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Abstract— Error-Correcting Output Codes (ECOC) reveal a
common way to model multi-class classification problems.
According to this state of the art technique, a multi-class
problem is decomposed into several binary ones. Additionally,
on the ECOC framework we can apply the subclass technique
(sub-ECOC), where by splitting the initial classes of the problem
we create larger but easier to solve ECOC configurations.
The multi-class problem’s decomposition is achieved via a
discriminant tree creation procedure. This discriminant tree’s
creation is controlled by a triplet of thresholds that define a
set of user defined splitting standards. The selection of the
thresholds plays a major role in the classification performance.
In our work we show that by optimizing these thresholds
via particle swarm optimization we improve significantly the
classification performance. Moreover, using Support Vector
Machines (SVMs) as classifiers we can optimize in the same
time both the thresholds of sub-ECOC and the parameters
C and σ of the SVMs, resulting in even better classification
performance. Extensive experiments in both real and artificial
data illustrate the superiority of the proposed approach in terms
of performance.

I. INTRODUCTION

In the literature one can find various binary classification
techniques. However, in the real world the problems to be
addressed are usually multi-class. In dealing with multi-
class problems we must use the binary techniques as a
leverage. This can be achieved by defining a method that
decomposes the multi-class problem into several binary ones,
and combines their solutions to solve the initial multi-class
problem [6]. In this context, the Error-Correcting Output
Codes (ECOC) emerged. Based on the error correcting
principles [5] and on its ability to correct the bias and
variance errors of the base classifiers [10], this state of the
art technique has been proved valuable in solving multi-
class classification problems over a number of fields and
applications.

As proposed by Escalera et al., on the ECOC framework
we can apply the subclass technique [1]. According to this
technique, we use a guided problem dependent procedure to
group the classes and split them into subsets with respect
to the improvement we obtain in the training performance.
This splitting is controlled via a set of thresholds. The
selection of these thresholds has a major impact in the
classification performance of the technique. In this paper we
show that by optimizing these set of thresholds with particle
swarm optimization (PSO) we can boost the classification

performance.
In our experiments we used the support vector machine

with linear and RBF kernels as a standard classifier [4] and
applied it on 8 multi-class learning problems provided by
the UCI machine learning repository [22] and 4 artificially
created datasets. In parallel with the optimization of the
above mentioned thresholds we also optimized with PSO
the SVM’s parameters C and σ. Thus, we propose the use
of PSO as an efficient and fast optimization technique of
complex classifiers.

The paper is organized as follows: A brief introduction to
the ECOC framework is given in Section II. The sub-ECOC
technique is described in Section III. The loss weighted
decoding technique is illustrated in Section IV. A description
of the sequential forward floating search (SFFS) algorithm
is given in Section V. The fast quadratic mutual information
(FQMI) procedure used to model the mutual information
between classes is analyzed in Section VI. A description of
the PSO algorithm and its variations is given in Section VII.
The configuration we used in our experiments is described
in Section VIII. Our experimental results are illustrated in
Section IX. Finally, in Section X we conclude our work.

II. ERROR CORRECTING OUTPUT CODES

ECOC is a general framework to solve multi-class prob-
lems by decomposing them into several binary ones. This
technique consists of two separate steps: a) the encoding and
b) the decoding step [2].

a) In the encoding step, given a set of N classes, we
assign a unique binary string called codeword (i.e.,
a sequence of bits of a code representing each class,
where each bit identifies the membership of the class
for a given binary classifier) to each class. The length
n of each codeword represents the number of bi-
partitions (i.e., groups of classes) that are formed
and, consequently, the number of binary problems to
be trained. Each bit of the codeword represents the
response of the corresponding binary classifier and it
is coded by +1 or -1, according to its class membership.
The next step is to arrange all these codewords as
rows of a matrix obtaining the so-called coding matrix
M, where M ∈ {−1,+1}N×n. Each column of this
matrix defines a partition of classes, while each row
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defines the membership of the corresponding class in
the specific binary problem.
An extension of this standard ECOC approach was
proposed by Allwein et al. by adding a third symbol in
the coding process [6]. The new coding matrix M is
now M ∈ {−1, 0,+1}N×n. In this approach, the zero
symbol means that a certain class is not considered
by a specific binary classifier. As a result, this symbol
increases the number of bi-partitions to be created in
the ternary ECOC framework.

b) The decoding step of the ECOC approach consists of
applying the n different binary classifiers to each data
sample in the test set, in order to obtain a code for
this sample. This code is then compared to all the
codewords of the classes defined in the coding matrix
M and the sample is assigned to the class with the
closest codeword. The most frequently used decoding
methods are the Hamming and the Euclidean decoding
distances.

III. SUB-ECOC
Escalera et al. proposed that from an initial set of classes
C of a given multi-class problem, we can define a new set of
classes C′, where the cardinality of C′ is greater than that of
C, that is |C′| > |C| [1]. The new set of binary problems that
will be created will improve the created classifiers’ training
performance. Additionally to the ECOC framework, Pujol
proposed that we can use a ternary problem dependent design
of ECOC, called discriminant ECOC (DECOC) where, given
a number of N classes, we can achieve a high classification
performance by training only N−1 binary classifiers [3]. The
combination of the above mentioned methods results in a new
classification procedure called sub-ECOC. The procedure is
based on the creation of discriminant tree structures which
depend on the problem domain.

These binary trees are built by choosing the problem
partitioning that maximizes the MI between the samples
and their respective class labels. The structure as a whole
describes the decomposition of the initial multi-class problem
into an assembly of smaller binary sub-problems. Each node
of the tree represents a pair that consists of a specific binary
sub-problem with its respective classifier. The construction of
the tree’s nodes is achieved through an evaluation procedure
[1]. According to this procedure, we can split the bi-partitions
that consist the current sub-problem examined. Splitting can
be achieved using K-means or some other clustering method.
After splitting, we form two new problems that can be exam-
ined separately. On each one of the new problems created,
we repeat the SFFS procedure independently in order to form
two new separate sub-problem domains that are easier to
solve. Next, we evaluate the two new problem configurations
against three user defined thresholds {θperf , θsize, θimpr}
described below. If the thresholds are satisfied, the new
created pair of sub-problems is accepted along with their
new created binary classifiers, otherwise they are rejected and
we keep the initial configuration with its respective binary
classifier.

• θperf : Split the classes if the created classifier attains
greater than θperf% training error.

• θsize: Minimum cluster’s size of an arbitrary created
subclass.

• θimpr: Improvement in the training error attained by
classifiers for the newly created problems against pre-
vious classifier (before splitting).

IV. LOSS-WEIGHTED DECODING

In the decoding process of the sub-ECOC approach we
use the Loss Weighted Decoding algorithm [2]. As already
mentioned, the 0 symbol in the decoding matrix allows to
increase the number of binary problems created and as a
result the number of different binary classifiers to be trained.
Standard decoding techniques, such as the Euclidean or the
Hamming distance do not consider this third symbol and
often produce non-robust results. So, in order to solve the
problems produced by the standard decoding algorithms, the
loss weighted decoding was proposed.

The loss weighted decoding algorithm is summarized in
Algorithm 1.

Algorithm 1 Loss Weighted Decoding Algorithm
Calculate Hypothesis matrix H
H(i, j) = 1

|Ji|
P|Ji|

k=1 γ(hj(J
k
i ), i, j)

based on

γ(xj , i, j) =


1 if xj = M(i, j)
0 otherwise (1)

Normalize H so that
Pn

j=1MW (i, j) = 1, ∀i = 1, . . . , N :

MW (i, j) =
H(i, j)Pn

j=1H(i, j)
, ∀i ∈ [1, . . . , N ], ∀j ∈ [1, . . . , n]

(2)
Given a test input ℘, decode based on:

d(x, i) =

nX
j=1

−M(i, j) · hj(x) ·MW (i, j) (3)

Obtain the final class cx for sample x by:

Ci∗ : (i∗, j∗) = arg min
(i′j′)

d(x, (i′j′)), C(i′j′) ∈ C′ (4)

The main objective is to define a weighting matrix MW

that weights a loss function to adjust the decision of the
classifiers. In order to obtain the matrix MW , a hypothesis
matrix H is constructed first. The elements H(i, j) of this
matrix are continuous values that correspond to the accuracy
of the binary classifier hj classifying the samples of class i.
The matrix H has zero values in the positions which corre-
spond to unconsidered classes, since these positions do not
contain any representative information. The next step is the
normalization of the rows of matrix H. By this normalization,
the matrix MW can be considered as a discrete probability
density function. This is very important, since we assume
that the probability of considering each class for the final
classification is the same. Finally, we decode by computing



the weighted sum of our coding matrix M and our binary
classifier with the weighting matrix MW and assign our test
sample to the class that attains the minimum decoding value.

V. SEQUENTIAL FORWARD FLOATING SEARCH

The Floating search methods are a family of suboptimal
sequential search methods that were developed as an alterna-
tive counterpart to the more computational costly exhaustive
search methods. These methods allow the search criterion
to be non-monotonic. They are also able to counteract
the nesting effect by considering conditional inclusion and
exclusion of features controlled by the value of the criterion
itself. In our approach we use a variation of the Sequential
Forward Floating Search (SFFS) algorithm [8]. The SFFS
method is described in Algorithm 2.

Algorithm 2 SFFS for Classes
1: Input:
2: Y = {yj |j = 1, . . . , Nc} // available classes
3: Output: // disjoint subsets with maximum MI between the

features and their class labels
4: Xk = {xj |j = 1, . . . , k, xj ∈ Y }, k = 0, 1, . . . , Nc

5: X ′k′ = {xj |j = 1, . . . , k′, xj ∈ Y }, k′ = 0, 1, . . . , Nc

6: Initialization:
7: X0 := ∅, X ′Nc

:= Y ; k := 0, k′ := Nc // k and k′ denote
the number of classes in each subset

8: Termination:
9: Stop when k = Nc and k′ = 0

10: Step 1 (Inclusion)
11: // x+ is the most significant class with respect to the group
{Xk, X

′
k′}

12: x+ := arg max
x∈Y−Xk

J(Xk + x,X ′k′ − x)

13: Xk+1 := Xk + x+; X ′k′−1 := X ′k′ − x+; k := k + 1, k′ :=
k′ − 1

14: Step 2 (Conditional exclusion)
15: // x− is the least significant class with respect to the group
{Xk, X

′
k′}

16: x− := arg max
x∈Xk

J(Xk − x,X ′k′ + x)

17: if J(Xk − x−, X ′k′ + x−) > J(Xk−1, X
′
k′+1) then

18: Xk−1 := Xk−x−; X ′k′+1 := X ′k′ +x−; k := k−1, k′ :=
k′ + 1

19: go to Step 2
20: else
21: go to Step 1
22: end if

We modified the algorithm so that it can handle criterion
functions evaluated using subsets of classes. We apply a
number of backward steps after each forward step, as long as
the resulting subsets are better than the previously evaluated
ones at that level. Consequently, there are no backward
steps at all if the performance cannot be improved. Thus,
backtracking in this algorithm is controlled dynamically and,
as a consequence, no parameter setting is needed.

VI. FAST QUADRATIC MUTUAL INFORMATION

Consider two random vectors x1 and x2 and let p(x1)
and p(x2) be their probability density functions respectively.

Then the MI of x1 and x2 can be regarded as a measure of
the dependence between them and is defined as follows:

I(x1,x2) =
∫ ∫

p(x1,x2) log
p(x1,x2)
p(x1)p(x2)

dx1dx2 (5)

It is of great importance to mention that (5) can be inter-
preted as a Kullback-Leibler divergence, defined as follows:

K(f1, f2) =
∫
f1(x) log

f1(x)
f2(x)

dx (6)

where f1(x) = p(x1,x2) and f2(x) = p(x1)p(x2).

According to Kapur and Kesavan [9], if we seek to
find the distribution that maximizes or alternatively mini-
mizes the divergence, several axioms could be relaxed and
it can be proven that K(f1, f2) is analogically related to
D(f1, f2) =

∫
(f1(x)−f2(x))2dx. Consequently, maximiza-

tion of K(f1, f2) leads to maximization of D(f1, f2) and vice
versa. Considering the above we can define the quadratic
mutual information as

IQ(x1,x2) =
∫ ∫

(p(x1,x2)− p(x1)p(x2))2dx1dx2 (7)

The practical implementation of the FQMI computation is
defined as follows: Let N be the number of pattern samples
in the entire data set, Ji the number of samples of class i, Nc

the number of classes in the entire data set, xi the ith feature
vector of the data set, and xij the jth feature vector of the set
in class i. Consequently, p(x), p(y = yp) and p(x|y = yp),
where 1 ≤ p ≤ Nc can be written as:

p(x) =
1
N

Jp∑
j=1

N (x− xj , σ
2I),

p(y = yp) =
Jp

N
,

p(x|y = yp) =
1
Jp

Jp∑
j=1

N (x− xpj , σ
2I).

By the expansion of (7) while using a Parzen estimator
with symmetrical kernel of width σ, we get the following
equation:

IQ(x, y) = VIN + VALL − 2VBTW (8)



where

VIN =
∑

y

∫
x

p(x, y)2dx

=
1
N2

Nc∑
p=1

Jp∑
l=1

Jp∑
k=1

N (xpl − xpk, 2σ2I) (9)

VALL =
∑

y

∫
x

p(x)2p(y)2dx

=
1
N2

Nc∑
p=1

(
Jp

N

)2 N∑
l=1

N∑
k=1

N (xl − xk, 2σ2I) (10)

VBTW =
∑

y

∫
x

p(x, y)p(x)p(y)dx

=
1
N2

Nc∑
p=1

Jp

N

N∑
l=1

Jp∑
k=1

N (xl − xpk, 2σ2I) (11)

It is known that the FQMI requires many samples to
be accurately computed by Parzen window estimation [11].
Thus, we can assume that when the number of samples N
is much greater than their respective dimensionality d (i.e.
N >> d), the complexity of VALL, which is O(NcN

2d2),
is dominant for the equation (8).

VII. PARTICLE SWARM OPTIMIZATION

The PSO algorithm is a population-based search algorithm
whose initial intent was to simulate the unpredictable be-
havior of a bird flock [12]. From this concept, a simple
and efficient optimization algorithm emerged. Individuals in
a particle population called swarm emulate the success of
neighboring individuals and their own successes. A PSO
algorithm maintains a swarm of these individuals called
particles, where each particle represents a potential solution
to the optimization problem. The position of each particle
is adjusted according to its own experience and that of its
neighbors. Let xi(t) be the position of particle i in the search
space at time step t. The position of the particle is changed
by adding a velocity vi(t) to the current position. This update
can be written as

xi(t+ 1) = xi(t) + vi(t+ 1) (12)

with xi(0) ∼ U(xmin,xmax), where U denotes the uniform
distribution.

A. Global Best PSO

In our approach, we implement the global best PSO
algorithm, or gbest PSO. The gbest PSO is summarized in
Algorithm 3.

In this algorithm, the neighborhood for each particle is
the entire swarm. For gbest PSO, the velocity of particle i
is calculated as

vi(t+1) = vi(t)+c1r1(t)[yi(t)−xi(t)]+c2r2(t)[ŷ(t)−xi(t)] (13)

where vi(t) is the velocity of particle i at time step t, xi(t) is
the position of particle i at time step t, c1 and c2 are positive
acceleration constants, and r1(t), r2(t) ∼ U(0, 1) are random

Algorithm 3 gbest PSO
1: Create and initialize an nx-dimensional swarm;
2: repeat
3: for each particle i = 1, . . . , ns do
4: // set the personal best position
5: if f(xi) < f(yi) then
6: yi = xi;
7: end if
8: // set the global best position
9: if f(yi) < f(ŷ) then

10: ŷ = yi;
11: end if
12: end for
13: for each particle i = 1, . . . , ns do
14: update the velocity using (13)
15: update the position using (12)
16: end for
17: until stopping criterion is true

vectors with elements in the range [0, 1], sampled from a
uniform distribution. These vectors introduce a stochastic
element to the algorithm.

From the above equation we can see that the velocity
calculation consists of three terms:
• The previous velocity vi(t) which serves as a memory

of the previous flight direction. This memory term can
be seen as a momentum that prevents the particle from
drastically changing direction.

• The cognitive component c1r1(yi − xi) which quan-
tifies the performance of particle i relative to past
performances. The effect of this term is that particles
are drawn back to their own best positions.

• The social component c2r2(ŷ − xi) which quantifies
the performance of particle relative to a neighborhood
of particles. The effect of the social component is that
each particle is also drawn towards the best position
found by the particle’s neighborhood.

The personal best position yi associated with particle i is
the best position the particle has visited since the first time
step. Considering minimization problems, the personal best
position at the next time step t+ 1 is calculated as

yi(t+ 1) =
{

yi(t) if f(xi(t+ 1)) ≥ f(yi(t))
xi(t+ 1) if f(xi(t+ 1)) < f(yi(t))

(14)
where f : Rnx → R is the fitness function. This function
measures how close the corresponding solution is to the
optimum.

The global best position ŷ(t) at time step t is defined as

ŷ(t) ∈ {y0(t), . . . ,yns (t)}|f(ŷ(t)) = min f(y0(t)), . . . , f(yns (t))
(15)

where ns is the total number of particles in the swarm.

B. Velocity Clamping

Using the standard gbest PSO algorithm, we observe
that the velocity of the particles quickly explodes to very
large values and as a result the swarm diverges from the
optimal solution. In order to control this phenomenon we
use the so-called Velocity clamping in our approach [13]. If



a particle’s velocity exceeds a specified maximum velocity,
this particle’s velocity is set to this maximum velocity. Let
Vmax,j denote the maximum velocity allowed in dimension
j. Particle velocity is then adjusted before the position update
as

vij(t+ 1) =
{
v′ij(t+ 1) if v′ij(t+ 1) < Vmax,j

Vmax,j if v′ij(t+ 1) ≥ Vmax,j

(16)
The value of Vmax,j is very important, since it controls the
granularity of the search by clamping escalating velocities. If
Vmax,j is too small, the swarm may not explore sufficiently
beyond locally good regions. Furthermore, the optimization
process needs more time steps to reach an optimum. It can
also be trapped in a local optimum with no means of escape.
On the other hand, if Vmax,j is too large, the swarm may not
explore a good region at all. The particles may jump over
good optima.

C. Inertia Weight
In our approach we use a modified version of the classical

gbest PSO algorithm that integrates an inertia weight [14].
This weight w controls the momentum of the particle by
weighing the contribution of the previous velocity. So, the
equation of the gbest PSO becomes

vi(t+1) = wvi(t)+c1r1(t)[yi(t)−xi(t)]+c2r2(t)[ŷ(t)−xi(t)] (17)

The value of w is extremely important to ensure convergent
behavior of the algorithm. For w ≥ 1, velocities increase
over time, accelerating towards the maximum velocity and
the swarm diverges. For w < 1, particles decelerate until
their velocities become zero. It is important to note here the
strong relationship between the inertia and the acceleration
constants. Van den Bergh and Engelbrecht showed that

w >
1
2
(c1 + c2)− 1 (18)

guarantees convergent particle trajectories [15], [16]. Many
approaches have been proposed for dynamically varying the
inertia weight. In our paper we use the following linear
decreasing method [17], [18], [19], [20]:

w(t) = (w(0)− w(nt))
nt − t
nt

+ w(nt) (19)

where nt is the maximum number of time steps for which the
algorithm is executed, w(0) the initial inertia weight, w(nt)
the final inertia weight, and w(t) the inertia at time step t.
Note that w(0) > w(nt).

D. Acceleration Coefficients

The acceleration coefficients c1 and c2, together with the
random vectors r1 and r2 control the stochastic influence of
the cognitive and social components on the overall velocity
of the particle. If c1 = c2 = 0, particles keep flying at their
current speed until they hit a boundary of the search space
(assuming no inertia). If c1 > 0 and c2 = 0, all particles
are independent hill-climbers which perform a local search.
On the other hand, if c1 = 0 and c2 > 0, the entire swarm
is attracted to a single point ŷ. The swarm turns into one
stochastic hill-climber.

Usually, c1 and c2 are static with their optimized values
being found empirically. Wrong initialization of c1 and c2
may result in divergent or cyclic behavior [15] [16]. However,
in the literature one can find many schemes for adaptive
acceleration coefficients. In our paper we use a scheme
proposed by Ratnaweera who suggested that c1 decreases lin-
early over time, while c2 increases linearly [18]. This strategy
focuses on exploration in the early stages of the optimization,
while encouraging convergence near a good optimum near
the end of the optimization process by attracting particles
towards the neighborhood best position. The values of c1(t)
and c2(t) are calculated as follows

c1(t) = (c1,min − c1,max)
t

nt
+ c1,max (20)

c2(t) = (c2,max − c2,min)
t

nt
+ c2,min (21)

where c1,max, c2,max and c1,min, c2,min are user defined.

VIII. USING PSO TO OPTIMIZE THE SUB-ECOC
TECHNIQUE

As mentioned above, the user defined thresholds of the
Sub-ECOC approach and the parameters of the respective
SVM classifier are clearly problem-dependent. As a result,
due to the fact that we have no a priori knowledge about
the structure of the data, we are in no position to efficiently
select our parameters. Therefore, the purpose of our paper is
to use the PSO algorithm to optimize both these user defined
thresholds {θperf , θsize, θimpr} of the sub-ECOC technique
and the parameters of the SVM, that is the cost parameter
C and, in the case of an RBF SVM, the parameter σ. In
this case, the PSO algorithm searches in a 5-dimensional
swarm in order to find the optimal solution. In our approach
we proceed as follows: We split randomly the datasets into
two sets, a training and a test set. The training set contains
approximately 60% of the whole data samples, and the test
set the remaining 40%. As an objective function f in our
PSO algorithm we used the 10-fold cross validation error of
our classifier in the training set. That is,

f =
1
10

10∑
k=1

errk (22)

where errk is the error of our classifier in the k-th fold. The
respective PSO parameters used were the following:
• Inertia weight: w(0) = 0.9, w(nt) = 0.4
• Number of particles: 20
• Number of iterations: 100
• Additional stopping criterion:

1
p

ns∑
i=1

‖ŷ(t)− xi(t)‖ < tol (23)

where tol = 10−3

• Acceleration coefficients:

c1,max = c2,max = 2.5



and
c1,min = c2,min = 0.5

After the termination of the optimization procedure,
we obtain as an output three optimized thresholds
{θperf , θsize, θimpr} and also the optimized parameters of
the SVM C, and σ in the case of RBF SVM. Finally, we
evaluate the optimized classifier in the test set by computing
the resulting test error in each dataset. It is worth noting
that no information about the test data is used during the
parameters optimization. That is, the 10-fold cross validation
inside the training set provides all the information needed
for optimizing the parameters. We note this because it is
common practice for many researchers to report optimized
parameters in the test set without proposing a procedure on
how someone can find these optimal parameters.

IX. EXPERIMENTAL RESULTS

A. Datasets

We evaluated our experiments using eight datasets of the
UCI Machine Learning Repository [22] and four 2D datasets
which were artificially created with the svm-toy application
of the libsvm package [21]. The features of each of the UCI
datasets were scaled to the interval [−1,+1] whereas those
of the artificial datasets to [0, 1]. The characteristics of each
dataset of the UCI repository can be seen in Table I and the
four artificially created datasets are illustrated in Figure 1.

TABLE I
UCI MACHINE LEARNING REPOSITORY DATA SETS CHARACTERISTICS

Database Samples Attributes Classes

Iris 150 4 3

Ecoli 336 8 8

Wine 178 13 3

Glass 214 9 7

Thyroid 215 5 3

Vowel 990 10 11

Balance 625 4 3

Yeast 1484 8 10

B. Default Sub-class ECOC configuration

The PSO resulting splitting parameters were compared
with the set of default parameters θ = {θperf , θsize, θimpr}
which were fixed in each dataset to the following values [1]:
• θperf = 0%, split the classes if the classifier does not

attain zero training error.
• θsize = |J|

50 , minimum number of samples in each
constructed cluster, where |J | is the number of features
in each dataset.

• θimpr = 5%, the improvement of the newly constructed
binary problems after splitting.

Furthermore, as a clustering method we used the K-means
algorithm with the number of clusters K = 2. As stated by
Escalera et al. [1], the K-means algorithm obtains similar
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Fig. 1. Artificial Datasets.

results with other more sophisticated clustering algorithms,
such as hierarchical and graph cut clustering, but with much
less computational cost.

C. Default SVM configuration

As a standard classifier for our experiments we used the
libsvm implementation of the Support Vector Machine with
linear and RBF kernel. We compared our optimized classifier
against the default classifier used in the libsvm package, that
is a linear SVM with C = 1 and an RBF SVM with C = 1
and σ = 1/attributesnr, where attributesnr is the number
of features in each dataset.

D. Results

The resulting classification performances attained in our
experiments are shown in Tables II and III. In the case of
the sub-ECOC method we also give the (number of rows ×
number of columns) of the encoding matrices formed.

From the results, it is obvious that the optimized sub-
ECOC using PSO always outperforms the default classifiers
in all of the experiments conducted. The improvement is
attributed to the fact that PSO finds the optimum values for
the thresholds that control the resulting number of subclasses.
Furthermore, by finding via PSO optimum values for the
SVM parameters (i.e., C and σ), the classification perfor-
mance is further improved. In certain datasets the thresholds
returned by PSO do not result in any subclasses. In this case,
PSO reveals that, in the specific dataset, it is highly probable
that the use of subclasses will lead to over-fitting. We can
also see that in the RBF SVM the performance improvement
is more significant than in the Linear SVM. This can be



TABLE II
UCI REPOSITORY EXPERIMENTS FOR LINEAR AND RBF SVM.

Linear SVM RBF SVM

Database PSO Default PSO Default

Iris
97% 96.67% 98.3% 96.67 %

(3× 4) (3× 4) (3× 4) (3× 4)

Ecoli
82.07% 66.82% 82.76% 58.62%

(13× 15) (15× 17) (14× 17) (13× 17)

Wine
98.2% 97.14% 98.57% 97.14%

(3× 4) (3× 4) (3× 4) (3× 4)

Glass
59.31% 58.14% 58.14% 55.81%

(8× 10) (6× 5) (6× 5) (6× 5)

Thyroid
95.23% 93.65% 93.65% 84.127%

(3× 2) (3× 2) (3× 2) (4× 4)

Vowel
49.14% 47.1861% 59.96% 57.58%

(27× 31) (37× 46) (11× 10) (15× 15)

Balance
93.2% 90.7% 96.7% 94%

(21× 26) (59× 67) (3× 2) (3× 2)

Yeast
50.3367% 40.7407% 59.43% 37.71%

(11× 10) (11× 10) (10× 9) (17× 21)

TABLE III
ARTIFICIAL DATASETS EXPERIMENTS FOR LINEAR AND RBF SVM.

Linear SVM RBF SVM

Database PSO Default PSO Default

Set # 1
98.68% 94.74% 100% 59.21 %

(14× 16) (19× 23) (4× 3) (3× 2)

Set # 2
87.72% 59.65% 82.76% 58.62%

(50× 58) (48× 56) (14× 17) (13× 17)

Set # 3
70.56% 64.56% 82.36% 77.89%

(5× 4) (3× 2) (4× 3) (3× 2)

Set # 4
52.49% 43.89% 79.86% 40.28%

(113× 151) (113× 151) (21× 25) (114× 153)

associated to the major role the σ parameter plays in the
classification performance of the RBF SVM.

X. CONCLUSION

ECOC with subclasses is a power classification technique
that takes advantage of the fact that by splitting the classes
we can create more complex discriminant surfaces. As men-
tioned, the splitting is parameter dependent and there’s no
standard way to choose the right values for these parameters.
If the values we choose are very strict, we will create very
complex surfaces that will improve the training performance
of the classifier, but will probably result in over fitting in
the test domain. On the other hand, if we choose very

loose values we will not take full advantage of the subclass
technique. From the above, it is clear that the splitting
parameters need some kind of optimization. As we showed
here by applying PSO optimization we can find optimum
values for the splitting parameters resulting in much better
classification performance.
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