
Neural Pre-coding Increases the Pattern Retrieval
Capacity of Hopfield and Bidirectional Associative

Memories
Amir Hesam Salavati∗, K. Raj Kumar∗, Amin Shokrollahi∗ and Wulfram Gerstner†

†Brain Mind Institute ∗Laboratoire d’algorithmique
Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

E-mail: {hesam.salavati,raj.kumar,amin.shokrollahi,wulfram.gerstner}@epfl.ch

Abstract—We consider the problem of neural association,
which deals with the retrieval of a previously memorized pattern
from its noisy version. The performance of various neural
networks developed for this task may be judged in terms of their
pattern retrieval capacities (the number of patterns that can be
stored), and their error-correction (noise tolerance) capabilities.
While significant progress has been made, most prior works in
this area show poor performance with regard to pattern retrieval
capacity and/or error correction.

In this paper, we propose two new methods to significantly
increase the pattern retrieval capacity of the Hopfield and
Bidirectional Associative Memories (BAM). The main idea is to
store patterns drawn from a family of low correlation sequences,
similar to those used in Code Division Multiple Access (CDMA)
communications, instead of storing purely random patterns as
in prior works. These low correlation patterns can be obtained
from random sequences by pre-coding the original sequences
via simple operations that both real and artificial neurons are
capable of accomplishing.

I. INTRODUCTION

In our daily routine, we encounter many cases where we
have to deal with noisy information: for example, reading a
document with misspelled words or trying to identify a person
in a blurry picture. In both cases, the human brain does a fairly
good job in retrieving the correct information from the noisy
input. In the parlance of neuroscience, the brain memorizes
an association between patterns (for example between the
spelling of a word and its meaning, or between a face and
who it belongs to), and later on we would like it to recall
the association that a noisy input represents. An important
characteristic of a neural association system is the maximum
number of patterns it can memorize while still being able to
tolerate a fair amount of noise during the recall process.

Two particular neural networks that have been extensively
investigated in the literature are the Hopfield [7] and Bidirec-
tional Associative Memory (BAM) [10] networks. Previous
works on these networks have considered the process of
memorizing a set of random binary vectors. The storage
efficiency of these schemes are quite poor, as will be made
more precise later on.

In this paper, we propose ways in which we can significantly
improve the pattern retrieval capacity of such neural systems,
by storing not random patterns, but structured patterns that
have good “distance/correlation” properties. Our claim is

that this assumption of working with structured patterns is
biologically meaningful as well, since sensory inputs to the
brain typically undergo several stages of neural pre-processing
before being actually “stored” in the brain.

Before presenting our solutions, we briefly introduce the
neural model and discuss some related works in Section II.
Sections III and IV then present our two proposed methods
to increase the pattern retrieval capacity of the Hopfield and
BAM networks.

II. PROBLEM FORMULATION

A. Neural Model

The neural network model that we consider can be repre-
sented by an undirected complete graph of N binary nodes
with weighted links between each pair of nodes. Each node
of the graph represents a neuron. At every instant of the
process the state of node i, denoted by si, indicates whether
or not neuron i has fired at that instant (we will not show the
dependency of si on time to alleviate notation). In particular,
we set si = 1 when the neuron fires, and si = −1 when it
remains silent. The weight wij between nodes i and j denotes
the binding strength (interaction) between these two neurons
and can assume any real number.

At any given instance of time, a node in the network
decides its state based on the inputs from its neighbors. More
specifically, neuron i fires if the weighted sum

hi =
N∑
j=1

wijsj (1)

over its input links wij exceeds a firing threshold Θ,

si =
{

1, if hi ≥ Θ
−1, otherwise . (2)

The main task of neural association is to choose the graph
weights wij such that the network is able to memorize M
binary patterns of length N . In this paper, we are mostly
interested in auto-association, i.e. retrieving a memorized
pattern from its noisy version. In the sequel, we denote these
patterns by {x1, x2, . . . , xM}, where xµ = (xµ1 · · ·x

µ
N) is a

binary pattern of length N with xµj ∈ {−1,+1} for all j.

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0595-3/11/$26.00 ©2011 IEEE 850

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147974622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The neural association consists of two phases: learning
(memorizing) and recalling. In the learning phase, the network
learns the weights based on the binary patterns that it is
supposed to memorize. In the recall phase, the weights learnt
remain fixed and the network is initialized with a noisy version
of one of the memorized patterns 1. Neurons then update their
states according to equation (2), and the network evolves until
a stable state is reached. We will primarily work with the
case where the neurons are updated synchronously (i.e., all
neurons are updated simultaneously at each time step); our
analysis may also be extended to the case of asynchronous
updates (one neuron at a time).

During the recall phase, there are two main requirements
that need to be met to ensure successful operation: stability
of the memorized patterns and noise tolerance. The first
requirement simply means that in absence of noise, memorized
patterns must be stable states of the network. More precisely, if
we initialize the network with one of the memorized patterns
xγ , i.e. sj = xγj for all j = 1, . . . , N , after one time step
of network evolution we would like to have si = xγi for all
i = 1, . . . , N , where each si is given by equation (2). The
second condition requires the mechanism to be able to tolerate
a fair amount of noise and settle down to the correct pattern
even if initialized with a corrupted version of the pattern, i.e.,
if a few of the initial bits are flipped because of noise.

B. Related Works

In what is probably the most well-known work on the neural
associative memory, Hopfield [7] used weights wij based on
a Hebbian learning rule [2], given by

wij =
1
N

M∑
µ=1

xµi x
µ
j . (3)

The Hopfield rule is local, in the sense that the weight between
neurons i and j only depends on the ith and jth bit of the
patterns that we would like to memorize. It is also memoryless,
meaning that if a new pattern is introduced during the learning
phase, the new weight matrix W only depends on the previous
weight matrix and the new pattern, and not on the values of all
previous patterns that were stored. These two rules translate
into low computational complexity in the learning phase.

Amit et al. [1] showed that as long as M ≤ 0.138N ,
the proposed model is able to memorize up to M random
binary vectors of length N with small bit error probability in
the recall phase. Here, random means that the patterns can
be any of the 2N binary vectors of length N with equal
probability. Later, McEliece et al. [9] showed that if we
require all patterns to be recalled with vanishing codeword
error probability (as opposed to bit error probability), then the
capacity is only proportional to N/ log(N). Komlos and Paturi
extended the results of [1], [9] to neural networks that are not

1Here, initialization means that each bit of the noisy pattern is assigned to
its corresponding node, i.e., the first bit is assigned to node 1, the second bit
to node 2, and so on.

fully interconnected [8], and showed similar scaling behaviour
for the pattern retrieval capacity.

In [11], the authors used for the weights the pseudo-inverse
rule [6] and showed that one can memorize up to N patterns
so that they are fixed points of the dynamics, but only N/2
random patterns can be stored if one requires at least one
bit of error correction. While this is a major improvement
to the N/ log(N) scaling of the pattern retrieval capacity in
[9], it, however, entails significant additional computational
costs because of the pseudo-inverse operation in the proposed
weighting rules. Furthermore, the update rule is not local, and
except for a special case, it is not memoryless either.

The pattern retrieval capacity of Hopfield networks can be
improved significantly if one considers low-activity patterns,
i.e. patterns where most of the neurons are silent in any given
time instance. It can be shown that as the number of active
neurons decreases, the number of patterns that can be stored
increases [6]. Nevertheless, when required to correct a fair
amount of erroneous bits, the information retrieval is not better
than that of networks with balanced activity patterns.

When comparing the linear (in N) pattern retrieval capacity
of neural networks with those of structurally similar codes
on graphs (such as LDPC or fountain codes) from coding
theory, we observe a huge gap; these codes on graphs are
able to memorize an exponential number of patterns in terms
of N . Various factors (including the simplified neural rule for
“decoding”) may cause this gap, but among those could be
the assumption that the network should be able to memorize
M random patterns. This assumption is usually justified by
our lack of knowledge about how exactly the brain deals with
input information before storing it.

However, it is known that information about the outside
world undergoes several pre-processing stages before being
memorized. One good example is the human visual system
in which the image on the retina is first processed by the
Lateral Geniculate Nucleus (LGN) of the thalamus and then
by the primary visual cortex (V1) [2]. After several levels
of similar processing, it reaches the point to be associated
with other objects (in the learning phase) or used to recall
a previous association. Therefore, it appears highly unlikely
that neural patterns are completely random at the point where
they are stored in the brain. Utilizing non-random patterns
has the advantage that we can consider patterns that have
desirable properties such as a larger minimum distance, or
lower correlation, when compared to purely random patterns.
Therefore, using non-random patterns might result in larger
pattern retrieval capacities. We will focus in this paper on
storing N pre-coded patterns in a network of N neurons.

It should be also mentioned that one can trivially memorize
up to N orthogonal patterns and make sure they are fixed
points of the neural association process. However, networks
with orthogonal patterns are unable to correct any errors during
the recall phase [6]. As a result, such methods do not satisfy
the noise tolerance condition and can not be used as neural
associative memory.

Recently, Berrou and Gripon [4] have also demonstrated

851

increases in the pattern retrieval capacity of Hopfield networks,
by using Walsh-Hadamard sequences used in CDMA systems
to combat the noise in the network. However, there is a major
drawback with their approach, since they consider a separate
soft Maximum Likelihood (ML) decoder to deal with noise in
the input. Having an extra ML decoding stage is undesirable
in the setting of neural networks, in the interest of minimizing
the complexity.

In contrast, our proposed approaches employ local and
memoryless low-complexity learning rules, do not need any
extra decoding stages during the recall phase, and are able to
guarantee a reasonable amount of error correction.

C. Dealing with Interference

Consider the case where we use the Hopfield weighting rule
(3). To obtain better insight on the stability condition, consider
the input hi to neuron i obtained by using (3) in (1), when
we initialize the network with pattern xγ :

hi =
N∑
j=1

wijx
γ
j =

1
N

M∑
µ=1

xµi

N∑
j=1

xµj x
γ
j

= xγi +
1
N

M∑
µ=1
µ6=γ

xµi 〈x
µ, xγ〉 = xγi + Iγi , (4)

where 〈xµ, xγ〉 is the inner product of patterns xγ and xµ.
In the above equation, the first term, i.e., xγi , is the “desired
term” because we would like the thresholded version of hi
(according to (2)) to be equal to the xγi (since our objective is
to recall pattern xγ). The second term Iγi is the interference
term, which depends on the correlation between pattern γ and
all other patterns. Ideally, we would like the interference term
be as small as possible such that it allows for recovery of xγ .

It can be shown (details omitted for brevity) that the
traditional CDMA approach of employing any family of Welch
bound achieving low-correlation sequences 2 is insufficient
for our purpose; smarter cancellation is needed among the
summands of the second term in (4). In what follows, we
will show that such intelligent cancellation occurs when we
suitably pick the xµ from the family of Gold sequences [3].
We first provide a quick overview of this sequence family.

D. Gold Sequences

In this subsection, we assume that the reader is familiar with
the basics of finite fields. Let q > 0 be an odd integer, and
d = 2l + 1 for some l such that l and q are relatively prime.
Also, let α be a primitive element of F2q , and T (·) denote the
finite field trace function from F2q to F2. We set N = 2q− 1.
The family of cyclically distinct Gold sequences is defined to
be the set G = {ga|a ∈ F2q}, where each ga = (ga1 · · · gaN) is
a sequence of length N with

gai , (−1)T (aαi)+T (αdi). (5)

2In this paper, we use the terms pattern and sequence to convey the same
meaning.

Hence the number of sequences in G is N + 1. For later use,
we define the notation ga(k) to represent a cyclic shift of ga

by k positions (for simplicity, we will refer to ga(0) simply as
ga). Also, it can be easily verified that the Gold sequences are
periodic with period N [3]. In the sequel, we will choose our
patterns {x1, . . . , xM} to be either Gold sequences, or cyclic
shifts of Gold sequences, depending on the value of M . The
particular sequences chosen will be specified later. We set the
first pattern x1 = g0, where 0 denotes the zero element in F2q .

Before we proceed, it must be noted that generating low
correlation sequences using neural networks is easily accom-
plished, since one can generate the Gold family using only
shift registers and logical AND operations [3] (the logical
AND operation may be implemented using a simple two-layer
neural network, see [6]). Owing to lack of space, we will not
go into much details in this regard and point the reader to
[3], [5] for further details regarding how Gold sequences are
generated using shift registers.

III. HOPFIELD NETWORKS WITH SCALED WEIGHTS

In this section, we elaborate on our first solution to the prob-
lem of increasing the pattern retrieval capacity of neural net-
works. The proposed solution is based on the auto-associative
Hopfield network with a slightly modified weighting rule. We
show that using this technique, the neural network will be
able to memorize M = N patterns with good error correction
capabilities, which is a significant improvement over [7], [9].

Our goal is to memorize the first M patterns of the Gold
family with parameter q, i.e., we set xµ = gµ for all µ =
1, . . . ,M . Recall that N = 2q − 1. The neural update rule
is fixed and given by (2). Finally, we assume that the neural
firing threshold Θ is equal to zero in this section.

The main idea in the proposed method is to consider a
generalized learning rule,

wij =
1
N

M∑
µ=1

λµx
µ
i x

µ
j , (6)

where the scaling factors λµ are to be picked such that the
interference term in (4) becomes small. Before we go ahead
and present our choice of the λµ, we first examine the case
of λµ = 1, ∀µ = 1, . . . ,M , which reduces (6) to the original
Hopfield weighting rule in (3). We will show that this scheme
has very good performance in terms of stability but that the
error correction capability is very poor.

A. Stability Analysis with λµ = 1 ∀ µ

To assess the stability property of Gold sequences, we pick
the M = N + 1 sequences from G to constitute the patterns
that we would like to memorize (these are all cyclically
distinct, by construction). Without loss of generality, let’s
assume that the pattern xγ , which we would like to recall
at the moment, corresponds to the Gold pattern with a = 0
(see (5)). Specializing the second term of (4) for the case of

852

our patterns being Gold sequences, we obtain

Iγi =
1
N

∑
a∈F2q , a 6=0

(−1)T (aαi)+T (αdi)
N∑
j=1

(−1)T (aαj)

=
(−1)T (αdi)

N

M − 1 +
N∑

j=1,6=i

∑
a∈F2q
a 6=0

(−1)T (a(αi+αj))

=

M −N
N

(−1)T (αid) =
M −N
N

xγi =
1
N
xγi . (7)

The first equality in (7) holds because αi + αj 6= 0 for i 6= j
(since α is primitive element of F (2q)), and then since the
trace function is a linear form:∑

a∈F2q

(−1)T (ab) = 0, if b 6= 0. (8)

Combining (7) and (4), we see that for the Gold family
with M = N + 1 we have hi = M

N x
γ
i . Therefore, the

sign of hi would be equal to that of xγi , i.e., the network is
stable for M = N + 1 when Gold sequences are memorized.
Furthermore, we can also show that setting M to be an integer
multiple of (N +1), say M = δ(N +1), δ ∈ Z+, and picking
our patterns to be G and (δ − 1) sets of cyclic shifts of all
sequences in G will also lead to stability. Due to lack of space,
we do not go into details in this regard.

B. Performance in the Presence of Noise when λµ = 1 ∀ µ
To investigate the performance in the presence of noise, we

first consider the simple case of a single bit error in the input
to the network. Suppose that we feed in the pattern xγ which
corresponds to the Gold sequence with a = 0 (see (5)), where
position k has been flipped. In other words, our initial pattern
is s = xγ + e, where the error vector e is equal to zero in
all positions except for the kth element ek, and ek = −2xγk .
Substituting this input pattern into (4) and using (7), we obtain:

hi =
M

N
xγi −

2
N

M∑
µ=1

xµi x
µ
kx

γ
k . (9)

The term Eγk =
∑M
µ=1 x

µ
i x

µ
kx

γ
k reduces to Mxγi if k = i.

When k 6= i, we obtain using (8) that Eγk = 0. From (9) and
the above, we obtain

hi =
{
−MN x

γ
i , if i = k

M
N x

γ
i , Otherwise

. (10)

This essentially means that no error correction is possible:
all flipped bits remain erroneous and all correct bits remain
correct as the system evolves.

C. Choosing λµ to Ensure Good Error Correction

From the above, the need to choose the λµ intelligently
becomes clear: we need to make sure that pair-wise pattern
correlations cancel each other out when summing up over
all patterns, in the second term of (4). Towards this end, we
simply pick λµ = (−1)T (α−µ); since this term alternates in
sign for different µ’s, the interference terms in the summation

in (4) cancel each other out. This intuition is validated by the
simulation results below, where we show that using this choice
of λµ, we will be able to memorize M = N patterns drawn
from the Gold sequence family.

D. Simulation results

We consider three different Gold families, with parameters
q = 5, q = 7 and q = 9. These correspond to having N = 31,
N = 127 and N = 511 respectively. As mentioned earlier,
the first M = N patterns of the Gold family are selected. We
consider various number of initial (uniformly random) bit flips
and evaluate the pattern error rate. The results are reported
in Fig. 1 and are compared to the pseudo-inverse method
proposed in [11].3 As can be seen, the number of initial bit
flips that can be corrected improves as the network size N
grows. For instance, with N = 31, the suggested method is
able to correct one bit flip, while with N = 511, the proposed
solution can correct up to 40 bits of error.

Fig. 1. Pattern error rate for our scaled Hopfield network with M = N ,
compared to the pseudo-inverse method [11] with M = bN/2c − 1.

IV. BIDIRECTIONAL ASSOCIATIVE MEMORY WITH TWO
STAGE RECALL

In this section, we consider the case where we would like to
memorize M suitably chosen patterns using a neural network
with M+N neurons. The number of patterns stored per neuron
M

M+N will be seen to tend to 1 as M grows and N remains
fixed. For the original result of Hopfield, recall that the number
of patterns stored per neuron is only 0.138. Thus our result
represents a seven-fold increase in capacity, in the limiting
case. Further, our proposed scheme will be able to correct up
to Nerr = b(N −

√
2(N + 1) + 1)/2c errors (bit flips).

In fact, the solution presented in this section is very similar
to winner-takes-all neural networks and adaptive resonance al-
gorithms [6]. However, the proposed method has the advantage
that it does not need any lateral connections to enforce the
winner-takes-all rule; because of its special structure, the same
phenomenon occurs automatically. Furthermore, in contrast to
adaptive resonance algorithms, the suggested approach is not
highly sensitive to input noise.

Consider the neural network shown in Fig. 2, composed of
a complete bipartite graph between neurons z1, . . . , zN and

3For clarity purposes, we have illustrated only the pattern error rate
corresponding to N = 511 for the pseudo-inverse method [11] as the results
for N = 31 and N = 127 were quite the same.

853

y1 y2 yM−1 yM

z1 zN

wij

. . .

. . .

Fig. 2. A bipartite neural network

y1, . . . , yM . We choose the weights wij between zi and yj
to be xji , i.e., the ith bit of the jth pattern. Suppose that the
neurons z1, . . . , zN are initialized with a possibly corrupted
pattern X . Our recall process to recover the correct pattern
after error correction comprises of two stages: a forward and
a backward iteration. In the sequel, we will assume that M =
δ(N + 1), for some fixed positive integer δ < N . In this case,
our set of patterns is chosen to include G, and (δ− 1) sets of
cyclic shifts of all sequences in G (where the cyclic shifts used
for each set may be arbitrary, as long as they are distinct).

A. Forward Iteration

Given our particular choice of wij = xji , the input to neuron
yj is equal to the correlation between X and pattern xj ,
denoted as 〈X,xj〉. Let xj correspond to pattern ga(k), for
some a ∈ F2q and k ≥ 0, k ∈ Z. Without loss of generality,
assume that the input pattern X corresponds to a corrupted
version of x1, i.e., X = g0 + e, where e is an error vector.
The input to neuron yj is

〈g0 + e, ga(k)〉 = 〈g0, ga(k)〉+ 〈e, ga(k)〉. (11)

For the case that k = 0, a = 0, we have that 〈g0, ga(k)〉 = N .
For all other cases, it is known from the property of the Gold
sequence family that |〈g0, ga(k)〉| ≤

√
2(N + 1)+1 [3]. Now

consider the other correlation term in (11), viz., 〈e, ga(k)〉.
For simplicity, let e correspond to a single bit error in X , at
position `, i.e., e = [0 . . . 0−2g0

`0 . . . 0]. Using the periodicity
property [3], we may evaluate

〈e, ga(k)〉 = (−2)(−1)T (αd`)+T (aα`+k)+T (αd(`+k)) = ±2.

Suppose that we set the threshold of the yi neurons to be
midway between

√
2(N + 1) + 1 and N (we assume N ≥ 5,

so that
√

2(N + 1) + 1 < N). From the above, it is clear
that only neuron y1 will fire (and all others remain silent), as
long as the number of errors is less than or equal to Nerr =
b(N −

√
2(N + 1) + 1)/2c.

B. Backward Iteration

Following this, we do a backward iteration, where the zi
neurons now update their values based on the states of the
yj neurons. Given that only y1 is active, we would like to
recover x1 as the states of the zi neurons. For reasons that
will become clear later, we now assume that the firing levels
of the yj neurons are {−1,+ε}, for some constant ε > 0 (as
opposed to the more traditional {±1} firing levels). For ease of
exposition, consider first the case of δ = 2, i.e., M = 2(N+1).

XXXXXXXXN(Nerr)
ε 1 2 5

31(21) 64 96 192
127(56) 256 384 768

511(240) 1024 1536 3072

TABLE I
PATTERN RETRIEVAL CAPACITY OF THE BAM, FOR SEVERAL N, ε. ALSO

SHOWN IS THE NUMBER OF BIT-FLIP ERRORS TOLERATED NERR .

In this case, we use the set of (N + 1) cyclically distinct
sequences from G, along with cyclic shifts of all sequences in
G by 1 (say). The input to neuron z1 is given by

h1 = ε(−1)T (αd·1) + (−1)
∑

a∈F2m ,a6=0

(−1)T (aα1+αd·1)

+(−1)
∑

a∈F2m ,a 6=0

(−1)T (aα2+αd·2)

= (ε+ 1)(−1)T (αd·1) + (−1)T (αd·2).

We hence see that for values of ε > 0 and a firing thresh-
old of Θz = 0, neuron z1 recovers the correct value of
x1

1 = (−1)T (αd·1) in this case. A similar analysis for all other
neurons zj shows that the entire pattern x1 is recovered as the
states of the neurons zj . It is clear that as we include more
patterns, we will have to increase the value ε. However, the
scaling of ε is quite reasonable in terms of the number of
patterns: for M = δ(N + 1), we need ε > δ−2. The intuition
behind the higher range for the firing levels is that in order
to increase the pattern retrieval capacity, the neurons need to
increase their “operational signal-to-noise ratio.” The pattern
retrieval capacity of this scheme for a few representative values
of N and ε is shown in Table I.

V. ACKNOWLEDGEMENTS

This work was supported by Grant 228021-ECCSciEng of
the European Research Council.

REFERENCES

[1] D. Amit, H. Gutfreund, H. Sompolinsky, Storing infinite numbers of
patterns in a spin-glass model of neural networks, Physic. Rev. Lett.,
Vol. 55, 1985, pp. 1530-1533.

[2] P. Dayan, L.F. Abbott, Theoretical neuroscience: computational and
mathematical modeling of neural systems, MIT Press, 2004.

[3] R. Gold, Optimal binary sequences for spread spectrum multiplexing,
IEEE Trans. Inf. Theory, Vol. 13, No. 4, 1967, pp. 619-621.

[4] C. Berrou, V. Gripon, Coded Hopfield Networks, Proc. Symp. on Turbo
Codes and Iterative Information Processing, pp. 15, 2010.

[5] T. Helleseth and P. V. Kumar, Codes and Sequences over Z4 - A Tutorial
Overview, in Difference Sets, Sequences and their Correlation Properties,
NATO Science Series, Kluwer Academic Publishers, Dordrecht, 1999.

[6] J. Hertz, A. Krogh, R. G. Palmer, Introduction to the theory of neural
computation, USA: Addison-Wesley, 1991.

[7] J. J. Hopfield, Neural networks and physical systems with emergent
collective computational abilities, Proc. Natl. Acad. Sci., Vol. 79, 1982.

[8] J. Komlos, R. Paturi, Effect of connectivity in an associative memory
model, J. Computer and System Sciences, 1993, pp. 350-373.

[9] R. McEliece, E. Posner, E. Rodemich, S. Venkatesh,The capacity of the
Hopfield associative memory, IEEE Trans. Inf. Theory, July 1987.

[10] F.T. Sommer, G. Palm, Improved bidirectional retrieval of sparse pat-
terns stored by Hebbian learning, Neural Networks, Vol. 12, 1999.

[11] S. S. Venkatesh, D. Psaltis, Linear and logarithmic capacities in
associative neural networks, IEEE Trans. Inf. Theory, May 1989.

854

