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Let p be an arbitrary prime number and let P be a finite p-group.
Let A p(P ) be the partially ordered set (poset for short) of all non-
trivial elementary abelian subgroups of P ordered by inclusion and
let A p(P )�2 be the poset of all elementary abelian subgroups of P
of rank at least 2. In [Serge Bouc, Jacques Thévenaz, The poset of
elementary abelian subgroups of rank at least 2, Monogr. Enseign.
Math. 40 (2008) 41–45], Bouc and Thévenaz proved that A p(P )�2
has the homotopy type of a wedge of spheres (of possibly different
dimensions). The general objective of this paper is to obtain more
refined information on the homotopy type of the posets A p(P ) and
A p(P )�2. We give three different kinds of results in this direction.
Firstly, we compute exactly the homotopy type of A p(P )�2 when
P is a p-group with a cyclic derived subgroup, that is we give the
number of spheres occurring in each dimension in A p(P )�2.
Secondly, we compute a sharp upper bound on the dimension of
the spheres occurring in A p(P )�2 and give information on the p-
groups for which this bound is reached.
Thirdly, we determine explicitly for which of the p-groups with a
cyclic derived subgroup the poset A p(P ) is homotopically Cohen–
Macaulay.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

If G is a finite group and p is an arbitrary prime number, it is standard to denote by A p(G) the
partially ordered set (poset for short) of all elementary abelian p-subgroups of G ordered by inclusion.
As Quillen [12] pointed out, if G is a finite Chevalley group then A p(G) (or rather its associated
geometric realization) has the homotopy type of the Tits building of G , and hence has the homotopy
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type of a wedge of spheres. A natural related question, attributed to Thévenaz by Pulkus and Welker
in [11], is the following.

Question 1.1. If G is a finite group, does A p(G) have the homotopy type of a wedge of spheres?

A negative answer to this question was given by Shareshian [13], who proved that H̃2(A3(S13))

is not torsion-free (note, however, that a part of his proof relies on computer calculations). In [6],
Fumagalli claimed that Question 1.1 has a positive answer if the group G is solvable. Unfortunately,
his proof relies on a result that turns out to be false (see [2]), so that to our knowledge the following
question seems to remain opened.

Question 1.2. If G is solvable, does A p(G) have the homotopy type of a wedge of spheres (of possibly
different dimensions)?

In [11], Pulkus and Welker showed that for solvable groups G , the study of A p(G) can be reduced
to the study of upper intervals A p(CG(A))>A . According to [11], the homotopy type of these upper
intervals is not clear, even for p-groups. A first result in this direction was given by Bouc and Thévenaz
in [4], where they study the poset A p(P )�2 of all elementary abelian subgroups of P of rank at
least 2. They proved that for any p-group P , the poset A p(P )�2 has the homotopy type of a wedge
of spheres. This is related to upper intervals by the fact that for any A ∈ A p(P ) with |A| = p, there is
a homotopy equivalence A p(P )>A � A p(C P (A))�2. Computer calculations led Bouc and Thévenaz to
raise the following questions.

Question 1.3 (Bouc, Thévenaz). Let P be a p-group. Do the spheres occurring in A p(P )�2 all have the
same dimension if p is odd? Does one get only two consecutive dimensions if p = 2?

In Section 4, we review the results of Bouc and Thévenaz and show how they can be used ef-
fectively in some cases to determine the homotopy type of A p(P )�2. More precisely, we compute
the number of spheres occurring in each dimension in the homotopy type of A p(P )�2 when P is a
p-group with a cyclic Frattini subgroup. As a consequence, we obtain that Question 1.3 has a positive
answer if P has a cyclic derived subgroup.

In Section 5, we give first a sharp upper bound on the dimension of the spheres occurring in the
homotopy type of A p(P )�2. We consider then the problem of describing the p-groups for which this
bound is reached. Although we obtain a complete satisfactory answer if the p-valuation of the order
of the group is odd, the even case seems to be more difficult.

Upper intervals in A p(G) also play a key role in determining whether A p(G) is homotopically
Cohen–Macaulay. This is roughly speaking a recursive sphericity condition, in the sense that not only
the poset itself, but also the link of each k-simplex, must have the homotopy type of a wedge of
spheres (of prescribed dimensions). In Section 6, we determine for which of the p-groups with a
cyclic derived subgroup, the poset A p(P ) is homotopy Cohen–Macaulay. We will also show more
precisely at the end of this section how our results improve former results on this question.

Most of the time, in order to prove results concerning A p(P ) or A p(P )�2 for p-groups with a
cyclic derived subgroup, it is enough to consider p-groups with a cyclic Frattini subgroup. The advan-
tage lies in the fact that these groups are classified and their structure is easy to describe. We recall
in Section 3 the parts of the classification that are relevant for our purpose.

We briefly recall some notation and terminology in Section 2.
This work is part of PhD thesis [3] submitted at the Ecole Polytechnique Fédérale de Lausanne.

2. Notation

For the convenience of the reader, we introduce in this section the terminology we will use in this
paper. We begin with some notation in group theory. Most of our notation is standard and the reader
can refer to [8] if something is left unexplained.
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If G is a group, we denote by rp(G) the p-rank of G and if P is a p-group, we simply write r(P )

for rp(P ).
Let P be a p-group, we denote by Ω1(P ) the subgroup of P generated by elements of order at

most p, by P ′ the derived subgroup of P and by Φ(P ) the Frattini subgroup of P , that is the subgroup
of P generated by P ′ and all p-th powers of elements in P .

Remark 2.1. The key property to keep in mind is that the quotient P/Φ(P ) is an elementary abelian
p-group and hence can be viewed as a vector space over the field Fp with p elements. We will
frequently use this fact implicitly in this paper.

For two p-groups P1 and P2 with cyclic centers, we denote by P1 ∗ P2 the central product of P1
and P2. The amalgamation is performed by identifying the two unique central subgroups of order p of
the centers. In general, two different identifications will yield non-isomorphic central products. How-
ever, if Z is a central subgroup of a group P such that any automorphism of Z is the restriction of an
automorphism of the whole group P , then the central products performed over Z are all isomorphic.
This condition will always be satisfied for the groups studied in this work.

For � � 1, we use the notation P∗� for the iterated central product defined by P∗� = P ∗ P∗(�−1)

with P∗1 = P . We also make the convention P∗0 = 1.
For k � 1, we denote by C pk the cyclic p-group of order pk . As usual, we denote by D8, respec-

tively Q 8, the dihedral group, resp. quaternion group, of order 8. For m > 1, we write respectively
D2m+2 , SD2m+2 and Q 2m+2 for the dihedral, respectively semi-dihedral and quaternion group of or-
der 2m+1.

Let m > 1. Following [1], we denote by D+
2m+3 and Q +

2m+1 the 2-groups of order 2m+3 defined by
the following presentations.

D+
2m+3 = 〈

a,b, u
∣∣ a2 = b2 = u2m+1 = 1, [a,b] = 1, [a, u] = u2m

, [b, u] = u−2〉,

Q +
2m+3 = 〈

a,b, u
∣∣ a2 = u2m+1 = 1, b2 = u2m

, [a,b] = 1, [a, u] = u2m
, [b, u] = u−2〉.

For an odd prime number p and � � 1, we denote by X p2�+1 the extraspecial p-group of or-

der p2�+1 and exponent p. One has in particular X p2�+1 = X∗�
p3 , where X p3 is the non-abelian p-group

of order p3 and exponent p.
For an arbitrary prime number p � 2 and � � 1, we define the extraspecial p-group of type I and

order p2�+1 as the group X p2�+1 if p is odd and as the central product D∗�
8 if p = 2.

Let P be an extraspecial p-group of type I and order p2�+1 for some prime number p � 2. The cen-
ter of P is cyclic of order p and given a generator z of Z(P ), one can find generators x1, y1, . . . , x�, y�

of P satisfying the following conditions.

xp
i = yp

i = 1, for 1 � i � �,

[xi, x j] = [xi, y j] = [yi, y j] = 1, for 1 � i �= j � �,

[xi, yi] = z, for 1 � i � �.

Such generators x1, y1, . . . , x�, y� of P will be called symplectic generators of P . Our choice of termi-
nology is motivated by the fact that such a set of generators induces a symplectic basis on P/Z(P )

relatively to the non-degenerate alternating form induced by taking commutators.
Let us recall also some poset-related definitions and notation. Our terminology is standard and

more details can be found in Quillen’s paper [12] or Wachs’ survey [14].
We will use the same notation for a poset, its order complex and its geometric realization. If we

say that a poset has a certain topological property, we mean that its geometric realization has this
property.

We will say that a poset is discrete if its partial order is given by the identity.
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For an element x of a poset Q we denote by Q�x the subposet of Q defined by

Q�x = {
x′ ∈ Q

∣∣ x′ � x
}
.

The posets Q<x , Q�x and Q>x are defined similarly. For x1 < x2, the open interval (x1, x2) is the
poset Q>x1 ∩ Q<x2 .

A poset Q is said to be conically contractible if there is a poset map f : Q → Q and an element
x0 ∈ Q such that

x � f (x) � x0, for all x ∈ Q.

Recall that for two elements x, y of a poset Q, the join x ∨ y of x and y in Q is an element of Q
greater than or equal to both x and y that is less than all other such elements. This element x ∨ y
may not exist, but if it exists it is unique. An element x0 ∈ Q is a conjunctive element if for each
x ∈ Q the join x ∨ x0 exists in Q.

Let us emphasize here the fact that if a poset Q has a conjunctive element, then Q is conically
contractible, hence contractible. This is a direct consequence of Quillen’s fiber lemma [12] and the
fact that the geometric realization of a poset with a top element is a cone, hence is contractible.

The suspension of a poset Q is the poset Σ Q = Q ∪ {o1,o2}, where o1 and o2 are smaller than
every element of Q but there is no order relation between o1 and o2.

3. p-groups with a cyclic Frattini subgroup

Let P be a p-group. The elementary abelian subgroups of P have exponent p, so that

A p(P ) = A p
(
Ω1(P )

)
.

This allows one to assume that P = Ω1(P ), i.e. that P is generated by elements of order p. In this
case, the abelian group P/P ′ is also generated by elements of order p, hence has exponent p. It
follows that P/P ′ is elementary abelian and thus Φ(P ) is equal to P ′ .

This fact is particularly useful in order to describe A p(P ) when P has a cyclic derived subgroup.
Indeed, one can then assume that P is a p-group with a cyclic Frattini subgroup, the advantage being
that these groups are classified and can be rather easily described. This knowledge of the structure of
these groups is essential to most of the calculations performed in this paper, especially in Section 4
and Section 6. There is however no need for a deep understanding of how this classification can be
performed and we will mostly state the results without further details. The interested reader can refer
to [3] for a complete account of this classification.

Lemma 3.1. If P is p-group with a cyclic Frattini subgroup, then P = Q × E, where E is elementary abelian
and both Φ(Q ) and Z(Q ) are cyclic.

Proof. Let Z = Ω1(Z(P )) and let U = Φ(P )∩ Z . Since Z is elementary abelian, we can choose E such
that Z = U × E . Since P/Φ(P ) is elementary abelian, we can choose a subgroup Q of P such that

P/Φ(P ) = Φ(P )Z/Φ(P ) × Q /Φ(P ).

It is not difficult to see that Q and E have the desired properties. �
We wish to describe the p-groups with a cyclic Frattini subgroup. In view of the preceding lemma,

we may assume that the center itself is cyclic. When Φ(P ) is further assumed to be central, these
groups behave very similarly to extraspecial p-groups, in the sense that there is a natural geometry
on P/Z(P ) induced by taking commutators and p-th powers. The situation is however very different
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when Φ(P ) is not central. Note that the following result, which can be found in [1], shows that this
happens only for p = 2.

Lemma 3.2. Let p be and odd prime number and let P be a p-group. If Φ(P ) is cyclic, then Φ(P ) is also
central.

Calculations are indeed far more complicated when the Frattini subgroup is not central and this
case will occupy most of this paper. For this reason, we will frequently distinguish between these two
cases, as in the next proposition.

Proposition 3.3. Let P be a non-abelian p-group with both Φ(P ) and Z(P ) cyclic.

1. If Φ(P ) is central and Ω1(P ) = P , then P is isomorphic either to X∗�
p3 , D∗�

8 , D∗�
8 ∗ C4 or D∗�

8 ∗ Q 8 , for

some � � 1.
2. If Φ(P ) is not central, then p = 2 and P is isomorphic to a central product D∗�

8 ∗ S, for some � � 0 and
with S is isomorphic to one of the following groups, all with m > 1.

D2m+2 , Q 2m+2 , SD2m+2 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D+
2m+3 , Q +

2m+3 , D+
2m+3 ∗ C4.

Moreover, Ω1(P ) = P unless P is isomorphic to SD2m+2 or Q 2m+2 .

4. The poset Ap(P )���2

If P is a p-group, we denote by A p(P )�2 the poset of all elementary abelian subgroups of P of
rank at least 2. In this section, we describe the homotopy type of A p(P )�2 when P is a p-group
with a cyclic derived subgroup. Our main tool is a wedge decomposition of A p(P )�2 due to Bouc
and Thévenaz [4]. We begin this section by reviewing this result and some of its consequences on the
structure of A p(P ).

Proposition 4.1 (Bouc, Thévenaz). Let P be a p-group with a cyclic center and let Z = Ω1(Z(P )). Suppose that
P contains a normal elementary abelian subgroup E0 of rank 2 and let M = C P (E0). There is then a homotopy
equivalence

A p(P )�2 �
∨

F∈F
Σ A p

(
CM(F )

)
�2, (1)

where F = {F ∈ A p(P )>Z | M ∩ F = Z} and Σ is the suspension operator. In particular, for all k � 0 there is
an isomorphism

H̃k
(

A p(P )�2
) ∼=

⊕

F∈F
H̃k−1

(
A p

(
CM(F )

)
�2

)
. (2)

Proof. See [4] for the original proof and see also [2] for a slight generalization. �
Remark 4.2. In the context of the preceding proposition, considering the action of the p-group P on
the elementary abelian normal subgroup E0, one can see that M = C P (E0) has index p in P .

Let us mention here for further reference that the existence of the normal subgroup E0 in the
previous proposition is guaranteed in almost all cases by the following standard result.

Lemma 4.3. If P is a p-group with no non-cyclic abelian normal subgroups, then either P is cyclic, or p = 2
and P is isomorphic to D2m+2 , m > 1, Q 2m+2 , m � 1, or SD2m+2 , m > 1.
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Proof. See for example Theorem 5.4.10 in [8]. �
Proposition 4.1 is the key ingredient in the proof of the following general result on the homotopy

type of A p(P )�2. See [4] for details.

Proposition 4.4 (Bouc, Thévenaz). For any p-group P , the poset A p(P )�2 has the homotopy type of a wedge
of spheres.

To relate this result with upper intervals in A p(P ), one can use the following standard fact.

Lemma 4.5. Let P be a p-group and let A be a central elementary abelian subgroup of P of rank r. There is a
homotopy equivalence

A p(P )>A � A p(P )�r+1.

Proof. This follows from Quillen’s fiber lemma [12]. To be a little more precise, the inclusion map
A p(P )>A ↪→ A p(P )�r+1 has a homotopy inverse given by the map sending B ∈ A p(P )�r+1 to B A ∈
A p(P )>A . �
Corollary 4.6. If A is a subgroup of order p of a p-group P , then A p(P )>A has the homotopy type of a wedge
of spheres.

Proof. By Lemma 4.5, the poset A p(P )>A = A p(C P (A)>A) is homotopy equivalent to the poset
A p(C P (A))�2. �

Recall that the objective of this section is to describe the homotopy type of the poset A p(P )�2
for all p-groups with a cyclic derived subgroup. In view of the reductions made at the beginning of
Section 3, we will restrict our attention to p-groups generated by elements of order p and with a
cyclic Frattini subgroup. We will also assume that Z(P ) is cyclic, since otherwise Z = Ω1(Z(P )) is a
conjunctive element in the poset A p(P )�2, which is then contractible.

When p is odd, these assumptions are only satisfied if P is extraspecial of type I (see Proposi-
tion 3.3). In this situation, A p(P )�2 is homotopy equivalent to A p(P )>Z(P ) and the homotopy type
of this later poset can be determined by a standard argument using buildings (see for example [12]).
We give here an alternative proof based on the wedge decomposition provided in Proposition 4.1.

Proposition 4.7. Let p be an odd prime number and let P = X p2�+1 be an extraspecial p-group of type I and

order 22�+1 , � � 1. Then A p(P )�2 has the homotopy type of a wedge of p�2
spheres of dimension � − 1.

Proof. If � = 1, i.e. P = X p3 , then A p(P )�2 is a discrete poset consisting of p + 1 points, hence has
the homotopy type of a wedge of p spheres of dimension 0.

Suppose now � > 1. As a consequence of Lemma 4.3, there exists in P a normal elementary abelian
subgroup E0 of rank 2. Let M = C P (E0), then Proposition 4.1 gives a homotopy equivalence

A p(P )�2 �
∨

F∈F
Σ A p

(
CM(F )

)
�2, (3)

where F = {F ∈ A p(P )>Z(P ) | M ∩ F = Z(P )}. Since P has exponent p, the set F corresponds bijec-
tively to the set of all 1-dimensional complements of M/Z(P ) in P/Z(P ) and hence |F | = p2�−1.

Furthermore, the group E0 F is isomorphic to X p3 (consider the action of F on E0 by conjugation)

and P = E0 F ∗ CM(F ). It follows that CM(F ) is extraspecial of type I and order p2�−1. By a recursive
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argument, we have now that A p(CM(F ))�2 has the homotopy type of a wedge of p(�−1)2
spheres of

dimension � − 2.
Putting this information in (3), we see that A p(P )�2 has the homotopy type of a wedge of p2�−1 ·

p(�−1)2 = p�2
spheres of dimension �−1 (the dimension of the spheres is increased by the suspension

operator) and the proposition is proved. �
In view of the reductions made above, the preceding proposition closes the discussion for p odd.

This is the content of the following corollary.

Corollary 4.8. Let p be an odd prime number. If P is a p-group with a cyclic derived subgroup, then A p(P )�2 is
contractible, unless Ω1(P ) is extraspecial of type I, say Ω1(P ) = X p2�+1 , in which case A p(P )�2 is homotopy

equivalent to a wedge of p�2
spheres of dimension � − 1.

When p = 2 the situation is a little bit more complicated. In similarity with the case p odd,
an argument using buildings and the Solomon–Tits theorem can be used when Φ(P ) is central in P .
Here also Proposition 4.1 can be used instead. The proof is very similar to the proof of Proposition 4.7.
We have however to be more careful with the order of the elements.

Proposition 4.9.

a) If P = D∗�
8 with � � 1, then A2(P )�2 has the homotopy type of a wedge of 2�(�−1) spheres of dimension

� − 1.
b) If P = D∗�

8 ∗ C4 with � � 0, then A2(P )�2 has the homotopy type of a wedge of 2�2
spheres of dimension

� − 1.
c) If P = D∗�

8 ∗ Q 8 with � � 0, then A2(P )�2 has the homotopy type of a wedge of 2�(�+1) spheres of
dimension � − 1.

Proof. Suppose first P = D∗�
8 . If � = 1, i.e. P = D8 the result is clear. Suppose � > 1 and let z be a

generator of Z(P ) and x1, y1, . . . , x�, y� be symplectic generators of P . Recall that they are elements
of order 2 satisfying the following conditions.

[xi, x j] = [xi, y j] = [yi, y j] = 1, for 1 � i �= j � �,

[xi, yi] = z, for 1 � i � �.

Let E0 be the elementary abelian subgroup of P generated by z and y1. It is clear from the above
conditions that E0 is normal in P . Note that M = C P (E0) has the following generators.

M = 〈y1, x2, y2, . . . , x�, y�〉.

Proposition 4.1 gives a homotopy equivalence

A2(P )�2 �
∨

F∈F
Σ A2

(
CM(F )

)
�2, (4)

where F = {F ∈ A p(P )>Z(P ) | M ∩ F = Z(P )}. A subgroup F ∈ F is generated by z and an element
x1 yk

1x with k ∈ {0,1} and x in the subgroup D of P generated by the elements x j, y j for j � 2. Since
F is elementary abelian, we have

1 = (
x1 yk

1x
)2 = zkx2.
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We must have therefore k = 0 if x has order 2 and k = 1 if x has order 4. It follows that the elements
x1 yk

1x of order 2 are in bijection with the elements of D . Furthermore, two such elements x1 yk
1x and

x1 yk′
1 x′ define the same subgroup in F if and only if they differ by an element of Z(P ). We have

therefore |F | = |D/Z(D)| = 22(�−1) .
It is not difficult to see that in all cases the centralizer CM(F ) is isomorphic to D∗(�−1)

8 .
Putting this in Eq. (4) shows that the poset A2(D∗�

8 )�2 has the homotopy type of a wedge

of 22(�−1) copies of the suspension of the poset A2(D∗(�−1)
8 )�2. The homotopy type follows then

from an induction argument.
The proofs for P = D∗�

8 ∗ C4 and P = D∗�
8 ∗ Q 8 follow exactly the same pattern and (technical)

details are left to the reader. Let us however mention that for P = D∗�
8 ∗ C4, there are 22�−1 subgroups

in F all with a centralizer isomorphic to D∗(�−1)
8 ∗ C4. For P = D∗�

8 ∗ Q 8, there are 22� subgroups in F ,

all with a centralizer isomorphic to D∗(�−1)
8 ∗ Q 8. �

If the Frattini subgroup of P is not central, then it follows from the reductions made above and
Proposition 3.3 that P is isomorphic to a central product D∗�

8 ∗ S , where � � 0 and S is one of the
following groups.

D2m+2 , SD2m+2 , Q 2m+2 , D+
2m+3 , Q +

2m+3 , D+
2m+3 ∗ C4, D2m+2 ∗ C4, SD2m+2 ∗ C4. (5)

Note that in order to be consistent with our assumption that P = Ω1(P ), we should not consider
the two cases P = SD2m+2 and P = Q 2m+2 . We have however chosen to include them in the statement
of the following proposition for convenience and clarity.

Proposition 4.10. Let m > 1 and � � 0. Let P = D∗�
8 ∗ S, where S is one of the groups in the list (5).

1. If S = SD2m+2 , then:
• If � = 0, A2(P )�2 has the homotopy type of a wedge of 2m−1 − 1 spheres of dimension 0.

• If � � 1, A2(P )�2 has the homotopy type of a wedge of 2�2
(2m−2(2� + 1) − 1) spheres of dimension �

and 2�2+m−2(2� − 1) spheres of dimension � − 1.
2. If S = D+

2m+3 ∗ C4 , then A2(P )�2 is contractible.
3. Otherwise, A2(P )�2 has the homotopy type of a wedge of N spheres of dimension d, where N and d take

the following values.
• N = 2�2

(2m−1(2� + 1) − 1) and d = � if S = D2m+2 .

• N = 2�2
(2m−1(2� − 1) + 1) and d = � − 1 if S = Q 2m+2 .

• N = 2(�+1)2+m−2 and d = � if S = D+
2m+3 .

• N = 2(�+1)2+m−2 and d = � if S = Q +
2m+3 .

• N = 2(�+1)2+m−1 and d = � if S = D2m+2 ∗ C4 .

• N = 2(�+1)2+m−1 and d = � if S = SD2m+2 ∗ C4 .

Proof. The proof follows exactly the same pattern as the proof of Proposition 4.9. The main difference
is in the fact that there may be centralizers of different isomorphism types. To illustrate this, we will
give some hints on how to find the centralizers when P = D∗�

8 ∗ SD2m+2 . The choice of this group is
motivated by the fact that it is the only case in which we will obtain spheres of different dimensions.

Let P = D∗�
8 ∗ S with S = SD2m+2 . The case � = 0 is easy and we assume from now � � 1. Let z

be a generator of Z(P ) and let D denote the subgroup D∗�
8 of P . Let x1, y1, . . . , x�, y� be symplectic

generators of D .
Let E0 be the subgroup of P generated by y1 and z and let M = C P (E0). The subgroup E0 is

elementary abelian and normal in P and Proposition 4.1 gives a homotopy equivalence
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A2(P )�2 �
∨

F∈F
Σ A2

(
CM(F )

)
�2, (6)

where F = {F ∈ A p(P )>Z | M ∩ F = Z}.
The group S = SD2m+2 can be generated by two elements a, u, with u of order 2m+1, a of order 2

and aua−1 = u−1+2m
. The group M has then the following generators

M = 〈y1, x2, y2, . . . , x�, y�, u,a〉.

A subgroup F in F is generated by z and an element g of order 2 which does not commute with y1.
The element g has the form g = x1 yε

1xs, for some ε ∈ {0,1}, and where x is in the subgroup generated
by the xi, yi ’s for i � 2 and s is in the subgroup S . It is not difficult to describe all the possible choices
of such an element g and hence all the subgroup in F . It remains then to describe for each F ∈ F
the centralizer of F in M . We will not do this in full details, but we will give examples of the three
different situations that can arise.

If F is generated by g = x1 and z, then CM(F ) = CM(g) is isomorphic to D∗�−1
8 ∗ SD2m+2 . More

precisely, CM(F ) has the following generators

CM(F ) = 〈x2, y2, . . . , x�, y�, u,a〉,

where w = u2m−1
. If F is generated by g = x1a and z, then CM(F ) is isomorphic to D∗�

8 . More precisely,
CM(F ) has the following generators

CM(F ) = 〈x2, y2, . . . , x�, y�, y1 w,a〉.

If F is generated by g = x1au and z, then CM(F ) is isomorphic to D∗�−1
8 ∗ Q 8. More precisely, CM(F )

has the following generators

CM(F ) = 〈x2, y2, . . . , x�, y�, y1 w,au〉

and the subgroup generated by y1 w and au is isomorphic to Q 8.
Altogether, we find 22�−1(2m−1 + 1) subgroups in F and among them 22�−1 have a centralizer

in M isomorphic to D∗�−1
8 ∗ SD2m+2 , 22�+m−3 have a centralizer in M isomorphic to D∗�−1

8 ∗ D8 and

22�+m−3 have a centralizer in M isomorphic to D∗�−1
8 ∗ Q 8. Putting all this information in Eq. (6), the

result follows now by an induction argument and Proposition 4.9.
If S is isomorphic to D2m+2 or Q 2m+2 , the proof is very similar. The only difference is in the number

of subgroups in F and the isomorphism types of their centralizers in M . More precisely, if S is
isomorphic to D2m+2 , then one obtains that 22�−1 subgroups in F have a centralizer in M isomorphic
to D∗�−1

8 ∗ D2m+2 and 22(�−1)+m subgroups in F have a centralizer in M isomorphic to D∗�
8 . If S is

isomorphic to Q 2m+2 , then one obtains that 22�−1 subgroups in F have a centralizer in M isomorphic
to D∗�−1

8 ∗ Q 2m+2 and 22(�−1)+m subgroups in F have a centralizer in M isomorphic to D∗�−1
8 ∗ Q 8.

If S is isomorphic to D+
2m+3 or Q +

2m+3 , the calculations are eased by the choice of a different sub-
group E0. Recall from the definition of these groups (see Section 3) that S has a generator of u of
order 2m+1 and a generator a of order 2 acting on u by [a, u] = u2m

. We let E0 be the subgroup of P
generated by a and z. With this choice, we find in both cases that there are 22�+m−1 subgroups in F ,
all with a centralizer in M isomorphic to D∗�

8 ∗ C4.
If S is isomorphic to D2m+2 ∗ C4, SD2m+2 ∗ C4 or D+

2m+3 ∗ C4, then we can choose E0 to be the
subgroup of P generated by wc and z, where c is a generator of the central summand C4 and w is
an element of order 4 in Φ(S). In the first two cases, we obtain that there are 22�+m subgroups in F ,
all with a centralizer isomorphic to D∗�

8 ∗ C4. In the third case, namely S = D+
m+3 ∗ C4, we obtain that
2
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all centralizers in M of elements of F have central elementary abelian subgroup of rank 2, hence
A2(CM(F ))�2 is contractible. �
Remark 4.11. The programming language GAP [7] was particularly useful to check the numerical re-
sults of Proposition 4.10 for some (small) values of � and m.

As a corollary to all these computations, we obtain that p-groups with a cyclic derived subgroup
give a positive answer to Question 1.3 raised by Bouc and Thévenaz.

Corollary 4.12. Let P be a p-group with cyclic derived subgroup. Then:

a) If p is odd, A p(P )�2 is homotopy equivalent to a wedge of spheres of the same dimension.
b) If p = 2, then A p(P )�2 is homotopy equivalent to a wedge of spheres of the same dimension, or of two

consecutive dimensions.

5. Maximal dimension of spheres in Ap(P )���2

Let P be a p-group of order pn for some n � 1. As Bouc and Thévenaz showed in [4] (see Proposi-
tion 4.4), the poset A p(P )�2 is homotopy equivalent to a wedge of spheres. Of course, the dimension
of these spheres cannot be greater than the dimension of the simplicial complex A p(P )�2, that is
r(P ) − 2. The dimension of A p(P )�2 is in particular bounded by n − 2. But even though the di-
mension of A p(P )�2 can reach the bound n − 2 (if P is elementary abelian), the dimension of the
spheres has actually a much smaller bound. Indeed, as the next proposition shows, the dimension of
the spheres cannot be greater than �n−1

2 �, where for any positive real number r we denote by �r�
the greatest integer n such that n � r.

Proposition 5.1. Let p be an arbitrary prime number. If P is a p-group of order pn, n � 1, then
H̃k(A p(P )�2) = 0 if k � �n−1

2 �.

Proof. The proof goes by induction on n. It is clear for n = 1,2,3 and we assume from now on n � 4.
If |Ω1(Z(P ))| > p, then A p(P )�2 is contractible and the result holds trivially. If either P is cyclic,

or p = 2 and P is isomorphic to one of the groups

D2n , Q 2n or SD2n (7)

with n � 4, then H̃k(A p(P )�2) = 0 for k � 1, so that the result holds for these groups.
Suppose now that Z = Ω1(Z(P )) has order p and that P is neither cyclic nor one of the groups

in (7). By Lemma 4.3, we have that P contains a normal elementary abelian subgroup E0 of rank 2
containing Z . Let M = C P (E0), Proposition 4.1 gives an isomorphism

H̃k
(

A p(P )�2
) ∼=

⊕

F∈F
H̃k−1

(
A p

(
CM(F )

)
�2

)
, (8)

where F = {F ∈ A p(P )�2 | F ∩ M = Z}.
For any F ∈ F we have CM(F ) < M , since otherwise F would be central in P (see Remark 4.2)

and this would contradict our assumption that |Z | = p. We have thus that |CM(F )| = pr for some
r � n − 2.

By induction we have then H̃k−1(A p(CM(F ))�2) = 0 if k − 1 � � r−1
2 �. But since r � n − 2, we have

in particular that H̃k−1(A p(CM(F ))�2) = 0 if k − 1 � �n−3
2 � = �n−1

2 �− 1. Using this information in (8)

shows that H̃k(A p(P )�2) = 0 if k � �n−1
2 � and the proposition is proved. �
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The preceding proposition tells us that the dimension of the spheres occurring in A p(P )�2 is
bounded by �n−3

2 �. It is not difficult to see that this bound is actually sharp (see Proposition 5.2 and
the examples following Proposition 5.3). We will call this value �n−3

2 � the maximal dimension of spheres
in A p(P )�2 and we will say that A p(P )�2 has spheres in maximal dimension if there is at least one
sphere of dimension �n−3

2 � in its homotopy type.
If P has order pn with n odd, say n = 2� + 1, the maximal dimension of the spheres in A p(P )�2

is then equal to � − 1. In view of Proposition 4.7 and Proposition 4.9, we already know that if P is
extraspecial of type I and order p2�+1 then A p(P )�2 has spheres in maximal dimension. What is
maybe more surprising is that the converse also holds as the next proposition shows.

Proposition 5.2. Let p be an arbitrary prime number and let P be a p-group of order p2�+1 with � � 1. Then
H̃k(A p(P )�2) = 0 if k � �. Furthermore, H̃�−1(A p(P )�2) �= 0 if and only if P is extraspecial of type I.

Proof. The first assertion, namely H̃k(A p(P )�2) = 0 for k � �, follows directly from Proposition 5.1.
Let P be an extraspecial p-group of type I and order p2�+1, with � � 1. We know from

Proposition 4.7 and Proposition 4.9 that the poset A p(P )�2 has the homotopy type of a wedge

of p�2
spheres, respectively 2�(�−1) spheres if p = 2, of dimension � − 1. Since � � 1, this implies

H̃�−1(A p(P )�2) �= 0.
The proof of the converse goes by induction on �. It is clear for � = 1 and we suppose from

now on � � 2. The hypothesis H̃�−1(A p(P )�2) �= 0 implies in particular that P is not cyclic, dihedral,
quaternion or semidihedral and that Ω1(Z(P )) is cyclic of order p. It follows that P has a normal
elementary abelian subgroup E0 of rank 2 and Proposition 4.1 gives then an isomorphism

H̃�−1
(

A p(P )�2
) ∼=

⊕

F∈F
H̃�−2

(
A p

(
CM(F )

)
�2

)
,

where M = C P (E0) and F = {F ∈ A p(P )�2 | F ∩ M = Z}. By assumption H̃�−1(A p(P )�2) �= 0, so that
there exists a subgroup F0 ∈ F such that H̃�−2(A p(CM(F0))�2) �= 0. By Proposition 5.1 we must have
then � − 2 < � r−1

2 �, where |CM(F0)| = pr . Since CM(F0) < M (otherwise F0 would be central in P ),
we also have r � 2� − 1 and these two conditions together force r to be equal to 2� − 1.

Now, CM(F0) has order p2(�−1)+1 and H̃�−2(A p(CM(F0))�2) �= 0, so that by the induction hypoth-
esis CM(F0) is extraspecial of type I. Since P is a central product P = CM(F0) ∗ (E0 F0) and E0 F0 is
extraspecial of type I, we have that P is extraspecial of type I. �

The proof of Proposition 5.2 can be adapted when the p-valuation of the order of the group is
even. The obtained result is the content of the following proposition.

Proposition 5.3. Let p be an arbitrary prime number and let P be a p-group of order p2� , with � � 2. Then
H̃k(A p(P )�2) = 0 if k � � − 1. Moreover, if H̃�−2(A p(P )�2) �= 0, then P has a maximal subgroup which is
extraspecial of type I.

Proof. The first assertion, namely H̃k(A p(P )�2) = 0 for k � �−1, follows directly from Proposition 5.1
since � 2�−1

2 � = � − 1.

Let now P be such that H̃�−2(A p(P )�2) �= 0. Since � � 2, we have in particular that Z = Ω1(Z(P ))

has order p (otherwise A p(P )�2 would be contractible). The proof goes by induction on � and we
treat first the case � = 2, i.e. |P | = p4. We have thus by assumption that

H̃0
(

A p(P )�2
) �= 0. (9)

This condition (9) implies in particular that P is not cyclic and that P is not quaternion if p = 2. If
P = D16 or SD16, then P contains a maximal subgroup isomorphic to D8 so that the result will always
hold for these groups. Note that (9) holds in these two cases.
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We assume now that P is not cyclic and furthermore that P is neither dihedral, semi-dihedral nor
quaternion if p = 2. It follows then from Lemma 4.3 that P has a normal elementary abelian subgroup
E0 of rank 2 with Z � E0. Let M = C P (E0), Proposition 4.1 gives an isomorphism

H̃0
(

A p(P )�2
) ∼=

⊕

F∈F
H̃−1

(
A p

(
CM(F )

)
�2

)
,

where F = {F ∈ A p(P )�2 | F ∩ M = Z}. Condition (9) implies that there exists an elementary abelian
subgroup F �= E0 of rank 2 containing Z = Ω1(Z(P )) and such that A p(CM(F ))�2 = ∅. It follows that
E0 does not centralize F and hence E0 F is an extraspecial p-group of type I and order p3. Since
|P | = p4, it follows that E0 F is maximal in P so that the result holds for � = 2.

We assume from now on � � 3 and we have by assumption that

H̃�−2
(

A p(P )�2
) �= 0. (10)

This condition (10) implies in particular that P is not cyclic and that P is not quaternion if p = 2.
Since � � 3, this implies also that P is not dihedral, nor semi-dihedral. It follows now that P has a
normal elementary abelian subgroup E0 of rank 2 with Z � E0. Let M = C P (E0), Proposition 4.1 gives
an isomorphism

H̃�−2
(

A p(P )�2
) ∼=

⊕

F∈F
H̃�−3

(
A p

(
CM(F )

)
�2

)
, (11)

where F = {F ∈ A p(P )�2 | F ∩ M = Z}.
Since the left-hand term of (11) is not trivial by assumption, there exists F0 ∈ F such that

H̃�−3(A p(CM(F0))�2) �= 0. To ease notation, let C0 = CM(F0) and let pa be the order of C0. Since
C0 is strictly contained in M , we have a � 2� − 2. Furthermore, Proposition 5.1 implies � − 3 < � a−1

2 �.
These two conditions imply a = 2� − 2 or a = 2� − 3.

Let us see first what happens if a = 2�−2. In this situation, C0 is maximal in M and P = C0 ∗ E0 F0.
But since the order of C0 is p2(�−1) and H̃�−3(A p(CM(F0))�2) �= 0, we have by induction that C0 has
a maximal subgroup N which is extraspecial of type I. The subgroup N ∗ E0 F0 is then extraspecial of
type I and maximal in P .

Let us see now what happens if a = 2�−3 = 2(�−2)+1. Since we have H̃�−3(A p(CM(F0))�2) �= 0,
it follows from Proposition 5.2 that C0 is extraspecial of type I. Therefore C0 ∗ E0 F0 is extraspecial of
type I and is maximal in P .

In both cases P has a maximal subgroup which is extraspecial of type I and the proposition is
proved. �

To our knowledge, there is no classification of p-groups with a maximal subgroup extraspecial
of type I. Therefore Proposition 5.3 does not give enough information to describe all p-groups of
order p2� , � � 2, for which A p(P )�2 has spheres in maximal dimension. We would like to end this
section with some examples.

Example 5.4. Let � � 2.

a) If either P = (X p3)∗(�−1) ∗ C p2 or P = D∗�−1
8 ∗ C4, then |P | = p2� and H̃�−2(A p(P )�2) �= 0.

b) If p = 2 and P = D∗(�−2)
8 ∗ S , where S is either D16 or SD16, then |P |=22� and H̃�−2(A p(P )�2) �= 0.

If P is a p-group of order p2� with a cyclic Frattini subgroup and spheres in maximal dimension,
then it follows from the classifications given in Section 3 and the calculations performed in Section 4,
that P is one of the groups given in Example 5.4. There are however p-groups of order p2� with
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spheres in maximal dimension and a non-cyclic Frattini subgroup. We end this section with two
examples of such groups.

Example 5.5. Let p be an odd prime number and let X = X p3 with generators x, y. Let P be the semi-
direct product P = X � C p with respect to the automorphism of X order p fixing x and sending y
to xy. This group P has order p4 and Φ(P ) = 〈x, z〉 is not cyclic. It is not difficult to see that A p(P )�2

is a discrete poset and that H̃�−2(A p(P )�2) = H̃0(A p(P )�2) �= 0.

Example 5.6. Let p be an arbitrary prime number and let X = (X p3)∗p be a central product of p copies
of the group X p3 . We choose a generator z of Z(X) and for each 1 � i � p we choose symplectic
generators xi, yi of the corresponding central summand X p3 such that [xi, yi] = z.

Let P be the semi-direct product P = X �C p with respect to the automorphism of X that permutes
cyclically the generators {x1, . . . , xp} and the generators {y1, . . . , yp}. More precisely, the automor-
phism is defined on the generators of X by the following.

α(xi) = xi+1, for i = 1, . . . , p − 1, and α(xp) = x1;
α(yi) = yi+1, for i = 1, . . . , p − 1, and α(yp) = y1.

The group P has an order p2p+2 = p2� with � = p +1. Let x = x1 · · · xp and let E0 = 〈x, z〉. The sub-
group E0 is normal in P and let M = C P (E0). The subgroup F = 〈y1, z〉 is elementary abelian of rank 2
and F ∩ M = 〈z〉. Furthermore, CM(F ) is isomorphic to X p2p−1 , so that H̃ p−2(A p(CM(F ))�2) �= 0. It fol-

lows now from Proposition 4.1 that H̃�−2(A p(P )�2) = H̃ p−1(A p(P )�2) �= 0.

These last two examples seem to suggest that classifying all p-groups of order p2� such that
H̃�−2(A p(P )�2) �= 0, may be a difficult task.

6. hCM property for Ap(P )

Let Q be a poset and let d be its dimension. Following Quillen [12], we will say that Q is spherical
of dimension d, or just spherical, if Q has the homotopy type of a wedge of spheres of dimension d.
We would like to emphasize here the fact that in this definition the dimension of the spheres is
always equal to the dimension of the poset.

If P is a non-trivial p-group, it is well known that A p(P ) is contractible. Consequently, one cannot
distinguish between p-groups by looking at the homotopy type of A p(P ). The homotopy Cohen–
Macaulay property (hCM for short) is more accurate, since it takes all intervals into consideration.

The aim of this section is to study the hCM property of A p(P ) when P is a p-group with a cyclic
derived subgroup. We recall first the definition of hCM posets and some of their properties.

Definition 6.1. A poset Q of dimension d is said to be homotopically Cohen–Macaulay (hCM for short)
if the following conditions are satisfied.

• Q is spherical of dimension d.
• Q>q is spherical of dimension d − h(q) − 1, for all q ∈ Q.
• Q<q is spherical of dimension h(q) − 1, for all q ∈ Q.
• (q,q′) is spherical of dimension h(q′) − h(q) − 2, for all q < q′ ∈ Q.

Remark 6.2. Originally, the hCM posets were simply called CM posets by Quillen who introduced
them in [12]. Since then, other related notions have been introduced and the term ‘homotopically’
has been added to emphasize on the fact that one is looking at the homotopy type of the intervals.
See for example Wachs’ survey [14] for more details.



314 D. Bornand / Journal of Algebra 335 (2011) 301–318
We list next some general results concerning the hCM property for posets of the form A p(G). Most
of them are due to Quillen [12]. We note first that groups such that A p(G) is hCM are somewhat
special.

Lemma 6.3. (See [12, Remark 10.2].) If A p(G) is hCM, then all maximal elementary abelian p-subgroups of G
have rank rp(G).

The next result asserts that A p(E) is hCM if E is an elementary abelian p-group. As Quillen
showed, this follows from the theory of buildings and the Solomon–Tits theorem (see [12]). The reader
not familiar with buildings can refer to the discussion following [12, Proposition 8.6] or to [9, Propo-
sition 3.6] for alternative arguments.

Lemma 6.4. If E is an elementary abelian p-group of rank r, then A p(E) is hCM of dimension r − 1.

As a consequence, for any group G we have that A p(G)<A = A p(A)<A is spherical. This is also
true for any interval (A, B) in A p(G) since this interval is isomorphic to A p(B/A)<B/A . We have thus
the following characterization of the hCM property for posets of the form A p(G).

Proposition 6.5. (See [12, Proposition 10.1].) The poset A p(G) is hCM if and only if A p(G) is spherical of
dimension rp(G) − 1 and A p(G)>A is spherical of dimension rp(G) − rp(A) − 1 for any A ∈ A p(G).

Suppose now that G = P is a p-group. Then A p(P ) is spherical since it is contractible, so that, by
the previous proposition, only upper intervals need to be considered. Moreover, thanks to the recur-
sive nature of the definition of the hCM property, it is not always necessary to compute the homotopy
type of all upper intervals. This rather trivial fact appears along the lines of [12, Remark 10.4] and we
give the version of it we will need later.

Lemma 6.6. Let P be a p-group and let Z = Ω1(Z(P )). Suppose that A p(P )>Z is spherical of dimension
r(P ) − r(Z) − 1 and that A p(C P (A)) is hCM of dimension r(P ) − 1 for each A minimal in A p(P )>Z . Then

A p(P ) is hCM.

Proof. By Proposition 6.5, we have to show that A p(P )>B is spherical of dimension r(P ) − r(B) − 1
for each B ∈ A p(P ) ∪ {1}. Since P is a p-group, this holds for B = 1, so assume from now on B > 1.
If Z is not contained in B , the subgroup B Z is a conjunctive element in A p(P )>B , so that A p(P )>B
is contractible. If B = Z , then this holds by one of our assumptions, so we may suppose Z < B . There
exists then A ∈ A p(P )>Z of rank 2 such that Z < A � B and we have A p(P )>B = A p(C P (A))>B . By
assumption, A p(C P (A)) is hCM of dimension r(P )−1, so that A p(C P (A))>B is spherical of dimension
r(P ) − r(B) − 1 and the lemma is proved. �
Lemma 6.7. (See Proposition 10.3 in [12].) If A p(G1) and A p(G2) are hCM of dimension d1 and d2 respec-
tively, then A p(G1 × G2) is hCM of dimension d1 + d2 + 1.

Similarly to the case of elementary abelian p-groups, the case of extraspecial p-groups can be
deduced from arguments using buildings. We will provide here an alternative proof which should
clarify the usefulness of Lemma 6.6. This proof is a prototype for all other proofs in this section.

Proposition 6.8. (See Example 10.4 in [12].) Let p be an odd prime number. If P is an extraspecial p-group,
then A p(P ) is hCM.

Proof. Suppose first that P = X p2�+1 is extraspecial of type I. Since Z = Ω1(Z(P )) = Z(P ) has order p,
Lemma 4.5 implies that there is a homotopy equivalence A p(P )>Z � A p(P )�2. We know moreover
from Proposition 4.7 that A p(P )�2 has the homotopy type of a wedge of spheres of dimension �−1 =
dim A p(P )>Z . Therefore, A p(P )>Z is spherical of dimension � − 1 = r(P ) − r(Z) − 1.
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Let A be minimal in A p(P )>Z . We choose a generator z of Z = Z(P ) and symplectic generators
x1, y1, . . . , x�, y� of P . We may assume without loss of generality that A = 〈x1, z〉, so that C P (A) has
the following generators.

C P (A) = 〈x1, x2, y2, . . . , x�, y�〉.

We have in particular that C P (A) = 〈x1〉× Q , where Q = 〈x j, y j, j = 2, . . . , �〉 is isomorphic to X p2�−1 .
We have then

A p(P )>A = A p
(
C P (A)

)
>A = A p

(〈x1〉 × Q
)
>(〈x1〉×〈z〉) ∼= A p(Q )>Z(Q ).

Note that the last isomorphism holds since x1 is central in P . A recursive argument can be used to
conclude that A p(P )>A is hCM, once we know that A p(X p3 ) is hCM. But this is easy to check, since
A p(X p3)>Z(Xp3 ) is a discrete poset. The result for P = X p2�+1 follows now from Lemma 6.6.

If P is extraspecial of type II, that is of exponent p2, then Ω1(P ) is isomorphic to X × C p with X
extraspecial of type I. It follows then from the previous case and Lemma 6.7 that A p(P ) is hCM. �

Recall that the aim of this section is to study the hCM property for a larger class of p-groups,
namely those with a cyclic derived subgroup. Recall from the reductions made at the beginning of
Section 3 that we may well assume that Φ(P ) is cyclic.

If p is odd, then Φ(P ) is central by Lemma 3.2. Moreover, Lemma 3.1 and Proposition 3.3 imply
that P is a direct product P = Q × E , where E is elementary abelian and Q is extraspecial of type I.
The following result follows now directly from Lemma 6.4, Lemma 6.7 and Proposition 6.8 and closes
the discussion for p odd.

Proposition 6.9. Let p be an odd prime number. If P is a p-group with a cyclic derived subgroup, then A p(P )

is hCM of dimension r(P ) − 1.

We will focus now on the case p = 2. So let P be a 2-group with a cyclic Frattini subgroup.
By Lemma 3.1, the group P can be written as a direct product P = Q × E where E is elementary
abelian and Q has a cyclic Frattini subgroup, precisely Φ(Q ) = Φ(P ), and a cyclic center. In view of
Lemma 6.7 and Proposition 6.8, it is enough to show that A p(Q ) is hCM.

Without loss of generality, we may thus well assume that P is a 2-group such that Ω1(P ) = P
and both Φ(P ) and Z(P ) are cyclic. If Φ(P ) is central, then A p(P ) is hCM. This can be proved using
buildings associated to the quadratic form on P/Z(P ). This approach is used for example in Das’
paper [5]. As for p odd, we will provide here a proof avoiding buildings.

Proposition 6.10.

1. If P = D∗�
8 with � � 1, then A2(P ) is hCM of dimension �.

2. If P = D∗�
8 ∗ C4 with � � 0, then A2(P ) is hCM of dimension �.

3. If P = D∗�
8 ∗ Q 8 with � � 0, then A2(P ) is hCM of dimension �.

Proof. Suppose first that P = D∗�
8 . Let x1, y1, . . . , x�, y� be symplectic generators of P and let z =

[xi, yi]. We already know from Lemma 4.5, that A2(P )>Z(P ) � A2(P )�2 has the homotopy type of a
wedge of spheres of dimension � − 1 = r(P ) − r(Z(P )) − 1.

Following Lemma 6.6 it remains to show that for any A ∈ A2(P )>Z(P ) with |A| = p, the poset
A2(C P (A)) is hCM of dimension �. Such a subgroup A is generated by z and a non-central element g
of order 2. Without loss of generality, we may assume g = x1. It is then easy to see that C P (A) is the
subgroup generated by x1 and the elements x j, y j for j �= 1.
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Therefore C P (A) is isomorphic to C2 × D∗(�−1)
8 . The result for P = D∗�

8 follows now from an induc-
tion argument together with the use of Lemma 6.7.

The proof in the two other cases is very similar. When P = D∗�
8 ∗C4, the centralizers are isomorphic

to C2 × D∗(�−1)
8 ∗ C4. In the case P = D∗�

8 ∗ Q 8 the centralizers are isomorphic to C2 × D∗(�−1)
8 ∗ Q 8. �

It remains to treat the case when P has a non-central Frattini subgroup, that is P = D∗�
8 ∗ S , where

S is one of the following groups, all with m > 1.

D2m+2 , SD2m+2 , Q 2m+2 , D+
2m+3 , Q +

2m+3 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D+
2m+3 ∗ C4.

Proposition 6.11. Let � � 0 and m > 1. Let P = D∗�
8 ∗ S where S is one of the following groups.

D2m+2 , SD2m+2 , Q 2m+2 , D+
2m+3 , Q +

2m+3 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D+
2m+3 ∗ C4.

1. If S = SD2m+2 and � � 1, then A2(P ) is not hCM.
2. If S = D+

2m+3 , then A2(P ) is not hCM.
3. In all other cases, A2(P ) is hCM of dimension d, where

(a) d = 0, if P = S = SD2m+2 ;
(b) d = �, if S = Q 2m+2 ;
(c) d = � + 1, if S is either D2m+2 , D2m+2 ∗ C4 , SD2m+2 ∗ C4 or Q +

2m+3 ;

(d) d = � + 2, if S = D+
2m+3 ∗ C4 .

Proof. 1. By Lemma 4.5 and Proposition 6.5, a necessary condition for A2(P ) to be hCM is that
A2(P )�2 must be a wedge of spheres all of the same dimension. In view of Proposition 4.10, we
obtain immediately that A2(P ) is not hCM when P = D∗�

8 ∗ SD2m+2 with � � 1.
2. By Lemma 6.3, it is enough to exhibit two subgroups that are maximal in A2(P ) but that

do not have the same rank. Let z be a generator of Z(P ) and let x1, y1, . . . , x�, y� be symplectic
generators of D∗�

8 such that [xi, yi] = z. Let a,b, u be generators of D+
2m+3 with a and b of order 2,

u of order 2m+1, aua−1 = u1+2m
and bub−1 = u−1. On the one hand, the subgroup 〈z, x1, . . . , x�,a,b〉

is maximal in A2(P ) and has rank � + 3. On the other hand, the subgroup 〈z, x1, . . . , x�, ub〉 is also
maximal in A2(P ), but has rank � + 2.

3. The proof in the remaining cases is very similar to the proof of Proposition 6.10, so that we
will not give full details. Indeed, we will only give an outline of the proof that A2(P ) is hCM when
P = D∗�

8 ∗ SD2m+2 ∗ C4. Our motivation for doing so is that it contrasts with the fact that A2(P ) is
actually not hCM when P = D∗�

8 ∗ SD2m+2 .
So let P = D∗�

8 ∗ SD2m+2 ∗ C4. Let c be a generator of the subgroup C4 and let u,a be generators

of the subgroup SD2m+2 with u of order 2m+1, a of order 2 and aua−1 = u−1+2m
. Let w = u2m−1

and
z = w2 = c2. Let x1, y1, . . . , x�, y� be symplectic generators of the subgroup D∗�

8 such that [xi, yi] = z.
Recall from Lemma 6.6 that we have to show that, for any minimal subgroup A in A2(P )>Z(P ) , the
poset A2(C P (A)) is hCM of dimension r(P ) − 1 = � + 1. Such a subgroup A is generated by z and an
element g = xs of order 2 with x in the subgroup D∗�

8 and s in the subgroup SD2m+2 ∗ C4. All cases can
be reduced to one of the following. To ease verifications, we remark that [a, w] = z and (wc)2 = 1.

If g = a, then C P (A) is generated by the subgroup D∗�
8 and the two elements c and a.

If g = auc, then C P (A) is generated by the subgroup D∗�
8 and the two elements c and auc.

If g = x1 y1au, then C P (A) is generated by x1 y1au, x1 wc, y1 wc, c and the elements x j, y j for
j �= 1. It is useful to remark here that the subgroup generated by x1 wc and y1 wc is isomorphic
to D8. Note also that this is, in some sense, the crucial case as the next remark will show.

If g = x1 y1ac, then C P (A) is generated by x1 y1ac, x1 wc, y1 wc, c and the elements x j, y j for j �= 1.
In these four cases, C P (A) is isomorphic to (D∗�

8 ∗ C4) × C2.
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If g = x1a, then C P (A) is generated by x1a, y1 wc, c and the elements x j, y j for j �= 1.
If g = x1 wc, then C P (A) is generated by x1 wc, y1a, c and the elements x j, y j for j �= 1.
If g = x1auc, then C P (A) is generated by x1auc, y1 wc, c and the elements x j, y j for j �= 1.
In these three cases, C P (A) is isomorphic to (D∗�−1

8 ∗ C4) × C2 × C2.
If g = wc, then C P (A) is generated by the subgroup D∗�

8 and the two elements u and wc, so that
in this case C P (A) is isomorphic to (D∗�

8 ∗ C2m+1 ) × C2.
In all these cases, it follows from previous results, namely Lemma 6.7, Lemma 6.4 and Proposi-

tion 6.10, that A2(C P (A)) is hCM of dimension � + 1.
If g = x1, then C P (A) is generated by x1, the elements x j, y j for j �= 1 and the subgroup

SD2m+2 ∗ C4.
If g = x1 y1 w , then C P (A) is generated by x1 y1 w , y1a, u, c and the elements x j, y j for j �= 1.
If g = x1 y1c, then C P (A) is generated by x1 y1c, u, a, c and the elements x j, y j for j �= 1.

In all these three cases, the group C P (A) is then isomorphic to the group (D∗(�−1)
8 ∗ SD2m+2 ∗

C4)×C2. It follows then from previous results (Lemma 6.7 and Lemma 6.4) and an induction argument
on � (the case � = 0 being trivial) that A2(C P (A)) is hCM of dimension � + 1. �
Remark 6.12. The crucial case in the preceding proof is when g = x1 y1au. In this situation, we ob-
tained C P (A) = (D∗(�−1)

8 ∗ D8 ∗ C4) × C2. The subgroup D8 ∗ C4 is generated by y1 w, x1 wc and c.
There is an analogous situation for the group Q = D∗�

8 ∗SD2m+2 , but for this group, C Q (A) would be

isomorphic to D∗�−1
8 ∗ Q 8, which has the homotopy type of a wedge of spheres but not of the required

dimension. This is roughly why A2(Q ) is not hCM. The subgroup Q 8 would be here generated by the
two elements x1 w and y1 w , of order 4.

Because of the presence of the central element c of order 4, when P is the group D∗�
8 ∗SD2m+2 ∗ C4,

the two elements x1 w and y1 w , of order 4, can be modified by c in order to change their order. This
is the well-known isomorphism Q 8 ∗ C4 ∼= D8 ∗ C4. In this situation, the centralizer has the homotopy
type of a wedge of spheres of the required dimension allowing A2(P ) to be hCM.

Proposition 6.13. Let P be a 2-group with a cyclic derived subgroup.

1. If Ω1(P ) is isomorphic to D∗�
8 ∗ SD2m+2 or D∗�−1

8 ∗ D+
2m+3 for some � � 1 and m > 1, then A2(P ) is not

hCM.
2. In all other cases, A2(P ) is hCM.

Remark 6.14. The question whether A p(P ) is hCM when P is a p-group with a cyclic derived sub-
group has already been considered by Matucci [10], but with strong restrictions in the case p = 2.
Using more topological arguments, such as gluing lemmas, he was able to handle the two cases
P = E × (D∗�

8 ∗ D2m+2 ) and P = E × (D∗�
8 ∗ SD2m+2), where E is elementary abelian.

In this section, we have restricted our attention to p-groups, but as the next result shows the hCM
property can be transferred to p-nilpotent groups. Following Matucci’s arguments given in Section 5
of [10], the following corollary should remain true if G is taken to be a solvable group containing a
Sylow p-subgroup with a cyclic derived subgroup.

Proposition 6.15. (See Corollary 11.4 in [12].) Let G be a p-nilpotent group with P = G/O p′ (G). If A p(P ) is
hCM of dimension d, then A p(G) is hCM of dimension d.
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