in the matrix. This is
more visible in the rescanned data typically because of the
diffusion noise. The same correlation coefficient matrices are
calculated for the rescanned data double sets. This is performed
as described above in the reprocessed data section, to highlight
in this case the nodes where the correlation is significantly low
in the same brain with different acquisitions. In Fig. 7B as noted
before, only significant correlations for all subjects are shown.
As expected, according to the correlations matrices the short
bundles (in diagonal) are less robust than the long ones. This is
potentially due to diffusion noise but also to the used tractog-
raphy algorithm, and its corresponding parameters, such as the
number of seed points or the number of considered direction
of the ODF chosen here to perform an acceptable tractography.

For both experiments, the reprocessed and rescanned data,
the correlation resulting from the two  higher resolution con-
nection matrices, seems to be better. It appears more dense
than the ones given by the low-resolution data, where holes
made the correlation matrices sparse. Nevertheless, this should
be interpreted with caution. In fact, low-resolution matrices
are more likely to contain parcels with only one or two ROIs,
which are not considered in the calculation of the correlation
as noted above.

3.2.2. Robustness over several subjects
Quantitatively evaluating the quality of the cortical ROI  match-

ing over different subjects is a difficult task since cortical
morphology varies strongly from one subject to the other, and

therefore even experts have a hard time agreeing on the location
of such small ROIs on the cortex. Therefore, we assessed the inter-
variability between the 20 subjects by calculating the Pearson
correlations between all pairs of their connection matrices on every
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Fig. 7. Same dataset processing repeatability assessment: (A) scatter plot of reprocessed data set of 5 subjects, and their correlation coefficient. Each color is corresponding
to  a subject dataset. (B) The Bland–Altman plot of the reprocessed datasets. The same color code than in (A) is adopted.
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Fig. 8. Subject’s repeatability assessment: (A) scatter plot of rescanned data set of 5 subjects, and their correlation coefficient. (B) The Bland–Altman plot of the rescanned
datasets. The same color code than in (Fig. 7) is adopted.
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cale. After Bonferroni correction for multiple testing, 50% of the
orrelation coefficient ranges from 0.724 to 0.767 for the highest
esolution and between 0.939 and 0.958 for the lowest resolution
p � 10e−5). These correlation coefficients presented in the blue
ox plot of Fig. 6 show a similarity between the brain connectivity
mong the group of subjects but also indicate an expected human
nter-subject variability making the coefficients lower than those
alculated in the previous sections for the same subjects. (For inter-
retation of the references to color in this text, the reader is referred
o the web version of the article.)

To assess the local inter-subject variability of the method, the
orrelation matrices are calculated between the twenty subjects
or each parcel and for each resolution. By averaging the pair-wise
orrelation matrices between each pair of twenty subjects and by
eeping only significant correlations, we obtain for the four reso-
utions what we may  call intervariability matrix. One interesting
oint is that the resolutions 250 and 125 seem to show the better
esults (Fig. 9C). In fact the highest ones contain many significantly
ow correlated connections, and the low-resolution one is sparse
ecause the parcels do not contain enough regions to make the
omparison possible.

The most important point to notice in this experiment is that
he shape of the connectivity over the entire set of subjects is main-
ained. In fact even though the correlation coefficients vary, the high
orrelation values prove the stability of the connectivity between
he twenty subjects.

It is important to note that for the inter-subject comparison and
or the assessment of the variability, normalization for brain size is
equired. The value of each matrix cell is therefore divided by the
umber of voxels in the related white matter mask, corresponding
o the number of seed points used for the fibers simulation.

.3. ROIs registration reliability

In order to assess the ROIs registration accuracy, at all the scales,
he following questions have been investigated: (1) is a particular
ortical area always anatomically located at the same place over
ll the subjects? And do selected cortical landmarks on the differ-
nt subjects fall in the same ROI i labels? (2) if not, is the distance
etween the homologous regions important?

To investigate and answer these questions, several well-
eatured points scattered over the cortex were manually located
y an expert (P.H.) on the template as well as on the 5 subject’s
ortices. The selection of these points was adhoc, chosen as visu-
lly identifiable by anatomical landmarks. These reference points
n the template; are shown for both hemispheres in Fig. S1.

Let us call VT the set of the 26 vertices selected by the expert
n the template. These reference vertices were transferred on the

 different subjects using the respective transformations already
alculated for the registration between the template and the cor-
ical surface of each subject. Let us denote by V′

T  i i = {1, · · · , 5} the
et of reference vertices after the transformation on the subject’s
ortices. The same expert has located the same cortical points on
he 5 subjects and selected the corresponding vertices; each set of
ubject’s points is called VSBJ i, i = {1, · · · , 5}.

If the label of the point i in V′
T  i (reference vertices set after trans-

ormation on the subject’s cortex) is the same label as the one of its
omologous i in VSBJ i for a given subject, we consider the match-

ng level equal to one, otherwise to zero. For each resolution the
atching level is calculated for all the points (26) projected on the 5

ubject’s cortices, the means and STD are, respectively 0.65 ± 0.12,
.72 ± 0.15, 0.74 ± 0.1, 0.76 ± 0.09 and 0.9 ± 0.1 for the resolution

oing from 1015 to 83.

Notice if the matching level seems low in the highest resolu-
ion, when the expected ROIs in V′

T  i and its analogous in VSBJ i are
ifferent, they are often neighbors.
ce Methods 203 (2012) 386– 397 395

To quantify this, the geodesic distance between every pairs of
vertices in V′

T  i and VSBJ i has been calculated. The mean distance
is 5.24 ± 2.42 mm  confirming the nearness of the ROIs, even if the
matching is not always perfect.

4. Discussion

Over the last years it has become clear that MR  based connec-
tomic techniques are of the highest interest for the neuroscience
community (Bassett et al., 2010; Bullmore and Sporns, 2009;
Fornito et al., 2010; Gross, 2008; Hagmann et al., 2010; Zalesky et al.,
2010), but methodological issues remains. The presented method is
a contribution to tackle these issues. We  showed step by step how to
partition the cortex in a standard way such that ROIs are robustly
placed on the same cortical surface across subjects, enabling the
construction of whole brain normalized connection matrix at mul-
tiple scales, which can be averaged and compared over population
of subjects.

Defining a connection matrix as presented here with a connec-
tion density measure, is only one way  to characterize connectivity.
Other tract properties can be computed to construct the matrix,
such as the Fractional Anisotropy or the Mean Diffusion or even
other values measured by MRI  such as the T2 or the Magnetization
Transfer Ratio (MTR) measured along the tracts, or even functional
connectivity based on fMRI. The integration of such measurements
will be worthwhile studying in the future.

The quantitative assessment of the performance of our method-
ology allows us to estimate what can and cannot be achieved. We
saw that the level of correlation between two successive process-
ing of same scans or of two  scans of same subjects are around 0.9
which is reliable despite the level of complexity and the number of
steps that are required to compute the connection matrix from the
raw images. With this remark in mind we  see that the correlations
between two  scans of the same subjects, but also overall 20 sub-
jects for all resolutions, are indeed high, especially for resolution
up to 133 or 241 ROIs. In fact for those latter resolutions, the ROIs
registration was  shown to be robust, since an expert selected the
correct ROIs with success rates of 77% and 73%, respectively. Addi-
tional experiments show precisely the location in the matrix where
the correlation coefficient is relatively high or low. They illustrate
also the fact that short bundles are generally less robust than long
bundles.

Depending on the study, going to smaller matrices might be ben-
eficial because inter-subject correlation is highest (around 0.951).
However, significant changes in connectivity may  be lost due to
large spatial averaging. On the other hand, using matrices that
are too large may  have, as a consequence, that variability due
to registration errors and MRI  noise is larger than the effective
connectivity difference between two  groups. Nevertheless, it has
been shown that even the highest resolution connection matrices
with the smallest ROIs have capacity to be at the source of pow-
erful analyses (Fornito et al., 2010; Hagmann et al., 2008; Honey
et al., 2009; Zalesky et al., 2010) (a) if one wants to study the
connectivity in one single subject (b) if connectivity has to be char-
acterized through local and global network measures, in which
case averaging occurs through the network measure itself. In con-
clusion, the right scale depends on the particular question being
investigated. This is the reason why  a multiscale approach may  be
valuable.

In fact, the subdivision of the big parcels into smaller ROIs, nor-

malized across subjects, enables to detail one given bundle and
see its ramification and vice versa. The role of the node number
is therefore important as it allows to give a multi-scale, embedded,
description of the connectome. This paper is precisely about this,
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Fig. 9. Intra and inter correlation coefficient matrices: (A) the average intra subject correlation matrix calculated for the five reprocessed subjects’ double sets. (B) The average
intra  subject correlation matrix calculated for the five rescanned subjects’ double sets. (C) The average inter subject correlation matrix for 20 subjects. Only significant (p < 0.05)
correlation coefficients are considered. Brown to yellow corresponds to decreasing correlation coefficient; and white corresponds to not applicable correlation coefficient.
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nd about the robustness and reproducibility of such an embedded
epresentation.

It is however, important to note that one of the limitations of
his method is directly linked to the tractography tool adopted
or the reconstruction of the virtual fibers. Depending on the cho-
en method this limitation is more or less sensitive to noise and
artial volume effects. In the current work we used the simplest
ractography method, which is the streamline algorithm adapted
o work with multiple directions reconstructed with DSI. The main
hortcoming of this method is that it exploits only a small portion
i.e., diffusion maxima of the ODFs) of the rich information pro-
ided by DSI (i.e., full 3D diffusion propagator). Concerning this, it
s worth noting that the present method will automatically benefit
rom any future tractography method, which would fully exploit
ll the information available with DSI acquisitions. Because the
oal of this paper is mainly to point out the potentials of the pro-
osed method, this aspect has not been considered further. In the
ame context, tractography limitations affect the mapping of the
uman connectome: we may  also capture aberrant connections
rising from partial volume effects or noise. And, some connections
unning through large fiber crossing areas may  not be mapped,
specially small bundles crossing big well aligned bundles, like
or instance the thalamo-frontal bundle generally deviated by the
allosal bundles, in our experiments. However, this methodology

rovides us with a map  of global connectivity which is representa-
ive of the major fiber pathways of the brain and will directly benefit
rom any advantage of other sophisticated tractography algorithms

inimizing these limitations.
 of the references to color in this figure legend, the reader is referred to the web

This normalized connection matrix opens up a whole range of
opportunities for clinical studies; either for longitudinal healthy
development analysis such as the development of connectivity with
age, or for the investigation of connectional disturbances in disease.
Indeed, in many pathologies, such as schizophrenia or epilepsy,
connectivity in some specific bundles is suspected of being affected
while inflammatory processes may  affect connectivity more glob-
ally. To investigate this kind of pathology the connection matrix
provides a promising tool for performing a group versus group
comparison if the difference in connectivity can be expected to
be in the same brain areas, or throughout the brain. Please notice
that especially, this multi-scale approach allows developing robust
and powerful methods for statistical group comparison of connec-
tion matrices, that fully exploits this embedding of one resolution
in the next one (see Meskaldji et al., 2011) that we published
recently.
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