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ABSTRACT

Emerging scale-out cloud applications need extensive amounts of computational resources. However, data centers
using modern server hardware face physical constraints in space and power, limiting further expansion and calling
for improvements in the computational density per server and in the per-operation energy use. Therefore, continu-
ing to improve the computational resources of the cloud while staying within physical constraints mandates
optimizing server efficiency to ensure that server hardware closely matches the needs of scale-out cloud
applications.

We use performance counters on modern servers to study a wide range of cloud applications, finding that today’s
predominant processor architecture is inefficient for running these workloads. We find that inefficiency comes
from the mismatch between the application needs and modern processors, particularly in the organization of
instruction and data memory systems and the processor core architecture. Moreover, while today’s predominant
architectures are inefficient when executing scale-out cloud applications, we find that the current hardware trends
further exacerbate the mismatch. In this work, we identify the key micro-architectural needs of cloud applications,
calling for a change in the trajectory of server processors that would lead to improved computational density and
power efficiency in data centers.

1 INTRODUCTION

Cloud computing is emerging as a dominant computing platform for delivering scalable online services to a global
client base. Today’s popular services, such as search engines, social networks, and video sharing, all offer their ser-
vices from cloud data centers. With the industry rapidly expanding [15], service providers are building new data
centers, augmenting the existing infrastructure to meet the increasing demand. However, while demand for cloud
infrastructure continues to grow, the semiconductor manufacturing industry has reached the physical limits of volt-
age scaling [18, 19], no longer able to reduce power consumption or increase power density in new chips. Physical
constraints have therefore become the dominant limiting factor for data centers because their sheer size and electri-
cal power demands cannot be met.

Recognizing the physical constraints that stand in the way of further growth, cloud providers now optimize their
data centers for compute density and power consumption. Cloud providers have already begun building server sys-
tems specifically targeting cloud data centers, improving compute density and energy efficiency by using high-
efficiency power supplies and removing unnecessary board-level components such as audio and graphics chips
[17,33].

Although major design changes are being introduced at the board- and chassis-level of new cloud servers, the pro-
cessors used in these new servers are not designed to efficiently run scale-out cloud applications. Processor
vendors have moved toward producing more power-efficient processors targeting the server space, however, these
processors use the same underlying architecture as the processors targeting the general purpose market. Unfortu-
nately, this has led to extreme inefficiency in today’s data centers, as the trends of both general purpose (e.g., Intel
and AMD) and traditional server processors (e.g., Sun Niagara, IBM Power7) target scale-up applications, having
been established long before to the emergence of scale-out cloud workloads. Recognizing the space and power
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inefficiency of modern processors for scale-out cloud applications, some vendors and researchers even conjecture
that using processors built for the mobile space may be more efficient [13, 27, 37, 38].

In this work, we observe that scale-out cloud applications share many inherent characteristics that place them into
a distinct workload class from desktop, scientific, and even traditional server workloads. We perform a detailed
micro-architectural study of a range of cloud applications, finding a large mismatch between the micro-architec-
tural demands of the cloud applications and today’s predominant processor architecture. We observe significant
over-provisioning of the memory hierarchy and core micro-architecture for the scale-out cloud applications. More-
over, the mismatch between the scale-out cloud applications and server processors will grow if the current
processor trends continue. At the same time, we find that the characteristics of scale-out cloud applications can be
leveraged to gain micro-architectural area- and energy-efficiency in future servers.

We use performance counters to study the behavior of scale-out cloud applications running on modern server pro-
cessors. Our results demonstrate:

* Instruction-cache misses account for up to 60% of the stall time (35% of execution time) in cloud appli-
cations. Instruction-caches and associated next-line prefetchers found in modern processors are inadequate for
cloud applications.

* Instruction- and memory-level parallelism in scale-out cloud applications is low. Modern aggressive OoO
cores are excessively complex, needlessly consuming power and on-chip area without providing performance
benefits.

* Data working sets of scale-out cloud applications considerably exceed the capacity of on-chip caches.
Processor real-estate and power are misspent on large last-level caches that do not contribute to improved
performance.

*  The scale-out nature of cloud applications avoids on-chip communication. Cloud applications see no bene-
fit from modern on-chip interconnects engineered for fine-grained coherence and high bandwidth core-to-core
communication.

The rest of this paper is organized as follows. In Section 2, we provide an overview of the state-of-the-art server
processors and scale-out cloud applications. We provide a detailed description of our benchmarking methodology
in section Section 3. We present our results in Section 4, concentrating on the mismatch between the needs of
cloud applications and modern processors. We summarize related work in Section 5 and conclude in Section 6.

2 MODERN CORES AND WORKLOADS

Today’s data centers are built around conventional desktop processors whose architecture was designed for a broad
consumer market. The dominant processor architecture closely followed the technology trends, improving single-
thread performance with each processor generation by using the increased clock speeds and “free” (in area and
power) transistors provided by progress in semiconductor manufacturing. Although Dennard scaling has stopped
[12, 18, 19, 44], with both clock frequency and transistor counts becoming limited by power, processor architects
have continued to spend resources on improving single-thread performance for a broad range of applications at the
expense of efficiency.

2.1 Dominant processor architectures

Today’s processors comprise several aggressive out-of-order cores connected with a high-bandwidth on-chip inter-
connect to a deep (three-level) cache hierarchy. While core aggressiveness and clock frequency enabled a rapid
increase in computational performance, off-chip memory latency improvements were not as rapid. The “memory
wall”—the gap between the speed at which cores could compute and the speed at which data could be delivered to
the cores for computation—mandated that the data working set must fit into the on-chip caches to allow the core to
compute at full speed. Modern processors therefore split the die area in two roughly equal parts, with half of the
die dedicated to the cores and tightly-coupled private caches and the other half dedicated to a large shared last-
level cache [8]. The emergence of multi-core processors offered the possibility to run computationally intensive
multi-threaded applications, adding the requirement of fast and high-bandwidth core-to-core communication to
allow cores to compute without incurring significant delays when operating on actively shared data.
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To leverage the increasing number of transistors on chip for higher single-thread performance, cores are engi-
neered to execute independent instructions out of order (O00O), allowing the processor to temporarily bypass
instructions that stall due to a slow cache access. While OoO execution can improve core resource utilization
through instruction-level parallelism (ILP), the core’s complexity (number of transistors and power) increases dra-
matically depending on the width of the pipeline and the size of the reorder window. Large windows require
selecting and scheduling among many instructions while tracking all memory and register dependencies, function-
ality that requires a large and power-hungry scheduler, reorder buffer, and load-store structures. Moreover, the
efficacy of growing the instruction reorder window rapidly drops off, resulting in diminishing returns at exponen-
tially increasing area and energy costs with every processor generation. Notably, although wide pipelines and large
reorder windows do not harm the core performance, low-ILP applications execute inefficiently because the area
and power costs spent on these techniques do not yield a performance benefit.

The first-level instruction and data caches capture the primary working set of applications, enabling low-latency
access to the most-frequently used data. However, to maintain low access latency, the cache capacity must remain
small. As the size of the last-level cache (LLC) has reached tens of megabytes in modern processors, the access
latency of the LLC has itself created a speed gap between the first-level caches and LLC, pushing processor
designers to mitigate the gap by inserting an intermediate-size secondary cache. Additionally, to further mitigate
the large LLC latency, the number of miss-status handling registers (MSHRS) is increased to allow for a large
number of memory-reference instructions to be performed in parallel. Like the core structures for supporting ILP,
the mechanisms to support memory level parallelism (MLP) use considerable area and energy. Increasing parallel-
ism in the LLC and off-chip accesses can give a tremendous performance improvement when many independent
memory accesses are available to execute, but results in poor efficiency when executing workloads with low MLP.

To increase the core utilization when MLP is low, modern processors add support for simultaneous multi-threading
(SMT), enabling two software threads to be executed simultaneously in the same core. SMT cores operate like sin-
gle-threaded cores, but introduce instructions from two independent software threads into the reorder window,
enabling the core to find independent memory accesses and perform them in parallel, even when both software
threads have low MLP. However, introducing instructions from multiple software threads into the same pipeline
causes contention for core resources, limiting the performance of each thread compared to when that thread runs
alone.

2.2 Dominant scale-out cloud applications

To find the set of applications that dominate the use of cloud infrastructure, we examined a selection of internet
services based on their popularity [2]. For each popular service, we analyzed the class of application software used
by the service providers to offer these services, either on their own cloud infrastructure or on a cloud infrastructure
leased from a third party. We present an overview of the applications most commonly found in today’s clouds,
along with brief descriptions of typical configuration characteristics and dataset sizes. Overall, we find that all
scale-out cloud applications have functionally similar characteristics; all applications we examined operate on
large data sets that are split across a large number of nodes, typically into memory-resident shards, serving large
numbers of completely independent requests that do not share any state, having application software designed spe-
cifically for the cloud infrastructure where unreliable nodes may come and go and where inter-node connectivity is
used only for high-level task management and coordination.

Data Serving. Various NoSQL data stores [5, 10, 41] have been explicitly designed to serve as the backing store
for large-scale web applications such as the Facebook inbox [41] and Google Earth and Google Finance [5], pro-
viding fast and scalable storage with varying and rapidly evolving storage schema. The NoSQL systems split
hundreds of terabytes of data into shards and horizontally scale to large cluster sizes, typically using indexes that
support fast lookup and key range scans to retrieve the set of requested objects. For simplicity and scalability, these
systems are designed to support queries that can be completely executed by a single storage node, with any opera-
tions that require combining data from multiple shards relegated to the middleware.

MapReduce. The explosion of accessible human-generated information necessitates automated analytical pro-
cessing to cluster, classify, and filter this information. The map-reduce paradigm [9] has emerged as a popular



EPFL-REPORT-168849

approach to handling large-scale analysis, farming out requests to a cluster of nodes that first perform filtering and
transformation of the data (map) and then aggregate the results (reduce). A key advantage of the map-reduce para-
digm is the separation of infrastructure and machine learning algorithms [3]. Users implement the algorithm as
idempotent map and reduce functions and provide them to the map-reduce infrastructure, which is then responsi-
ble for orchestrating the work. Because of the generality of the infrastructure and the need to scale it to thousands
of independent servers, communication between tasks is typically limited to reading and writing files in a distrib-
uted file system. For example, map jobs produce temporary files that are subsequently read by the reduce jobs,
effectively rendering all map and reduce jobs architecturally independent.

Media Streaming. The availability of high-bandwidth connections to home and mobile devices has made media
streaming services such as NetFlix, YouTube, and YuKu ubiquitous. Streaming services use large server clusters to
gradually packetize and transmit media files ranging from megabytes to gigabytes in size, pre-encoded in various
formats and bit-rates to suit a wide client base. Sharding of media content ensures that servers frequently send the
same content to multiple users and enables in-memory caching of the content. While in-memory caching is effec-
tive, the on-demand unicast nature of most of today’s streaming services practically guarantees that even when
streaming the same media file to many clients concurrently, the streaming server will work on disjoint pieces of
the media file for all clients.

Simulation. The ability to temporarily allocate compute resources in the cloud without purchasing the infrastruc-
ture has created an opportunity to conduct large-scale simulations in the cloud. However, unlike the traditional
super-computer environment with high-bandwidth low-latency dedicated interconnects with reliable and balanced
memory and compute resources, the cloud offers dynamic and heterogenous resources that are loosely connected
over an IP network. Large-scale simulation tasks must therefore be adapted to a worker-queue model with central-
ized load balancing that rebalances simulation tasks across a dynamic pool of compute resources, minimizing the
amount of data exchanged between the workers and load balancers and practically eliminating any communication
between workers. While each task may experience high data locality with small working sets within a task, as the
workers proceed from task to task in their queue, simulation nodes move between completely unrelated and distant
parts of the dataset in arbitrary order.

Web Frontend. Traditional web services with dynamic and static content are moved into the cloud to provide
fault-tolerance and dynamic scalability by bringing up the needed number of servers behind a load balancer.
Although many variants of the traditional web stack are used in the cloud (e.g., substituting Apache [34] with other
web server software or using other language interpreters in place of PHP), the underlying service architecture
remains unchanged. Independent client requests are accepted by a stateless web server process which either
directly serves static files from disk or passes the request to a stateless middleware script, written in a high-level
interpreted or byte-code compiled language, which is then responsible for producing dynamic content. All state
information is stored by the middleware in backend databases such as cloud NoSQL data stores or traditional rela-
tional SQL servers supported by key-value cache servers to achieve high throughput.

Web Search. The largest data center applications are used to provide access to public internet indexes (e.g.,
Google, Bing, Yahoo!, Baidu), while many smaller web search clusters offer searches of specialized indexes of
corporate or government data. Multi-terabyte indexes are split into shards, with each index serving node (ISN)
responsible for processing requests to its own shard. A frontend node sends index search requests to all ISNs in
parallel, collects and sorts the responses, and sends a formatted reply to the requesting client. Hundreds of unre-
lated search requests are handled by each ISN every second, with minimal locality; shards are therefore sized to fit
into the RAM of the ISNs to avoid reducing throughput due to disk I/O. For performance scalability, ISNs may be
replicated in case a single ISN per shard is unable to sustain the request throughput or meet the quality of service
requirements. ISNs communicate only with the frontend nodes and never to other ISNs. Similarly, within a single
node, processing threads do not communicate, independently working to process each request.

3 METHODOLOGY

We conduct our study on a PowerEdge M1000e cluster [11] with two Intel x5670 processors and 24GB of RAM in
each blade. Each Intel x5670 processor includes six aggressive out-of-order processor cores with a three-level



EPFL-REPORT-168849

Table 1.A. Architectural parameters

Table 1.B. Performance counter methodology

Processor Intel Xeon 537903; C6}I_cIcZ)res, 32nm @ C(I)lrenlfto_ Definition Estimation Method
CMP Size 6 000 cores Number of
Superscala L Busy cycles at least Corresponding counter
upel g 4-wide issue One micro-op 1s
width retired
Reorder buffer 128 entries Number of
cycles without .
Lo&%%;)re 48/32 entries Stalled any micro-op Corresponding counter
retiring
Ressteelii\;aﬁlson 36 entries Outstanding Super Queue
Number of requests for instructions
L1 Cach split I/D, 32KB, 4-cycles access Stalled on eveles spent in and data normalized by
ache latency Memory Y memI:) . the number of corre-
y sponding cycles that
L2 Cache 6-core CMP: 256KB per core, 12- Super Queue is not empty
cycles access latency
Stalls due to Resource stall cycles
LLC (L3) cache 12MB, cycles 39-cycles access Frontend instruction subtracted from total
latency fetching issued stall cycles
24GB, 180/280 cycles access latenc
Memory local/renilote DRAM Y Backend St%gilfe l;fzito Resource stall cycles

cache hierarchy: the L1 and L2 caches are private to each core, while the LLC (L3) is shared among all cores. For
all but one experiment, the nodes run CentOS 5.5 with the 2.6.18 Linux kernel. For the TPC-E benchmark, the
node runs Microsoft Windows Server 2008 Release 2. Table 1.A summarizes the key architectural parameters of
the systems.

3.1 Measurement tools and methodology

We analyze the behavior of scale-out cloud applications using the Intel VTune [24] software, a tool that provides
an interface to the processor performance counters. We run each experiment multiple times so as to get a 95% con-
fidence interval within a 5% error range. We note that computing a breakdown of the various execution-time stall
components of superscalar out-of-order processors cannot be performed precisely due to overlapped work in the
pipeline [14, 26]. Whenever possible, we present results based on the performance counters that have no overlap
(cannot perform parallel work due to the organization of the pipeline); when non-overlapping counters are not
available, we plot the results side-by-side rather than in a stack to indicate the potential overlaps. Table 1.B lists
the specific performance counters used in our evaluation to obtain the execution time and core stalls breakdowns.

In order to break down the core stalls into frontend stalls and backend components, we calculate the frontend stalls
(i.e., instruction fetch stalls only) by subtracting the resource stalls from the amount of cycles where no instruc-
tions were issued to the backend. We calculate cycles wasted to issuing wrong-path instructions but we don’t
include them in the core stall breakdown. !

Data stalls overlap other data stalls and computation in the pipeline. Although prior work advocates a naive
approach of multiplying miss events by the approximate miss penalty to compute data stalls [1], we find that this
approach is not sufficiently accurate to provide clear micro-architectural insight. Instead, we analyze the LLC and
memory stalls due to long-latency data misses by leveraging the occupancy statistics of the L2 MSHRs.? The
MSHR occupancy statistics enable us to measure the number of cycles when there is at least one L2 miss being
serviced. We exclude the cycles to access the L1 and L2 caches from the data-stall analysis, as we find that the L1
and L2 cache hits are effectively hidden by the out-of-order core, a result that corroborates prior work [25].

1. On average across our workloads, less than 5% of cycles are wasted due to issuing wrong-path instructions.
2. In our servers, the outstanding L2 misses are maintained in the super queue structure between the L2 and LLC.
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Our cache sensitivity analysis is performed by dedicating two cores to a polluting micro-benchmark that traverses
a static array of size equal to the polluted cache size in random patterns so as to ensure that its requests reach the
LLC keeping the array cache blocks in the most recent place. Before running each experiment we verify that our
micro-benchmark correctly pollutes the cache.

Our read-write sharing experiment is performed by splitting the cores evenly to both physical processors. In the
dual-processor configuration, the LLC of each processor is private. In a case of an LLC miss request, the request is
forwarded to the remote processor only in the case that the block is modified. Therefore, we count the number of
LLC requests that hit in the remote LLC.

Our prefetching experiment is performed by disabling the adjacent-cache-line and stride prefetchers that fetch into
the L2 cache. Because the L3 cache is inclusive, upon a prefetch request that misses in LLC the block is also allo-
cated in the L3 cache. Therefore, we calculate both L2 and L3 miss ratios as an indication of the effectiveness of
each prefetcher.

3.2 Cloud application experimental setup

Data Serving. We benchmark one node running the Cassandra 0.7.3 [41] storage system with a 30GB YCSB data-
set that exceeds the node’s RAM capacity. Server load is generated using the YCSB 0.1.3 client [7] that sends
requests following a Zipfian distribution with an equal number of reads and updates.

MapReduce. We benchmark one node of a Hadoop 0.20.2 cluster running the algorithm WordCount on a 4GB set
of Wikipedia pages. Each core runs one map and one reduce job.We also evaluate a machine-learning text-classifi-
cation algorithm operating on Wikipedia pages and observe that the behavior of the two systems were practically
identical. For the rest of the paper we only show results for the WordCount algorithm.

Media Streaming. We benchmark a node running Darwin Streaming Server 6.0.3 to serve 50GB of videos
encoded in several bit-rates ranging between 42Kbps and 60Kbps and use the Faban workload driver [22] to simu-
late the clients. We limit our setup to low bit-rate streams to shift stress away from network 1/0.

Simulation. We benchmark one node running parallel symbolic execution to search for programming bugs in an
application binary [6]. We use Cloud9 to analyze the command-line printfutility from the GNU CoreUftils 6.10.

Web Frontend. We benchmark a frontend node serving Olio, a Web 2.0 web-based social event calendar. Using
the tools provided as part of the Cloudstone benchmark, we generate a backend dataset with a scale factor of
50000 (22GB) and use the Faban synthetic workload generator to simulate clients [22]. The frontend node runs
Apache Web Server 2.2.19 with a built-in PHP 5.3.5 module and APC 3.1.8 PHP opcode cache. The backend node
runs the MySQL 5.5.9 database engine.

Web Search. We benchmark one index serving node (ISN) of the distributed version of Nutch 1.1/Lucene 3.0.1
with an index size of 2GB and data segment size of 23GB of content crawled from the public internet. We make
sure that the search index fits in memory to eliminate page faults and minimize disk activity to mimic real-world
setups [37]. We simulate the clients using the Faban workload driver. The clients are configured to achieve the
maximum search request rate while ensuring that 90% of all search queries complete in under 0.5 seconds.

3.3 Traditional application experimental setup

PARSEC 2.1. We benchmark one node running the official benchmark applications with the native input, report-
ing results averaged across all benchmarks.

SPEC CINT2006. We benchmark one core of a node running the official benchmark applications with the first
reference input, reporting results averaged across all benchmarks.

TPC-C. We benchmark a node executing the TPC-C 5.11 workload on a commercial enterprise database manage-
ment system (DBMS). The database load is generated by 160 clients configured with zero think time and running
on a separate node. Our TPC-C database has 40 warchouses (4GB data and 2GB index). The DBMS is configured
with a 3GB buffer pool and direct 1/0.
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Figure 1. Execution time breakdown and memory stalls of scale-out cloud applications (left) and

TPC-E. We benchmark a node executing the TPC-E 1.12 workload on a commercial enterprise database manage-
ment system (DBMS). The client driver runs on the same node but is bound to a core that is not used by the
database system. Our TPC-E database contains 5000 customer records (55GB database). The DBMS is configured
with a 22GB buffer pool.

3.4 1/0O Infrastructure

Data-intensive scale-out cloud applications and traditional database workloads exhibit a significant amount of disk
I/0, with a large fraction of the non-sequential read and write accesses scattered throughout the storage space. If
the underlying I/O bandwidth is limited, either in raw bandwidth or in I/O operation throughput, the I/O latency is
exposed to the system, resulting in an I/O-bound workload where the CPU is underutilized and the application per-
formance unnecessarily suffers.

To isolate the CPU behavior of the applications, our experimental setup over-provisions the I/0 subsystem to
avoid an I/O bottleneck. To avoid bringing up disk arrays containing hundreds of disks and flash devices, as is tra-
ditionally done with large-scale database installations [42], we construct a network-attached iSCSI storage array
by creating large RAM disks in separate nodes and connecting the node under test to the iSCSI storage via a high-
speed ethernet network. This approach places the entire data set of our applications in the memory of the remote
nodes, creating an illusion of a large disk cluster with extremely high I/O bandwidth and low latency.

4 RESULTS

The behavior and characteristics of scale-out cloud applications show a distinct difference from the desktop, paral-
lel, and even traditional transaction processing workloads, indicating a disparity between processors designed for
these workloads and the micro-architectural needs of cloud applications. Figure 1 illustrates the execution-time
breakdown of cloud applications and popular processor benchmark suites.

We classify each cycle of execution as Busy if at least one instruction was retired during that cycle or Stalled other-
wise. The execution-time breakdown of cloud applications shows slightly more stalls than conventional processor
benchmarks, typically spending 50% or more cycles without retiring any instructions. Although the fraction of
stalled cycles appears similar to desktop and parallel applications at a high level, the nature of the stalls of the
cloud applications is radically different. Overlapped with the time breakdown, we plot Stalled on Memory, the
fraction of cycles spent by the application waiting on long-latency memory accesses (L2 cache misses). While
desktop and parallel applications stall due to a diverse set of resource limitations in the processor core (not shown),
cloud applications show memory system behavior that more closely matches traditional online transaction process-
ing workloads (TPC-C, TPC-E, and Web Backend). However, we also observe that cloud applications differ
considerably from the traditional online transaction processing workload (TPC-C) which spends over 80% of its
time stalled due to dependent memory accesses. Instead, we find that cloud applications are similar to the more
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Figure 2. Core stall time breakdown

recent transaction processing benchmarks (TPC-E and Web Backend) that use more complex data schema and per-
form more complex queries than the traditional workload.

Although the behavior of cloud applications is similar, the class of cloud applications as a whole differs distinctly
from other workloads. Processor architectures optimized for desktop and parallel workloads are not optimized for
cloud applications that spend the majority of their time waiting for cache misses, resulting in a clear micro-archi-
tectural mismatch. At the same time, architectures designed for workloads that perform only trivial computation
and spend all of their time waiting on memory (e.g., TPC-C) also cannot cater to cloud applications. In the remain-
der of this section, we provide a detailed analysis of the inefficiencies of running cloud applications on modern
processors.

4.1 Frontend Inefficiencies

»  Cores idle due to high instruction-cache miss rates
* L2 caches increase average I-fetch latency
»  Excessive LLC capacity leads to long I-fetch latency

Instruction-fetch stalls play a pivotal role in system performance by preventing the core from making forward
progress due to a lack of instructions to execute. Frontend stalls serve as a fundamental source of inefficiency for
both area and power as the core real-estate and power consumption are entirely wasted for the cycles that the fron-
tend spends fetching instructions. Figure 2 plots the core stalls divided into cycles stalled due to the frontend
(instruction fetch) and backend (execution pipeline and memory) when running cloud applications. Cloud applica-
tions show considerable frontend stalls, from 10% to over 60% of the stalls.

L1 instruction-cache misses are the underlying cause of the majority of instruction-fetch stalls in cloud applica-
tions. Figure 3 presents the L1 instruction-cache miss ratios, indicating that the instruction working sets of the
cloud applications exceed the L1-cache capacity. Furthermore, Figure 4 shows the ratios of instruction fetches that
miss in the L2 cache are high. This indicates that the L1 instruction-cache capacity experiences a significant short-
fall and cannot be mitigated by a minor increase in the L1-cache capacity or the addition of a moderately-sized L2
cache. Even for Media Streaming, whose active instruction working set is smaller than other applications, the
aggregate number of L2 instruction misses is similar to other cloud applications due to the higher frequency of L2
instruction accesses.

Stringent access-latency requirements of the L1 instruction caches preclude increasing the size of the caches to
capture the instruction working set of cloud applications, which is an order of magnitude larger than the caches
found in modern processors. We find that today’s processor architectures cannot tolerate the latency of L1 instruc-
tion-cache misses, avoiding frontend stalls only for applications whose entire instruction working set fits into the
L1 cache.
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Figure 4. L2 cache instruction-miss ratio

The disparity between the needs of the cloud applications and the processor architecture are apparent when exam-
ining the instruction-fetch path. Although exposed instruction-fetch stalls would serve as a key source of
inefficiency under any circumstances, the instruction-fetch path of modern processors actually exacerbates the
problem. The L2 cache experiences misses for up to 37% of the fetch requests, increasing the average fetch latency
by placing an additional intermediate lookup structure on the path to retrieving instruction blocks from the LLC.
Moreover, the entire instruction working set of any cloud application is considerably smaller than the LLC capac-
ity; however, because the LLC is a large cache with a large uniform access latency, it contributes an unnecessarily
large instruction-fetch penalty (39 cycles to access the 12MB cache).

Implications: To improve efficiency and reduce frontend stalls, processors built for cloud applications must bring
instructions closer to the cores. Rather than relying on a deep hierarchy of caches, a partitioned organization that
replicates instructions and makes them available close to the requesting cores [20] is likely to considerably reduce
the frontend stalls. To effectively use the on-chip real-estate, the system would need to share the partitioned
instruction caches among multiple cores, striking a balance between the die area dedicated to replicating instruc-
tion blocks and the latency of accessing these blocks from the closest cores.

Furthermore, although modern processors include next-line instruction prefetchers, high instruction-cache miss
rates and significant frontend stalls indicate that the prefetchers are ineffective for cloud applications. Cloud appli-
cations are written in high-level languages, use third-party libraries, and execute operating system code, thereby
exhibiting complex non-sequential access patterns that are not captured by the simple next-line prefetchers.
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Including instruction prefetchers capable of predicting these complex patterns is likely to improve overall proces-
sor efficiency by eliminating wasted cycles due to frontend stalls.

4.2 Core Inefficiencies

*  Low ILP precludes effectively using the full core width
*  ROB and LSQ are underutilized due to low MLP
*  Resource sharing in SMT pipeline limits performance

Modern processors execute instructions out of order to enable simultaneous execution of multiple independent
instructions per cycle. Additionally, out-of-order execution elides stalls due to memory accesses by executing
independent instructions that follow a memory reference while the long-latency cache access is in progress. Mod-
ern processors support up to 128-instruction windows, with the width of the processor dictating the number of
instructions that can simultaneously execute in one cycle.

In addition to exploiting ILP, large instruction windows can exploit memory-level parallelism (MLP) by finding
independent memory-accesses within the instruction window and performing the memory accesses in parallel.
Exposed latency of LLC hits and off-chip memory accesses cannot be entirely hidden by out-of-order execution;
achieving high MLP is therefore key to achieving high core utilization by reducing the data access latency.

Today’s processors use 4-wide cores that can decode, issue, execute, and retire up to four instructions on each
cycle. However, in practice, instruction-level parallelism (ILP) is limited by dependencies. The Base bars in
Figure 5 show the average number of instructions retired per cycle when running cloud applications on an aggres-
sive 4-wide out-of-order core. Despite the abundant availability of core resources and functional units, cloud
applications achieve a modest application IPC close to 1.0.

Modern processors have 48-entry load-store queues, enabling up to 48 memory-reference instructions in the 128-
instruction window. However, just as instruction dependencies limit ILP, address dependencies limit MLP. We
measure the average number of concurrently outstanding L2 cache misses in cloud applications. The Base bars in
Figure 6 present the cloud application MLP, with the average MLP below 1.9 across all applications. These results
show that the memory accesses in cloud applications are replete with complex dependencies, limiting the MLP
that can be found in cloud applications by today’s aggressive processors.

Support for 4-wide out-of-order execution with a 128-instruction window and up to 48 outstanding memory
requests requires multi-branch prediction, numerous ALUs, forwarding paths, many-port register banks, large
instruction schedulers, wide-associativity reorder buffers and load-store queues, and many other complex on-chip
structures. The complexity of such cores limits core count, leading to chip designs with several cores that consume

10



EPFL-REPORT-168849

EBase SMT
3 .
o
-l
=
§2] I
®
L
a1
Q.
0 _
O )
& & & & ef‘ q;\
%Q’é Q© \@@6\ .@&(b Qﬁo& <?
,5\@ @%‘Q &) > 0 $é0
Q &'b &Q)
@Q)
Figure 6. Memory-level parallelism for systems
with and without SMT

half of the available on-chip real-estate and dissipate the vast majority of the chip’s dynamic power budget. How-
ever, our results indicate that cloud applications exhibit low ILP and MLP, deriving benefit only from a small
degree of out-of-order execution and instruction reordering. As a result, the inherent nature of cloud applications
cannot effectively utilize the available core resources. Both the die area and the energy are wasted, leading to data-
center inefficiency when entire buildings are packed with aggressive cores, designed to retire 4 instructions per
cycle with over 20 outstanding memory requests, but executing applications with an average UIPC of 0.9 and
average MLP of 1.6. Moreover, current industry trends point toward even greater inefficiency in the future; over
the past two decades, processors have gradually moved to increasingly complex cores, raising the core width from
2-way to 4-way and increasing the window size from 20 to 128 instructions.

The inefficiency of modern cores running applications without abundant IPC and MLP has led to the addition of
simultaneous multi-threading (SMT) to the processor cores to enable the core resources to be simultaneously
shared by multiple software threads, thereby guaranteeing that independent instructions are available to exploit
parallelism. We present the UIPC and MLP of an SMT-enabled core running cloud applications in Figure 5 and
Figure 6 using the bars labeled SMT. As expected, the MLP found and exploited by the core when two independent
application threads run concurrently is nearly doubled compared to the system without SMT. However, because
the core resources are shared, threads compete in the pipeline and block each other from retiring instructions. As a
result, the SMT system achieves only a 30% performance improvement, despite a doubling of MLP.

Implications: The scale-out nature of cloud applications makes them ideal candidates to exploit multi-threaded
multi-core architectures. Today’s mainstream processors offer excessively complex cores, resulting in inefficiency
through waste of resources. At the same time, our results corroborate prior work [37], indicating that niche proces-
sors offer excessively simple (e.g., in-order [8, 27]) cores that cannot leverage the available ILP and MLP in cloud
applications. We find that cloud applications would be well-suited by architectures offering multiple independent
threads per core with a modest degree of superscalar out-of-order execution and support for several simultane-
ously-outstanding memory accesses. For example, rather than implementing SMT on a 4-way core, two
independent 2-way cores would consume fewer resources while achieving higher aggregate throughput. Further-
more, each narrower core does not require a large instruction window, reducing the per-core area and power
consumption compared to today’s processors, enabling higher compute density by integrating more cores per chip.

4.3 Data-Access Inefficiencies

* Large LLC consumes area, but does not improve performance
»  Simple data prefetchers are completely ineffective

More than half of today’s processor die area is dedicated to the memory system. Modern processors feature a
three-level cache hierarchy where the last-level cache (LLC) is a large-capacity cache shared among all cores. To
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Figure 7. Sensitivity to LL.C capacity with respect to performance (left) and cache miss ratio (right)

enable high-bandwidth data fetch, each core can issue up to 16 simultaneously outstanding .2 cache misses. The
high-bandwidth on-chip interconnect enables cache-coherent communication between cores. To mitigate the
capacity and latency gap between the L2 and LLC caches, each L2 cache is equipped with prefetchers that can
issue prefetch requests into the LLC and off-chip memory. Multiple DDR3 memory channels provide high-band-
width access to off-chip memory.

The LLC is the largest on-chip structure. Its cache capacity has been increasing with each processor generation due
to semiconductor manufacturing improvements. We investigate the utility of growing the LL.C capacity for cloud
applications in Figure 7. On the left, we plot the system performance1 as a function of LLC capacity, normalized to
the baseline system with a 12MB LLC. We find minimal performance sensitivity to LLC cache size beyond 4MB
for most applications. On the right, we plot the normalized LLC miss rate. The LLC captures the instruction work-
ing sets of cloud workloads with only one or two megabytes of cache. Beyond this point, small shared supporting
structures may consume another one to two megabytes. However, we find that capacity beyond 4MB is not effec-
tively utilized even for the worst-case benchmark (Web Frontend), having minimal effect on the system
performance despite an increase in the LLC miss rate. Because cloud applications operate on massive data sets and
service large numbers of concurrent requests, both the dataset and the per-client data are orders of magnitude
larger than the available on-chip cache capacity. As a result, an LLC that captures the instruction working set and
minor supporting data structures achieves nearly the same performance as an LLC with double or triple the
capacity.

Our results show that the on-chip resources devoted to the LLC are one of the key limiters of cloud-application
compute density in modern processors. For traditional workloads, increasing the LLC capacity captures the work-
ing set of a broader range of applications, contributing to improved performance due to a reduction in average
memory latency for those applications. However, because the LLC capacity already exceeds the cloud-application
requirements by 2x-3x, whereas the next working set exceeds any possible SRAM cache capacity, the majority of
the die area and power currently dedicated to the LLC is wasted. Moreover, prior research [21] has shown that
increases in the LLC capacity that do not capture a working set lead to an overall performance degradation—LLC
access latency is high due to its large capacity, not only wasting on-chip resources, but also penalizing all L2 cache
misses by slowing down LLC hits and delaying off-chip accesses.

In addition to leveraging MLP to overlap demand requests from the processor core, modern processors use
prefetching to speculatively increase MLP. Prefetching has been shown effective at reducing cache miss rates by
predicting block addresses that will be referenced in the future and bringing these blocks into the cache prior to the

1. User-IPC is proportional to application throughput [45].
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Figure 8. L2 (left) and LLC (right) hit ratios with and without the adjacent-line and stride prefetchers

processor’s demand, thereby hiding the access latency. In Figure 8, we present the cache hit ratios of the L2 and
LLC of the base system with all prefetchers enabled, as well as the miss ratios after disabling the prefetchers. We
observe that the adjacent-line prefetcher provides no benefit to cloud applications, in some cases marginally
increasing the L2 miss rate because it pollutes the cache with an unnecessary adjacent block. The stride prefetcher
does not increase the LLC hit ratio, however, it does result in a marginal increase in the L2 hit ratio. Overall, we
find that the simple prefetchers used in modern processors are entirely ineffective for cloud applications.

Implications: While modern processors grossly over-provision the memory system, data-center efficiency can be
improved by matching the processor design to the needs of the cloud applications. Whereas modern processors
dedicate approximately half of the die area to the LLC, cloud applications would likely benefit from a different
balance. A two-level cache hierarchy with a modestly sized LLC that makes special provision for caching instruc-
tion blocks would benefit performance. The reduced LLC capacity along with the removal of the ineffective L2
cache would offer access-latency benefits while at the same time freeing up die area and power. The die area and
power can be practically applied toward improving compute density and efficiency by adding more hardware con-
texts and more advanced prefetchers. Additional hardware contexts (more threads per core and more cores) should
linearly increase application parallelism, while more advanced correlating data prefetchers could accurately
prefetch complex access data patterns and increase the performance of all cores.

4.4 Bandwidth Inefficiencies

*  Lack of data sharing deprecates coherence and connectivity
*  Off-chip bandwidth exceeds needs by an order of magnitude

Increasing core counts have brought parallel programming into the mainstream, highlighting the need for fast and
high-bandwidth inter-core communication. Multi-threaded applications comprise a collection of threads that work
in tandem to scale up the application performance. To enable effective scale-up, each subsequent generation of
processors offers a larger core count and improves the on-chip connectivity to support faster and higher bandwidth
in core-to-core communication. We investigate the utility of the on-chip interconnect for cloud applications in
Figure 9. We plot the fraction of L2 misses that access data most recently written by another thread running in a
different physical processor.! We break down each bar into OS and Application components to offer insight into
the source of the data sharing.

In general, we observe extremely limited read-write sharing across the cloud applications. We find that the OS-
level data sharing is dominated by the network subsystem. Java-based applications (Data Serving, Map Reduce,

1. We explicitly bind application threads to processor cores in two different physical processor sockets on the
server motherboard.
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Figure 9. Percentage of LLC data references

accessing cache blocks modified by a thread

running on another core
and Web Search) exhibit a small degree of sharing from the use of a concurrent garbage collector that may run a
collection thread on a remote core, artificially inducing application-level communication. The Media Streaming
server application updates several global counters to track the total number of packets sent by the server process;
we believe this to be an oversight on the part of the developers of the server software, as reducing the amount of
communication by keeping per-thread statistics is trivial and would eliminate the mutex lock and shared-object
update.

The low degree of sharing exhibited by most cloud applications indicates that wide and low-latency interconnects
used in today’s processors are over-provisioned for cloud applications. Although with a small number of cores the
overhead is limited, as the number of cores on chip increases, the area and energy overhead of enforcing coherence
becomes significant. Likewise, the area overheads and power consumption of an over-provisioned high-bandwidth
interconnect further increase processor inefficiency.

Beyond the on-chip interconnect, we also find off-chip bandwidth inefficiency. While the off-chip memory latency
has improved slowly, off-chip bandwidth has been improving at a rapid pace. Over the course of two decades, the
memory bus speeds have increased from 66MHz to dual-date-rate at over 1GHz, raising the peak theoretical band-
width from 544MB/s to 17GB/s per channel, with the latest server processors having three independent memory
channels. We plot the average off-chip bandwidth utilization of cloud applications in Figure 10. Cloud applications
experience high off-chip miss rates, however, the MLP of the applications is low due to the complex data structure
dependencies, leading to low aggregate off-chip bandwidth utilization even when all cores have outstanding off-
chip memory accesses. Of the cloud applications we examine, Media Streaming is the only application that
actively uses 38% of the available off-chip bandwidth. However, we note that our applications are configured to
stress the processor, demonstrating the worst-case behavior. Our Media Streaming application streams low-bit-rate
media to a large number of clients, a worst-case scenario that is unlikely to be observed in real deployment. We
therefore conclude that modern processors over-provision off-chip bandwidth for scale-out cloud applications.

Implications: The on-chip interconnect and off-chip memory buses can be scaled back to improve processor effi-
ciency. Because the cloud applications are written for scale-out and perform only infrequent communication via
the network, there is typically no read-write sharing in the applications; processors can therefore be designed as a
collection of core islands using a low-bandwidth interconnect that does not enforce coherence between the islands,
eliminating the power associated with the high-bandwidth interconnect as well as the power and area overheads of
fine-grained coherence tracking. Off-chip memory buses can be optimized for cloud applications by scaling back
unnecessary bandwidth. Memory controllers consume a large fraction of today’s chip area and memory busses are
responsible for a considerable fraction of the system power. Reducing the number of memory channels and the
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power draw of the memory buses should improve cloud application efficiency without affecting application
throughput.

S RELATED WORK

Previous research has characterized the micro-architectural behavior of traditional commercial server applications
when running on modern hardware, using real machines [1, 26] and simulation environments [20, 21, 32, 35]. We
include traditional server applications in our study to compare them with scale-out cloud applications and to vali-
date our evaluation framework.

The research community uses the PARSEC benchmark suite to perform experiments with chip multiprocessors [4].
Bienia et al. characterize the PARSEC suite’s working sets and the communication patterns among threads [4]. In
our work, we examine the execution time breakdown of PARSEC. Unlike the cloud and traditional server applica-
tions, PARSEC has a negligible instruction working set and exhibits a high degree of memory-level parallelism,
displaying distinctly different micro-architectural behavior compared with scale-out cloud applications.

Previous research analyzed various performance or power inefficiencies of modern processors running traditional
commercial applications [8, 18, 21, 27, 36, 43, 44]. Tuck and Tullsen showed that simultaneous multithreading can
improve performance of scientific and engineering applications by 20-25% on a Pentium4 processor [43]. Our
results show similar trends for scale-out cloud applications. Kgil et al. [27] show that, for a particular class of
throughput-oriented web workloads, modern processors are extremely power-inefficient, arguing that the chip area
should be used for processing cores rather than caches. Our results corroborate these findings, showing that, for
cloud workloads, the time spent accessing the large and slow last-level caches accounts for more than half of the
data stalls [21], calling for resizing and reorganization of the cache hierarchy. We similar conclusions to Davis et
al. [8] and Hardavellas et al. [21] who showed that heavily multithreaded in-order cores are more efficient for
throughput-oriented workloads compared to aggressive out-of-order cores. Also corroborating prior work, we find
that latency-sensitive and computationally intensive web search workloads favor more aggressive processing cores
[37]. Ranganathan and Jouppi motivate the need for integrated analysis of micro-architectural efficiency and appli-
cation service-level agreements in their survey of enterprise information technology trends [36]. To address the
power inefficiencies of current general-purpose processors, specialization at various hardware levels has been pro-
posed [18, 44].

As cloud computing has become ubiquitous, there has been significant research activity on characterizing particu-
lar cloud applications, either micro-architecturally [37], or at the system level [7, 28, 29, 30, 40]. To the best of our
knowledge, our study is the first work to systematically characterizes the micro-architectural behavior of a wide
range of cloud services. Kozyrakis et al. [28] presented a system-wide characterization of large-scale online ser-
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vices provided by Microsoft and showed the implications of such workloads on data-center server design. Reddi et
al. characterized the Bing search engine [37], showing that the computational intensity of search tasks is increasing
as a result of adding more machine learning features to the engine. These findings are consistent with our results,
which show that web search has the highest [IPC among the studied cloud applications.

Much work focused on benchmarking the cloud and datacenter infrastructure. Yahoo! Cloud Serving Benchmark
(YCSB) [7] is a framework to benchmark large-scale distributed data serving systems. We include results for the
YCSB benchmark and provide its micro-architectural characterization running Cassandra, a popular cloud data
serving application. Fan et al. discuss web mail, web search, and map-reduce as three representative workloads
present in the Google datacenter [16]. Lim et al. extend this set of benchmarks and add an additional media
streaming workload [31]. They further analyze the energy efficiency of a variety of systems when running these
applications. Our benchmark suite also includes workloads from these categories.

CloudCmp [29, 30] is a framework to compare cloud providers. using a systematic approach to benchmarking var-
ious components of the cloud. Huang et al. analyzed performance and power characteristics of Hadoop clusters
using HiBench [23], a benchmark that specifically targets the Hadoop map-reduce framework. Our analytics
benchmark (MapReduce) uses the same map-reduce infrastructure. However, we provide the micro-architectural,
rather than the system-wide, characterization of the map-reduce applications. For benchmarking modern web tech-
nologies, we use CloudStone [39], an open source benchmark that simulates activities related to social events.

6 CONCLUSIONS

Cloud computing has emerged as a dominant computing platform to provide hundreds of millions of users with
online services. To support the growing popularity and continue expanding their services, cloud providers must
work to overcome the physical space and power constraints limiting data-center growth. While strides have been
made to improve data-center efficiency at the rack and chassis-levels, we observe that the predominant processor
architecture of today’s data centers is inherently inefficient for running scale-out cloud workloads, resulting in low
compute density and poor tradeoffs between performance and energy.

In this work, we used performance counters to analyze the micro-architectural behavior of a wide range of scale-
out cloud applications. We analyzed and identified the key sources of area and power inefficiency in the instruc-
tion fetch, core micro-architecture, and memory system organization. We then identified the specific needs of
cloud applications and suggested the architectural modifications that can lead to dense and power-efficient data-
center processor designs in the future. Specifically, our analysis showed that efficiently executing scale-out cloud
applications requires optimizing the instruction-fetch path for multi-megabyte instruction working sets, reducing
the core aggressiveness and last-level cache capacity to free area and power resources in favor of more cores each
with more hardware threads, and scaling back the over-provisioned on-chip and off-chip bandwidth.
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