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Abstract— The paper deals with computing frictional force-
closure grasps of 3D objects problem. The key idea of the
presented work is the demonstration that wrenches associated
to any three non-aligned contact points of 3D objects form a
basis of their corresponding wrench space. This result permits
the formulation of a new sufficient force-closure test. Our
approach works with general objects, modelled with a set of
points, and with any number n of contacts (n ≥ 4). A quality
criterion is also introduced. A corresponding algorithm for
computing robust force-closure grasps has been developed. Its
efficiency is confirmed by comparing it to the classical convex-
hull method [26].

I. INTRODUCTION

The stability of a grasp is characterized by force-closure
property [9], under which arbitrary forces and torques exerted
on the grasped object can be balanced by the contact forces
applied by the fingers. Salisbury and Roth have showed that
a necessary and sufficient condition for force-closure is that
the primitive contact wrenches resulted by contact forces at
the contact points positively span the entire 6-dimensional
wrench space. This condition is equivalent to that the origin
of the wrench space lies strictly inside the convex hull of
the primitive contact wrenches [12], [14], [13]. After the
pioneering works of Salisbury and Roth [10], several force-
closure necessary and sufficient conditions were proposed
in the literature, but only few concerns 3D objects due to
their complicated geometry and high dimension of the grasp
space [1], [2], [8], [11], [24], [7]. These proposed sufficient
and necessary conditions test force-closure by solving a
set of linear inequalities or by calculating the Q distance.
All these methods require considerable computation time.
Generating good grasps (according to various criteria) needs
a straightforward test of many grasps configurations, yielding
an approach with prohibitive time complexity. An exhaustive
search for the best k-finger force-closure grasp of an object
modelled by N points would take time in the order of
O(Nk). Thus, heuristic approaches were proposed to improve
performance [22], [4], [23]. Their aim is to compute as
fast as possible many force-closure grasps. They generate
several grasp candidates by selecting contacts on the object
surface. Then these grasps are filtered with a necessary but
not sufficient force-closure tests. Thus, the grasps that pass
the filter may or may not be force-closure. In other words the
filter reports false positive but not false negative force-closure
grasps. The selected grasps are then tested for force-closure.
We propose a new sufficient but not necessary force-closure
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test. Thus, grasps that pass the filter ensure necessarily force-
closure. Our heuristic is original in the sense that it permits
not only fast computation but also good quality force-closure
grasps generation. This is confirmed by comparing it to the
classical convex-hull method [26]. The next paragraph details
the problem statement and justifies the choices we made for
objects modelling and contacts type and number.

II. PROBLEM STATEMENT

Our objective is to find as fast as possible force-closure
grasps. In order to determine a grasp, information about con-
tact type and number, and local object surface are required.

An important aspect of the proposed approach is that
it is adapted to complex 3D objects. Most works in the
literature assume some geometrical model of the objects
being grasped [1], [2], [24]. Mainly because this allows
efficient or analytical formulation for characterizing grasps.
For example, algorithms assuming that an object should be
modelled with a polyhedron may work acceptably when the
polyhedron faces number is low (objects presented are sel-
dom composed of no more than 20 faces [22]). For real world
objects generated by sensor information from cameras or
laser scanners the number of faces will normally range from
103− 105. Thus, the inaccurate object model may yield to
unreliable resulting grasps. Our approach assumes no explicit
model of the object being grasped. Objects are modelled with
a set of points together with their corresponding normals. As
for contact type, hard fingers are considered.

The contacts number depends on the type of contact
between the fingertip and the object. When considering 3D
objects, Somoff [6] and later Lakshminarayana [5] showed
that seven frictionless point contacts are necessary for force-
closure. Mishra, Schwartz and Sharir [12] have shown that
tweleve fingers are always sufficient for ensuring force-
closure of 3D objects without rotational symmetries. Marken-
scoff et al. [30] proved that seven contact points are sufficient
for force-closure of 3D non-rotationally objects. An object
with rotational symmetry does not have a force-closure grasp
with frictionless contacts. They have also shown that in
presence of friction, four fingers are sufficient in the 3D case
for any object. These bounds were lowered by one contact
by Mirtich and Canny [15] who assumed rounded finger
tips to provide continuity to the contact normals around
the boundary of the object. For grasping and manipulation
of objects, a low number of contacts is required thus we
assume frictional contacts. Since we want an approach that
works with any object geometry even ones with rotational
symmetry, we are interested in generating at least 4-finger
force-closure grasps. Consequently, our approach can be
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stated as follows:
Given a set of N points along with their normals, we have to
compute, as fast as possible, n-finger (n ≥ 4) force-closure
grasps assuming hard-finger frictional contacts.

The rest of the paper is organized as follows. Section 3
recalls notations and theorems useful for the comprehension
of the following paragraphs. A new sufficient force-closure
condition is presented in section 4. Our quality criterion used
to obtain good grasps is described in section 5. Finally,
we discuss in section 6 the experimental results and the
performance of the algorithm. Section 7 concludes.

III. PRELIMINARIES

This section presents definitions, theorems and notations
necessary for force-closure test elaboration.

A. Force-Closure Preliminaries

The stability of a grasp is characterized by force-closure
property. This paragraph presents definitions and theorems
necessary for our force-closure test elaboration. First, we
remind that Salisbury and Roth [10] has showed that a
necessary and sufficient condition for force-closure is that
the primitive contact wrenches resulted by contact forces at
the contact points positively span the entire wrench space.

Proposition 1: For any n-dimensional Euclidean space
En, n+1 vectors are necessary to positively span En.
Proof. for a proof, the reader should refer to the relative linear
algebra results presented by Goldman and Tucker [18]. �

Proposition 2: A set of n + 1 vectors v1,v2, ....,vn+1 in
Rn positively span En if and only if vn+1 is a unique linear
combination of vi, i = 1, ...,n and all coefficients are strictly
negative. In other words, the n + 1 vectors positively span
En if and only if v1,v2, ....,vn are linearly independent, thus
constitute a basis of En, and vn+1 is written as:

vn+1 =
n

∑
i=1

αivi, αi < 0

Proof. for a proof, the reader should refer to [19]. �

B. Grassmann Algebra Preliminaries

As 3D force-closure grasps involve 6D wrench space.
With a mere change of mathematical representation, using
Grassmann algebra, we prove that wrenches, associated to
any three non-aligned contact points of 3D objects, form a
basis of the 6D wrench space.

Plücker coordinates: Let L be a line in the 3D space.
Let u be the unit line direction and P a point chosen on
L. The direction vector along with its cross product with
P are known as Plücker coordinates and are denoted by
(u;P×u). These 6 coordinates represent L in 3D space [20].
Consequently a primitive contact wrench, defined as wi =
( fi;ri× fi) can also be seen as a representation of the line
of action L f i of the force fi applied at the point ri.

Grassmann algebra : Grassmann studied manifold of lines
which rank ranges varies from 0 to 6. The purpose of his

study was to find geometric characterization of each variety.
We are going to use two main results of this study. For a
proof of these results, the reader should refer to [21].
Proposition 3: All lines through one point are of rank 3.
Proposition 4: When all lines meet one line, they are of
rank 5.

IV. A SUFFICIENT CONDITION FOR N-FINGER
FORCE-CLOSURE GRASPS

At this point, we showed that a 6D contact wrench can be
represented by the line of action of its corresponding force.
We use this mapping to prove that wrenches associated to
three non-aligned contact points are of rank 6. This result
induces the formulation of a sufficient condition for n-finger
(n > 3) force-closure grasps (proposition 7).

Proposition 5: The 6 lines on the sides of a tetrahedron
are independent, and thus form a basis of R6 (Fig. 1).
Proof. To deal with lines in 3D-space, we need a 4-
dimensional linear space. For a basis of this space we can
either take a point, O and 3 vectors e1,e2,e3 or 4 points
(p0, p1, p2, p3). We can relate these by:

p1 = O; p2 = O+ e1; p3 = O+ e2; p4 = O+ e3

Any point can be written as a linear combination of these 4
points, for example:

Pa = a1 p1 +a2 p2 +a3 p3 +a4 p4

where the ai are scalars and the sum of the ai is unity.
Lines are represented in Grassmannian terms by exterior
products of points. Hence from these 4 independent basis
points we can construct 6 independent lines which intersect
to form a tetrahedron :

L1 = p1∧ p2; L2 = p1∧ p3; L3 = p1∧ p4

L4 = p2∧ p3; L5 = p2∧ p4; L6 = p3∧ p4

Any line L is now able to be represented as a linear
combination of these 6 basis lines. We can explicitly display
this by multiplying out and simplifying the exterior product
of two points Pa and Pb on the chosen line:

L = Pa∧Pb = (a1 p1 +a2 p2 +a3 p3 +a4 p4)∧
(b1 p1 +b2 p2 +b3 p3 +b4 p4) �

Proposition 6: Wrenches associated to 3 non-aligned
contact points are of rank 6.

Proof. Let p1, p2 and p3 be 3 non-aligned contact points.
Consider the friction cone associated to p1, presented in
Figure 1, called CP1. Let {m1, m2, m3} be three points
chosen on any 3 non-coplanar lines of this cone. The lines
{l1 = p1 ∧m1, l2 = p1 ∧m2, l3 = p1 ∧m3} are of rank 3
(proposition 3). Thus any line that passes through p1 can be
expressed as a linear combination of these 3 lines. Similarly,
{e1, e2, e3} and {h1, h2, h3} are associated respectively
to the friction cones CP2, CP3 at p2, p3. In the same
manner, {l4 = p2∧ e1, l5 = p2∧ e2, l6 = p2∧ e3} and {l7 =
p3∧h1, l8 = p3∧h2, l9 = p3∧h3} are either of rank 3. Let



Fig. 1. The wrenches of rank 3 associated to the frictional contact points
p1, p2 and p3.

p4 be a point non-coplanar with p1, p2, p3, so these 4 points
constitute a tetrahedron.
The lines (p1∧ p2), (p1∧ p3) and (p1∧ p4) can be expressed
as a linear combination of {p1∧m1, p1∧m2, p1∧m3} since
they all pass through p1, thus:

p1∧ p j =
3

∑
i=1

α
j

i (p1∧mi) =
3

∑
i=1

α
j

i l j
i , j ∈ 2,3,4

In the same manner, the lines (p2 ∧ p3) and (p2 ∧ p4)
can be expressed as a linear combinations of
{p2 ∧ e1, p2 ∧ e2, p2 ∧ e3} since they pass through the
contact point p2. Finally the line (p3 ∧ p4) passes through
p3 and thus can be expressed as a linear combination of
{p3∧h1, p3∧h2, p3∧h3}.
Since the lines of the tetrahedron are of rank 6
(proposition 5), they form a basis of R6. We showed
that the lines of the tetrahedron can be expressed as a linear
combination of the 9 lines li. Thus these 9 lines, associated
to the 3 friction cones, are also of rank 6. Consequently, a
6-dimensional basis can be extracted from these 9 lines. We
remind the reader that the choice of 3 lines among the m
sides of each linearized friction cone is due to the fact that
these m lines are of rank 3 (proposition 3).�

Proposition 7: Assume that the grasp of n−1 non-aligned
fingers is not force-closure. Suppose that {bi}i=1..k is
the k-dimensional (where k = 6) basis associated to their
corresponding contact wrenches. A sufficient condition for
a n-finger force-closure grasp is that there exists a contact
wrench γ such that:
• γ is inside the linearized friction cone of the nth finger
• γ = ∑

k
i=1 βibi, βi < 0⇒ γ = Bβ ⇒ β = B−1γ

where B = [b1,b2, ...,bk] is a k × k matrix and β =
[β1,β2, ...,βk]T is a k× 1 strictly negative vector. Thus, a
simple multiplication by B−1 permits to test if a contact
wrench γ , and consequently the location of the nth contact
point, ensures a force-closure grasp.
Proof. A necessary and sufficient condition for force-closure
is that the primitive contact wrenches resulted by contact
forces at the contact points positively span the entire k-

dimensional wrench space [10]. A set of k + 1 vectors in
Rk positively span Ek if and only if the (k + 1)th vector is
a unique linear combination of the other k vectors and all
coefficients are strictly negative (proposition 2). The k + 1
vectors {γ,b1,b2, ..,bk} satisfy these conditions and thus
positively span Rk. �

V. QUALITY CRITERION OF THE n−1 FINGERS
LOCATIONS

At this point, we showed (proposition 7) that to achieve
force-closure, we generate randomly locations of n−1 non-
aligned fingers. A position of the nth finger is chosen such
that an associated contact wrench can be uniquely expressed
as a strictly negative linear combination of one of the first
generated n− 1 fingers wrench basis. For generating force-
closure grasps without any quality criterion, the reader should
refer to [25], [31]. Our objective is to ensure fast robust
force-closure grasps generation. In our case, force-closure
grasps fast computation and robustness are strongly linked:
one should notice that generating a n-finger good grasp will
depend on the generation of the first n− 1 fingers. A good
choice of their locations will induce on one hand robust
grasps and on the other hand more locations for the nth
finger on the object surface guaranteeing force-closure and
consequently fast computation. Thus, we need to find a
criterion that quantifies a good placement of the n− 1 first
fingers.
Existing force-closure grasps quality criteria permit to select
an optimal grasp among a set of stable grasps. Thus, one
should generate first several force-closure grasps, compute
their corresponding quality to finally choose a good one.
A review on the quality measures proposed in the grasp
literature can be found in [29]. We propose a method
that generates simultaneously force-closure and good quality
grasps. The following paragraphs explain the quality criterion
we use in the case of a 2D object and its extension to 3D
objects. In a 2D case, a wrench basis is represented by three
points in the 3D space that constitute with the wrench space
origin a tetrahedron. A wrench that ensures force-closure
grasp is a wrench that can be uniquely expressed as a strictly
negative linear combination of the 3D basis. Thus, the larger
the tetrahedron, the more choices we have for such a wrench.
In the following, this idea is detailed more formally.

A. 2D Quality Criterion

In 2D, a hard finger in contact with an object at a
point x exerts a grasp force f with a corresponding torque
τ = det(x, f ). Force and torque are combined into a 3D
wrench w = ( f ,τ). Thus the wrench space is of rank 3.

1) 2D force-closure grasps quality: Let A and B be two
contact points on the boundary of a planar object. fA1, fA2
and fB1, fB2 represent their corresponding friction cones
boundaries (Fig. 2). The wrenches associated to these grasp
forces are represented respectively by the four 3D points
wA1, wA2, wB1 and wB2.



Proposition 8: Wrenches associated to any two contact
points of 2D objects form a 3D basis.

Proof. Immediate when one notes that if we select any

Fig. 2. fA1, fA2 and fB1, fB2 represent the 2D friction cones boundaries.

two wrenches, there exists a third one that is not a linear
combination of the other two. �
Any chosen 3 wrenches from the 4 wrenches associated to
the two contact points A and B are of rank 3. Consider for
example wA1, wA2 and wB1, they form a 3D basis. A sufficient
condition for a third finger to ensure 2D force-closure grasp
is that its corresponding wrench, w4, is a strictly negative
linear combination of the 3D basis (proposition 8). The
convex hull of wA1, wA2, wB1 and w4 is a tetrahedron T . Thus
one grasp quality corresponds to the largest ball centered
at the origin and inscribed in T [26]. The best quality is
obtained when T is a regular one. Consequently, the best
locations of the contact points A and B is obtained when the
tetrahedron constituted by wA1, wA2, wB1 and the origin O,
approximates a regular one.

2) Tetrahedra quality measure: Different tetrahedron
quality measures were proposed in the literature especially in
the field of mesh optimization. One of the most used quality
is Q = V

h3
max

[28], where V is the volume of the tetrahedron
and hmax is its maximal edge length. Q is maximal when the
corresponding tetrahedron is regular. Using this criterion, the
quality of the locations of the two contact points A and B is
given by:

Q(A,B) = max
i,i=1..nb

Vi

h3
i max

(1)

where nb is the number of tetrahedra constituted by the origin
and the wrenches associated to the two contact points. In
other words, nb is the number of 3D basis associated to the
contact wrenches, (in 2D, nb = 4).

3) A 2D quality criterion: The reader should keep in mind
that we are interested in finding a criterion to the locations
of the n−1 fingers to ensure robust 3D force-closure grasps.
Thus, in the following, we reformulate (1) to be extensible to
3D grasps. As a matter of fact, the volume V of a tetrahedron
can be expressed as the product of a constant, δ , and the
determinant of the tetrahedron vertices [27]. Since the origin
O is one of the vertices, we obtain:

Q(A,B) = max
i,i=1..nb

δ .det(wi
1,w

i
2,w

i
3)

h3
i max

(2)

Q(A,B) is maximal when the corresponding tetrahedron
is regular. The volume of a regular tetrahedron is

√
2a3/12,

where a is its edges length. For such a tetrahedron, hmax = a,
thus Q(A,B)max is

√
2/12. A normalized criterion will be:

Q(A,B) = max
i,i=1..nb

12.δ .det(wi
1,w

i
2,w

i
3)√

2h3
i max

(3)

In order to show the efficiency of the proposed quality
criterion, locations of two contact fingers are randomly
generated on a 2D object. Using equation (3), the quality
of the generated fingers, noted Q f g, is computed. All the
2D object vertices are then tested for force-closure. For
all force-closure grasps reported, we calculate the classical
grasp quality measure based on the largest ball criterion.
The latter is noted Qcl . Figure (3) shows the average of
Qcl of all force-closure grasps found as a function of Q f g
attributed to the fingers, (mean(Qcl) = f (Q f g)). This figure
demonstrates that we are dealing with an increasing function:
it means that our criterion and the classical one evolve in
the same way. We notice that after a threshold = 0.5, the
force-closure quality obtained is above 0.1. In other words,
when the tetrahedron constituted with the 3D wrench basis
and the origin is half-regular, the quality of the force-closure
grasps obtained is half-optimal, since the largest ball is of
radius ρ = 0.2041. This value is computed as follows [27],
ρ = 3.V

S = 3.
√

2
12.
√

3
= 0.2041, where V is the volume of the

tetrahedron of unit length and S the sum of its 4 faces
surfaces.

Fig. 3. The n-finger force-closure grasps quality according to the largest
ball criterion as a function of the quality measure attributed to the n-1 fingers
locations.

B. 3D Quality Criterion

Dealing with 3D objects grasps involves 6D wrenches.
Thus, instead of computing 3D tetrahedra volumes, we
are conducted to calculate volumes of 6D hypertetrahedra.
Equation (3) introduced in the case of 2D grasps could
be extended to 3D grasps as follows (computation of a 6-
volume hypertetrahedron could be viewed as a determinant



calculation):

Q(C,D,E) = max
i,i=1..nb

β .det(wi
1,w

i
2,w

i
3,w

i
4,w

i
5,w

i
6)

h6
i max

(4)

Where {wi
j} j=1..6 is a 6D wrench basis. Note that nb is the

number of 6D basis chosen among the (n−1)×m wrenches,
(corresponding to the n−1 fingers). This quality measure is
used in the experiments to generate the first n− 1 contact
finger locations on 3D objects.

VI. EXPERIMENTAL RESULTS

The force-closure test we propose is sufficient but not
necessary. In other words, our method reports fault negative
results (the method implies no force-closure when it exists).
That is due to three reasons. The first one is the linearization
of the friction cone. The second is that a point is tested for
force-closure with a 6D basis instead of the convex-hull of all
wrenches associated to the n−1 fingers. The third is due to
testing only the normal wrench, or any positive linear combi-
nation of the friction cone sides, associated to the nth finger
for force-closure. Thus our approach sacrifices completeness
in favor of fast computation. The obvious question is how
it competes with a complete method. We choose to use in
our experiments the classical complete method based on the
construction of a 6D convex hull [26]. The process involves
approximating the contact friction cones as a convex sum
of a finite number of force vectors around the boundary of
the cone, computing the associated object wrench for each
force vector, and then finding the convex hull of this set of
wrenches. If the origin is contained within this space, the
grasp have force-closure. Otherwise, there exists some set of
disturbance wrenches that cannot be resisted by the grasp.
We accomplish tests on a sphere model, represented by its
762 vertices and their respective normal directions. Two
experiments are performed in order to show the efficiency
of the proposed approach. The first test aims at studying the
completeness of the approach. The purpose of the second
test is to compare the force-closure grasp computation time
of our approach to that of the convex hull. Since these two
methods require the cone to be linearized and since all lines
through one point are of rank 3 (proposition 3), without
loss of generality, we use a 3-sided pyramid to represent a
linear model of a cone. The friction coefficient is set to 0.5,
(corresponds to the coefficient between glass and metal). The
experiments were run on Pentium Core duo machine with
2GB memory and a CPU at 2.13 GHz .

A. Completeness Test

The completeness test aims at computing possible n-finger
force-closure grasps on a 3D object with our method and
that of the convex-hull. For this purpose, we generate all
possible locations for the first three fingers on the sphere.
These locations are non-aligned, not ensuring force-closure
and which quality is above a threshold. We test then all the
remaining vertices for force-closure with all basis associated
to the first generated three fingers. Completeness results for
different thresholds 0 = T h0 < T h1 < T h2 < T h3 < T h4

TABLE I
NUMBER OF SOLUTIONS FOR DIFFERENT THRESHOLDS

Th0 Th1 Th2 Th3 Th4
Classic 315 349 366 392 419
New 59 82 96 118 149
N/C 18.73 % 23.5 % 26.23 % 30.10 % 35.56 %

are shown in Table I. The number of solutions presented
is averaged by the number of fingers locations combination.
Note that Th0 is null and thus presume no constraints on
the generation of the first n− 1 fingers. The latter are thus
generated randomly ensuring no minimal quality criterion.
We notice that the solutions found by our approach regarding
the convex-hull one increases with the threshold. This proves
the robustness of the quality criterion proposed. In spite
of a good selection of the first three fingers locations, a
completeness of only 35% is obtained. The next paragraph
will show that even with a low rate of completeness, i.e with
T h0, our approach will generate a more robust force-closure
grasp with at least a quarter computation time of the convex-
hull method.

B. Rapidity Test

This paragraph measures the computation time for gen-
erating one n-finger force-closure grasp. Completeness pro-
cedure involves testing the nth finger with all 6D wrench
basis associated to the first generated n-1 fingers. Rapidity
procedure test force-closure with only one 6D basis chosen
according to the introduced quality criterion. The algorithm
below details the different corresponding steps for generating
n−1 finger force-closure grasps.
Require: - 3D points representing the object

- Linearized friction cone at each point and
corresponding wrenches

Ensure: - A n fingers force-closure grasp
1: α ∈ [0;1]
2: L = Rand Fingers (n−1)
3: L basis = Find Basis (L wrenches)
4: q L = quality(L basis)
5: if q L <threshold then
6: Go to step 2
7: end if
8: B basis = Best Basis(L basis)
9: randomly choose x ∈]0;1[

10: if x > α then
11: s← 0
12: while (s < Nbpoints) and (No Force-Closure found)

do
13: s← s+1
14: vertex=Rand Finger(nth point)
15: Force Closure (vertex, B basis or L wrenches)
16: end while
17: if No Force-Closure found then
18: Go to step 2
19: end if



20: else
21: vertex = Rand Finger(nth point)
22: Force Closure (vertex, B basis or L wrenches)
23: if No Force-Closure found then
24: Go to step 2
25: end if
26: end if

A n-finger force-closure grasp may be computed in two
different ways. The first one generates randomly locations
of n− 1 fingers non-aligned and not in force-closure on
the sphere and then tests till Nbpoints among the object
N vertices for force-closure. When no force-closure grasp
is found, after testing the Nbpoints, we generate another
locations for the first n− 1 fingers. The second method
proceeds also by generating the first n− 1 fingers but tests
then only one randomly generated vertex for force-closure.
If the latter does not ensure force-closure, we regenerate
another locations for the first n− 1 fingers. The tuning
parameter α will alternate between these two methods. L
stands for the randomly generated locations of n−1 fingers
non-aligned and not in force-closure on the sphere. Since
computing a good grasp depends on a good placement
of the first n− 1 fingers as well as the location of the
nth finger, L must ensure a minimal quality criterion.
This criterion computation is detailed in the previous
paragraph. Once good n−1 fingers locations are generated,
we determine the best quality basis, B basis. The value x
permits to choose between the two methods. The variable
x can take values between 0 and 1. When x > 0.5, the
second method is privileged. Thus, when no force-closure
is obtained when testing a vertex for force-closure with
the generated n − 1 vertices, we privilege regenerating
new locations for the n − 1 vertices on testing another
vertex with the same first n− 1 vertices positions. On the
contrary, when x < 0.5 the first method is privileged.
The Force Closure(vertex,B basis or L wrenches)
function performs n-finger force closure tests. It takes
B basis or L wrenches as arguments whether force-closure
is tested according to the new or the classic convex-hull
method respectively. Experiments were conducted for a
4-finger grasps generation, using different thresholds with
the convex-hull and our method. Figure (4) illustrates the
influence of the threshold. We remind the reader that Th0
is null and thus presume no constraints on the first n− 1
generated fingers locations. This graph demonstrates that
the better the locations of the first three fingers are chosen,
the lower is the computation time of a 4-finger force-closure
grasp. The best results are obtained for the threshold T h4.
This is normal, because a better choice of the first three
fingers increases the number of possible 4th finger ensuring
4-finger force-closure grasps.

Table (II) compares by varying α our method and that of
the convex-hull computation time. The classic line gives in
ms the time for computing one 4-finger force-closure grasp
according to the previously described algorithm, with the

Fig. 4. 4-finger force-closure grasp computation time using our method
with thresholds T h0 < T h1 < T h2 < T h3 < T h4

TABLE II
FORCE-CLOSURE GRASP COMPUTATION TIME WITH T h0

α 0 0.3 0.6 0.9
Classic 4.07 3.99 4.07 4.06
New 1.23 1.09 0.99 0.90
N/C 30.22 % 27.32 % 24.32 % 22.17 %

convex-hull method. The new line does the same when our
approach is used. The last line show the ratio of our method
computation time to that of the classic method. This ratio
varies approximately between 22% and 30%. Thus in the
worst case, when generating the first three fingers randomly
without any quality criterion (Th0 is used), our method is
about four times faster in finding a force-closure grasp than
the convex-hull method. This ratio is about 15% for Th4,
thus, six times faster than the convex-hull.

Table (III) shows the quality of the force-closure grasps
computed with the two approaches. The quality is obtained
according to the largest ball criterion [26]. The quality
of the force-closure grasps obtained with our approach is
approximately twice better than that of the classical method.
Thus, although our method is not complete, it finds good
solutions for the force-closure problem.

Finally, figure (5) shows the generation of a four-finger
force-closure grasp on the grasping part [25] of 3D objects
model with different resolutions, a spoon modelled with 629
vertices, a bottle (7360 vertices) and a mug (183534 ver-

TABLE III
FORCE-CLOSURE GRASP GENERATED QUALITY WITH α = 1

Th0 Th1 Th2 Th3 Th4
Classic 0.0689 0.0700 0.0731 0.0826 0.0955
New 0.1431 0.1445 0.1458 0.1545 0.1627
N/C 2.0769 2.0643 1.9945 1.8705 1.7037



Fig. 5. Force-Closure grasp generated on a synthetic model (spoon), laser
scanned model (mug) and a 3D model obtained through a vision system
(bottle).

tices). Their corresponding force-closure grasp computation
time is respectively 2.59 sec, 8.87 sec and 4.46 min.

VII. CONCLUSIONS

Our aim is to compute as fast as possible robust n-finger
force-closure grasps for a given 3D object. The proposed
force-closure sufficient condition is not necessary. Thus, our
force-closure test reports fault negative results. However, we
showed that our method sacrifices completeness in favor
of fast computation which is the real motivation of our
work. The completeness test results illustrated in Table I
indicate that completeness depends on the quality of the
first n− 1 generated fingers. In the worst case, when the
latter are generated randomly, our method finds 18.7% of
the force-closure grasps. This rate may seem low but when
considering the quality of the found solutions (table III), one
can notice that they are two times better than those found
by the classical convex-hull method. Finally, our approach is
much faster than the classical method. The computation time
depends on the quality of the generated n−1 fingers. In the
worst case, this time is four times lower than the convex-hull
one. This is due to two main reasons:
1) The force-closure test is easy to compute. It is reduced to
an inverse matrix calculation.
2) Another main advantage on the convex-hull method is that
a construction of a convex-hull is needed whenever a new
finger is tested for force-closure with the other n−1 fingers.
On the other hand, when a basis is associated to the first
n−1 fingers, it can be used to test all remaining vertices for
a n-finger force-closure grasp.
This confirms the efficiency of the proposed method in
simplifying computation procedures of force-closure grasps.
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