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Abstract

This thesis is devoted to the study of the effect of disorder on low-dimensional weakly
interacting Bose gases. In particular, the disorder triggers a quantum phase transition
in one dimension at zero temperature that is investigated here through the study of
the long-range behaviour of the one-body density matrix. An algebraic spatial decay
of the coherence marks the quasicondensate, whereas, in the case of strong disorder, an
exponential decay is recovered and it characterizes the insulating Bose-glass phase. This
analysis is performed using an extended Bogoliubov theory to treat low dimensional Bose
gases within a density-phase approach. A systematic numerical study allowed to draw
the phase diagram of 1D weakly interacting bosons. The phase boundary obeys two
different power laws between interaction and disorder strength depending on the regime
of the gas where the transition occurs. These relations can be explained by means of
scaling arguments valid in the white noise limit and in the Thomas-Fermi regime of the
Bose gas. The phase transition to a quasicondensed phase comes along with the onset
of superfluidity: the inspection of the superfluid fraction of the gas is consistent with
these predictions for the boundary. The finite temperature case and the scenario in two
dimensions are briefly discussed.

The quantum phase transition is caused by low-energy phase fluctuations that de-
stroy the quasi-long-range order characterizing the uniform system. Within the approach
presented here, the phase fluctuations are identified as the low-lying Bogoliubov modes.
Their properties have been investigated in detail to understand which changes trigger the
phase transition and we found that the transition to the insulating phase is accompanied
by a diverging density of states and a localization length, measured through the inverse
participation ratio, that diverges as a power-law with power −1 for vanishing energy.

The fragmentation of the gas is also studied: this notion is very often associated with
the onset of the insulating phase. The characterization of the density fragmentation is
performed by analyzing the probability distribution of the density. A density profile is
defined as fragmented when the probability distribution at vanishing density is finite or
divergent and this happens for a gas in the Bose-glass phase. On the contrary, the super-
fluid phase is characterized by a zero limiting probability of having vanishing densities.
This definition is derived analytically, and confirmed by a numerical study. This fragmen-
tation criterion is particularly suited for detecting the phase transition in experiments:
when a harmonic trap is included, the transition to the insulating phase can be extracted
from the statistics of the local density distribution.

Keywords: Quasicondensate, Superfluid, Bose glass, Phase transition, Insulator, Dis-
order, Coherence, Localization, Fragmentation, Ultracold gases, Bosons, One dimension,
Bose-Einstein Condensation.





Riassunto

Questa tesi è dedicata allo studio dell’effetto del disordine su un gas di bosoni de-
bolmente interagenti in bassa dimensionalità. In 1D non avviene condensazione di Bose-
Einstein, ma a temperatura zero il gas è in una fase superfluida, nota come quasicon-
densato e caratterizzata da una matrice densità ad un corpo che decade con una legge
di potenza in funzione della distanza. La presenza del disordine può innescare una tran-
sizione di fase quantistica da superfluido ad isolante e nel caso dominato dal disordine, la
matrice densità ad un corpo presenta un decadimento esponenziale che contraddistingue
la fase isolante, anche chiamata “Bose Glass”. In questo lavoro, un gas di bosoni unidi-
mensionale viene descritto tramite un approccio di campo medio espresso nel formalismo
fase-densità: la transizione di fase viene individuata analizzando il comportamento a lunga
distanza della matrice densità e quantificando la frazione superfluida del gas. Questo con-
sente di tracciare un diagramma di fase in funzione di disordine ed interazione: la linea
di demarcazione tra le due fasi quantistiche segue due diverse leggi di potenza che dipen-
dono unicamente del regime in cui il gas si trova. Queste relazioni trovano un’elegante
spiegazione utilizzando leggi di scala valide nel regime di disordine non correlato (rumore
bianco) e nel regime di Thomas-Fermi.

Lo stato quasicondensato è caratterizzato dalla presenza di ordine a lunga portata che,
in presenza di forte disordine, viene annullato dalle fluttuazioni di fase a bassa energia,
responsabili della transizione di fase. Nel contesto fase-densità tali fluttuazioni sono
identificate con i modi di Bogoliubov a bassa energia. Per comprendere in dettaglio cosa
provoca la trasizione di fase ne abbiamo studiato le proprietà. L’analisi numerica ha
rivelato che la transizione alla fase isolante è accompagnata dalla divergenza della densità
di stati dei modi di Bogoliubov e che la loro lunghezza di localizzazione diverge con una
legge di potenza con esponente −1 a bassa energia.

Infine abbiamo studiato la frammentazione del profilo di densità del gas. Questo con-
cetto viene spesso associato all’insorgenza della fase isolante, ma fino ad ora non è stata
fornita né una chiara definizione di frammentazione né una connessione con la transizione
di fase. Un profilo di densità si definisce frammentato quanto la distribuzione di proba-
bilità della densità ha un valore finito o divergente nel limite di densità zero e questo
avviene per una gas nella fase isolante. Al contrario, la fase superfluida è caratterizzata
da una probabilità nulla di avere densità zero. Tale definizione è derivata analiticamente
e confermata da uno studio numerico. Questo criterio può essere utilizzato sperimental-
mente per stabilire la transizione di fase grazie ad uno studio statistico sulla distribuzione
di densità locale del gas di bosoni.

Parole Chiave: Quasicondensato, Superfluido, Transizione di fase, Isolante, Disor-
dine, Coerenza, Localizzazione, Frammentazione, Gas ultrafreddi, Bosoni, Unidimension-
ale, 1D, Condensazione di Bose-Einstein.
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Introduction

“We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.”

T.S. Eliot, Little Gidding in Four Quartets

The topic of Bose-Einstein condensation defines unquestionably one among the most
active research domains both in experimental and theoretical physics. Since its first
observation in 1995 [Davis et al., 1995, Anderson et al., 1995], realized with ultracold
atoms, the scientific community has devoted growing attention to this subject.

In recent times, a special interest in low-dimensional systems was developed. The
confinement of the system to reduced dimensionality allows to achieve strongly correlated
regimes in dilute gases and to study configurations where the role of interaction and
of the underlying potential are emphasized. In addition, the study of 1D physics can
improve the understanding of the phenomenology in higher dimensionality thanks to the
combination of analytical calculations and numerical results.

The Mermin-Wagner theorem states that there can be no long-range order in one and
two dimensional systems, hence no condensation. This is due to large phase fluctuations
at long wavelengths, which destroy long-range coherence. In the 2-D case, this happens
at any finite temperature, while Bose-Einstein condensation still arises at zero temper-
ature. At low temperature instead, quasicondensation (condensation with fluctuating
phase) occurs, marked by a power-law decay of the one-body spatial correlation function.
This system displays a phonon-like energy-momentum spectrum and thus superfluidity.
At a finite critical temperature a transition, named after Berezinski-Kosterlitz-Thouless
(BKT), is triggered by the spontaneous formation of vortex-antivortex pairs that destroy
superfluidity [Hadzibabic et al., 2006, Schweikhard et al., 2007]. For a 1D Bose gas, the
situation is even more restrictive, with quasicondensation occurring at zero temperature
only, while an exponential decay of the spatial correlation occurs at any finite temper-
ature. This scenario is valid for uniform systems in the thermodynamic limit. Spatial
confinement or disorder are expected to dramatically change the critical behaviour.

The effect of disorder on quantum systems is a subject of both fundamental and
practical interest. Since the seminal work of Anderson [Anderson, 1958], it has become
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clear that what seems at first sight a nuisance is in fact a source of very rich physical
behavior. Disorder is not just a perturbation of the wave functions: in 3D it produces
localized single-particle states up to some critical energy called mobility edge. In lower
dimensions, no mobility edge exists and all states are localized. In the context of solid
state physics, the fermionic problem is the most relevant one, but thanks to the enor-
mous progress in experimental control over ultracold atomic gases, culminated with the
experimental observation of Anderson localization in 1D bosonic systems with vanishing
interaction [Billy et al., 2008,Roati et al., 2008], the problem of the disordered Bose gas
has become a subject of a vigorous research activity as well.

A single particle picture can be a good approximation of a dilute gas, but in practice
interactions between particles play often a crucial role in the localization-delocalization
of bosons. In presence of a lattice, for sufficiently strong interaction, bosons freeze on
single lattice sites forming a Mott-insulator [Fisher et al., 1989]. This mechanism of
localization, recently observed in optical lattices of different dimensionality [Greiner et al.,
2002,Stöferle et al., 2004,Spielman et al., 2007], is due to the repulsive interaction between
particles. On the other hand, many-body interactions, in the case of Bose particles, may
also induce a phase transition to a superfluid state.

The theoretical interest in this phase transition dates back to the eighties and a vari-
ety of theoretical techniques have been used to tackle the problem. There are two main
regimes that have been considered, one marked by weak disorder and arbitrary interac-
tions, the other characterized by weak interactions and arbitrary disorder. The former
has been the object of the first investigations: using a renormalization group analysis,
Giamarchi and Schultz [Giamarchi & Schulz, 1988] were able to study the quantum phase
transition in the limit of weak disorder in one dimension. The picture emerging from
this analysis was that for a finite amount of disorder, a minimal strength of interactions
is required to break the Anderson localization, but that for too strong interactions, the
system is driven into a strongly correlated localized phase. Their renormalization group
approach was able to study the latter phase transition quantitatively, but it could not be
clarified whether the transition at the weak interaction side is of the same nature. The
interplay between periodic and disordered potentials was first addressed in the seminal
work by Fisher et al. [Fisher et al., 1989], where the insulating disordered phase, named
Bose glass, was contrasted to the Mott insulator by its compressible nature and to the
superfluid phase by its vanishing superfluid stiffness. Quantum Monte Carlo [Prokof’ev &
Svistunov, 1998] and density matrix renormalization group [Rapsch et al., 1999] studies
have investigated in detail the disorder-interaction phase diagram in the limit of strong
interactions. The physics of low dimensional degenerate Bose gases and the notion of
disorder are introduced in Chapter 1, together with a brief review of the state of the art
on the role of disorder on interacting bosons.

The versatility and tunability of ultracold atomic systems have motivated, in recent
years, the study of this fundamental phenomenon in low-dimensional disordered Bose
gases (e.g. see [Modugno, 2010, Sanchez-Palencia & Lewenstein, 2010] and references
therein), for which however neither the superfluid fraction nor the one-body density matrix
are easily accessible in experiments. There were experimental efforts to reach the Bose
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glass phase coming from the strongly correlated phase [Fallani et al., 2007,Pasienski et al.,
2010]. On the other hand, several experimental works have recently addressed the quite
different regime where the gas is in the weakly interacting limit and with many particles in
each potential minimum [Deissler et al., 2010,Chen et al., 2008,Clément et al., 2008]. For
this reason, the superfluid-insulator phase transition in the weakly interacting regime has
been recently subject of intense theoretical analysis (see e.g. [Altman et al., 2004,Lugan
et al., 2007a, Nattermann & Pokrovsky, 2008]), but a clear quantitative study of the
phase diagram and of the phenomenology triggering the phase transition is still lacking.
In this thesis we want to give a clear picture of the quantum phase transition occurring
in the weakly interacting regime, studying quantitatively the disorder-interaction phase
diagram. We will mainly restrict to the one dimensional case where the limit of weak
interaction is attained for large bosonic densities [Lieb & Liniger, 1963].

Within the weak interaction limit, the theoretical description of the Bose gas can be
performed in a first approximation by means of the Bogoliubov approach. On the theo-
retical side, due to the important role played by fluctuations, the low-dimensional Bose
gas represents a very challenging problem, contrarily to the 3-D case where approximate
symmetry-breaking models (e.g. Bogoliubov or Popov) are quite reliable. The patholo-
gies that Bogoliubov shows in low dimensionality, due to the absence of a condensate,
are solved by using an extended Bogoliubov method [Mora & Castin, 2003] presented in
Chapter 2, developed to treat low dimensional Bose gases by defining the problem on a
grid. Being a mean field model, its predictions become accurate for large densities and
are exact for infinite densities and vanishing coupling constant. In this framework, the
solution of the bosonic problem is given by a Gross Pitaevskii equation describing the
ground state and two coupled Bogoliubov-de Gennes equations for the excitations.

The quantum phase transition is addressed in Chapter 3 by studying the long-range
behaviour of the one-body density matrix. The quasicondensed state is marked by an
algebraic decay, as opposed to an exponentially decaying coherence typical of the Bose
glass phase. This distinction allows to draw the interaction-disorder phase diagram,
also confirmed by the study of the superfluid fraction of the gas. The phase boundary
is characterized by two power-law relations in the disorder-interaction phase diagram,
depending on the regime of the gas where the transition occurs. In particular, when
the correlation length is much smaller than the healing length the role of the disorder is
analogous to that of a white noise potential and the critical disorder and interaction are
related by a 3/4-power-law relation. In the opposite limit the gas enters the Thomas-
Fermi regime and the relation becomes linear. These two dependencies can be explained
through scaling arguments.

As the phase transition is triggered by long-range phase fluctuations, we focus on the
behaviour of the low-energy Bogoliubov modes to understand which properties undergo
substantial changes and cause the loss of long-range order. The density of states is
constant in the superfluid phase, as for phonons in random chains [Ziman, 1982]; in the
Bose glass phase, a divergence of the low energy density of states is numerically identified,
in contrast to the common belief [Fisher et al., 1989]. The localization of the Bogoliubov
modes is measured via the inverse participation ratio and it always exhibits a power-
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law divergence at low-energy, Eα. The superfluid is characterized by 1 < α < 2, whereas
0 < α < 1 characterizes the Bose glass phase. The value α = 1 marks the phase boundary,
in agreement with recent results obtained via a renormalization group approach [Gurarie
et al., 2008].

In chapter 4 the density-fragmentation criterion for the phase transition is presented.
The notion of fragmentation has been widely used in relation to Bose-Einstein condensa-
tion [Nozières, 1995]. In the case of a disordered Bose gas, fragmentation has been fre-
quently evoked as a criterion for the transition from superfluid to Bose glass phase [Lugan
et al., 2007a,Deissler et al., 2010]. To our knowledge, however, a rigorous definition of
fragmentation of the density profile, and a proof of its relation to the quantum phase
of the gas, are still lacking. We define a state fragmented if the probability distribution
of its density is non-zero in the limit of vanishing density. We link this criterion to the
occurrence of the quantum phase transition with an analytical argument confirmed by nu-
merical results. Several different ways of characterizing the phase transition have recently
been discussed (see e.g. [Damski et al., 2003, Delande & Zakrzewski, 2009, Carrasquilla
et al., 2010]), contrarily to most of them, this criterion is groundbreaking from the ex-
perimental point of view because it paves the way to a determination of the quantum
phase of the gas through a local statistical study of the density. This would imply an
averaging over disorder realizations to infer properties in the thermodynamic limit instead
of requiring long-system sizes or transport measurements.
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The Quantum Degenerate

Bose Gas
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The physics of ultracold atomic gases has received a growing attention by the scientific
community since the first experimental observation of Bose Einstein condensation (BEC)
in 1995 [Davis et al., 1995, Anderson et al., 1995]. This phenomenon was predicted
by Einstein for non-interacting bosons in 1925 and extended to the weakly interacting
gas by Bogoliubov, but it has remained very elusive experimentally because of the very
low temperatures necessary to reach condensation. The impressive improvements of the
cooling techniques has allowed to reach temperatures in the nanoKelvin range and, in
1995, condensation of alkali gases. BEC does not occur in reduced dimensionality because
of the enhanced role of phase fluctuations [Mermin & Wagner, 1966]. Nevertheless, at
very low temperature, the gas enters a quantum degenerate regime, where Bose statistics
still shows an interesting phenomenology known as quasicondensation [Popov, 1972] that
comes along with superfluidity.
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In parallel, there has been a significant scientific effort in studying the interplay be-
tween disorder and quantum mechanics, mainly aimed at understanding the low temper-
ature transport in metals. In particular, Anderson showed that diffusion breaks down for
sufficiently strong disorder in 3D and this results in localized states and absence of trans-
port [Anderson, 1958]. This investigation was of fundamental relevance to condensed
matter physics because it first explained the notion of insulator. Even for what con-
cerns the physics of disorder, low dimensionality shows some peculiarities and, as was
first shown by means of the one-parameter scaling theory of localization, the presence
of disorder in 1 and 2D always implies localized single-particle states [Abrahams et al.,
1979].

The presence of inter-particle interaction is unavoidable in atomic Bose gases and, in
addition, weak repulsion favours the onset of a coherent superfluid (SF) phase. Hence, a
crucial point is to understand the interplay between disorder and interaction in determin-
ing the quantum phase of the gas. Ultracold Bose gases are an ideal ground to test these
many-body quantum effects. In these gases the inter-particle interactions are highly con-
trollable via Feshbach resonances, and allow to explore a variety of regimes ranging from
the non-interacting gas – for which Anderson localization was recently observed [Billy
et al., 2008, Roati et al., 2008] – to the strongly correlated regime. At the same time,
disorder can be easily imprinted and controlled by means of optical potentials.

This thesis is devoted to the study of the interplay of disorder and weak repulsive
interaction in low-dimensional Bose gases. To this end, in this introductory chapter the
physics of degenerate Bose gases is reviewed in different dimensionalities in Sections 1.1
and 1.2. The notion of disorder is discussed in Section 1.3 by introducing the models
of disorder relevant to the present analysis and to experiments with ultracold atoms.
In Section 1.4 the present knowledge of the role of disorder on interacting bosons is
illustrated.

1.1 Bose-Einstein Condensation

BEC arises as the macroscopic occupation of a single quantum state. This phenomenon
was initially predicted for non-interacting bosons, as presented in Section 1.1.1. The non-
interacting case is singular and it was soon realized [Bogoliubov, 1947] that interactions
are essential for a correct description of the Bose gas: the weakly-interacting case is
analyzed in Section 1.1.2 within a perturbative approach.

An alternative and more general definition of BEC relies on the concept of off-diagonal
long-range order (ODLRO) that translates into a one-body density matrix that does
not decay to zero at infinite distance (see Section 3.1 for an exhaustive analysis). This
criterion, named after Penrose and Onsager [Penrose & Onsager, 1956], holds equally for
ideal and interacting gases. In this scenario, the order parameter of the Bose-Einstein
phase transition is the lowest eigenvalue of the one-body density matrix, that becomes
macroscopic in presence of a condensate [Leggett, 2001].
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1.1.1 Ideal Bose gas

Non-interacting bosons are the simplest system to show BEC. The occupation of the
single-particle states is described by the Bose distribution

f(ǫ) =
1

e
ǫ−µ
kBT − 1

, (1.1)

where ǫ is the energy of the state, µ is the chemical potential, kB is the Boltzmann constant
and T is the temperature. For this quantity to be well defined, the chemical potential
has to be smaller than the single-particle ground state energy, E0. The occupation can
be related to the total number of particles N through the density of states (DoS) D(ǫ) as

N(µ) =

∫

f(ǫ)D(ǫ)dǫ =

∫ ∞

E0

D(ǫ)

e
ǫ−µ
kBT − 1

dǫ, (1.2)

that is an increasing function of the chemical potential µ. When µ approaches E0 from
smaller values, the occupation number f(E0) becomes increasingly large: this is the
physical phenomenology behind the macroscopic occupation of a single-particle state, i.e.
BEC.

Condensation occurs when µ → E0 and it can be described by splitting the total
number of particles into a sum of an occupation of the excited statesNex and a component,
N0 populating the ground state. If one takes E0 = 0 and inserts the expression for the

density of states in three dimensions, D(ǫ) = V m3/2√
2π2~3

√
ǫ = C

√
ǫ, with m the bosonic mass

and V the volume, Eq. (1.2) becomes

Nex(µ = 0) = C

∫ ∞

0

√
ǫdǫ

e
ǫ

kBT − 1
dǫ. (1.3)

The critical temperature, below which BEC occurs, can be inferred by imposing that the
population in the excited states equals the total number of particles. One then obtains

N = CΓ (α) ζ (α) (kBTC)
α, and kBTC =

[
N

CΓ (α) ζ (α)

] 1
α

(1.4)

where α = 3/2, Γ(α) is the Euler gamma function and ζ(α) =
∑∞

n=1 n
−α is the Riemann

zeta function. By lowering the temperature – or, alternatively, by increasing the total
number of bosons at constant temperature – a finite number of particles goes into the
ground state populating the condensate. The temperature dependence of the condensate
fraction, N0(T ) = N −Nex(T ), can be evaluated by computing the population of excited
particles,

Nex = CΓ (3/2) ζ (3/2) (kBT )
3/2, N0 = N

[

1−
(
T

Tc

)3/2
]

. (1.5)

This model provides an easy intuitive introduction to the concept of BEC. However,
the lack of interactions between particles leads to some inconsistencies in the theory, such
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as infinite compressibility in presence of a condensate. Bogoliubov developed a theory
that takes into account weak two-body interactions between particles in a perturbative
way [Bogoliubov, 1947]. This approach is reviewed in the next section.

1.1.2 Weakly interacting gas

In the case of bosons, in the absence of Pauli exclusion, interactions have to be considered
to avoid an unphysical collapse to infinite density. The starting point to describe a system
of N interacting bosons is its many body Hamiltonian

Ĥ =

∫

drΨ̂†(r)
[
~
2

2m
∇2 + V (r)

]

Ψ̂(r)+
1

2

∫

drdr′Ψ̂†(r)Ψ̂†(r′)U(r−r
′)Ψ̂(r′)Ψ̂(r), (1.6)

where V is the external potential, U is the two-body interaction, Ψ̂†(r) and Ψ̂(r) are
the boson creation and annihilation operators for a particle at a position r, obeying the
commutation relations

[

Ψ̂(r), Ψ̂†(r′)
]

= δ(r − r
′),

[

Ψ̂(r), Ψ̂(r′)
]

=
[

Ψ̂†(r), Ψ̂†(r′)
]

= 0. (1.7)

The basic idea behind Bogoliubov approach is the separation of the field operator in a
classical macroscopic part representing the condensate Ψ0 and a perturbative quantum
correction accounting for fluctuations δΨ̂. Here we discuss directly a generalization of the
Bogoliubov theory suitable to describe non-uniform configurations [Fetter, 1972].

The field operator can be written in second quantization in terms of the single par-
ticle wavefunctions, Ψα, as Ψ̂(r) =

∑

α Ψα(r)âα, where the âα’s are the single-particle

annihilation operators that obey bosonic commutation rules, [âα, â
†
β] = δα,β. A Bose con-

densed gas is characterized by a macroscopic occupation of a single-particle state, namely
the condensed part Ψ0(r)â0. In other words, BEC occurs when the population of this
state, N0, satisfies N −N0 ≪ N0 and N0 is of the order of the total number of particles
N . In this limit, the unitary commutator between â0 and â†0 can be neglected with re-

spect to â†0â0 = N0 ≫ 1 and these operators can be well approximated by c-numbers as

â0 = â†0 =
√
N0. One can rewrite the field operator as

Ψ̂(r) = Ψ0(r)
√

N0 +
∑

α6=0

Ψα(r)âα. (1.8)

In a uniform gas the problem can be equivalently formulated in k -space and condensation
typically occurs in the zero-momentum state, i.e. Ψ0 = 1/

√
V , that satisfies the normal-

ization condition
∫
|Ψ0|2dr = 1. The general expression for the field operator becomes

Ψ̂(r) =
√

N0/V + δΨ̂(r), where δΨ̂(r) is the perturbation due to the excited states.
Ψ0 can be interpreted as the order parameter of the Bose-Einstein phase transition and
vanishes above the critical temperature.
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Provided that the perturbation entering the decomposition of the field operator is
small, an equation for the field at the lowest order, Ψ0, can be obtained. If the gas is
dilute, one can consider only two-body collisions that are parametrized by the s-wave
scattering length a, dominant in the dilute regime. This is equivalent to replacing the
interaction term in Eq. (1.6) with an effective contact interaction potential of the form
U(r−r

′) = gδ(r′−r). In 3D, the coupling constant g is related to the scattering length via
g = 4π~2a/m. The minimization of the operator Ĥ−µN̂ results in the time-independent
Gross-Pitaevskii equation for the ground state wavefunction [Pitaevskii, 1961,Gross, 1963]

− ~
2

2m
∇2Ψ0(r) + V (r)Ψ0(r) + gN0|Ψ0(r)|2Ψ0(r) = µΨ0(r). (1.9)

This is a nonlinear Schrödinger equation, where the nonlinear term is given by the particle
interaction and it is proportional to the condensate density |Ψ0(r)|2. The effective poten-
tial acting on the particles is the combination of the external potential and a non-linear
term, that takes into account the mean-field effect of the other bosons.

As Ψ0 minimizes the energy functional, the first order correction in the fluctuation
term vanishes in the Hamiltonian (1.6). The lowest non-zero correction to the ground
state comes from the quadratic term in the fluctuations: the eigenstates of the quadratic
problem represent the elementary excitations of the system. This expansion is performed
by looking for solutions of the form of plane waves. From the Gross-Pitaevskii equation,
one obtains, to linear order, the set of Bogoliubov-de Gennes coupled equations for the
excitations [De Gennes, 1966]

(

Ĥ0 + 2gN0|Ψ0(r)|2 − µ
)

uj(r) + gN0|Ψ0(r)|2vj(r) = Ejuj(r),

−gN0|Ψ0(r)|2uj(r)−
(

Ĥ0 + 2gN0|Ψ0(r)|2 − µ
)

vj(r) = Ejvj(r). (1.10)

Here uj(r) and vj(r) represent the Bogoliubov modes and Ej ’s are their energies. This
procedure gives the same results as the diagonalization of the quadratic Bogoliubov Hamil-
tonian through the quasiparticle operators defined in terms of the Bose operators α̂j and

α̂†
j as

δΨ̂(r) =
∑

j 6=0

[uj(r)α̂j + v∗j (r)α̂
†
j ]. (1.11)

Imposing the Bose commutation rules gives the normalization condition

∫

dr[ui(r)u
∗
j (r)− v∗i (r)vj(r)] = δij . (1.12)

In the uniform case, the excitation spectrum follows the typical linear Bogoliubov disper-
sion and the amplitudes ui(r) and vi(r) are plane waves [Bogoliubov, 1947]. Interactions
between quasi-particles, involving higher order terms in the Hamiltonian, are neglected
in the Bogoliubov approximation.
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Within the Bogoliubov formalism one can easily write the expression for the one-body
density matrix, that reads

G(1)(r, r
′) = 〈Ψ̂†(r)Ψ(r′)〉
= φ∗0(r)φ0(r

′) +
∑

j 6=0

[u∗j (r)uj(r
′)pj + vj(r)v

∗
j (r

′)(1 + pj)]
(1.13)

where pj denotes the thermal population of the Bose gas, pj = [eEj/kBT − 1]−1. The
diagonal of this matrix gives the density distribution of the Bose gas, while the off-
diagonal terms represent the correlations.

Density-Phase formalism

This problem can be reformulated in the so-called density-phase representation, com-
pletely equivalent to the one exposed in the previous section, that turns to be very
useful in low dimensionality. In this formulation the field operator can be expressed

as Ψ̂(r) = eiθ̂(r)
√

ρ̂(r), where ρ̂(r) and θ̂(r) are respectively the density and the phase
operators. Assuming small density fluctuation, as expected in the weakly interacting
regime [Kane & Kadanoff, 1967], we can apply the Bogoliubov prescription to the density
operator, obtaining

Ψ̂(r) = eiθ̂r
√

ρ0(r) + δρ̂(r), (1.14)

where ρ0(r) is a c-number representing the average density of bosons at the point r. The
bosonic operators are replaced by a density and a phase operator that can be expressed
in terms of the previous quantities as

δρ̂(r) =
∑

j

[fj(r)b̂j + f∗j (r)b̂
†
j ],

θ̂(r) =
∑

j

[θj(r)b̂j − θ∗j (r)b̂
†
j ], (1.15)

where the factors fj and θj are linked to the uj and vj of the Bogoliubov transformation
by

θj(r) =
uj(r)− vj(r)

2i
√
ρ0

, fj(r) =
√
ρ0[uj(r) + vj(r)]. (1.16)

In the density-phase representation the one-body density matrix takes the form

G1(r, r
′) = 〈Ψ̂†(r)Ψ(r′)〉
= 〈
√

ρ(r)e−iθ̂(r)eiθ̂(r
′)
√

ρ(r′)〉 ≃
√

ρ0(r)ρ0(r′)〈e−iθ̂(r)eiθ̂(r
′)〉,

(1.17)

where the last equality relies on the fact that density fluctuations are weak. As the Bogoli-
ubov Hamiltonian is quadratic, we can apply Wick’s theorem to compute the expectation
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values of the observables and this gives the general property 〈eix〉 = e−〈x2〉/2, where x is a
generic linear combination of b-operators. Substituting in equation (1.17) we obtain the
expression for the one-body density matrix in the density-phase formalism

G1(r, r
′) =

√

ρ0(r)ρ0(r′)e
〈[θ̂(r)−θ̂(r′)]2〉/2 =

√

ρ0(r)ρ0(r′)e
〈[∆θ(r−r′)]2〉/2 (1.18)

where ∆θ(r− r
′) = θ̂(r) − θ̂(r′). The mean squared phase fluctuations appearing in the

exponential of Eq. (1.18) can be evaluated at large distance and take the asymptotic
form [Popov, 1972,Pitaevskii & Stringari, 2003,Bloch et al., 2008]

〈[∆θ(r)]2〉
2

=
m2c

2ρ

∫
ddk

(2π~)d

(

pk +
1

2

)
eik·r/~

k
, (1.19)

where c is the sound velocity, β = (kBT )
−1 and ρ is the total density. In the integral there

is a contribution coming from thermal fluctuations linked to the thermal Bose distribution
pk and a term coming from quantum fluctuations. In three dimensions this integral is
convergent, therefore, the one-body density matrix in Eq. (1.18) goes to a constant equal
to the condensate density at infinite distance, proving the onset of BEC.

1.2 Low dimensionality

The analysis presented in this thesis is mainly concerned with one dimensional systems.
Quantum physics in 1D is of particular interest both because some models can be solved
analytically and because of the enhanced role played by fluctuations triggered by inter-
action [Giamarchi, 2004]. Moreover, 1D physics represents a perfect starting point to
understand the phenomenology occurring in higher dimensions.

The formalism developed in the previous section can be extended to arbitrary dimen-
sionality, in particular, it can be interesting to apply the previous arguments to the one
and two-dimensional gases. For the non-interacting Bose gas, Eq. (1.2) still holds, but

the DoS depends on the dimensionality, d, according to Dd(E) ∝ E
d
2
−1. It is easy to

check that in 1 and 2D the integral in Eq. (1.2) diverges and no condensation is predicted
for an ideal low-dimensional gas.

When dealing with weakly interacting low-dimensional Bose gases, because of the rel-
evant role played by phase fluctuations, the density-phase formalism turns out to be very
convenient. In this representation the behaviour of the one-body density matrix can be
extracted from Eq. (1.18). In one dimension at zero temperature, considering only the
quantum contribution, the quadratic quantum fluctuations diverge as a logarithm, im-
plying an algebraic decaying one-body density matrix of the form [Pitaevskii & Stringari,
2003]

G1(r − r′) ∝
(

ξ

|r − r′|

) mc
2π~ρ

, (1.20)

where ξ is the healing length. The algebraic decay of the coherence at long distance
implies the absence of ODLRO: there is no condensation in 1D. On the contrary this
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functional behaviour marks the onset of quasicondensation, i.e. a condensate with fluctu-
ating phase [Popov, 1972] discussed in detail below. The inclusion of finite-temperature
contributions induces an exponential decay of the coherence, typical of a gas in the nor-
mal phase. This agrees with the conclusions drawn by Yang & Yang who have found no
singularities occurring in the thermodynamic functions of the 1D Bose gas, thus, no phase
transition at non-zero temperature [Yang & Yang, 1969]. An analogous algebraic decay,
with a more general validity, can be obtained from the Lieb-Liniger model and within the
hydrodynamic approach described below.

In two dimensions – at low and finite temperature – a power law-decay of the one body
density matrix is recovered marking a quasicondensed state, whereas at zero temperature
the 2D Bose gas undergoes true condensation.

1.2.1 Quasicondensation and Superfluidity

The algebraic decay of the coherence in one dimension at zero temperature and in 2D
below a certain critical temperature is due to the long-range effect of low-energy phase
fluctuations that prevent the formation of a BEC. To describe this phenomenon it has
been introduced the idea of quasi-condensate, i.e. a condensate with fluctuating phase.
The behaviour of its one-body density matrix – different from the one of a classical
gas – is known as quasi-long range order. This notion found its origin in the seminal
work by Popov [Popov, 1972] that studied low-dimensional bosons within a path integral
formalism, separating the Bose field in a Bogoliubov-like way between fast and slow-
modes. A quasicondensate is a Bose gas in the degenerate regime characterized by reduced
density fluctuations and a coherence extending over a length larger than the thermal de-
Broglie wavelength and decaying algebraically.

The relation between (quasi-)condensation and superfluidity has been subject of in-
tense debate over the years and for interacting Bose gases these two phenomena are
intimately linked [Leggett, 1973, Leggett, 2001]. The occurrence of condensation (or
quasi-condensation) is a property based on the one-body density matrix. On the other
hand, superfluidity is defined as the response of the fluid to a small velocity field (see
Chapter 3.3 for a rigorous definition). Starting from the hydrodynamic Hamiltonian ex-
pressed in the density-phase formalism, it can be proven [Bloch et al., 2008] that a finite
superfluid fraction, together with the assumption of finite compressibility are sufficient
conditions for the existence of BEC (or quasicondensation in low-dimensionality). The
presence of ODLRO, on the other hand, is a sufficient condition to have superfluidity (e.g.
see [Leggett, 2001,Bloch et al., 2008]). It is important to stress that these statements does
not imply that superfluid and quasicondensed fraction coincide. As superfluidity is both
sufficient and necessary for quasicondensation, from now on, the words quasicondensate
and superfluid will be used indiscriminately to denote the coherent phase.

On the other hand, an exponential and algebraic decay of G1(r) means that coherence
drops to zero at infinite distance: this denotes the absence of ODLRO in low dimensional
Bose systems and the impossibility of attaining BEC according to the Penrose-Onsager
criterion. The absence of condensation in d < 3 is a manifestation of the Mermin-Wagner
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theorem, briefly presented in the next section.

Mermin-Wagner Theorem

The first argument preventing the formation of long-range order in low dimensionality was
given by Peierls in 1935 [Peierls, 1935]. A more rigorous argument has been extended to
bosons [Hohenberg, 1967] and spin systems [Mermin & Wagner, 1966] and it claims that,
in presence of short-ranged interaction, quantum and thermal fluctuations in reduced
dimensions are strong enough to prevent the spontaneous break-down of a continuous
symmetry (as the U(1) symmetry marking the onset of BEC). An intuitive proof ad
absurdum can be given for the two dimensional case. Starting from the hypothesis that
at a finite very low temperature T a condensate exists in k = 0, the number of particles
in the excited states k 6= 0 is

N ′ =
∑

k 6=0

ñk =
L2

4π2

∫

ñkd
2
k, (1.21)

where

ñk +
1

2
≥ kBT

~2k2/m

ρ0
ρ
, (1.22)

with ρ0 the density of the condensate. When k → 0 the lower term behaves as 1/k2 (from
the Bogoliubov k−2-theorem [Bogoliubov, 1960]) and, in 2D, this gives a logarithmic
divergence in the integral (1.21) thus the initial assumption has to be wrong and no
condensate exists. This argument rules out condensation at finite temperature in one and
two dimensions. It can be proven that quantum fluctuations prevent the formation of a
condensate in one dimensional systems even at zero temperature [Pitaevskii & Stringari,
1991].

Mean field model

The hypothesis on which Bogoliubov theory relies is invalidated by the absence of a
macroscopic occupied state in low-dimensionality. Therefore, even if the standard Bogoli-
ubov theory can be used to compute qualitatively asymptotic quantities in the limit of
weak interaction and weak density fluctuations (as shown for the G1(r)) it is corrupted
by divergences in the density and phase operators (for a detailed discussion see [Castin,
2004]). Different approaches have tried to extend the Bogoliubov theory to low dimen-
sional gases. First of all, Popov developed a functional integral approach separating the
atomic field in a fast and a slow part [Popov, 1983]. Although this method allows to
evaluate correctly some physical quantities it is only valid at low energies and the intro-
duction of an arbitrary cutoff entails a loss of generality. The density-phase formalism
can still be applied to compute some thermodynamic quantities such as the long-range
behaviour of the one-body density matrix, but this method relies on a ultraviolet cutoff
that makes its predictions reliable with logarithmic accuracy only at large distances and,
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in addition, a non-careful definition of the operators bring some inconsistencies with the
Bogoliubov theory in 3D [Shevchenko, 1992]. Some approaches solved the problem devel-
oping a theory based on the path integral formalism [Al Khawaja et al., 2002,Andersen
et al., 2002].

To describe the Bose gas in this thesis, we adopt a method developed by Mora &
Castin [Mora & Castin, 2003], that, expanding the Hamiltonian to the third order in
density fluctuations and phase gradient, built a theory that deals properly with low-
dimensional Bose gases. This method relies on the introduction of an unphysical grid
that allows to correctly define density and phase operators and, differently from Popov’s
method, treats all the modes on the same footing. This method is successful in describing
Bose gases in arbitrary dimensions and it is presented in detail in Chapter 2.

All the methods outlined so far are only valid in the limit of weak interactions. To
describe the complete physics of the 1D bosonic systems, different approaches have to
be used. In the following section some of the most common methods to describe one
dimensional Bose gases are mentioned.

1.2.2 Lieb-Liniger model

The basic starting point to study one-dimensional bosons with contact interaction is the
N-body Hamiltonian

H = − ~2

2m

N∑

i

∂2

∂x2i
+ g0

∑

i<j

δ(xi − xj). (1.23)

This model is exactly solvable via Bethe ansatz as it has been shown by Lieb and Liniger
[Lieb & Liniger, 1963]. They found that this problem is fully determined by the parameter

γ =
g0ρ

~2ρ2/2m
=
m

~2

g0
ρ
, (1.24)

where ρ = N/L is the density. This parameter measures the interaction strength of the
gas, its value being proportional to the ratio between interaction and kinetic energy. The
strongly interacting regime is achieved for large γ, i.e. for low densities – an opposite
behaviour with respect to the 3D case. In the limit γ → ∞ the Hamiltonian describes a
gas of impenetrable bosons, also known as Tonks-Girardeau regime. The infinite repulsion
imposes that any wavefunction vanishes whenever two particles meet at the same spatial
coordinate [Girardeau, 1960]. This constraint is fulfilled by the wavefunction

ΨB(x1, x2, . . . , xN ) ∝
∏

i<j

|sin(π|xi − xj|/L)| , (1.25)

that coincides with the wavefunction of non-interacting spinless fermions: a system of
impenetrable bosons can be mapped onto a system of non-interacting fermions and its
properties can be extracted accordingly. The single-particle wavefunctions are spatially
distinct and extend over a distance determined by the average inter-particle distance
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1/ρ. The absence of fluctuations in the number of particles implies that the gas does
not show long-range coherence and it resembles a gas of classical hard spheres. The
chemical potential in this regimes approaches the value µ = π~ρ2/(2m), independent on
the coupling strength, because the energy is of fully kinetic nature.

The opposite limit γ = 0 corresponds to the non-interacting Bose gas and the regime of
weak interaction is attained for small γ that, quite counterintuitively, in 1D corresponds
to the high-density limit. In this case the gas has a collective behaviour and can be
successfully described by Bogoliubov perturbation theory [Lieb & Liniger, 1963], with a
chemical potential taking its mean field value µ = g0ρ.

A characteristic length scale ξ =
√

~2/(mµ), named healing length, controls the
crossover between collective and single-particle behaviour. In the weakly interacting
regime the healing length extends over distances much longer than the average inter-
particle separation, ξ ≫ 1/n, whereas in the strong coupling regime these two lengths are
comparable. In experiments, the value of γ can be tuned by varying the density or by
tuning the scattering length by means of Feshbach resonances [Pollack et al., 2009].

Tomonaga-Luttinger liquid

A very general and convenient way to study the physics of quantum one-dimensional
gases has been introduced by Haldane [Haldane, 1981] that gave a universal description
of a range of 1D models known as Tomonaga-Luttinger liquids. For what concern bosons,
this approach happens to be an hydrodynamic model also known as bosonization, based
on the density-phase representation of the bosonic field, that parametrizes the problem
with a single parameter, the Tomonaga-Luttinger parameter K. This allows to write
an effective low-energy quadratic Hamiltonian for the bosonic problem that is valid at
any interaction energy. This model revealed to be very effective in the computation of
correlation functions and other physical observables, but also in treating the role of strong
interaction in presence of an underlying potential, e.g. through perturbative techniques
and renormalization [Giamarchi & Schulz, 1987]. The results given by this approach are
consistent with the Lieb-Liniger model and the Bogoliubov approach.

1.2.3 Trapped case

Current experiments dealing with low-dimensional Bose gases are mainly performed by
confining the ultracold atomic gas by means of magnetic or optical traps. When dealing
with one-dimensional configurations, the condition of sufficiently strong transverse con-
finement guarantees the exclusion of any radial dynamics, while the longitudinal trapping
has to be weak so not to affect the 1D phenomenology of the gas.

The Mermin-Wagner theorem prevents the formation of BEC in low dimensionality,
but it is strictly valid only for phase transitions occurring in the thermodynamic limit.
Current experiments deal with extremely non-ideal conditions, such as a finite number of
particles, finite system size, the presence of a trap to confine the atomic cloud and finite
temperature. In these conditions, the thermodynamic properties of the gas are subject
to significant changes.
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It was proved [Bagnato & Kleppner, 1991,Ketterle & van Druten, 1996] that a trapped
non-interacting 1D gas can achieve true condensation under suitable conditions of trap-
ping and temperature. This is due to the change in the DoS of the trapped gas and, in
particular, to the discreteness of the energy levels introduced by the trap. The inclusion of
interaction has been taken into account by Petrov et.al. [Petrov et al., 2000]: they found
that the phase of an interacting Bose gas in a trap depends on interaction, temperature,
trap frequency and number of particles and they obtained the crossover diagram reported
in Fig. 1.1. A key parameter to determine the regime of the trapped gas can be defined
as

α =
mg

~

√

~

mω
, (1.26)

where ω is the trapping frequency. This parameter provides the ratio between the inter-
action and the trapping energy and it replaces γ (see Eq. (1.24)) in the determination of
the regime of the gas. The phases occurring at low-densities are, as in the homogeneous
case, a classical gas and a Tonks gas depending on the temperature. At large densities,
even if the system is at finite temperature, a quasicondensed phase exists and, at lower
temperature, true condensation can be achieved. The crossover between these two is
triggered by the enhancement of phase fluctuations due to the temperature. However,
the constraint over the temperature turns out to be quite severe with respect to trapping
and interaction energies.

N

quasicondensate

true condensate
Thomas Fermi profile

gas of Tonks

classical gas

degeneracy limit

101 102 103

101

103

104

102

2πT/hω

Figure 1.1: Crossover diagram of an interacting 1D Bose gas in presence of a trapping potential
extracted from [Petrov et al., 2000].

To summarize, the presence of a trap radically changes the physical description of
the Bose gas, allowing the achievement of BEC even in low dimensionality by quenching
long-range phase fluctuations. A secondary effect of a confining harmonic potential is
the introduction of a spatial inhomogeneity that locally modifies the density profile of the
atomic cloud. Disorder has the same local effect of modulating the bosonic density, and, in
addition, it can destroy long-range coherence by localizing the wavefunction of collective



1.3. Disorder 13

excitations as it happens in the non-interacting case. Next section is devoted to the
introduction of spatial disorder: some specific types of disorder, relevant to experiments
and to the theoretical analysis that follows, are described in detail.

1.3 Disorder

After having discussed the physics of the uniform degenerate Bose gas, here, the notion
of disorder is introduced. Disorder in quantum systems has received a wide attention
by the scientific community mainly since the seminal work of Anderson where it was
proven that in 3D below a certain mobility edge the single-particle states are localized
because of constructive interference of multiply reflected waves [Anderson, 1958]. Per-
haps the most comprehensive study of the effects of disorder is the scaling theory of
localization [Abrahams et al., 1979], that confirms the result in 3D and asserts that all
the eigenstates of the single-particle problem are localized in lower dimensionality in pres-
ence of disorder (even vanishingly small). This phenomenon manifests as the exponential
decay of the eigenfunctions on length-scales of the order of the transport mean-free-path.
Anderson localization has been recently observed for matter waves in ultracold atomic
gases of bosons with vanishing interaction [Roati et al., 2008, Billy et al., 2008]. When
dealing with ultracold atomic gases, disorder is usually imprinted externally through the
creation of laser-generated optical potentials. Being highly controllable, these potentials
are very efficient for the investigation of the physics of disorder, contrarily to its unavoid-
able presence in solid state systems.

Disorder is considered here as the value of potential energy defined over the spatial
coordinate r and independent on time (quenched). It is a continuous variable V (r) char-
acterized by an average value, 〈V (r)〉 = 0 for simplicity, a distribution P [V ] and a certain
correlation function. The two-point correlation is defined as

〈V (r)V (r′)〉 = ∆2f(r − r′) (1.27)

where ∆ is the amplitude of the potential and 〈. . . 〉 denotes the average over a statistical
ensemble. The distribution f(r − r′), also known as autocorrelation function, satisfies
f(0) = 1 and is characterized by the correlation length η over which f decays to zero (or
rather it becomes exponentially small). This length-scale defines a corresponding energy,
called correlation energy

Ec =
~
2

2mη2
, (1.28)

that will turn out to be relevant for the study performed in Chapter 3.

Each disorder type that we consider is assumed to be spatially homogeneous in the
sense that its properties are translationally invariant on average and, in addition, any
statistical correlation within the random potential is supposed to vanish at infinite dis-
tance [Lifshitz et al., 1988].
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For the sake of generality, most of the analysis in the following chapters is performed
considering a gaussian-distributed and gaussian-correlated disorder, presented in Sec-
tion 1.3.1. Current experiments aiming at the characterization of ultracold atomic gases
usually deal with optically-realized disorder such as speckle patterns and quasiperiodic
potentials that are described in detail respectively in Sections 1.3.2 and 1.3.3.

1.3.1 Gaussian Disorder

The numerical analysis presented throughout this thesis are mainly performed in presence
of gaussian disorder. The potential is assumed to have zero average, 〈V (r)〉 = 0, and an
amplitude defined as ∆g =

√

〈V 2〉. The Gauss-distributed spatial correlation decays to
zero at infinite distance and it can be expressed as

〈V (r)V (r′)〉 = ∆2
ge

− (r−r′)2

2η2g , (1.29)

where ηg is the correlation length (the subscript g denotes the gaussian potential) and the
variable V (r) is Gauss-distributed in energy. In the limit ηg → 0 one recovers a gaussian
distributed uncorrelated potential

〈V (r)V (r′)〉 = wδ(r − r′), (1.30)

also known as white-noise potential, widely employed to study the physics of disorder (see
for instance [Halperin, 1965,Fisher et al., 1989]).

Most of the present experiments are carried out making use of optical potentials such
as speckle and quasi-periodic potentials. The use of a gaussian potential for the present
analysis is motivated only by a claim of generality, even though the gaussian correlation is
consistent with certain experimental realizations [Chen et al., 2008]. This kind of potential
reproduces faithfully the distribution of a large number of uncorrelated variables, thanks
to the central limit theorem. As the external potential is only treated numerically any
analysis could be easily extended to the potentials described below.

The numerical implementation of the disordered potential is performed on a
grid of step ℓN fine enough to reproduce the oscillation of the correlated po-
tential (η ≫ ℓN ). The disorder profile is the result of the convolution between
an uncorrelated random potential, with a gaussian energy distribution of the
amplitude ∆g, and a spatial gaussian of standard deviation ηg.

In Fig. 1.2a, a sample gaussian disordered profile is shown in units of the
correlation energy. The energy distribution of the potential appears in Fig.
1.2b: the circles mark the numerical results, obtained by statistical averaging,
and they are fitted with a gaussian distribution of standard deviation ∆g,
centered in E = 0 (the distribution has 〈V 〉 = 0). Fig. 1.2c shows the auto-
correlation function f(r− r′): the numerical results are marked by the circles,
while the solid line is a gaussian fit with standard deviation ηg. The spatial
coordinate is measured in units of correlation lengths.
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Figure 1.2: a. Sample of a gaussian disorder profile with unitary correlation length ηg and
unitary amplitude ∆g in a system of length L = 200 ηg. b. Average spectral distribution of
the potential: the circles are the results of a numerical average performed over many disorder
realizations (equivalent to performing simulations on very large samples), whereas the solid line is

a gaussian fit ∝ e−E2/(2∆2

g
). The standard deviation of this distribution, ∆g, denotes the disorder

amplitude. c. Autocorrelation function f(r− r′) in presence of gaussian disorder: the circles are
the result of numerical simulations performed on a finite-size system (L = 104 ηg), while the solid

line is a gaussian fit of the form e−r2/(2η2

g
).

Throughout this thesis the amplitude of the disorder, expressed by ∆, and the
correlation length of the potential, marked as η, refer to gaussian disorder.

1.3.2 Speckle Disorder

Optical trapping is one of the most common technique to trap atomic gases in low dimen-
sionality. As most of the disorder types presented below, it is an optical potential, i.e. it
is generated by means of laser light and it exploits the fact that atoms interact with light
through dipole interaction. Considering an atomic transition of frequency ωT , slightly
off-resonance with respect to the laser frequency ωL (δ = ωL − ωT is the detuning), the
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atoms experience a potential [Grimm et al., 2000]

Vopt(r) ∝
I

δ
, (1.31)

where I is the intensity of the laser. The potential is proportional to the light intensity,
but, more remarkably, it changes sign by tuning the laser frequency across the transition:
the interaction is repulsive if the laser is blue-detuned (δ > 0 → V > 0), attractive in the
case of red-detuned light (δ < 0 → V < 0).

Speckle patterns are a very common optical way to implement disorder when dealing
with ultracold gases [Clément et al., 2006,Chen et al., 2008,Dries et al., 2010,Clément
et al., 2008]. Speckle potentials are realized by collecting the coherent laser scattered
by a rough plate. In this manner the light acquires spatially random phases and the
recollection of the scattered light builds a random interference pattern. The intensity of
the laser is linked to the electric field by

I =
1

2
ǫ|E(r)|2, (1.32)

where ǫ is the dielectric constant and E(r) is the complex electric field. The statistical
properties of the intensity pattern can be derived from the distribution of the electric
field. The central limit theorem guarantees that a large sum of uncorrelated scatterers
gives rise to a gaussian probability distribution for the real and imaginary parts of the
electric field, namely

P [R(E),I(E)] =
1

2πσ2
e−

R(E)2+I(E)2

2σ2 , (1.33)

where σ is the standard deviation of the real and imaginary part of the electric field. This
reflects on the intensity distribution that takes the form

P [I] =
e−I/〈I〉

〈I〉 Θ [I] , (1.34)

where Θ is the Heaviside function. Performing an energy shift V (r) = Vopt(r)− 〈Vopt(r)〉
and defining ∆s = 〈Vopt〉, the potential V (r) has zero average and a distribution with
standard deviation

√

〈V 2〉 = ∆s, that is related to the intensity profile by V (r) =
∆s(I(r)/〈I〉 − 1). Its probability distribution follows

P [V (r)] =
1

e|∆s|
exp

[

−V (r)

∆s

]

Θ

[
V (r)

∆s
+ 1

]

, (1.35)

that is an exponentially decaying function truncated at V = −∆s. The sign of the inter-
action can be controlled by the detuning, δ: this parameter strongly influences the distri-
bution of the potential because a blue-detuned laser creates repulsive speckles, bounded
from below, whereas a red-detuned laser gives an attractive disordered potential with an
upper bound.
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The autocorrelation of a speckle potential, formed from a square aperture, takes the
form [Clément et al., 2006,Goodman, 2007,Sanchez-Palencia et al., 2007]

〈V (r)V (r + a)〉 = ∆2
s

sin(a/ηs)
2

(a/ηs)2
, (1.36)

where ηs is the correlation length. The correlation length and the shape of the correlation
function are linked to the existence of a cutoff in k-space introduced by the focusing lens
(dependent on the physical parameters of the apparatus) and will be discussed in detail
below.

In accordance with the experimental realization, the speckle potential is gen-
erated starting from an electric field, defined in real space, with an uniformly
distributed random phase (this is true as long as the distance between the
scatterers is much longer than the wavelength of the impinging light)

E(x) =

√

Iπ
kcL

kc∑

k=−kc

eikxeiθ(k), (1.37)

where I is the intensity of the impinging light, L is the length of the scattering
plate that gives the quantization in k-space (∆k = 2π/L), θ(k) are the random
uncorrelated phases in the interval (−π, π], the distribution in real space is
defined on a one dimensional segment and the sum is extended to each point
of the grid. The window, of width kc, is applied on the distribution in Fourier
space to obtain the distribution of the disorder as the square of the resulting
field in real space. Its correlation length ηs is linked to the cutoff in k -space
as ηs = 1/kc: the correlation length can be experimentally tuned via the
numerical aperture of the focusing lens. In the simulations that follow, ηs is
taken as the unit of length, consequently kc is the unit in Fourier space.

There are different procedures that allow to build computationally a speckle
potential (see for instance [Huntley, 1989,Horak et al., 1998]). In the present
work the scheme presented above has been followed strictly and it can be
shown that in the limit of a large number of scatterers this method is equiva-
lent to the one outlined in the above references [Goodman, 2007].

In what follows, speckle disorder is only treated in Chapter 4.3, where the fragmen-
tation criterion is tested considering realistic conditions. For clarity, when dealing with a
speckle potential, the quantities identifying the disorder are labeled by a subscript s (e.g.
∆s and ηs).

1.3.3 Quasi-periodic potentials

For completeness here the case of quasi-periodic potential is presented. This optical
potential is largely used to study the effects of disorder on quantum systems [Diener
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et al., 2001,Fort et al., 2005], even if it shows a phenomenology halfway between a lattice
configuration and a disordered system with some peculiar properties linked to its quasi-
periodicity.

This disorder is the result of the interference of two lattices with incommensurate
wavelengths. Typically there is a primary lattice of amplitude V1 with a certain periodic-
ity, d1 = π/k1, and a secondary lattice, acting as a perturbation, of amplitude V2 ≪ V1,
with incommensurate periodicity d2 = π/k2, where β = k2/k1 is irrational. In finite size
system it is sufficient that β is the ratio of two large relatively prime natural numbers.
The resulting potential, also known as Harper potential [Harper, 1955], is the sum of
these two fields

VQ(r) = V1 sin
2(k1x) + V2 sin

2(k2x+ φ), (1.38)

where φ is an arbitrary phase and the amplitudes of the single fields are controlled by the
intensity of the lasers. The secondary lattice does not modify substantially the spatial
positions of the minima rj ≃ jπ/k1, whereas it shifts their energies in a non-periodic,
although deterministic way.

Within the tight binding approximation the Hamiltonian

H = − ~
2

2m
∇2

r + VQ(r) (1.39)

can be mapped onto the discrete Aubry-André Hamiltonian [Aubry & André, 1980,
Modugno, 2009]

H = −J
∑

j

(c†j+1cj + c†jcj+1) + ∆Q

∑

j

cos(2πβj + φ)c†jcj , (1.40)

where j labels the lattice site, cj annihilates a boson on the site j, J is the tunneling
energy and ∆Q is an index of the amplitude of the disorder. These quantities can be
linked to the experimental ones [Modugno, 2009,Modugno, 2010] appearing in Eq. (1.38)
and, in particular,

∆Q ≃ V2
2
e
− β2√

V1/Er1 , (1.41)

where Er1 = ~
2k21/2m is the recoil energy. The argument of the exponential is typically

very small and the strength of the disorder is, in good approximation, linear in the
amplitude of the secondary lattice. The distribution of the potential in Eq. (1.40),
behaves as [Guarrera et al., 2007,Roux et al., 2008]

P [E] ∝ 1
√

∆2
Q − E2

, (1.42)

therefore, it is bound and symmetric around E = 0 and it diverges in E = ±∆Q.



1.4. Bosons in disordered media 19

The correlation function of this potential has an intermediate behaviour between a
binary potential and a truly random one, indeed the correlation function is

〈V (r)V (r − r′)〉 =
∆2

Q

2π
cos (2πβr). (1.43)

and it does not decay to zero when |r − r′| → ∞, as it could be inferred being this
potential completely deterministic.

In absence of the perturbing lattice, the solutions of the single-particle problem are
known to be extended Bloch states. This feature survives also in presence of the secondary
lattice, in fact, differently from the model studied by Anderson [Anderson, 1958], the
single-particle problem in presence of a quasi-periodic potential requires a critical amount
of disorder for localization [Aubry & André, 1980]. In the case β = (

√
5 − 1)/2, it can

be shown that the model presents a metal-insulator transition for ∆Q/J = 2. In this
sense, quasiperiodic potentials have the peculiarity of showing an intermediate behaviour
between commensurate and disordered ones.

1.4 Bosons in disordered media

At this point, all the ingredients to introduce the study of disorder on interacting Bose
gases have been presented. The main physical content coming into play is the interplay
between disorder and repulsive interaction in determining the quantum phase of the gas.

The interest in the role of disorder was initially triggered by the experimental realiza-
tion of thin films of superfluid 4He in porous Vycor glass [Crooker et al., 1983]. Several
methods have been used to investigate the effect of disorder in interacting bosonic system.
The results presented here have been mainly obtained through the study of Bose-Hubbard
model, Josephson junctions model, Tomonaga-Luttinger liquid and mean-field theories.

This section is devoted to the introduction of the main models used to study disorder:
the results and the physical phenomenology related to the presence of a non-uniform
potential are briefly discussed.

Non-interacting case

Non-interacting one-dimensional bosons at zero temperature condense in the lowest single-
particle energy state. Anderson showed that in presence of disorder this state is non-
diffusive and localized. In this sense the mere presence of disorder drives a transition from
an extended to a localized state. Anderson localization has been recently observed for
ultracold bosonic gases with vanishing interaction in presence of speckle and quasiperiodic
potentials [Billy et al., 2008,Roati et al., 2008]. The presence of interaction modifies sub-
stantially this scenario and the interplay between interaction and disorder in determining
the quantum phase of the gas is a very active and open field of condensed matter physics
both from the theoretical and the experimental points of view (see [Sanchez-Palencia &
Lewenstein, 2010] and references therein).
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In presence of interaction the localized single-particle state, where all the particle
would condense in the non-interacting case, cannot accommodate a macroscopic number
of particles (infinite in the thermodynamic limit) in a finite-size region. Any vanishingly
small interaction would make this state unstable, therefore, the non-interacting limit
cannot be adopted as a starting point for the description of the interacting case [Jaksch
et al., 2008,Cazalilla et al., 2011].

Bose-Hubbard model

A common starting point to study the physics of boson in disordered media is the Bose-
Hubbard model. This model – defined on a lattice – is described by the Hamiltonian

HBH = −J
∑

i

â†i+1âi + â†i âi+1 +
1

2
U
∑

i

n̂i(n̂i − 1)−
∑

i

(εi + µ)n̂i, (1.44)

where âi and â†i are operators destroying and creating one boson at the ith lattice site

and n̂i = â†i âi. First-neighbour interaction is taken into account by the tunneling term J ,
U > 0 denotes the on-site interaction, µ is the chemical potential. Disorder is considered
in this model through the distribution of εi that gives an effective local shift to the
chemical potential. A complete model may also include disorder into J and U , but this
would not modify radically the present scheme, that already contains the relevant physics
of the dirty bosons problem. Higher order on-site states can be neglected because at very
low temperature only the lowest energy state will be populated. The model represented
by the Hamiltonian (1.44) is not exactly solvable, but its phenomenology is quite well
understood [Fisher et al., 1989].

This discrete model is well reproduced in experiments by ultracold bosons loaded
onto optical lattices. The presence of a lattice is analogous to the discretization of the
Bose-Hubbard Hamiltonian and the parameters such as tunneling energy and on-site
interaction can be easily tuned by controlling the laser intensity and by means of Feshbach
resonances [Jaksch et al., 1998,Bloch et al., 2008].

Josephson model

Another commonly employed model to describe disordered bosonic media is the Josephson
junctions model, also known as quantum rotor [Sachdev, 1999]. This model was initially
introduced to describe a regular array of superconducting islands weakly coupled by tunnel
junctions. It is described by the Hamiltonian

HJ =
∑

〈i,j〉
Jij cos(φ̂i − φ̂j) +

1

2
U
∑

i

n̂2i −
∑

i

(εi + µ)n̂i, (1.45)

where Jij are the Josephson coupling between the sites i and j and the operators n̂i and

φ̂i are the conjugated number and phase operators obeying the commutation relations
[φ̂k, n̂j] = iδkj . In absence of disorder the Hamiltonian describes a periodic system with
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a phase uniquely determined by the interplay between on-site energy U and tunneling J .
This model can be mapped onto the Bose-Hubbard model by the transformations

â†i ↔= n̂
1/2
i eiφ̂i

âi ↔= e−iφ̂i n̂
1/2
i , (1.46)

but they only agree in the limit of large average site occupancy 〈n̂i〉 ≫ 1.
In this thesis we will rely on this model and its analogy with disorder barriers in the

case of a single bosonic Josephson junction (two coupled wells scenario) in Chapter 3.2.1
and in the discussion of fragmentation in Chapter 4. Indeed, we believe that the relevant
physical content of disordered bosons is already contained in the phenomenology of the
coupled-well problem, where repulsive interaction, tunneling and on-site energy compete
in the determination of the thermodynamic properties. Now, we move to the discussion
of the different quantum phases arising as solutions of the Bose-Hubbard model.

Superfluid phase

When the tunneling dominates, the bosons form a coherent delocalized state, ideally a
SF, of the form

|ΨN 〉(U = 0) =
1√
N

(

1√
NL

∑

R

â†R

)N

|0〉, (1.47)

where N is the number of bosons, NL the number of lattice sites and â†R creates a boson
at the position R. The tunneling term has a delocalizing effect that affects the kinetic
component of the bosons and that reduces the phase fluctuations. This coherent state is
a BEC in D > 1 and a quasicondensate in D = 1. As long as the state is not strongly
perturbed by the disorder εi or the interaction term U , the superfluidity survives.

Mott insulator

On the contrary, when the tunneling energy vanishes, particles tend to accommodate on
different lattice sites: assuming unitary filling, each site has a well defined number of
particles (n = 1 with no number fluctuations) fixed by the repulsive interaction and the
long-range phase coherence is lost. For J/U = 0 there is a unit increase in filling at each
integer value of µ/U (cfr. Fig. 1.3a&b). This phase, characterized by particles localized
on single sites, is known as Mott insulator (MI), in analogy with electronic insulator with
half-filled band, and for unitary filling (N = NL) it reads

|ΨN 〉(J = 0) =

(
∏

R

â†R

)N

|0〉, (1.48)

a product of localized Fock states. This phase is incompressible, implying that a variation
in the chemical potential does not entail a density change, and it is characterized by a
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gap in the energy spectrum required to overcome the repulsion. In the case of non-integer
filling the gas is in the SF phase as long as there is a finite tunneling term, in fact, the
fraction of atoms exceeding the integer filling delocalize over the whole system.
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Figure 1.3: a. Phase diagram of the 1D Bose-Hubbard model extracted from [Freericks &
Monien, 1996] computed from a third order strong coupling calculation and compared to the
results of quantum Monte Carlo simulations [Scalettar et al., 1991]. b. Qualitative shape of the
phase diagram of the 3D Bose-Hubbard model in absence of disorder first computed in [Fisher
et al., 1989] and extracted from [Jaksch et al., 2008]. The Mott-insulator phase lies within lobes
in the low J/U -part of the phase diagram that shrink for increasing µ/U . c. Qualitative shape
of the phase diagram of the disordered 3D Bose-Hubbard model first computed in [Fisher et al.,
1989] and extracted from [Jaksch et al., 2008]. An insulating Bose-glass phase intervenes at
intermediate values of J/U between SF and MI: even at J/U = 0 a BG phase appears between
the MI lobes with different filling factor.

This problem has been qualitatively studied via scaling arguments by Fisher et.al. in
generic dimensions [Fisher et al., 1989] and their resulting phase diagrams are shown in
Fig. 1.3a&b on the µ/U − J/U plane. Several numerical simulations [Scalettar et al.,
1991,Krauth et al., 1991,Prokof’ev & Svistunov, 2004] and certain analytical arguments
[Freericks & Monien, 1994,Freericks & Monien, 1996] have confirmed these predictions.
The Mott-insulator lobes appear for low values of the tunneling and each of these lobes
contains an integer and growing amount of bosons per site. Remarkably, these lobes
shrink for larger chemical potential, meaning that largely populated Mott phases occupy
a vanishingly small part of the phase-space (this fact has a close connection to the analysis
performed in Chapter 3 for infinite density). These results were obtained for a periodic
system and the inclusion of disorder, that enriches and complicates this scenario, is the
subject of the next section.

Disordered case

Giamarchi & Schultz [Giamarchi & Schulz, 1987,Giamarchi & Schulz, 1988] studied the
1D problem treating disorder as a perturbation within a renormalization group approach.
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They found a universal power law for correlation functions on the transition between a su-
perfluid and a localized phase for a strongly interacting Bose gas. Their approach, based
on the hydrodynamic description introduced by Haldane [Haldane, 1981] and known as
bosonization, is only valid at large interaction, where weak disorder acts as a perturba-
tion. Their findings are summarized in the schematic phase diagram of Fig. 1.4 in the
interaction-disorder plane.

Superfluid

Bose Glass

3/2

D1/2

K

Figure 1.4: Schematic phase diagram of 1D interacting bosons for incommensurate filling de-
rived in Ref. [Giamarchi & Schulz, 1987,Giamarchi & Schulz, 1988] and extracted from [Cazalilla
et al., 2011]. K is the Tomonaga Luttinger parameter and is inversely proportional to the strength
of interaction (K = ∞ for noninteracting bosons). D, on the vertical axis, denotes the disorder
strength and it parametrizes an uncorrelated disorder with the autocorrelation Dδ(r − r′). The
solid line is the universal transition line computed in [Giamarchi & Schulz, 1987] via renormal-
ization group approach. The authors claim that the phase boundary has to bend down to the
origin to be consistent with a localized state occurring in the non-interacting case (vertical axis
K = ∞). The vertical dotted line separate two distinct localized phases (strongly interacting and
strongly disordered): whether their nature is different or not it is still under debate.

Relying on these results, Fisher et.al. [Fisher et al., 1989] performed a scaling anal-
ysis aimed at giving the qualitative effect of the inclusion of disorder in bosons on a
lattice. They considered the Bose-Hubbard Hamiltonian of Eq. (1.44) in presence of an
uncorrelated uniformly distributed bound disorder and an unbound gaussian-distributed
disorder. Their results are sketched in Fig 1.3c.

Bose-glass

The main conclusion that can be drawn from the analysis listed above is that the SF
coherent phase can be destroyed by disorder. In presence of an underlying periodic
structure the transition to the MI takes place through a glassy phase named Bose-glass
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(BG) (see Fig. 1.3c). This phase differentiates from the MI in the fact that it is gapless
and that its density can be varied continuously, therefore the phase is compressible. On
the other hand, the phase is not SF, in fact, it does not show any (quasi-)long-range
order and it has no superfluid fraction. As it was initially studied [Giamarchi & Schulz,
1987], the SF-BG is a localization-delocalization phase transition (as for MI-SF). It occurs
because of an enhanced role of the phase fluctuation, in particular phase flips (known in
literature also as phase slips) that are low-energy long-range fluctuations that act reducing
the coherence over large distances. In the case of zero tunneling, J = 0, disorder opens
a BG window between the Mott lobes at different filling factor. The phenomenology
occurring in the disordered case is the formation of incoherent droplets of bosons: by
increasing the tunneling energy at a certain threshold the droplets percolate and restore
the overall coherence, driving the system into a SF phase. The disorder-interaction phase
diagram of the Bose-Hubbard model has been studied, among others, via quantum Monte
Carlo techniques [Prokof’ev & Svistunov, 1998] and via density matrix renormalization
group [Rapsch et al., 1999]: some of these results are presented and commented in Chapter
3.4.

A very debated question concerns whether the BG phase completely surrounds the MI
lobes or if a direct MI-SF transition is possible. After controversial results and theories,
this issue apparently came to a solution [Pollet et al., 2009,Gurarie et al., 2008] proving
that a direct transition in presence of disorder is not possible, in agreement with previous
arguments [Fisher et al., 1989,Freericks & Monien, 1996].

When an underlying periodic structure lacks, the SF phase simply moves to the BG
phase for sufficiently strong disorder. This transition occurs at weak interaction when
disorder-interaction ratio is large, otherwise it is driven by strong interaction when the
gas is in the strongly correlated regime and the disorder just acts as a small perturbation
(see Fig. 1.4). Consistently with this argument, in this regime the uniform Bose gas
moves into the Tonks-Girardeau regime and it loses its long-range coherence.

Quantum Phase Transition

The Mermin-Wagner theorem prevents the occurrence of a phase transition associated
to the breaking of a continuous symmetry in one and two dimensions. Even if there
is no BEC, a topological phase transition still occurs in 2D: below a critical tempera-
ture TKT the one body density matrix of a 2D boson gas decays algebraically and the
gas is superfluid. Above this temperature the gas behaves as a normal fluid, with no
superfluid component and an exponentially decaying one-body density matrix. The oc-
currence of the phase transition is associated with the proliferation of vortex-antivortex
pairs, destroying quasi-long-range order, and with a universal jump in the superfluid frac-
tion [Nelson & Kosterlitz, 1977, Prokof’ev et al., 2001]. This phase transition, initially
predicted for the XY model in 2D, is known as Berezinskii-Kosterlitz-Thouless transition
(BKT) [Berezinskǐi, 1972,Kosterlitz & Thouless, 1973]. Note that the occurrence of BKT
does not violate the Mermin-Wagner theorem because there is no breaking of a continuous
symmetry.
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Phase transitions are defined as phenomena occurring at finite temperature in the
thermodynamic limit. No phase transition takes place in one-dimensional bosonic system.
On the contrary, at zero temperature, as presented above, interaction and disorder can
destroy the quasi-long range order of the system. A phase transition occurring at zero
temperature driven by some auxiliary parameters is known as a quantum phase transition.
The role of topological excitations in one dimension is played by phase flips, long range
fluctuations originating from a non-zero modulation of the potential, that are detrimental
to long-range coherence (for a detailed analysis see Chapter 3). As discussed above, the
B-H Hamiltonian at integer filling shows a quantum phase transition, driven by J/U ,
caused by phase fluctuations and associated with the loss of long-range coherence in
the one-body density matrix. Its universality class in d-dimensions is the one of the
(d + 1) − XY model [Fisher et al., 1989, Sachdev, 1999]: in 1D this transition is of the
Kosterlitz-Thouless type, therefore it shows a jump in the superfluid fraction [Nelson &
Kosterlitz, 1977]. The quantum MI-SF phase transition can also be triggered by tuning
the chemical potential (i.e. the density): in this scenario the transition is caused by density
fluctuations and it belongs to a different universality class (mean field) with respect to
the J-driven transition described above [Fisher et al., 1989]. Even the occurrence of
this phase transition does not violate the Mermin-Wagner theorem, because, given the
underlying potential, the symmetry that is being broken is the discrete invariance under
lattice translations, which is possible at zero temperature even in 1D.

In presence of disorder we have shown that a BG phase appears as a consequence
of phase fluctuations. The SF-BG transition at strong disorder, analyzed in detail in
[Giamarchi & Schulz, 1988, Fisher et al., 1989], is of the BKT-type, even if it shows
different properties with respect to the SF-MI. Also in the case of strong disorder the
transition appears to be of the same kind [Altman et al., 2004,Altman et al., 2010], even
if the authors found exponentially diverging length and time scales. To conclude, the
MI-BG transition is entirely local and it is of the Griffiths type [Griffiths, 1969, Fisher
et al., 1989,Gurarie et al., 2009].

The phase transition to a Mott-insulating phase has been experimentally observed
with ultracold atoms in optical lattices in 3D [Greiner et al., 2002, Jaksch et al., 2008]
and subsequently in lower dimensions [Stöferle et al., 2004,Spielman et al., 2007,Spielman
et al., 2008]. In the disordered case, the experimental observation of a superfluid-insulator
transition in the strongly interacting regime, has been recently claimed [Pasienski et al.,
2010].

Quasiperiodic potential

The role of interaction has been studied also in presence of quasiperiodic potentials.
As commented in Section 1.3.3, in this case a critical interaction strength is necessary to
localize the single-particle wavefunctions. This feature survives even including interaction
between bosons, as it has been found in several theoretical investigations [Roth & Burnett,
2003b,Roscilde, 2008,Roux et al., 2008,Schmitt et al., 2010]. These bichromatic potentials
have been proposed to study the SF-BG-MI phase transition [Damski et al., 2003]. In the
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opposite regime (weakly interacting), a good evidence of a superfluid-insulator transition
has been recently obtained for an atomic gas of 39K [Deissler et al., 2010,Deissler et al.,
2011].

Motivation

Recent developments of the experimental techniques, following the first observation of
BEC in ultracold atomic systems, have brought to the creation of quantum systems of
unparalleled precision and controllability. This brought to the observation of Anderson
localization in 1D bosonic gases with vanishing interaction [Billy et al., 2008,Roati et al.,
2008]. The realization of 1D Bose gases in the weakly interacting regime has renewed the
attention into the superfluid-insulator transition occurring at low inter-particle coupling.
The insulating phase arising at weak interaction has a different nature with respect to the
strongly correlated one and it is often referred as Anderson glass [Scalettar et al., 1991].
Interaction plays an opposite role in the two regimes. When the transition occurs at large
U , the repulsion tends to localize the N-particle wavefunction, whereas at small U it
competes with disorder in restoring coherence bringing the system towards the superfluid
phase. It is still not clear whether these two phases are physically different or if they are
connected by a crossover [Giamarchi & Schulz, 1988,Batrouni et al., 1990].

As shown in Section 1.2.2, the weakly interacting limit in 1D correspond to the limit
of large densities: many of the methods listed above present difficulties in this regime.
Indeed, disorder cannot be included as a perturbation any longer and even exact numer-
ical methods, such as Monte Carlo and DMRG, are strongly limited when dealing with
a large number of particles. Many theoretical approaches have attacked this problem
with different methodologies. The phase transition has been addressed using real-space
renormalization group [Altman et al., 2004,Altman et al., 2008,Altman et al., 2010,Vosk
& Altman, 2011], studying the density distribution via a mean field theory [Lugan et al.,
2007a,Lugan, 2010] or analyzing the scaling of the N -body Hamiltonian in arbitrary di-
mensions [Falco et al., 2009b,Falco et al., 2009a,Nattermann & Pokrovsky, 2008]. Some
of the results of these analysis are shown and commented in Chapter 3.

Despite the interest received by the scientific community, a precise description of the
phase boundary in the weakly interacting limit has not been given. First, this is due
to the difficulties in obtaining exact analytical results. On the other hand, an accurate
prediction of the phase transition is a subtle numerical problem. In addition, the exact
phenomenology that triggers the phase transition in this regime, where interaction is not
sufficient to overcome the disorder and the density fragments into mutually incoherent
puddles, is still poorly understood. For these reasons, in this thesis we aim at characteriz-
ing the weakly interacting phase transition via an extended Bogoliubov method, presented
in Chapter 2, and we focus on the properties of the quantum gas to understand which
are the significant changes across the phase boundary. This is intended to deepen the
understanding of the SF-BG quantum phase transition and to give some experimentally
useful hints to characterize the phase diagram in a regime that nowadays is currently
realized.
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In Chapter 1 the physics of quantum degenerate Bose gases was presented. It has
been shown that the standard Bogoliubov approach has strong limitations in describing
the weakly interacting regime in low dimensionality. Here an extended version of the
Bogoliubov model, that allows to correctly describe low-dimensional systems, is presented
in detail for the one-dimensional case. This formalism has been developed by Mora &
Castin [Mora & Castin, 2003]. In this thesis we apply this model to analyze the properties
of a low-dimensional Bose gas in presence of disorder and focussing on the behaviour of
the one-body density matrix computed within this formalism. In addition, we investigate
the implications of the validity conditions of this formalism stressing in which limit the
predictions of the mean-field theory are reliable. In Section 2.1 the weakly interacting
regime where the Bogoliubov approach is valid is discussed; the results of the perturbative
expansions are shown in Section 2.2, whereas the validity conditions of the model are
reviewed in Section 2.3.

This chapter is intended to give all the ingredients to understand the theoretical
framework used throughout this thesis. More details on this theoretical approach can be
found in the references [Mora & Castin, 2003,Castin & Dum, 1998,Mora, 2006].
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2.1 Weakly interacting limit

The many-body Hamiltonian for a 1D system of N bosons, assuming a contact interaction
of the form U(r − r′) = g0δ(r − r′), is

Ĥ =

N∑

i=1

[
p̂2i
2m

+ V (r̂i)

]

+

N∑

i<j=1

g0δ(r̂i − r̂j), (2.1)

where g0 is the bare coupling constant, m is the mass of the particles, V is the external
potential and r̂i and p̂i are respectively the position and momentum operators of the i-th
particle. This model, in absence of an external potential, has been solved exactly by Lieb
and Liniger using the Bethe ansatz [Lieb & Liniger, 1963]. They showed that the physics
of the 1D Bose gas is uniquely determined by the parameter γ (see also Chapter 1.2.2),
defined as

γ =
mg0
~2ρ

, (2.2)

that marks the regime of the gas. γ = 0 corresponds to the ideal case of non-interacting
bosons, whereas γ = ∞ denotes the hard-core or Tonk Girardeau limit [Girardeau, 1960],
where the bosonic system acquires fermionic properties. The parameter γ gives informa-
tion about the ratio between the average inter-particle distance 1/ρ and the correlation
length lc = 1/

√
mg0n: the weakly interacting regime is attained when the correlation

spreads over a large number of bosons, i.e. for γ ≪ 1, a situation achieved for small
values of the interaction constant or for large densities,

ρ≫ mg0
~2

. (2.3)

This counterintuitive behaviour is peculiar of the 1D case. In this regime the gas allows
for a perturbative solution, such as Bogoliubov approach, as originally shown in Ref. [Lieb
& Liniger, 1963].

Yang and Yang [Yang & Yang, 1969] have extended this approach to finite temper-
atures, proving that a phase transition is absent at T 6= 0. However, at sufficiently low
temperature the Bose gas is in the quantum degenerate regime and it behaves differ-
ently from the high-temperature case, where it retrieves the properties of a classical gas.
In order to describe the Bose gas within a perturbative approach even at finite T , the
temperature has to fulfill the constraint of quantum degeneracy, i.e.

ρ

√

2π~2

mkBT
≫ 1, (2.4)

that guarantees a macroscopic occupation of states at low energy. The quantum phase
transition investigated in this thesis occurs at zero temperature, where the condition of
quantum degeneracy is automatically fulfilled.

From these conditions of applicability it is evident that a large density is necessary for
the Bogoliubov theory to hold: this topic is analyzed in detail in Section 2.3. Within this
range of validity, the mean-field approach presented in the next section correctly describe
the properties of the Bose gas.
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2.2 Bogoliubov model for Quasi-condensates

Provided that the gas is weakly interacting, it can be described by means of a perturbative
approach [Lieb & Liniger, 1963]. The lack of an actual condensed state in low dimen-
sionality, however, invalidates the assumptions of the standard Bogoliubov method: in
fact the condition of small quantum correction δΨ̂ to a macroscopically occupied con-
densate with wavefunction Ψ0 ceases to hold. Bogoliubov’s idea can still be adapted to
quasi-condensates in the case of weak density fluctuations, relying on the density-phase

representation [Popov, 1972], by rewriting the expression for the field as Ψ̂ = eiθ̂
√
ρ̂. This

representation allows to separate the term describing the amplitude of the field from the
fluctuating term, related to the phase, responsible for the absence of coherence at large
distances. Therefore, in the absence of a condensate, a perturbation theory is built by
splitting the density operator into a main c-component ρ0 and a small fluctuation term
δρ̂. A straightforward definition of the density and phase operators can however lead to
divergences in the theory [Shevchenko, 1992, Pitaevskii & Stringari, 2003] and to some
inconsistencies with the standard Bogoliubov theory in 3D. These problems arise because
of the difficulties in dealing with density and phase variables defined on a continuous vari-
able r [Shevchenko, 1992,Wu & Griffin, 1996]. According to Mora and Castin [Mora &
Castin, 2003], the definition of the system on a grid can overcome such a problem. In fact,
this allows to have small and finite density fluctuations inside each grid element (whose
divergence is instead unavoidable in a continuous model). A Bogoliubov-like theory is
recovered by carrying out a perturbative expansion in powers of the density fluctuations
δρ̂ and of the phase gradient ∇θ̂. In this section this extended Bogoliubov theory, adapted
for dealing with low dimensional Bose gases, is presented (the complete derivation of the
theory can be found in [Mora & Castin, 2003]).

The system under study is a one-dimensional continuous bosonic chain of length L
subject to periodic boundary conditions, that make it equivalent to a ring. The extended
Bogoliubov model requires the introduction of a discretization of the space so that every
single bin – of size ℓ – is largely occupied and the density operator does not vanish
in any lattice site. The aim of this model is to reproduce the properties of the gas in
the continuum. Hence, the ultraviolet cutoff introduced by the lattice has to be large
compared to the other energy scales entering the problem: this makes the theory effective
only at low energies (a detailed analysis of the regime of validity is presented in Section
2.3). The 1D bosonic Hamiltonian defined on a grid reads

H =
∑

r

ℓ

[

− ~
2

2m
Ψ̂†(r)∆Ψ̂(r) + [V (r)− µ]Ψ̂†(r)Ψ̂(r) +

g0
2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

]

, (2.5)

where Ψ̂†(r) and Ψ̂(r) are field operators satisfying bosonic commutation rules, the sum
is extended to every lattice site labeled by its position and a contact interaction potential
is assumed, U(r1 − r2) = g0δr1,r2/ℓ, with g0 defining the bare coupling constant. The
kinetic term includes a discrete version of the Laplacian that couples neighbouring sites
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as

∆Ψ(r) =
Ψ(r + ℓ) + Ψ(r − ℓ)− 2Ψ(r)

2ℓ
. (2.6)

The bosonic commutation relations for the field in the discrete model translate into

[Ψ̂(r), Ψ̂†(r′)] =
δr,r′

ℓ
. (2.7)

Hamiltonian (2.5) can be rewritten in terms of the conjugated variables ρ̂ and θ̂ by

substituting the field as Ψ̂ = eiθ̂
√
ρ̂. In low dimensionality, repulsive interactions moderate

the density fluctuations around the average value [Carusotto & Castin, 2001]. Hence, the
density operator can be rewritten as ρ̂(r) = ρ0(r) + δρ̂(r), with a macroscopic classical
part ρ0 and a fluctuation term δρ̂ and, in accordance with Bogoliubov prescription, the
Hamiltonian can be expanded in terms of the small parameter ε1 = |δρ̂|/ρ0. To correctly
describe the Hamiltonian at higher orders, the exponential has to be taken into account in
the expansion and an exponential of the phase difference appears: this defines the second
perturbative parameter as ε2 = |ℓ∇θ̂| [Mora & Castin, 2003].

2.2.1 Ground state and excitations

The expansion of the Hamiltonian (2.5) at zeroth order takes into account only the clas-
sical component of the density, ρ0. At the lowest order, in analogy with the derivation of
the Bogoliubov theory presented in the previous chapter, a Gross-Pitaevskii-like equation
(GPE) is found

[

− ~
2

2m
∆r + V (r) + g0N0|φ0(r)|2

]

φ0(r) = µφ0(r). (2.8)

φ0(r) is the positive-defined, normalized ground-state wavefunction and it is related to
the ground-state density via ρ0(r) = N0|φ0(r)|2. Equation (2.8) has the form of a non-
linear Schrödinger equation where the non-linear term is proportional to the local density
of the ground state. From now on, we will refer to U0 = g0N0/L as the interaction
energy, whereas U(r) will denote the spatial distribution of the interaction energy, namely
U(r) = g0N0|φ0(r)|2 = g0ρ0(r).

Introducing the dimensionless variable x = r/η, the distances can be measured
in units of correlation length and the Laplacian transforms as ∆r = ∆x/η

2. All
the energies can then be rescaled by the correlation energy, Ec = ~

2/(2mη2).
Equation (2.8) can be rewritten as

(

−∆x + Ṽ (x) + Ũ0|φ0(x)|2
)

φ0(x) = µ̃φ0(x), (2.9)

where the ∼ denotes the energies in units of Ec. This scaling invariance will
be applied throughout this thesis.
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The numerical code to solve the Gross-Pitaevskii equation is based on the
Crank-Nicholson algorithm that performs an evolution in imaginary time of a
sample wavefunction (typically the normalized uniform wavefunction 1/

√
L).

This algorithm evolves the wavefunction, relaxing iteratively to the solution
of the non-linear problem as explained in Appendix B.

The first order correction to the Hamiltonian vanishes because the solution of Eq. (2.8)
minimizes the energy functional. The first correction in terms of the small perturbative
parameters is therefore given by the second order: at that level, the Hamiltonian can be
cast in the Bogoliubov form by defining the field operators

B̂(r) =
δρ̂(r)

2
√

ρ0(r)
+ i
√

ρ0(r)θ̂(r), (2.10)

that obeys the bosonic commutation rules [B̂(r), B̂†(r′)] = δr,r′/ℓ. The second-order term
in the Hamiltonian reads

Ĥ2 = ℓ
∑

r

B̂†(r)
(

− ~
2

2m
∆r + V (r) + U(r)− µ

)

B̂(r)+U(r)

[

B̂†(r)B̂(r) +
1

2
(B̂2(r) + B̂†2(r))

]

(2.11)

and can be diagonalized as the standard Bogoliubov Hamiltonian. The normal eigenmodes
of the Bogoliubov-de Gennes equation (BdGE), namely uj(r) and vj(r) can be obtained
by diagonalizing the matrix

(

− ~
2

2m∆+ V (r)− µ+ 2U(r) U(r)

−U(r) ~
2

2m∆− V (r) + µ− 2U(r)

)(
uj
vj

)

= Ej

(
uj
vj

)

,

(2.12)

where the Bogoliubov modes uj and vj obey the normalization

∑

r

ℓ[|uj(r)|2 − |vj(r)|2] = 1. (2.13)

Equation (2.12) is a 2n×2n matrix that is linear once equation (2.8) for the ground state
density has been solved. The lowest-energy solution of these equations, with eigenvalue 0,
has the shape of the ground state, i.e. u0(r) = v0(r) ∝ φ0(r). Moreover, for any solution
(uj , vj) with positive energy Ej , a solution (v∗j , u

∗
j ) with negative eigenvalue −Ej exists.

The operators B̂ can be expressed in terms of these modes as

B̂(r) = iQ̂
√

ρ0(r) + P̂ ∂N0

√

ρ0(r) +
∑

j

b̂juj(r) + b̂†jv
∗
j (r), (2.14)

where b̂j and b̂†j are bosonic operators obeying [b̂i, b̂
†
j] = δi,j, whereas Q̂ and P̂ appear as a

consequence of the non-fixed number of particles [Lewenstein & You, 1996,Mora & Castin,
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2003,Castin & Dum, 1998]. They commute with b̂j and b̂†j and represent respectively a
global choice of the phase and the fluctuations of the total number of particles. Eq.
(2.14) can be rewritten by separating the canonical part into a component along the
quasicondensate mode α̂φ0(r) and an orthogonal part Λ̂(r) as

B̂(r) = iQ̂
√

ρ0(r) + P̂ ∂N0

√

ρ0(r) + α̂φ0(r) + Λ̂(r), (2.15)

with

Λ̂(r) =
∑

j

uj⊥(r)b̂j + vj⊥(r)b̂
†
j . (2.16)

where the subscript ⊥ denotes the component orthogonal to φ0. The Λ̂-operators describe
the excitations orthogonal to the quasicondensate (for an exhaustive discussion see Ref.
[Castin & Dum, 1998]), they obey the commutation rules

[Λ̂(r), Λ̂†(r′)] = δr,r′/ℓ− φ0(r)φ0(r
′), (2.17)

and the expectation value 〈Λ̂†(r)Λ̂(r)〉 gives the density of non-condensed particles at
position r.

The link to the density-phase operators in this approach is given by the relations

δρ̂(r) =
∑

j

[fj(r)b̂j + f∗j (r)b̂
†
j] + P̂ ∂N0ρ0,

θ̂(r) =
∑

j

[θj(r)b̂j − θ∗j (r)b̂
†
j ]− Q̂, (2.18)

where the factors fj and θj are linked to the uj and vj of the Bogoliubov transformation
by

θj(r) =
uj(r)− vj(r)

2i
√
ρ0

, fj(r) =
√
ρ0[uj(r) + vj(r)] (2.19)

An expression for the total density ρ(r) = ρ0(r) + 〈δρ̂(r)〉 can be extracted by eval-
uating the expectation value of the density fluctuations. In order to obtain the first
non-vanishing correction to the GP density one has to expand the Hamiltonian to the
third order [Mora & Castin, 2003] and, in the canonical treatment of the theory, this gives

〈δρ̂(r)〉 = 2φ0(r)χ(r) + 〈Λ̂†(r)Λ̂(r)〉, (2.20)

where χ describes the depletion of the ground state and the corrections due to the in-
teraction with the non-condensed particles, whereas the last term is the density of the
particles occupying excited states. It can be shown [Castin, 2004] that the relative density
fluctuations are inversely proportional to the ground-state density

〈δρ̂(r)〉
ρ0(r)

∝ 1
√

ρ0(r)ℓ
, (2.21)

therefore the relative density fluctuations decrease by increasing ρ0.
With the formalism developed in this section, the physical quantities relevant to the

analysis that will be performed in the next chapter can be computed.
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2.2.2 Observables

The physical properties of the 1D Bose gas can be inspected through the study of its
observables. Some of them are relevant to the physics of the phase transition and here
their analytic expressions are computed within the extended Bogoliubov model. Among
them, the ground state energy and the correlation functions are of particular interest for
the analysis that follows.

The zeroth order contribution to the energy can be extracted from the Gross-Pitaevskii
energy functional. For a system of N0 particles with density profile ρ0(r) it reads

E0(N0) =
∑

r

ℓ

[

− ~
2

2m

√

ρ0(r)∆
√

ρ0(r) + V (r)ρ0(r) +
g0
2
ρ20(r)

]

. (2.22)

The first correction to this prediction comes from the second order term in the Hamilto-
nian and takes the form

E2 = −1

2

∑

r

ℓU0φ0(r)
2 −

∑

j

Ej〈vj⊥|vj⊥〉. (2.23)

The ground state energy can then be computed as

Eground = N0

∑

r

ℓ

[

− ~
2

2m
φ0(r)∆φ0(r) + V (r)φ20(r) +

g0
2
(N0 − 1)φ40(r)

]

−
∑

j

Ej〈vj⊥|vj⊥〉,

(2.24)

and this prediction for the ground state energy is consistent with the standard Bogoliubov
theory.

Another useful quantity to characterize the phase transition is the one body density
matrix, that can be extracted from the Bogoliubov theory at second order. The definition
of G1(r, r

′) in the density-phase formalism reads

G1(r, r
′) = 〈Ψ̂†(r)Ψ̂(r′)〉 = 〈

√

ρ̂(r)ei[θ̂(r
′)−θ̂(r)]

√

ρ̂(r′)〉. (2.25)

By inserting the perturbative expansion of the operators one obtains [Mora & Castin,
2003] the general expression

G1(r, r
′) =

√

ρ(r)ρ(r′) exp
[

−1

2
〈: (∆θ)2 :〉2 −

1

8
〈: (∆δρ̃)2 :〉2

]

, (2.26)

where ∆θ = θ̂(r) − θ̂(r′), ∆δρ̃ = δρ̂(r)/ρ0(r) − δρ̂(r′)/ρ0(r′) and the normal ordering is
taken with respect to the Λ-operators as defined in Appendix A (a rigorous derivation of
this expression can be found in ref. [Mora & Castin, 2003]). As shown in Appendix A,
G1(r, r

′) can be rewritten as a function of the Bogoliubov modes and it takes the form

G1(r, r
′) =

√

ρ(r)ρ(r′)×

exp



−1

2

∑

j

(1 + pj)

∣
∣
∣
∣
∣

v⊥j(r)
√

ρ0(r)
− v⊥j(r

′)
√

ρ0(r′)

∣
∣
∣
∣
∣

2

+ pj

∣
∣
∣
∣
∣

u⊥j(r)
√

ρ0(r)
− u⊥j(r

′)
√

ρ0(r′)

∣
∣
∣
∣
∣

2


 ,
(2.27)



34 1D Bose gas: formalism

where pj = [eEj/kBT − 1]−1 is the thermal Bose factor. At T = 0 there is no thermal
population and Eq. (2.27) reduces to

G1(r, r
′) =

√

ρ(r)ρ(r′) exp



−1

2

∑

j

∣
∣
∣
∣
∣

v⊥j(r)
√

ρ0(r)
− v⊥j(r

′)
√

ρ0(r′)

∣
∣
∣
∣
∣

2


 , (2.28)

where the only contributions to the decay of spatial correlation come from quantum
fluctuations. In an inhomogeneous system it is convenient to introduce the reduced one-
particle density matrix g1(r, r

′) defined as g1(r, r
′) = G1(r, r

′)/
√

ρ(r)ρ(r′) [Bloch et al.,
2008]. This expression for the one-body density matrix, obtained within the extended
Bogoliubov approach, does not coincide with the prediction of the Bogoliubov theory:
this is due to the correct treatment of the fluctuations that avoids the onset of divergences
in the theory.

The study presented in this thesis concerns the influence of disorder on a bosonic
system. The one-body density matrix, as defined in Eq. (2.28) is a two-point property
that is strongly affected by the specific disorder realization. Hence, this quantity is
typically irregular and not translationally invariant (see Figs. 2.4c and 2.4d). For this
reason, an averaged version of the one-body density matrix is introduced: it is known as
degree of coherence and is defined as

G1(a) =
1

L

∫

dr′g1(r
′, r′ + a). (2.29)

This quantity behaves smoothly and it is translationally invariant (see Figs. 2.4.e and .f),
thus it represents a good parameter to characterize the phase transition by identifying its
functional long-range behaviour. This analysis is performed in Chapter 3.

2.2.3 The uniform case

The approach developed so far can be applied to investigate the spatially homogeneous
case (V (r) = 0). The problem in absence of an external potential has an analytical
solution, hence it represent a good candidate to understand how the presence of disorder
affects the physical properties of the system. In this section the results for the uniform
one-dimensional Bose gas are presented and analyzed in detail.

In the disorderless case, the solution of the GPE (2.8) is uniform and it takes the con-
stant value φ0 = 1/

√
L, that gives for the chemical potential µ = U0. The problem is then

mapped onto the original one solved by Bogoliubov [Bogoliubov, 1947] and the solutions
for the excitations are the Bogoliubov modes uk and vk. The quadratic Hamiltonian can
be diagonalized, obtaining

uk(r) = ūk
eikr√
L
, vk(r) = v̄k

eikr√
L
. (2.30)

The modes behave like plane waves with increasing k-vector, with amplitudes, ūk and v̄k,
that satisfy

ūk − v̄k =

[
~
2k2/2m+ 2µ

~2k2/2m

]1/4

(2.31)
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and

ūk + v̄k =

[
~
2k2/2m

~2k2/2m+ 2µ

]1/4

. (2.32)

In the uniform case the excitations are orthogonal to the GP solution φ0 and the corre-
sponding eigenenergies are

Ek =

√

~2k2

2m

(
~2k2

2m
+ 2µ

)

, (2.33)

representing the well-known Bogoliubov dispersion relations.

Moving to the observables, the asymptotic behaviour of the one-body density matrix
at T = 0 in the weakly interacting limit, g/ρ→ 0, has been computed by Popov [Popov,
1980] making use of the path integral formalism and it takes the form

g1(0, r) ≃
(
1.037ξ

r

) 1
2πρ0ξ

, (2.34)

where ξ is the healing length. The same quantity can be extracted from the extended
Bogoliubov model [Mora & Castin, 2003] and the two predictions coincide in the long-
range limit. The numerical results obtained within the mean-field model are plotted in
Fig. 2.1 for U0 = 0.8 and N0/L = 8 (red solid curve) together with the asymptotic
prediction of equation (2.34) (red dashed line). In the intermediate range the two power-
law decays coincide, but, in addition, the result obtained within the extended Bogoliubov
model gives the correct value for g1 at short distances (larger than the discretization length
ℓ). The numerical result is affected by periodic boundary conditions (Ψ(L) = Ψ(0)) at
distances comparable to L. In fact, the one dimensional system becomes equivalent to
a ring and the point at distance L coincides with the point at zero distance, thereby
leading to a coherence growth for distances larger than L/2. The calculation can be
extended to finite temperature where an exponential decay is recovered [Kane & Kadanoff,
1967,Schwartz, 1977,Popov, 1983].

In expression (2.34) the dependencies of the one-body density matrix on the variables
entering the problem are explicit. The reduced one-body density matrix has a dependence
on ρ0 and at the same time on U0 = g0ρ0 via ξ = ~/

√
mµ = ~/

√
mU0. The exponent

of Eq. (2.34) is proportional to
√

g0/ρ0 and it turns out that the slope of the algebraic
decay is determined by the parameter γ ∝ g0/ρ0, as in the Lieb and Liniger problem [Lieb
& Liniger, 1963]. An increase of the coupling constant leads to a decrease of the spatial
correlation, whereas density acts in the opposite direction. This is a peculiarity of one-
dimensional bosonic systems and it explains why the gas enters the Tonk-Girardeau regime
in the low-density limit.

This notion is better displayed by plotting g1(0, r) for a larger interaction constant
and a larger density in Fig. 2.1, denoted by the green and black lines respectively. For the
analysis that follows it is important to stress that an increase of the interaction energy
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Figure 2.1: Reduced one-body density matrix plotted in log-log scale, g1(r0 − r), in absence of
disorder, for a system of length 512 η, U0 = 0.8 Ec and N0/L = 8 (red lines). The green lines
denote g1(0, r) for a larger value of the interaction energy, U0 = 1.6 Ec, whereas the black lines
are computed for a larger value of the density N0/L = 32. The solid lines are the numerical
solutions obtained from the extended Bogoliubov model and the dashed lines are the normalized
asymptotic expressions reported in formula (2.34). The two models overlap in a large intermediate
range of distances.

(U0 ∝ 1/ξ2) at fixed density corresponds to a reduction of coherence. This will turn out
to be a key-feature to understand the quantum phase transition occurring for increasing
U0 at fixed disorder strength.

From now on, all analyses will be carried out at fixed density and varying interaction
energy. As it will be explained in Sec. 2.3 this is not relevant in the limit where the
prediction of the extended Bogoliubov model for the phase transition is exact, i.e. for
constant U0 and g → 0.

2.2.4 The disordered case

The model presented in the previous sections extends to the case where an external
potential is present. In this section some numerical results obtained in presence of gaussian
disorder are shown: this allows to illustrate the qualitative effect of an underlying potential
on the 1D Bose gas.

In Fig. 2.2, typical numerical results for the ground state wavefunction in a disor-
dered environment are shown for two different interaction energies. The density tends to
be larger where the disorder potential is low and adds to the bare potential V (r) through
the non-linear term. By increasing the interaction strength, the modulation of the GS de-
creases and its distribution becomes smoother, more similar to the homogeneous solution.
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In the weakly interacting regime disorder tends to localize bosons, whereas interaction
acts in the opposite direction. In a case dominated by disorder, the ground state separates
into fragments linked by regions with an exponentially vanishing wavefunction that here
are defined as “weak links”. It is worth pointing out that the ground state wavefunction
is always positive and does not vanish even in case of strong disorder.

V
/E

c

 

a.

disorder

ground state (arb. units)
3

2

10
-2

-1

0

1

403020

distance [η]

V
/E

c

 

b.

disorder

ground state (arb. units)
3

2

10
-2

-1

0

1

403020

distance [η]

Figure 2.2: Ground state wavefunctions (thick lines) for the same disorder realization (∆ =
0.8 Ec) and two values of interaction energy: U0 = 1.44 Ec (panel a) and U0 = 0.48 Ec (panel b).
A larger interaction energy tends to make the ground state smoother, thus closer to the constant
solution of the uniform problem.

Starting from the GP solution the shape of the excitations can be computed from
equation (2.12): the relevant quantities for the computation of the observables are the
Bogoliubov modes and in particular the low-energy v⊥j-modes that constitute the quan-
tum fluctuations entering the expression (2.28) at T = 0. In Fig. 2.3 the first two
orthogonalized v⊥-modes are shown for the same realization of disorder appearing in Fig.
2.2 and for the same two values of U0.

Low-energy excitations follow the modulation of the ground-state wave function, but,
differently from φ0, they show a phase character with a number of nodes that increases
for increasing energy. As long as the disorder represents a small perturbation, the phase
fluctuations preserve a plane-wave profile, only slightly modulated by the underlying
disordered potential (cfr. Fig. 2.3a). On the other hand, as the ratio ∆/U0 increases
(Fig. 2.3b), disorder starts to compete with interaction and the v⊥j(r) modes lose their
regular shape, developing nodes in correspondence with low-density zones (high barriers
of the potential). This is shown in Fig. 2.3b, together with an example of an excitation
at higher energy that displays a fast-oscillating behaviour and does not contribute in
determining long-range properties.
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Figure 2.3: First two v⊥j excitations (j = 1, 2) for the same disorder realization (∆ = 0.8 Ec)
and two values of the interaction energy: U0 = 1.44 Ec (panel a) and U0 = 0.48 Ec (panel b). An
excitation at higher energy is shown in panel b: this mode is highly oscillating and has a poor
effect on long-range properties. The magnitude of v⊥j is represented in arbitrary units.

2.3 Validity of the approach

In this section the conditions of validity of the extended Bogoliubov model are summa-
rized, both from the numerical and physical point of view. The constraints and the limits
where the theory is effective are analyzed in detail.

2.3.1 Numerical constraints

A correct description of a low-dimensional Bose gas can be carried out by discretizing
the space on an unphysical grid of step ℓ to avoid divergences in the density fluctuations.
The numerical simulations of the continuous problem are, in turn, performed on a grid
that has to be dense enough to reproduce the continuous model. As both these grids
are unphysical, they are chosen to be the same, with a bin-size ℓ that introduces a
corresponding energy cutoff t = ~

2/(2mℓ2).

Intuitively, the spatial resolution of the simulation needs to be smaller than the length-
scales that have to be sampled, namely the correlation length of the disordered potential
and the healing length1. These conditions can be translated into corresponding bounds
on energy scales as

ℓ≪ η, ξ =⇒ t≫ Ec, µ, (2.35)

and this ensures that the lattice model reproduce faithfully the low energy properties of
the continuous model.

1These conditions guarantees that ℓ is smaller than the single particle localization length l0
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2.3.2 Physical constraints

The Bogoliubov theory can be successfully applied to systems in the weakly interacting
regime, whereas it fails in describing strongly correlated systems. In one dimension this
condition (see Section 2.1) is expressed by

1

γ
= ~

√
ρ

mg0
≫ 1, (2.36)

that translates into the constraint of a small coupling constant or large densities. The
condition of quantum degeneracy requires that the average inter-particle distance is larger
than the de-Broglie wavelength λth [Castin et al., 2000], i.e.

ρλth ≫ 1 =⇒ ρ≫
√

mkBT

2π~2
, (2.37)

that is guaranteed by the temperature equal to zero.
Finally, for the Bogoliubov approach to be valid, the perturbative parameters have to

be small, i.e. small density fluctuations and slow phase variations

|δρ̂|
ρ0

≪ 1, |ℓ∇θ̂| ≪ 1. (2.38)

These last conditions hold if each element of the grid is largely occupied [Mora & Castin,
2003],

ρ(r)ℓ ≫ 1, (2.39)

and this condition is guaranteed by a large density of the ground state in each lattice site.
It can be shown that both the perturbative parameters in Eq. (2.38) can be chosen of
the order 1/

√
ρ0ℓ [Castin, 2004].

The validity conditions can be summarized as

(I). ℓ≪ ξ, η

(II). ρℓ≫ 1

(III). |δρ̂/ρ0| ≪ 1

(IV). |ℓ∇θ̂| ≪ 1

(V). ρ0ℓ≫ 1

(VI). ρξ ≫ 1

Provided that ℓ is the shortest length scale entering the problem, conditions (I) are
fulfilled. The validity of the model relies on having a large density of particles in each
bin of the grid (II): this is guaranteed by condition (V ), thereby conditions (III) and
(IV ) are fulfilled. The combination of the previous constraints validates the last (V I).
Therefore, these constraints reduce to

ℓ≪ ξ, η ρ0ℓ≫ 1

Is the extended Bogoliubov model appropriate in describing the 1D Bose gas for
any value of disorder and interaction? Repulsive interaction has the important role of
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moderating density fluctuations, a key-ingredient for the application of Bogoliubov theory.
In fact, the ideal non-interacting gas cannot be described within mean field theory at any
finite temperature. The reason is that the requirement of small density fluctuations entails
a minimum interaction energy to suppress the density fluctuations at finite temperature
[Mora, 2006,Carusotto & Castin, 2001]. At T = 0, as long as disorder is absent, the gas
can be described by a mean-field model for any finite value of the interaction strength U0

provided that γ ≪ 1 (the role of the density in the mean field limit is investigated in the
next section).

On the other hand, the presence of disorder can invalidate the applicability of the
Bogoliubov model in certain circumstances. In fact, it has been recently argued [Lugan
et al., 2007a] that in the regime of very weak interactions (much weaker than the disor-
der amplitude), when the chemical potential lies in the Lifshitz tail of the single-particle
spectrum, bosons occupy only low-energy Lifshitz states – solutions of the single-particle
problem – that are strongly localized. On the contrary, the Bogoliubov approximation
assumes that an extended N -particle ground-state wavefunction exists and, in this sce-
nario, the theory cannot correctly describe the physical system. The Lifshitz-glass phase
is expected to appear deep in the insulating phase and, for this reason, this argument does
not invalidate the study of the quantum phase transition via the extended Bogoliubov
theory.

2.3.3 The role of the density

In the two previous sections the conditions of validity of the model in term of the physical
quantities has been discussed. The aim of the present section is to explain and prove
that the density itself does not enter in the determination of the phase transition in the
pure mean-field limit. In fact, the validity conditions impose that the general properties
related to the phase transition are extrapolated for ρ0 → ∞ for fixed U0 [Castin & Dum,
1998]. The foundation of this proof relies on the form of the GPE (2.8) and the BdGE
(2.12) within the extended Bogoliubov model: these equations, that are the basis for the
computation of the observables, do not depend on the average density (N0/L) alone, but
only on the interaction energy, U0 = gN0/L. This implies that, for a given U0, the ground
state wavefunction φ0 and the excitations are not affected by a change in density. The
phase transition is defined through the reduced one-body density matrix (cfr. Section
3.1), that within the extended Bogoliubov model reads

g1(r, r
′) = exp



−1

2

∑

j

∣
∣
∣
∣
∣

v⊥j(r)
√

ρ0(r)
− v⊥j(r

′)
√

ρ0(r′)

∣
∣
∣
∣
∣

2


 . (2.40)

Recalling that ρ0(r) = N0|φ0(r)|2 this equation can be rewritten as

g1(r, r
′) = exp
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(2.41)

The dependence of g1 on the density has been traced out in the exponent 1/N0 and
appears as a scaling factor, that can affect the absolute value of the g1, but cannot change
its functional form (cfr. numerical simulations below). This means that the long-range
behaviour of the one-body density matrix does not depend on the density alone, upon
a scaling factor, and that the phase boundary extracted from this model is independent
of the number of particle N0. At the same time, the theory is accurate only for large
occupation of each lattice bin. From this we can draw the conclusion that the mean
field theory gives results that are exact in the limit of infinite density, regardless of the
density modulation occurring in the condensate wavefunction. A key point to confirm
this analysis is that, in presence of disorder, φ0 does not vanish. It can suffer from strong
modulation, but, as a solution of a quantum mechanical problem, would not be identically
zero: in the limit ρ → ∞ this guarantees that any cell of the grid is occupied by a large
number of bosons.

In this example, the coherence between two wells separated by Gaussian bar-
riers is studied: this simple analysis is performed to illustrate the role of the
density on the one-body density matrix in presence of an external potential.
The barriers have the form

V (r) =
A√
2πσ2

e−
(r−r0)

2

2σ2 (2.42)

where r0 is the center of the Gaussian, σ is the standard deviation and A gives
the amplitude of the Gaussian barrier. The scale of energy for this problem
is defined through the width of the Gaussian Eσ = ~

2

2mσ2 .

The coherence analysis is performed at fixed U0 = Eσ for two different den-

sities N
(a)
0 /L = 4/σ and N

(b)
0 /L = 16/σ for two amplitudes of the central

Gaussian barrier, while the barrier on the edge is assumed very large to avoid
coherence effects due to the periodic boundary conditions. In Figs. 2.4a and
2.4b the two potentials V (r) are shown together with the profile of the inter-
action energy U(r), coming from the solution of the GPE. Figs. 2.4c and 2.4d
show the coherence of a point – located in the center of the first well (r0) –
with the rest of the system, measured through the reduced one-body density
matrix g1(r0 − r). The corresponding averaged correlations are reported in
Figs. 2.4e and 2.4f. In these last four figures the discrepancy between the
absolute values of the correlation for different densities is evident. Making
use of equation (2.41) the mapping between the two curves, characterized by
different densities can be easily computed as

g1(r0, r1;N
(a)
0 ) =

[

g1(r0, r1;N
(b)
0 )
]

N
(b)
0

N
(a)
0 . (2.43)

This mapping has been numerically tested and it is reported in Fig. 2.4 by
the red dashed lines. This comparison confirms that the change in density
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only affects the absolute value of the coherence (lower density corresponds
to lower coherence), whereas the shape of the correlation function is totally
unchanged and only depends on V (r) and U0. The relevant feature that
emerges is that, as argued from analytic consideration, the choice of a density
does not affect the prediction of the phase boundary in the mean-field limit:
in fact, the functional behaviour of the one-body density matrix (algebraic or
exponential) is conserved by this mapping.

The analysis performed so far mainly involved the ground state density ρ0(r). A
crucial question to understand how the fluctuations affect the density is the dependence
of the density fluctuations 〈δρ̂〉 on the number of particles. The expectation value of the
density fluctuations can be chosen of the order [Castin, 2004]

〈δρ̂〉
ρ0

∼ 1√
ρ0ℓ

, (2.44)

hence, the relative weight of the fluctuations becomes negligible in the limit of large
density and does not contribute in the limit ρ0 → ∞. This implies that the relevant
contribution in the mean-field limit comes from the ground-state and this justifies that
the fragmentation study, in Chapter 4, is performed by studying the ground-state density
rather than the total density.

The reduction of the relative contribution coming from the excitations also explains
the increase in coherence for large densities. Nevertheless, the qualitative role of the fluc-
tuations is independent of the density (cfr. Fig. 2.4) and this guarantees the consistency
of the theory even in the large density limit, where the coherence is almost completely
preserved across the system.

To summarize, the quantum phase transition in the pure mean-field limit, γ → 0 and
ρ → ∞, will be studied using the model described in this chapter. This is not just a
mathematical curiosity but rather a good approximation of a bosonic 1D system at ultra-
low temperatures in the case of very large population. Several recent experiments operate
in this regime of very weak interactions [Deissler et al., 2010,Chen et al., 2008,Clément
et al., 2008]. It is reasonable to argue that the effects of a finite density represent a small
perturbation with respect to the exact mean-field result.
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Figure 2.4: Coherence study of a double-well system created by two gaussian barriers. This

analysis is performed at fixed U0 = Eσ and two different densities N
(a)
0 /L = 4/σ (grey solid

lines) and N
(b)
0 /L = 16σ (black solid lines). The external potential and the interaction energy,

solution of Eq. (2.8), are shown in the panels a and b. The barrier on the edge (A/σ = 100 Eσ)
is significantly larger than the one in the center to avoid the propagation of coherence due to the
periodic boundary conditions. The amplitude of the central barrier changes between the panels
on the left (A/σ = 5 Eσ) and the ones on the right (A/σ = 20 Eσ), tuning the system between a
situation of weak perturbation to a more relevant separation between the two wells. The length
of the system is 128 σ, measured in units of the standard deviation of the two Gaussian barriers.
The reduced one body density matrix g1(r0 − r), is shown in panels c and d. The reference point
r0 is chosen at the center of the first well, as shown in the upper panels. The degree of coherence
is shown in panels e and f. The red dashed lines represent a mapping of the result obtained for

N
(a)
0 /L = 4/σ onto the result for N

(b)
0 /L = 16σ made through Eq. (2.43), and they numerically

prove that the mapping is exact.
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In the previous chapter a theoretical method to describe low-dimensional Bose gases
in the weakly interacting regime was presented. Here the extended Bogoliubov formalism
is applied to investigate the properties of a 1D Bose gas at zero temperature in presence
of disorder. In particular, this gas, that is superfluid in the uniform case, is expected
to undergo a quantum phase transition to the insulating Bose-glass phase for sufficiently
strong disorder. The transition is investigated by inspecting the long-range coherence
of the gas and its superfluid component. Disorder diminishes the coherence and the su-
perfluid component of the gas by triggering phase fluctuations responsible for driving the
system to the normal phase: these fluctuations are identified in the low-energy Bogoliubov
modes.
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In this thesis we characterize the phase transition by studying the long-range be-
haviour of the one-body density matrix and by computing the superfluid component of
the gas. We find numerical evidence for a change in the behaviour of the DoS at low
energy across the phase boundary, namely a DoS that diverges going into the BG phase.
The numerical analysis also shows a peculiar behaviour of the localization properties of
the Bogoliubov modes. This study allows to draw the exact phase diagram in the limit
of vanishing interaction – where mean-field theory is effective. This prediction is com-
pared with results obtained for the disordered Bose-Hubbard model and with equivalent
Bogoliubov-like approaches. In this chapter, the phase transition is inspected in Section
3.1 by studying the behaviour of the one-body density matrix. The properties of the Bo-
goliubov excitations, such as density of states (DoS) and localization length, are analyzed
in Section 3.2. The superfluid component of the gas is investigated in Section 3.3 by
studying the response of the system to an external velocity field. The study of all these
features allows to draw the disorder-interaction phase diagram of the disordered weakly
interacting Bose gas in 1D. This phase diagram is presented and discussed in Section 3.4.

To our knowledge, this is the first theoretical work that addresses the quantum phase
transition by analyzing the long-range behaviour of the one-body density matrix. In
fact, the study of the 1D Bose gas has been mainly performed by investigating two-body
properties, localization and transport. In analogy with Anderson localization, these quan-
tities allow to distinguish a superfluid behaviour as opposed to an insulating one. In the
disorder-dominated phase, condensation and superfluidity are both absent, therefore, a
natural question concerns whether one deals with a normal (diffusive) fluid or an insulat-
ing phase. From the one-body density matrix it is not possible to infer the diffusive or
insulating nature of the phase, property that derives from two-body correlations (as the
response function). On the other hand, literature is unanimous in reckoning that the Bose
glass phase is insulating [Fisher et al., 1989,Aleiner et al., 2010] and that a single phase
transition takes place in 1D bosonic systems. For this reason, the words quasicondensate
and superfluid are used indistinctly in this thesis to refer to the coherent state (cfr. also
Section 1.2.1).

3.1 One body density matrix

As we have seen in Chapter 1.1, according to the Penrose-Onsager criterion, the phase
transition to a condensed or quasicondensed phase can be characterized through the
behaviour of the one-body density matrix, defined as G1(r, r

′) = 〈Ψ̂†(r′)Ψ̂(r)〉 [Penrose
& Onsager, 1956,Popov, 1972]. This quantity contains information about the probability
amplitude of removing a particle at r and re-creating one at r′, namely the one-particle
Green function [Popov, 1980]. In simple terms, it expresses the correlation between two
spatial points r and r′ [Glauber, 1963].

The long-range behaviour of G1(0, r), in a uniform 1D bosonic system at zero tem-
perature, has been initially studied within an hydrodynamic approach [Schwartz, 1977,
Haldane, 1981]. Its asymptotic expression in the weakly interacting limit has been ob-
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tained by means of a path integral formalism by Popov [Popov, 1980] and it reads

g1(0, r) ≃
(
1.037ξ

r

) 1
2πρ0ξ

, (3.1)

where g1(0, r) is the reduced one-body density matrix as defined in Chapter 2, ρ0 is the
quasicondensed density and ξ the healing length. The algebraic decay of the correlation,
also defined as quasi-long-range order, characterizes the quasicondensed state. As checked
in Chapter 2, the extended density-phase formalism gives results that are consistent with
Popov’s expression at long range and, additionally, they are trustworthy even at short
distances [Mora & Castin, 2003]. The presence of a sufficiently strong disorder can destroy
quasi-long-range order, triggering a quantum phase transition to a BG phase characterized
by an exponential decay of the one-body density matrix [Fisher et al., 1989]. In the next
section this change is inspected by studying the reduced one-body density matrix defined
in Section 2.2.2.

3.1.1 Reduced one-body density matrix

Studying the behaviour of the one-body density matrix as a function of interaction, dis-
order and correlation energy allows to identify the quantum phase transition between the
quasicondensed phase and the Bose-glass. The first analysis performed here focuses on
the overall coherence of a single point, located at the position r0, with the rest of the
system for a specific disorder realization. In Fig. 3.1 the quantity g1(r0, r) is shown for
∆ = 0.8 Ec and two values of interaction, respectively deep in the superfluid and in the
insulating phase. This quantity is numerically calculated using Eq. (2.28), by solving the
BdG problem on a domain of length 512 η with periodic boundary conditions. This ex-
plains the unphysical increase of g1(r0, r) for r− r0 > L/2. As discussed in Section 2.2.4,
the irregular shape of the reduced one-body density matrix confirms that this quantity
is strongly affected by the presence of disorder and, thus, it is not an ideal marker for
the phase transition. As shown in the next section, the criterion used to distinguish the
quantum phases is based on the average of this quantity: it is nevertheless interesting
to understand which features are responsible for the functional change of its averaged
counterpart G1.

The decay of g1 in the superfluid phase is algebraic on average, but its trend is noisy
because it is affected by disorder. In the Bose glass phase, in addition to the disorder-
induced modulation, this quantity shows abrupt jumps (see Fig 3.1a). These drops in
coherence mark the separation between mutually incoherent regions. Pictorially, they are
the consequence of the presence of weak links between two islands of condensate caused
by large barriers of the underlying potential (see Fig. 3.1c for a direct comparison).
An analogous step-like behaviour has been found in presence of quasiperiodic potentials
[Cetoli & Lundh, 2010].

It is instructive to compare this spatial coherence with the shape of the Bogoliubov v⊥-
modes, as quantum fluctuations into these modes are responsible for the lack of long-range
coherence. Comparing Figs. 3.1a and 3.1b it appears that these drops in g1(r0, r) coincide
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with the nodes of the lowest-lying Bogoliubov modes. The amount of the reduction in
coherence is related to the amplitude of the excitations that increases for low energies
as |v⊥(E)|2 ∝ 1/E all across the phase diagram (this statement is discussed in detail
in Section 3.2.1). This analysis underlines the fundamental role played by weak links in
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Figure 3.1: a. g1(r0, r) in the superfluid and in the Bose glass phases, computed for ∆ = 0.8 Ec

and U0 = 0.32 and 1.6 Ec. At distances & L/2 the coherence grows because of the periodic
boundary conditions employed in the numerical simulations. b. Corresponding low-energy v⊥(r)
excitations in the Bose glass phase, in the case U0 = 0.32 Ec. The arrows highlight the link
between the jumps in g1(r0, r) and the nodes of the low-energy excitations. c. Corresponding
disorder realization (black line) and ground state wavefunction (grey thick line) obtained as a
solution of the GPE.

triggering the phase transition. This will be investigated in more detail in relation to the
Bogoliubov excitations (Section 3.2.1) and, in particular, in the context of fragmentation
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(Chapter 4). The next section is devoted to the characterization of the quantum phase
transition through the degree of coherence, that, contrarily to g1(r, r0), allows a precise
distinction between the two quantum phases.

3.1.2 Degree of coherence

Being the reduced one-body density matrix not a good indicator, the phase transition
is inspected by studying the average of g1(r, r

′), namely the degree of coherence G1(r),
defined in equation (2.29) and recalled here: G1(a) =

∫
dr′g1(r′, r′ + a)/L. This quantity

is expected to behave smoothly and it is translationally invariant in the thermodynamic
limit. It should therefore allow to distinguish the quasicondensed phase from the BG,
simply through the study of its long-range decay. Assuming an ergodic system, the
running average on the spatial coordinate coincides with the average on a statistical
ensemble of the disorder realizations. This implies that there is no dependence on the
disorder realization and, given a disorder amplitude and distribution, this quantity only
depends on the distance.

Three parameters enter the determination of the quantum phase of the gas: the
disorder amplitude ∆, the interaction energy U0 and the correlation energy Ec, therefore
the problem can be rescaled to two parameters, ∆/Ec and U0/Ec. In Fig. 3.2, G1(r) is
shown for a fixed value of interaction, U0 = 0.8 Ec, and for varying disorder amplitude
∆. As it could be expected, disorder has a detrimental effect on the overall coherence of
the gas, in fact the value of G1 is maximum in the uniform case (solid line in Fig. 3.2)
and it monotonically decreases for increasing disorder. It decays algebraically for ∆ = 0
(linear in log-log scale) and, as long as the disorder only represents a small perturbation, it
preserves this functional shape. When the ratio ∆/U0 becomes significant, an exponential
decay is instead observed, and the quasi-long range order is destroyed marking the onset
of the BG phase.

An equivalent analysis performed at fixed disorder amplitude (∆ = 0.8 Ec) and tuning
U0 is shown in Fig. 3.3. From this plot it emerges that, differently from the previous
case, the degree of coherence at a fixed distance shows a non-monotonous behaviour as
a function of U0. In the uniform case the one-body density matrix is algebraic at large
distances and, as expressed by Eq. (3.1), its value decreases by increasing the interaction
energy (U0 ∝ 1/ξ2), even though it keeps the same functional shape. Interactions cause
stronger quantum fluctuations and therefore a loss of coherence, this trend is a sign
that the system is moving towards the Tonks-Girardeau regime, where the coherence is
limited to single bosons. By analogy, in presence of disorder, a 1D Bose gas in the SF
phase decreases its coherence range when it becomes more interacting. On the other hand,
it is reasonable to argue that values of disorder much larger than U0 destroy long-range
order and drive the system to a glassy phase. In these two limits of very large and very
small interaction-to-disorder ratio, the coherence is lower than in the intermediate region
where the transition occurs: this explains the non-monotonous behaviour of the degree of
coherence (the same conclusion was drawn in seminal studies performed on the discrete
Bose-Hubbard model [Scalettar et al., 1991]).
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Figure 3.2: Degree of coherence G1(r) for fixed interaction energy U0 = 0.8 Ec and different
values of disorder ∆ = 0, 0.32, 0.64, 0.96 Ec. The solid line shows the degree of coherence in the
uniform case. The presence of disorder decreases the overall coherence of the Bose gas, but as
far as it only represents a small perturbation does not destroy the quasi-long-range order (dashed
line). On the contrary, when disorder dominates (dotted line), the degree of coherence decays
exponentially.

Going back to Fig. 3.3 the build-up of coherence occurs by increasing the interaction
energy: at a certain threshold the coherence attains its maximum: this happens when
interaction between particles is strong enough to overcome the underlying disorder. From
there on, a phenomenology analogous to that of the uniform gas takes place, and G1(r) still
displays a power-law decay but falls off more rapidly as a function of distance. This non-
monotonous behaviour makes easier a correct estimate of the critical interaction energy
for a given disorder amplitude and, therefore, of the occurrence of the quantum phase
transition.

The 1D system under study has periodic boundary conditions. This makes the
G1(r) symmetric on the interval [0, L] and a proper size scaling is necessary
to extract thermodynamic properties. In Figs. 3.2 and 3.3 we show only
the spatial interval [0, L/4] that reflects the behaviour in the thermodynamic
limit. The numerical methods that we use for these simulations – mainly the
diagonalization of the Bogoliubov matrix (2.12) – limit the achievable size to
L ∼ 6000η sampled with 4 points per correlation length. This analysis have
been performed for a large interval of values of disorder and interaction. The
resulting phase diagram is shown in Fig. 3.4 in the U0/Ec −∆/Ec plane. It
is evident that two different power laws characterize the boundary depending
on the value of U0/Ec at which the transition occurs. In the following sections
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Figure 3.3: Degree of coherence, g1(r), for fixed disorder strength ∆ = 0.8 Ec for different
values of interaction U0 = 0.48, 0.8, 1.12, 1.92 Ec. The trend of the coherence at fixed distance
is non-monotonous as a function of interaction: by increasing the interaction strength, G1 attains
its maximum for U0 = 1.12 Ec and decreases for larger values of U0, while still maintaining an
algebraic decay.

an accurate analysis of the properties of the gas across the phase transition is
performed. The discussion of the phase diagram will be resumed at the end
of this chapter.

3.2 Bogoliubov excitations

In low dimensionality, the main mechanism of decoherence are fluctuations of the quan-
tum phase, affecting the long-distance properties of the gas. The proliferation of these
excitations, also known as phase flips, may destroy the superfluid phase. As explained
in Section 3.1, the fluctuations responsible for the loss of coherence have been identified
here in the low-lying Bogoliubov v⊥j-modes. They are good candidates because they have
a phase-character, they act over long distances – differently from fast-oscillating density
fluctuations – and their relative weights, |v⊥j |2, give the main contribution to decoherence
(see Fig. 3.6). Given this crucial role in triggering the phase transition, it is interesting
to understand which of their properties undergo a significant change across the phase
boundary. This section is devoted to the analysis of the properties of the Bogoliubov
modes in the different phases. In particular, the DoS and the localization properties are
investigated.
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Figure 3.4: Quantum phase diagram of a 1D weakly interacting Bose gas in presence of gaussian
disorder. The vertical axis ∆ denotes the disorder strength whereas the horizontal axis indicates
the interaction energy U0. Both quantities are rescaled with respect to the correlation energy Ec.
The red circles mark states in the Bose-glass phase whereas the blue ones corresponds to states
in the quasicondensed phase. The black line is a guide for the eye that approximately shows the
phase boundary.

3.2.1 Density of states

The solution of the Bogoliubov problem gives direct access to the spectrum of the exci-
tations. This quantity plays a fundamental role in determining key physical properties
such as compressibility and specific heat. Let us introduce their DoS, which counts the
number of excitations dN in an interval of energy dE around the energy E, namely

D(E) =
dN
dE

. (3.2)

As the phase transition is triggered by the low-energy fluctuations, here, the DoS of the
low-lying Bogoliubov excitations is studied in presence of disorder. The behaviour of the
DoS across the phase transition is the object of a long-standing debate. The excitations
of the interacting Bose gas in the uniform case (such as in the SF phase) are sound-like
and the DoS is known to approach a constant value for E → µ, in analogy with phonons
in random elastic chains [Ziman, 1982]. On the other hand, the behaviour of the DoS in
the insulating phase is still controversial even if several works argued that it has to be
constant for E → µ throughout the whole phase diagram. In this section, the numerical
evidence of a diverging DoS of the Bogoliubov excitations in the BG phase is reported,
together with a hand-waving argument supporting this behaviour.
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In this numerical scheme the DoS is defined as

D(E) =
1

L

∑

j

δ(E − Ej), (3.3)

where the Ej are the positive Bogoliubov energies, directly extracted from the eigenvalues
of the matrix (2.12). Given the nature of the Bogoliubov problem from now on we assume
µ = 0. The results shown in Figs. 3.5 and 3.6 are averaged over thousands of realizations.
A consequence of the spatial homogeneity of the disorder is that quantities such as the DoS
are self-averaging, in other words, the system under investigation is ergodic. In particular,
the limiting behaviour can be equivalently extracted by performing an average over the
different configurations of disorder for a system of finite size. The only inconvenience of
finite size simulation is the introduction of an infrared cutoff in the spectrum.
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Figure 3.5: Averaged D(E) at fixed ∆ = 0.8Ec for various interaction energies. The triangles
denote two Bose glass cases (U0 = 0.48−0.8Ec), whereas squares and circles mark two superfluid
phases (U0 = 1.12 − 1.44Ec). The energy of the low-lying Bogoliubov excitations goes to lower
values in the strongly disordered case because of the finite size of the system. In fact, with
periodic boundary conditions in absence of disorder, the lowest energy excitation is a plane wave
with wavelength L. In the strongly disordered case, on the contrary, the lowest energy can be
extracted by analyzing a simple two wells system: the energy of the lowest mode – a phase flip
– is proportional to the tunneling across the barrier [Gati & Oberthaler, 2007]. Strong disorder
corresponds to high barriers, thereby small tunneling and small excitation energies. In both cases,
the spectrum becomes gapless in the thermodynamic limit (L→ ∞).

As shown in Fig. 3.5, D(E) approaches a constant value at low energy in the SF
case. However, within the accuracy of the numerical investigation, it seems to develop
a power-law divergence in the BG phase. In fact, by decreasing the interaction at fixed
disorder, the DoS for E → 0 increases and it starts diverging following a power-law
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beyond the phase boundary with a slope that increases monotonically, when going deeper
into the insulating phase. In other words, the density of Bogoliubov modes increases
when approaching the chemical potential. This feature is peculiar of interacting bosonic
systems, where the excitation spectrum is bound from below by µ and the spectrum is
gapless in both the quantum phases investigated here. In fact, the non-interacting problem
shows a 1/

√
E divergence in the uniform case that, in presence of disorder, turns into

the so-called Lifshitz tail in the negative part of the spectrum of the excitations [Lifshitz,
1963,Lifshitz, 1964,Lee & Gunn, 1992].

The constant DoS in the SF phase agrees with the theoretical predictions [Gurarie
& Altland, 2005,Gaul et al., 2009] and it is analogous to the DoS of random phononic
chains [Ziman, 1982]. For what concerns the insulating phase, the conclusions drawn here
are in contrast with what is stated in some previous theoretical studies [Fisher et al.,
1989,Nisamaneephong et al., 1993,Ma et al., 1993,Lee & Gunn, 1990], arguing that the
low-energy DoS should remain constant in the insulating phase. Can this behaviour be
related to the change in the first-order correlation function? Inspection of the reduced
one-body density matrix – in equation (2.28) – gives insight about the role of the spectral
distribution of the excitations. We recall the expression for the reduced one-body density
matrix

g1(r, r
′) = exp



−1

2

∑

j

[

|vj⊥(r)|2
ρ0(r)

+
|vj⊥(r′)|2
ρ0(r′)

−
v∗j⊥(r)vj⊥(r

′) + v∗j⊥(r
′)vj⊥(r)

√

ρ0(r)ρ0(r′)

]

 .

(3.4)

At large distance, the crossed terms cancel and the main contribution is given by
∑

j |v⊥j(r)|2+
|v⊥j(r

′)|2. This expression can be rewritten in terms of energy, by using the DoS and it
reads

g1(r, r0) ∼ exp

[

−
∫

|v⊥E(r)|2D(E)dE

]

= exp [−δm] , (3.5)

where |v⊥E(r)|2 is defined as the local density of Bogoliubov excitations per unit energy,
i.e.

|v⊥E(r)|2 =
∑

j |v⊥j(r)|2δ(E − Ej)
∑

j δ(E − Ej)
. (3.6)

An expression analogous to (3.5) has been derived by Ma & coworkers [Ma et al., 1993],
who have found, within a spin wave approximation, that a crucial role in determining the
phase transition is played by

δm =

∫

D(E)v2(E)dE. (3.7)

Let us now discuss the quantity |v⊥E |2 in the spatially homogeneous case. In one
dimension without disorder D(E) is constant, and the value of v⊥E can be computed
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analytically. The Bogoliubov v-modes are

vk =

√
~2k2

2m + gn

2ε(k)
− 1

2
(3.8)

where ε(k) is the Bogoliubov dispersion, i.e.

ε(k) =

√

gn

m
~2k2 +

(
~2k2

2m

)2

. (3.9)

At small k the dispersion is linear in k and results in |v(E)|2 ∝ 1/E, that, combined with
a constant DoS entails δm diverging as lnN for N → ∞ (consistently with the algebraic
decay of g1).

Expression (3.5) is valid even in the case of strong disorder: as a consequence the
transition has to be contained in this exponent, and therefore δm has to diverge faster
than in the uniform case. The behaviour of |v(E)|2 in the strongly disordered case can
be obtained from the analogy with Josephson physics, considering a Josephson junction
connected via a weak link. The two-well system contains the same phenomenology of the
disordered Bose gas under analysis and the weak link prevents the creation of coherence
over the whole system. In this scenario, the energy dependence of the Bogoliubov modes
can be extracted analytically [Paraoanu et al., 2001, Gati & Oberthaler, 2007] and, in
the case of weak tunneling in Eq (1.45) it displays a divergence |v(E)|2 ∼ 1/E, as in
the SF phase. The value of |v(E)|2 is shown in Fig. 3.6: the numerical results for the
uniform case are computed using the extended Bogoliubov approach, and coincide with
the analytical expression extracted from Eq. (3.8). As argued above, the presence of a
strong disorder does not distort the functional dependence of |v(E)|2, hence, the change
in g1(r) has to be linked to a change in D(E) from constant to power-law divergent for
E → 0.

In spite of the identical assumptions, Ma et.al. drew opposite conclusions, attributing
the triggering of the phase transition to a change in the term v2(E). Their argument relies
on the fact that excitations at infinitely strong disorder in a spin chain are single spin
flips with energies distributed as the underlying disorder. Their conclusion is that this
distribution is finite for E → 0 and it is supported by numerical simulations performed
on small-scale systems. Here, a clear numerical evidence and an analytical argument are
brought to prove that the amplitudes v⊥(E) do not play any role in determining the phase
transition and, on the contrary, the numerics shows that a key role is played by the DoS.
An intuitive explanation can be found by going back to the phenomenology of weak links
analyzed in Section 3.1. Strong disorder entails a proliferation of weak links that comes
along with a large amount of phase fluctuations destroying the quasi-long-range order.
These low-energy excitations change their phase between weakly coupled neighbouring
islands. The DoS is therefore directly related to the statistics of the strength of the weak
links investigated in Ref. [Altman et al., 2008,Altman et al., 2010]. In this analysis the
authors find a diverging DOS in the so-called random-singlet phase. We have no clear
proof that the phase that we observe is a random-singlet, we just report that the two
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Figure 3.6: Comparison of the values of |v(E)|2 =
∫
dr|vE⊥(r)|2 in a uniform system and in a

disorder-dominated case. The analytic prediction (solid line) and the numerical results in absence
of disorder (circles) coincide and behave as 1/E for E → 0. The results of realization average
performed in case of strong disorder are shown by the black dots. Despite a small displacement,
the two cases show the same analytical dependence at small energies, i.e. they diverge as 1/E.

models agree in finding a diverging DoS. The random-singlet phase is specific of systems
with particle-hole symmetry, as it is the case in the large density limit [Huber et al.,
2007], that looks like the one described by the Bogoliubov model. On the contrary, this
assumption is violated in the limit of low filling. On this point, there is the possibility
that the divergence is an artifact of the infinite density and that the DoS for any finite
density would bend to a finite value.

The discrepancy between our results and former predictions [Fisher et al., 1989,Ma
et al., 1993] could also be due to a different nature of the phase transition in the weakly
and strongly interacting regimes, as initially guessed [Giamarchi & Schulz, 1988,Scalettar
et al., 1991] and recently suggested by a renormalization group analysis [Altman et al.,
2010]. In particular the analysis by Altman et al. claims that the phase transition at
strong disorder could belong to a different universality class with respect to the one at
weak disorder.

3.2.2 Properties of the gas

The behaviour of the DoS has important consequences on many physical properties of
the gas such as speed of sound, compressibility and specific heat. In addition, the DoS
plays a relevant role in the determination of some statistical averages and can be related
to the proliferation of weak links when disorder dominates.

From the results of the previous section, it emerges that disorder acts increasing the
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DoS at low energy. An immediate consequence is that the linear Bogoliubov dispersion
becomes less steep [Gaul & Müller, 2011] and consequently the speed of sound of the gas
decreases and finally vanishes in the insulating phase where the DoS diverges. An infinite
DoS at low energy also implies a diverging compressibility, defined as κ = ∂ρ/∂µ. The
compressibility is nonzero both in the quasicondensed and Bose-glass phase, but the glassy
phase found in this work, being marked by a diverging compressibility, is qualitatively
different from the one described by Fisher et.al. in their seminal work [Fisher et al., 1989].

Going deeper in the analysis of the DoS one can observe that the Bogoliubov spectrum
is not modified by going to finite temperatures. Bogoliubov theory is however valid as far
as the temperature is very low. One could object that the phenomenology that destroys
long range order in the disorder-dominated case is substantially different from the uniform
phase at finite temperature, although they show an analogous behaviour in the first order
correlation function. The specific heat is a useful quantity to investigate the discrepancies
between the two scenarios. The fate of the specific heat and its implications are discussed
in detail in Chapter 5 where the finite temperature case is considered.

3.2.3 Localization

Since the recent observation of Anderson localization in atomic gases [Roati et al., 2008,
Billy et al., 2008], the localization-delocalization transition – due to interaction – polarized
the attention of the scientific community. These investigations concern the localization of
both the ground state wave-function [Sanchez-Palencia et al., 2007,Scalettar et al., 1991]
and the Bogoliubov quasi-particles [Lugan et al., 2007b, Bilas & Pavloff, 2006, Gurarie
et al., 2008] and they are mainly aimed at recovering the exponential decay characterizing
the tails of an Anderson localized wavefunction.

As pointed out in the previous sections, in presence of interaction, delocalized low-
energy phase fluctuations are the main mechanism that reduces the coherence. For this
reason, this section is devoted to the analysis of the localization properties of the Bo-
goliubov excitations. Most of the previous studies were restricted to the weak disorder
case, describing the quasicondensed phase. The aim here is to study the extent of the
low-energy Bogoliubov modes in both the superfluid and insulating phases and determine
whether there is a significant change across the phase transition. In order to characterize
the localization, the inverse participation ratio (IPR) of the v⊥-modes is studied. This
quantity directly gives an estimate of the spatial extent of their wavefunction and, for a
generic normalized wavefunction, φ(r), it is defined as

I =
1

∫
|φ(r)|4dr . (3.10)

I has the dimensionality of a length and it measures the portion of space where the wave-
function is substantially different from zero. In a finite system, it attains its maximum
value (coincident with the system size) if the wavefunction is constant, φ(r) = 1/

√
L.

An IPR that diverges in the thermodynamic limit may be considered as a marker of
an extended state. The IPR can be very different from other quantities characterizing
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the localization as, for instance, the exponential decay length of the wavefunction tails
related to Lyapunov’s exponent [Kramer & MacKinnon, 1993]. It is nevertheless the
most relevant characterization for our purposes, in fact, a phase change occurring over
long distances can only be produced by an excitation whose wave function is significantly
non-zero at points very far apart in space (even if it has rapidly decaying exponential
tails outside these regions [Kramer & MacKinnon, 1993]). The IPR for the Bogoliubov
excitations reads

Ij =

(∫
dr|v⊥j(r)|2

)2

∫
dr|v⊥j(r)|4

, (3.11)

and the corresponding realization-averaged quantity investigated here is

La(E) =

∑

j Ijδ(E − Ej)

D(E)
. (3.12)

In Fig. 3.7a the results are shown for fixed disorder and varying interaction strength. As
it can be noticed, the IPR always shows a power-law divergence E−α for E → 0, with α
increasing when going deeper in the superfluid phase and La diverges in both the limits
E → ∞ and E → 0 with a minimum at intermediate energy. This different behaviour
is symptomatic of the different nature of the excitations: phase-like with a phononic
character at low-energies and density-like, behaving as free particles, at large energies.

In the low energy limit the exponent α characterizing the divergence varies contin-
uously across 1, and it crosses that value in correspondence with the phase boundary
computed through the correlation length (Fig. 3.7b). In the quasicondensed phase α > 1,
whereas α < 1 in the BG phase. It decreases by lowering the interaction strength, appar-
ently linearly vanishing for U0 → 0 as predicted for the non interacting case, where the
localization goes to a constant value at low energy [Kramer & MacKinnon, 1993]. The
phase transition inspected via the IPR gives the phase boundary with high accuracy as
evident in Fig. 3.7b.

The localization of the excitations was studied by Bilas & Pavloff [Bilas & Pavloff,
2006] that found a localization diverging as E−2 at low energy in the quasicondensed
phase and, instead, behaving as in the free particle case (∝ E) at large energies, because
the BdG equations decouple. The two diverging behaviours for E → 0 and E → ∞
are qualitatively analogous to our findings, but the functional laws do not coincide. Our
results instead agree fairly well with the theoretical predictions by Gurarie et.al. [Gurarie
et al., 2008] that, through a renormalization group study, determined that at low energy
the localization of the Bogoliubov modes in the SF phase diverges as E−α with 1 < α < 2,
where α = 1 at the phase boundary. Here, a full agreement with this prediction is found,
although it is not possible to reach the case with exponent α = 2 because of the limitations
due to the finite size of the simulations. This limits the analysis for large U0, where the
IPR saturates, and does not allow to catch the full extent of the excitations: the shaded
zone in Fig. 3.7a marks this region affected by the finite size of the numerical sample. At
large energies (not shown here) the IPR diverges as in the non-interacting case, that, for
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the IPR, is known to differ from the prediction made by Bilas & Pavloff [Bilas & Pavloff,
2006].

This analysis deserves a comment in relation to the nature of the disordered potential.
In fact, the energy dependence of the localization length in the non-interacting case
depends on the disorder distribution. In the case of repulsive speckles the potential
is bounded from below and its distribution decays exponentially at large energy. The
energy of a single particle state is related to the probability of occurrence of spatially
large minima as

E =
~2

2mL2
S

, (3.13)

where LS is the spatial extension of the minimum, a measure of the localization length.
The inversion of this relation gives for the energy dependence of the localization

LS =

√

~2

2mE
. (3.14)

The localization in presence of speckles diverges as E−1/2, hence α = 1/2 for E → 0.
This statement points out a dependence of the asymptotic behaviour of α for vanishing
interaction on the statistics of disorder, nevertheless it does not contradict the prediction
of α = 1 at the phase transition, which thus takes a universal meaning.
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represents a confidence limit. b. Computed exponents of the power-law divergence of La(E) for
different values of U0; the shaded zone marks the phase boundary computed through the one-body
density matrix.

For what concerns the ground state wavefunction, the results of such an analysis
can be predicted theoretically. In fact, φ0 always has an extended nature [Hertz et al.,
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1979, Singh & Rokhsar, 1994] and this can be proven by assuming that the condensate
wavefunction is localized. In this case, a macroscopic number of bosons N0 would occupy
a finite portion of space Lℓ where φ0(r) extends. The Gross-Pitaevskii energy of such a
state can be written as (see Eq. (2.22))

EGP (N) ≃
∫

drN0
~
2

2m
φ∗0(r)∇2φ0(r) +N0V (r)φ20(r) +

1

2
g0N

2
0φ

4
0(r), (3.15)

where the last term represents the interaction energy. The integral
∫
φ40(r)dr, in the case

of a localized wavefunction, is directly related to the IPR, i.e. it gives 1/Lℓ independently
of the system size. As a consequence, the interaction energy would vary as the square of
the number of particles and the total energy in equation (3.15) would not be an extensive
quantity. The original assumption has to be incorrect and φ0 must thus be extended.
This does not prevent the condensate wavefunction from being vanishingly small in some
regions that connect two “islands” where the condensate is localized.

The GP equation can be seen as a Schrödinger equation where the effective external
potential is the sum of the disordered potential and of the interaction term. In this sce-
nario one can wonder how this argument matches with the fact that all eigenstates of a
disordered potential in one and two dimensions are localized [Anderson, 1958]. Interac-
tion between particles is the explanation of this apparent paradox: in fact, the effective
potential is the result of a nonlinear equation built so to have an extended ground state.
Indeed, φ0 acts on the disordered potential smoothing its original shape [Singh & Rokhsar,
1994].

3.3 Superfluid fraction

The computation of the superfluid fraction of the gas is an alternative way to identify
the quantum phase transition. In fact, the conducting phase in bosonic systems at zero
temperature is believed to be always superfluid [Leggett, 1973,Leggett, 1998]. A non-zero
superfluid fraction comes along with the establishment of quasi-long-range order across
the system and, for this reason, the study of superfluidity represents an ideal check of the
predictions of the previous sections.

Superfluidity denotes the ability of the fluid to flow without friction through the
suppression of dissipation due to viscosity. The conceptual difference between a superfluid
and a normal fluid can be inspected by embedding the fluid into a slowly rotating annulus:
a normal fluid rotates in equilibrium with the container, whereas, a superfluid stays at rest
in the laboratory frame, a phenomenon known as Hess-Fairbank effect [Hess & Fairbank,
1967,Leggett, 1973].

3.3.1 Two-fluid model

In order to quantify the superfluid fraction of a gas, its response to the application of a
small velocity field can be studied [Fisher et al., 1973,Roth & Burnett, 2003a,Lieb et al.,
2002]. As the superfluid and normal components respond differently to the application
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of a velocity field, the fluid can be depicted within a two-fluid scheme: a normal density
component ρN , that is dragged by the field, and a superfluid one ρS , staying at rest. The
energy difference between a system with an applied velocity field and one at rest, is given
by the kinetic energy of the superfluid component and hence, via its velocity, by the total
superfluid fraction. The energy difference, computed in the moving frame, applying a
small velocity v, reads

EΘ − E0 =
ρS
ρ

1

2
Nmv

2, (3.16)

where EΘ is the ground state energy of the system with the applied velocity field, E0 is
the energy of the system at rest, ρ is the total density, m is the mass of the particles,
N is the number of particles. The superfluid is the fraction of the gas responding to
the applied phase by flowing at the velocity v in the moving frame. An equivalent way
to perform this task [Lieb et al., 2002] is by applying twisted boundary conditions to
the system (Ψ(L) = Ψ(0)eiΘ) and evaluating the energy difference between the twisted
system and the one with periodic boundary conditions.

From a microscopic point of view, the velocity field is associated to the spatial variation
of the phase of the condensate as [Leggett, 2001]

v =
~

m
∇θ(x). (3.17)

If one imposes a total phase twist Θ linearly distributed over the length L as θ(x) = Θx/L,
then the total phase twist is connected to the velocity by

Θ =
vLm

~
. (3.18)

Therefore the relation between the energy difference and the superfluid fraction, fS =
ρS/ρ reads

fS =
2mL2

~2N
lim
Θ→0

EΘ − E0

Θ2
, (3.19)

where the limit of small velocity is taken in order to not underestimate the superfluid
fraction [Roth & Burnett, 2003a]. This definition of superfluidity, as a dynamical response
to an applied phase twist, is not unique [Prokof’ev & Svistunov, 2000], although it is
commonly used in literature [Fisher et al., 1973], within mean field approaches [Singh &
Rokhsar, 1994], Monte Carlo simulations [Batrouni et al., 1990] and DMRG calculations
[Rapsch et al., 1999].

In the absence of disorder the SF fraction can be computed analytically. The velocity
field would appear in the GP energy functional of equation (2.22) as a term i~vφ∗0∂xφ0,
that brings an additional term in the GPE of the form i~v∂xφ0. Considering a plane
wave solution of the form

φ0(x) =
1√
L
eiΘx/L, (3.20)
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this solution can be written in the form
√
ρeiθ(x): here the link between the velocity field

and the phase twist becomes explicit (it will be investigated in detail in Section 3.3.2).
The twisted GP energy acquires an additional term

EΘ,GP (v) = E0,GP − 1

2
Nmv

2 =⇒ ∆E =
1

2
Nmv

2, (3.21)

that from Eq. (3.16) implies ρS = ρ and the uniform interacting gas is totally superfluid at
the GP level. As the contribution to the ground state energy coming from the Bogoliubov
excitations cancels in the difference because of Galilean invariance [Carusotto & Castin,
2004, Leggett, 2001], the uniform gas is fully superfluid in the dilute limit, where the
mean-field description is effective [Lieb et al., 2002].

In the simulations that follow, the total phase twist, distributed over the length L,
is chosen to be small (Θ = π/32 ≪ π), to avoid level crossing and excitations. With a
gauge transformation Ψ(x) → Ψ̃eiΘx/L, the twisted boundary problem is mapped on a
problem with periodic boundary conditions and shifted momentum p→ p+~Θ/L, so that
∇ → ∇+ iΘ/L. This substitution enters the kinetic operator both in the GPE (2.8) and
the BdGE (2.12). In the homogeneous case, Galilean invariance ensures that these latter
give no contribution to the energy difference [Carusotto & Castin, 2004, Leggett, 2001],
whereas, in the disordered case, they can develop a finite contribution [Roth & Burnett,
2003a], as also emerged from numerical simulations. The superfluid fraction is not a
property of the ground state, but it rather depends on the excitation spectrum: this is
expected if one considers the fundamental role of excitations in determining the quantum
phase transition. At any finite density, the superfluid fraction extracted from the GP
energy difference represents an upper bound of ρS because the second order contribution
to the energy always lowers the SF fraction [Paramekanti et al., 1998]. As proven in the
previous chapter, in the limit ρ→ ∞ the contribution of excitations to the total density
becomes negligible compared to ρ0 and the fluctuations play no-role in determining the
total density in this limit, thus for large values of ρ0 the contribution of Bogoliubov
excitations to the SF fraction becomes negligible. In the limit of large densities, one
could wonder if considering just the GP solution means restricting to zeroth order and
missing the excitations that are fundamental to describe superfluidity. The solution of
this apparent paradox is that the GP solution with an applied velocity field is already
beyond the zeroth order in the perturbative expansion.

3.3.2 Averaging procedure

The drawback of performing simulations on finite size systems is an overestimation of the
SF fraction and only a careful size-scaling analysis gives reliable quantitative information.
On the other hand, the computation of the twisted problem turns out to be demanding
in terms of computational resources: this limits the number of disorder realizations and
results in a large uncertainty in the value of the SF fraction. The aim of the present
section is to derive an algorithm to extract the superfluid fraction of a 1D Bose gas in
the thermodynamic limit. Here it is shown that the correct procedure to compute this
quantity involves the harmonic average of the SF fractions of small-size systems.
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The first order contribution to the energy difference of Eq. (3.16) can be computed
from the Gross-Pitaevskii energy functional

EGP =

∫

− ~
2

2m
N0φ

∗
0∇2φ0 +N0|φ0|2V +

g0
2
N2

0 |φ0|4. (3.22)

Writing the field in the density-phase formalism
√
N0φ0 =

√
ρ0e

iθ, the only term con-
tributing to ∆E comes from the Laplacian and it reads

√

N0∇2φ0 = ∇2(
√
ρ0e

iθ) = ∇
(

(∇√
ρ0)e

iθ + i(∇θ)√ρ0eiθ
)

= (∇2√ρ0)eiθ + 2i(∇√
ρ0)(∇θ)eiθ + i(∇2θ)

√
ρ0e

iθ − (∇θ)2√ρ0eiθ,
(3.23)

where ρ0 is the leading-order term of the density. Appling
√
ρ0e

−iθ from the left and as-
suming small density fluctuations, the first real-valued correction to the energy is ρ0[∇θ]2,
and, at leading order in the phase twist, the energy difference is given by the kinetic term

∆E = EΘ − E0 =

∫
[∇θ(x)]2

2m
ρ0(x)dx, (3.24)

where θ = 〈θ̂〉 (in agreement with the correction at second order computed by Castin
[Castin, 2004]). If one splits the system in N subsystems, this formalism can be extended
to the single intervals and the total energy difference is the sum of the single contributions,
i.e.

∆E =

N∑

i

(θi − θi−1)
2

2m
ρ0i, (3.25)

where θi and θi−1 are the phases at the boundaries of the ith subsystem. As far as the
bin size is small enough to guarantee that each subsystem covers a zone with uniform
potential, the densities ρ0i coincide with the SF densities (this is exact in the infinitesimal
version of the theory). Minimizing this energy functional (3.25) with the constraint
∑

i θi−θi−1 = Θ, via the Lagrange multipliers, shows that the total SF fraction is related
to the harmonic average of the density1 in the single bins [Fontanesi et al., 2010,Altman
et al., 2010] as

∆E =

(
Θ

L

)2 [ 1

ρ0i

]−1

=⇒ ρS =

(
∑

i

1

ρ0i

)−1

. (3.26)

An analogous result has been recently obtained by Vosk and Altman [Vosk & Altman,
2011].

1This conclusion has a strong analogy with series of capacitors in electromagnetism. In fact, the
electrostatic energy of a capacitor of capacity C at a voltage ∆V takes the form U = C(∆V )2/2 (cfr.
equation 3.24) and the total capacity of capacitors connected in series is the harmonic average of single
capacities.
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This criterion becomes evident if one thinks of a uniform potential with a
single narrow but infinite barrier. Separating the system in N bins, N − 1
bins would be uniform and would have ρ0i = 1, whereas the bin containing
the peak would have ρ0i = 0. The total superfluid fraction would however
be zero, because of the presence of the barrier through which the superfluid
cannot flow. An harmonic average of the single superfluid fractions would give
the correct vanishing result, unlike an arithmetic average.

3.3.3 Numerical simulations

In Fig. 3.8 the superfluid fraction is reported as a function of interaction energy for three
different fixed values of disorder that are intended to explore different regimes of the gas.
Each point shown in Fig. 3.8 is computed as a harmonic mean of the superfluid fraction
of each realization and the error bars are computed accordingly. The shaded zones show
the phase boundaries predicted by studying the long-range decay of the one-body density
matrix: the prediction based on superfluidity are consistent with the previous results. In
fact, a zero superfluid fraction is consistent with all the cases belonging to the insulating
phase, whereas the points corresponding to the quasicondensed phase acquire a finite
ρS . It is worth noticing that the average procedure is most demanding when close to the
boundary and this is reflected in larger error bars in the proximity of the phase transition.

The SF fraction is computed from the Gross-Pitaevskii solution without excitations,
this prediction can be directly compared to the one extracted via the g1(r), in fact they
are both correct in the limit ρ0 → ∞. This analysis gives a rather smooth behaviour
for ρS , and it does not allow to identify any jump in the superfluid fraction, that should
be present because the quantum phase transition is of the BKT universality class (see
Section 1.4 and [Nelson & Kosterlitz, 1977]).
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Figure 3.8: Superfluid fraction for three values of disorder: a. ∆ = 12.8Ec, b. ∆ = 0.8Ec,
c. ∆ = 0.016Ec. The average superfluid fractions and their error bars are shown as a function
of the interaction energy. The shaded zones mark the phase transition computed through the
degree of coherence.
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3.4 Phase Diagram

At this point, it’s time to go back to the phase diagram obtained numerically for the
quantum phase transition in the weakly interacting limit, reported again for convenience
in Fig. 3.9. This phase diagram, drawn in the interaction-disorder plane, includes the
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Figure 3.9: Quantum phase diagram of a disordered 1D weakly interacting Bose gas. The red
circles mark insulating phases whereas the blue ones corresponds to states in the quasicondensed
phase. The black line is a guide for the eye that roughly shows the phase boundary.

two phases that can be described within a Bogoliubov approach, i.e. the quasicondensate
and the BG. The former occurs for dominating interaction, whereas the latter appears
when disorder prevails. This trend is valid throughout the whole phase diagram with
no evidence of a resurgence of the BG phase at large interaction and weak disorder
(explanations and comments below).

A remarkable feature is that the phase boundary is characterized by two different
power-laws relations depending on the interaction energy at which the transition occurs.
In fact, the ratio κ = U0/Ec is a signature of the gas regime: in the uniform case (U0 = µ)
it can be equivalently written in terms of the ratio between the healing length and the
correlation length of the potential κ = (η/ξ)2. The value of κ determines if the length-
scale of the density modulation is given by the healing length (κ≪ 1) or by the correlation
length of the potential (κ≫ 1). In the first case the underlying disorder potential varies
on scales much smaller than the modulation of the density and the Bose gas perceives
the disorder as a white noise (WN) potential. In the opposite limit, the gas responds on
scales shorter than the correlation length, therefore the density is modulated on lengths
of the order of η and the ground state wavefunction reflects the disorder profile: this is
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the so-called Thomas-Fermi (TF) regime. A sketch of the different regimes together with
the phase boundary is reported in Fig. 3.10.
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Figure 3.10: Sketch of the quantum phase diagram of a disordered 1D weakly interacting Bose
gas. The vertical axis denotes the disorder strength ∆/Ec whereas the horizontal axis denotes
the strength of the interaction. The value of the ratio U0/Ec = κ marks the regime of the gas:
κ ≪ 1 in the WN limit (shaded in blue) and κ ≫ 1 in the TF regime (shaded in yellow). The
phase boundary is shown by the red line.

The boundary follows two power-law relations of the form

∆

Ec
=

(
U0

Ec

)ς

, (3.27)

where, upon numerical accuracy, ς = 3/4 in the WN limit and ς = 1 in the TF regime.
Being the power law in the origin smaller than 1, the phase boundary has an infinite
slope, in agreement with previous theoretical calculations [Falco et al., 2009b]. A natural
outcome of this shape is that, starting from a BG situation, the phase transition can be
triggered simply by tuning the correlation length of the disordered potential, leaving the
properties of the gas unchanged. This condition implies that in an ideal experiment where
the correlation length η is reduced at constant interaction and disorder amplitudes, one
would always end up in the quasicondensed phase when approaching the WN limit.

The extent of the mean-field phase diagram presented in this work deserves a comment.
The validity of the Bogoliubov model presented in Chapter 2 is restricted to the weakly
interacting regime. Here, a phase diagram extending to large values of U0/Ec is presented.
This apparent paradox is easily explained by considering the conditions of validity listed
in Section 2.3. The relevant constraint, that guarantees the interaction to be weak, is
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1/
√
g0ρ≫ 1/ρ that is trivially satisfied for any fixed U0 = g0N0/L provided that g0 → 0

and ρ → ∞. This guarantees that the coherence length spreads across a portion of the
system containing many particles (infinitely many in this case), so that the system is far
away from the strongly correlated regime where single particles – or islands of particles
– are separated by strong interactions and the coherence is limited to a few bosons. As
stated in Section 2.3, the mean-field description does not hold in the strongly interacting
regime, that leads to an interaction dominated Bose glass phase. Consequently, the
occurrence of the BG phase at strong interaction [Giamarchi & Schulz, 1988] cannot
be reproduced by this model. Moreover, the model cannot be applied in the disorder-
dominated case, where the coherence extends only within single maxima of the density
and the system is in the so-called Lifshitz glass phase [Lugan et al., 2007a]. This phase
would lay in a narrow region close to the vertical axis (U0/Ec → 0) in Fig. 3.9.

3.4.1 Scaling properties

The functional dependencies of the phase boundary in Fig. 3.9 find an elegant explanation
in a scaling analysis of the two regimes. In this section the numerical results are explained
by two analytical arguments holding respectively in the WN and TF regimes.

κ≪ 1: the White Noise limit

In the part of the phase diagram where κ≪ 1, the phase boundary follows a power law

∆

Ec
= C

(
U0

Ec

)3/4

, (3.28)

where C is a proportionality constant. In this regime of very weak interaction the Bose gas
is in the white-noise limit. In fact, the limiting case κ→ 0 corresponds to an uncorrelated
disordered potential. Here, the healing length ξ is much larger than η and the modulation
of φ0 occurs on a length-scale comparable to ξ. In some works this is also referred to
as smoothed regime [Sanchez-Palencia, 2006] with reference to the weak perturbation
perceived by the density distribution. In experiments, this limit can be attained either by
shortening the correlation length of the potential or by lowering the interaction between
particles.

In Fig. 3.11a the ground state is shown for a case close to the WN limit
(U0 = ∆ = 1.6 × 10−3 Ec). φ0 is spread over many correlation lengths and
slowly modulated with respect to the length scale given by η. This example
describes a gas in the superfluid phase, as also evident from the shape of the
low-lying Bogoliubov excitations. In fact they are very close to plane waves
with small disorder-induced modulations and a regular spacing between the
nodes.

As seen in Chapter 1.3, the correlation of the disorder can be written as

〈V (r)V (r′)〉 = ∆2fr−r′ , (3.29)
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Figure 3.11: a. Ground state and b. first two excitations v⊥j(r) for U0 = ∆ = 1.6× 10−3Ec,
where the system is in the superfluid phase and in the WN regime.

where for a gaussian correlated potential the correlation function takes the form

fr−r′ = e−(r−r′)2/2η2 . (3.30)

The peculiarity of the WN limit is the δ-correlation of the potential that can be expressed
as

〈V (r)V (r′)〉 = wδ(r − r′), (3.31)

where a single parameter w, with the dimensionality [E2L], characterizes the disorder.
The overall GP problem is now function of the three parameters w, m, the bosonic mass
determining the kinetic component, and U0. Neglecting the interaction and focusing on
the 1D Schrödinger problem, we can combine the two other quantities to define units of
length and energy as

l0 =

(
~
2

2mw1/2

)2
3

, E0 =

(
2w2m

~2

) 1
3

. (3.32)

These are the relevant scales entering the problem in the WN limit and any energy
quantity has to be proportional to E0 in the WN regime.

The limit for η → 0 of the Gauss-correlated potential in Eq. (3.30) gives fr−r′ =√
2πηδ(r−r′) and a direct comparison of equations (3.29) and (3.31) implies w =

√
2πη∆2.

Recalling that Ec = ~
2/(2mη2), equations (3.32) can be rewritten as

l0 =
η

(2π)1/6

(
Ec

∆

) 2
3

, E0 = ∆

(

2π
∆

Ec

)1
3

. (3.33)

In the WN limit every length and energy have to scale proportionally to these two quan-
tities, in particular, the critical interaction energy should be proportional to this unique
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energy scale, U0 ∝ E0. From this, it follows the scaling relation

∆

Ec
∝
(
U0

Ec

) 3
4

, (3.34)

that coincides with the numerical findings.
For what concerns the proportionality constant in the WN limit

U0

Ec
=

1

C4/3

(
∆

Ec

)4/3

, (3.35)

the numerics gives C ∼ 0.9. If one defines E∗ = E0/
3
√
2π, the proportionality between

the critical interaction energy and the energy scale E∗ is approximately 1.1, in good
agreement with the theoretical prediction U0/E∗ ≃ 1 [Aleiner et al., 2010].

κ≫ 1: the Thomas-Fermi regime

In the opposite limit κ ≫ 1 the healing length of the condensate is smaller than the
correlation length of the potential. This implies that any modulation occurs on a length-
scale comparable to η. The phase transition takes places at large values of U0/Ec and
∆/Ec, so that the interaction and disordered terms are the relevant ones in equation (2.8)
and the kinetic component becomes negligible. In this limit one can write the approximate
expression

[V (r) + gρ0(r)]
√

ρ0(r) = µ
√

ρ0(r), (3.36)

that has the solution

ρ0(r) = [µ− V (r)]/g if V (r) < µ,

ρ0(r) = 0 if V (r) > µ, (3.37)

and the density modulation mirrors the distribution of the underlying potential where
V (r) < µ.

An example of a realization that lies towards the TF regime is shown in
Fig. 3.12. The ground state wavefunction and the low-energy excitations are
shown respectively in Figs. 3.12a and 3.12b for U0 = ∆ = 25.6Ec. It is
evident how, in this regime, the ground state wavefunction fills the potential
minima and mirrors the distribution of the disorder. This example describes
a situation in the BG phase, indeed the nodes of the excitations are pinned to
the low-density regions (as discussed in Chapter 2) and, despite their phase
character, their shapes are very different from plane waves. The profiles of
the v⊥j-modes follow closely the ground state amplitude. Although the ratio
∆/U0 is the same as in the example presented in Fig. 3.11, the two situations
describe the gases in different quantum phases: this is already a clue that the
phase transition can be triggered by simply tuning the correlation energy Ec.
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Figure 3.12: a. Ground state and b. first two excitations v⊥j(r) for U0 = ∆ = 25.6Ec, where
the system is in the Bose glass phase and in the TF regime.

A scaling argument can once again be used to determine the analytical dependence
of the boundary in this regime. Being the correlation length much longer than the other
length scales, the density is always modulated over distances of the order η, that becomes
no longer relevant in determining the quantum phase. Indeed, in this limit Ec is negligible
and the thermodynamic phase is only determined by a one-to-one competition between
disorder and interaction energies. This finally explains the linear relation between the
variables in Fig. 3.10 for large κ.

Neglecting the kinetic energy is in contradiction with the existence of a quasicondensed
phase. Indeed, this term is the responsible for the build-up of quasi-long range order
across the system. This apparent paradox arises because the kinetic energy corrections
propagate the coherence even at large values of disorder and interaction. In fact, the TF
approximation fails when the density is low because the damped interaction term becomes
of the order of the kinetic energy and the latter is not negligible any longer. In other
words, this limit reproduces faithfully the density distribution in case of large U0/Ec, but
it fails in reproducing low-density tails.

In both the examples shown in Fig. 3.11 and 3.12 the ratio between interaction and
disorder amplitudes is ∆/U0 = 1. The transition between SF and BG can apparently be
tuned by only varying the disorder correlation length η, as already remarked when the
phase diagram was presented.

Higher dimensionality

It is possible to generalize the previous scaling arguments to arbitrary dimensionality to
infer the trend of the phase boundary in two and three dimensions.

For the TF case the argument about the competition between interaction and disorder
amplitude holds, therefore the relation is again linear for large values of U0/Ec.

In the WN limit, the proportionality of any energy to the energy E0 is universal,
but E0 depends on the dimensionality. In fact, relations (3.29) and (3.31) are valid in
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arbitrary dimensions and generalizing the previous argument, one obtains that w has
the dimensionality [E2LD] (from the definition in Eq. (3.31)). Following the same ap-
proach shown for the 1D case, every quantity having the dimension of an energy must be
proportional to

E0 = w
2

4−D

(
2m

~2

) D
4−D

. (3.38)

The limit for η → 0 of the Gauss-correlated potential gives fr−r′ ∝ ηDδ(r− r
′). Compar-

ison with Eq. (3.31) implies w ∼ ∆2ηD. Considering again that the critical interaction
energy should be proportional to E0 in the WN limit and using ηD = [~2/(2mEc)]

D/2,
one can conclude that

∆

Ec
∝
(
U

Ec

)1−D
4

. (3.39)

The prediction for the exponents in 2D and 3D are respectively 1/2 and 1/4. Thus the
slope in the origin remains infinite and the difference with respect to the linear relation
in the TF limit becomes more pronounced in higher dimensions. These results are the
same that have been found by Falco and coworkers [Falco et al., 2009b].

3.4.2 Previous Results

The phase diagram computed here can be compared to the results obtained with other
models. The first qualitative phase diagram of the disordered bosonic problem was ob-
tained by Giamarchi & Schultz through a renormalization group analysis [Giamarchi &
Schulz, 1987, Giamarchi & Schulz, 1988]. They focused mainly on the strongly inter-
acting regime, reproducible within their formalism. Another very common approach is
the study of the phase diagram of the disordered bosonic problem in the context of the
Bose-Hubbard Hamiltonian [Fisher et al., 1989]

HB = −J
∑

i

â†i+1âi + â†i âi+1 +
1

2
U
∑

i

n̂i(n̂i − 1) +
∑

i

εin̂i, (3.40)

where ai and a†i are annihilation and creation operators, J is the hopping strength, U
the repulsive on-site energy and εi are independent random variables accounting for the
disorder.

The phase diagram in the U −∆ plane, with ∆ marking the amplitude of the disorder
through the distribution of the εi’s, has been extracted using several approaches: Monte
Carlo methods [Prokof’ev & Svistunov, 1998,Gurarie et al., 2009], density-matrix renor-
malization group [Pai et al., 1996,Rapsch et al., 1999], bosonization analysis [Deng et al.,
2008], numerical inspection of the superfluid fraction [Roth & Burnett, 2003a]. Three
examples of phase diagrams computed in the case of low filling factor are reported in Fig.
3.13. The common feature is the presence of a single superfluid lobe extending from the
disorderless axis (∆ = 0) to finite values of disorder. For integer filling factors, the under-
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Figure 3.13: Phase diagram of disordered Bose-Hubbard model. n denotes the filling factor of
each phase diagram. a. Monte Carlo calculation at unitary filling extracted from [Prokof’ev &
Svistunov, 1998]. b. and c. Density-matrix renormalization group calculations, respectively for
half and unitary filling, extracted from [Rapsch et al., 1999]. The Mott insulator is not present
when the filling is not integer.

lying lattice structure entails the existence of the Mott-insulating phase for strong enough
repulsive interaction. For non-integer filling there is no Mott phase and at large values of
interaction a BG insulating phase is restored by the creation of islands of condensate dis-
connected by interaction [Rapsch et al., 1999]. The re-occurrence of an insulating phase
at large interaction – due to the enhanced phase fluctuations – is a common feature of
these studies [Scalettar et al., 1991] that is not present in the numerical results obtained
here (cfr. Fig. 3.9). This discrepancy is a natural consequence of the Bogoliubov model
assumed here. First of all, the hypothesis of weak interaction is in contradiction with the
strong correlations that drive the system back in the insulating phase at large U0. In the
∆−U0 plane the re-entrance shifts to the right when increasing the particle number, and
eventually goes to U0 → ∞ when the mean-field approach is exact, hence, the strongly-
interacting insulator disappears for ρ→ ∞ (similarly to the Mott lobes of Fig. 1.3 in the
µ− J plane for large population).

The phase transitions occurring in the two regimes have a different nature [Giamarchi
& Schulz, 1988]: on one side (∆ ∼ U0) interaction and disorder compete in determining
the quantum phase of the gas whereas in the strongly correlated phase (U0 ≫ ∆) interac-
tion has a detrimental effect on the coherence of the system. In addition, the distribution
of the density in the strongly correlated phase is rather homogeneous as opposed to the
case of very weak interaction, marked by a high inhomogeneity [Giamarchi & Schulz,
1988,Scalettar et al., 1991]. These two phases are sometimes differentiated as Anderson-
glass and Bose-glass, but a universal consensus about the nature of the two phases is still
lacking.

The diagram presented in this work shows some analogies with the weakly-interacting
limit (close to the origin) of the phase diagrams in Fig. 3.13. In fact, the insulating phase
appears for large values of disorder, whereas strong interactions drive the system in the SF
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phase. In this regime the present analysis can be more detailed than the previous ones,
mainly because it does not suffer any limitation when dealing with large populations.
This allows to find good numerical accuracy to estimate quantitatively the boundary and
its functional dependencies.

To our knowledge this is the first time the mean-field phase diagram for disordered
bosons is quantitatively characterized. The results shown in Fig. 3.9 refer to a 1D Bose
gas in presence of a gaussian disorder. A qualitative quantum-state diagram was recently
computed in the case of weak repulsive interaction in presence of speckle potential [Lugan
et al., 2007a] and it is reported in Fig. 3.14a. By studying the density profile of the
gas, the authors found the coexistence of three quantum phases separated by crossovers
as a function of chemical potential and disorder amplitude: namely a Lifshitz glass, a
fragmented condensate and a quasicondensed phase. With “fragmented condensate” it is
meant a system formed by disconnected islands of condensate, that can be identified with
the insulating phase called in this work “Bose glass”. The link between the fragmentation
criterion, seen as a property of the density profile, and the quantum phase transition is
the subject of Chapter 4. The “Lifshitz glass” is characterized by a coherence extending
over single minima. No evidence has been found in the present simulations of two distinct
insulating phase at vanishing interaction energy: this fact was expected because a phase
made of localized single-particle islands, such as the Lifshitz glass, cannot be described by
the present model (as explained in Section 2.3 and also found by equivalent approaches
[Cetoli & Lundh, 2010]).

∆
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Figure 3.14: Schematic representation of the crossover form a quasicondensed state and a
fragmented BEC characterized through the study of the density profile. a. Quantum phase
diagram evaluated for fixed αR = ~

2/2mη2∆ (extracted from [Lugan et al., 2007a]) b. Sketch of
the phase diagram rescaled with respect to the correlation energy (extracted from [Lugan, 2010]).
The vertical dashed line separate the regimes of the gas, namely smoothed and Thomas-Fermi.
The blue solid line denotes the crossover between the two quantum phases.

Lugan et.al. found that linear relations separate these quantum phases in the µ −∆
plane. This result is not in contradiction with the one presented in this thesis because the
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quantities entering the problem are not rescaled: the correlation length of the potential
does not appear explicitly in this plot, implying that their graph is evaluated for fixed
∆/Ec. As the phase boundary only depends on U0/Ec and ∆/Ec, one obtain that the
critical interaction is proportional to Ec (and therefore to ∆). An even more convincing
argument is given by Lugan [Lugan, 2010], that, using the same method, computed the
results rescaled to the correlation energy and found a strikingly similar schematic phase
diagram (reported in Fig. 3.14b), characterized by the same functional dependencies as
in the present work, in the two regimes called smoothed and Thomas-Fermi. These data
are computed as a function of the chemical potential µ: the relation between the average
interaction energy U0 and the chemical potential µ is given by the equation of state.
These two quantities display a monotonous relation [Lugan, 2010]. Hence, the quantum
phase diagram as a function of µ might be slightly modified, but would be marked by the
same functional behaviours, because the same scaling arguments, as for U0, hold.
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Figure 3.15: Different phase diagrams obtained in presence of a quasiperiodic potential, with J
indicating the hopping energy in the Bose-Hubbard model. a. Theoretical phase diagram of the
Bose Hubbard model for half-integer filling computed via density-matrix renormalization group in
Ref. [Roux et al., 2008]. b. Theoretical phase diagram in the weakly interacting regime computed
via a Bogoliubov-like approach in Ref. [Cetoli & Lundh, 2010]. The blue circles correspond to
a non-vanishing superfluid fraction whereas the red dots denote cases where ρS = 0. On the
left of the green line the one-body density matrix decays exponentially. c. Experimental phase
diagram extracted by studying the coherence at 4.4 lattice sites of a 39K gas in a 1D quasi-periodic
potential as reported in Ref. [Deissler et al., 2010].

As illustrated in Chapter 1, quasiperiodic potentials are another common way of re-
alizing optical disorder in current experiments [Fort et al., 2005]. Several theoretical
studies have been performed on these systems and some of the phase diagrams obtained
in the disorder-interaction plane are shown in Fig. 3.15. An analysis recently performed
within a mean field model by Cetoli & Lundh [Cetoli & Lundh, 2010], was aimed at
studying the same problem presented here in presence of a quasiperiodic potential: the
phase diagram that they obtained is shown in Fig. 3.15b on a linear scale. The func-
tional behaviour of the boundary is compatible with the results obtained in this thesis, in
particular the boundary bends in the origin as an onset of an infinite slope that smooths
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out for larger interaction. However, a substantial difference arises in the limit of very
weak interaction: they do not find any evidence of an insulating phase below a certain
value of disorder strength. This effect is due to the quasi-periodicity of the underlying
potential. Indeed the non-interacting system, in presence of incommensurate bichromatic
potential, is localized only if the external potential exceeds a critical value (see Section
1.3.3) and this feature seems to survive in the regime of weak-interaction of the interact-
ing bosonic model [Roth & Burnett, 2003a,Deng et al., 2008,Bar-Gill et al., 2006,Roux
et al., 2008]. This is also evident in the phase diagram shown in Fig. 3.15a obtained by
means of the density-matrix renormalization group technique for the Bose-Hubbard model
at half-integer filling. The underlying periodicity of the two lattices makes the system
different from a truly random disorder where any finite amount of disorder localize the
single-particle problem [Anderson, 1958,Kramer & MacKinnon, 1993]. The experimental
evidence [Deissler et al., 2010], obtained by studying the first order correlation function
of a weakly interacting 39K gas, seem to confirm the survival of the superfluid phase at
vanishing interaction (Fig. 3.15c).
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In the previous chapter, the quantum phase transition occurring in a 1D Bose gas
in presence of disorder has been investigated. It has been stressed that the onset of the
BG phase comes along with the formation of coherent islands joined by weak links: these
entities lose their reciprocal coherence because of large barriers in the disordered potential.
This intuitive picture reminds of a separation of the gas in uncorrelated fragments: for
this reason the crossover from a delocalized state to a localized one is often referred to as
fragmentation [Sanchez-Palencia, 2006,Lugan et al., 2007a,Falco et al., 2009a]. Although
this is often evoked as a criterion for the transition from a SF phase to a BG, to our
knowledge a rigorous definition of fragmentation of the density profile and a proof of its
relation to the quantum phase of the gas, are still lacking.

In this thesis we propose an analytical argument –supported by numerical simulations–
that relates the onset of the quantum phase transition to the probability distribution of
the density of the gas. This argument links the occurrence of minima in the density to the
superfluid fraction of the gas itself and it relies on the validity of the mean-field approach,
therefore it is strictly valid for infinite density and vanishing interaction constant. The
purpose of this chapter is twofold: it aims at giving a rigorous definition of fragmentation
in the framework of 1D Bose gas and understanding the relation between the fragmenta-
tion threshold and the occurrence of the quantum phase transition. The traditional idea
of fragmentation is linked to the macroscopic occupation of multiple states, as opposed
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to a single condensate, as it is described in Ref. [Nozières, 1995] and illustrated in Section
4.1. The notion of density fragmentation and its link to the superfluid-insulator transition
is presented in Section 4.2 together with the support of numerical simulations. Section
4.3 is devoted to the analysis of the effect of realistic conditions on the fragmentation
analysis. In particular, the effect of a harmonic trap and of a finite spatial resolution, on
ideal experiments, are investigated.

In this chapter a method to identify the phase transition through the study of the
density distribution is proposed. This result bears a clear experimental advantage, as
the density profile of a Bose gas is a quantity that can be easily investigated with the
current in-situ imaging techniques. The transition between a quasi-condensate and an
insulator – and a possible spatial crossover between the two phases – could be unveiled
through a local investigation of the statistical distribution of the density profile. This
is very promising because it exploits a local property, namely the value of the density
and its statistical distribution over the disorder ensemble. The approach we propose does
not need to measure large systems but rather the collection of data for several disorder
realizations, so as to obtain a significant statistical analysis.

4.1 Traditional notion of fragmentation

Fragmentation is traditionally defined as the macroscopic occupation of two or more
single-particle states [Nozières, P. & Saint James, D., 1982,Nozières, 1995,Mueller et al.,
2006], in contrast with conventional condensation characterized by the macroscopic oc-
cupation of a single quantum state. To illustrate this phenomenology let’s consider a
uniform system with two degenerate (or quasi-degenerate) quantum states, namely 1 and

2, with the corresponding creation and annihilation operators â†i and âi (i = 1, 2) and the
orthogonal single-particle wavefunctions ψi(r). The Bose condensed state of a N -particle
system in the state 1 is

|BEC〉 = |N,ψ1〉 =
1√
N !

(̂a†1)
N |0〉. (4.1)

On the contrary, a fragmented state is characterized by (at least) two macroscopic eigen-
values of the one-body density matrix: let’s assume that N1 are particles in the state 1 and
N2 = N − N1 are in the state 2. The fragmented wavefunction, in second quantization,
reads

|FR〉 = |N1, ψ1;N2, ψ2〉 =
1√

N1!N2!
(̂a†1)

N1(a†2)
N2 |0〉. (4.2)

As condensation typically occurs in low-momentum states, the energy difference between
the two states only comes from the interaction Hamiltonian, neglecting the kinetic com-
ponent,

Hint =
g

2

∫

Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r), (4.3)
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where the field operator, in terms of the single-particle operators, reads Ψ̂(r) = ψ1(r)â1+
ψ2(r)â2. The contribution of the interaction term to the energy in the two cases reads

EBEC =
g

2
N(N − 1)

∫

|ψ1(r)|4dr (4.4)

EFR =
g

2




∑

i=1,2

(

Ni(Ni − 1)

∫

|ψi(r)|4dr
)

+ 4N1N2

∫

|ψ1(r)|2|ψ2(r)|2dr



 .

In the limit of macroscopic population N1, N2 ≫ 1 one can consider only the leading
order that results in

EBEC ≃ g

2
(N1 +N2)

2

∫

|ψ1(r)|4dr (4.5)

EFR ≃ g

2

[

N2
1

∫

|ψ1(r)|4dr +N2
2

∫

|ψ2(r)|4dr + 4N1N2

∫

|ψ1(r)|2|ψ2(r)|2dr
]

.

The integrals
∫
|ψi(r)|4dr give the spatial extent of ψi(r). In absence of external potential

it is reasonable to assume that there is a large density overlap between the single-particle
wavefunction |ψ1(r)|2 ≃ |ψ2(r)|2 that entails similar spatial extents. If the integrals in Eq.
(4.4) take the same value, the energy difference between fragmented case and condensed
one results in

EFR − EBEC = gN1N2

∫

|ψ1(r)|4. (4.6)

This quantity is positive and we can conclude that repulsive interaction inhibits frag-
mentation in the uniform case through the exchange term appearing in Eq. (4.4). This
argument relies of the assumption of large density overlap between the wavefunctions,
but this can be invalidated by the presence of a non-uniform external potential. In fact,
single-particle states can have different localization lengths and a negligible overlap in
presence of large barriers.

To illustrate this point we study the case of a symmetric double-well potential sep-
arated by an infinite barrier: the two-mode formalism adopted above is well suited to
describe this scenario [Mueller et al., 2006]. Condensation would occur in the symmetric
single particle state ψS(r) that is degenerate with the antisymmetric solution ψA(r). The
combination of this two states gives the two wavefunctions confined in the single wells,
namely

ψL(r) =
ψS(r) + ψA(r)√

2
, ψR(r) =

ψS(r)− ψA(r)√
2

, (4.7)

with the same single-particle energy. The energy ofN -particles occupying the state ψS can
be compared to the energy of N/2-particles occupying each single-particle state localized
on the wells, namely |BEC〉 = |N,ψS〉 and |FR〉 = |N/2, ψL;N/2, ψR〉. In the case of a
single condensate one obtains

EBEC =
g

2
N(N − 1)

∫

ψ4
S dr, (4.8)
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where each particle interact with the remaining N − 1 and the factor 1/2 avoids double
counting. In the case of a fragmented condensate, the N/2 particles in each well interacts
with N/2− 1 particles and the total interaction energy is

EFR = 2
g

2

N

2

(
N

2
− 1

)∫

ψ4
L dr. (4.9)

The spatial extent of ψL and ψR is half the size of ψS , therefore
∫
ψ4
L dr = 2

∫
ψ4
S dr and

the previous expression becomes

EFR =
g

2
N(N − 2)

∫

ψ4
S dr, (4.10)

that is lower than the energy of the single condensate. The presence of a barrier can
induce the fragmentation of the condensate [Spekkens & Sipe, 1999,Streltsov et al., 2004,
Spekkens & Sipe, 1998].

The parallel drawn with the double well potential highlights the link of this model
with the case of disordered bosons. This last intuitive picture describes rather a transition
from a condensed state to two fragmented single-particle states: a state that looks like the
Lifshitz-glass phase, where disorder (in this case the central barrier) is much stronger than
interaction. However, the main message is that the traditional notion of fragmentation
and the density fragmentation, under investigation in this chapter, are indeed closely
related.

In this chapter fragmentation is analyzed under a different point of view, i.e. by
considering the behaviour of the density in presence of barriers in the underlying potential.
The model presented here sheds light on the analogies between the traditional notion of
fragmentation and the occurrence of the phase transition. The aim of the next section is
to extend the concept of fragmentation to the fragmentation of the density distribution
seen as a marker of the quantum phase transition.

4.2 Density fragmentation criterion

As emerged from the analysis carried out in the previous chapter, the quantum phase
transition occurs with the formation of islands (fragments) separated by weak links. Weak
links arise in correspondence to low-density zones where the phase fluctuations are more
likely to change sign reducing the coherence between the two neighbouring islands. The
proliferation of these weak links, given by strong disorder, destroy the quasi-long-range
order. It is evident that a study of the density fragmentation must contain information
about the statistics of occurrence of low-density areas and their influence on the phase
coherence.

A quantity that naturally characterizes the statistics of the density is its probability
distribution (PDD), in particular, the PDD in the small-density limit turns out to have
a crucial role in determining the quantum phase of the gas. In this section it is proven
and checked numerically that a 1D weakly interacting Bose gas is fragmented when the
PDD is non-zero in the limit of vanishing density and that this threshold coincides with
the onset of the quantum phase transition.
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4.2.1 Analytical argument

The analytical argument presented here is based on the averaging procedure of the su-
perfluid fraction derived in Section 3.3.2. The goal of the present analysis is to establish
a link between the PDD and the quantum phase transition. The discrimination between
the quantum phases of the gas has been made in the previous chapter via the build-up
of quasi-long range order and by the value of the SF fraction. This latter can be char-
acterized by evaluating the response of the system to a velocity field, that is equivalent
to imposing twisted boundary conditions (see Section 3.3). The expression for the super-
fluid fraction fS – recalled here for convenience – is proportional to the difference of the
energies in the moving frame, EΘ, and in the rest frame, E0, as [Fisher et al., 1973]

fS =
2mL2

~2N
lim
Θ→0

EΘ − E0

Θ2
. (4.11)

Within the density-phase formalism (Ψ̂ = ρ̂eiθ̂ = (ρ0 + δρ̂)eiθ̂), the energy difference can
be computed from the Gross-Pitaevskii energy functional, and, at leading order in the
phase twist, is given by the kinetic term (cfr. Eq (3.24))

EΘ − E0 =

∫
(∇θ(x))2

2m
ρ0(x)dx, (4.12)

where θ = 〈θ̂〉. The main result obtained in Section 3.3.2 is that the total superfluid
fraction is related to the harmonic average of the density [Fontanesi et al., 2010,Altman
et al., 2010] as

1

ρS
=

∫
1

ρ0(x)
dx. (4.13)

The validity of the Bogoliubov prescription, 〈δρ̂〉/ρ0 ≪ 1, ensures that ρ0 contains the
relevant information about the density distribution. In fact, the Bogoliubov approxima-
tion becomes more and more accurate for increasing average density, N0/L, at constant
interaction g0N0/L, with N0 the number of bosons in the ground state. Deep in the mean-
field limit N0/L→ ∞, the relative contribution of the fluctuations 〈δρ̂〉/ρ0 vanishes (see
Chapter 2.3) and the density profile is well described by ρ0(x) [Castin, 2004].

A convergent integral in Eq. (4.13) would imply a finite SF fraction, whereas if it
diverges ρS = 0 and the gas would be in the normal phase. Considering that the system
under investigation has homogeneous disorder, one can write the equality P (ρ0)dρ0 =
P (x)dx, where the spatial probability distribution, P (x), is constant. This allows to
perform a change of variable in the integral and it gives

1

ρS
=

∫
1

ρ0(x)
P (x)dx =

∫
1

ρ0
P (ρ0)dρ0. (4.14)

The convergence of the integral in Eq. (4.14) is determined by the behavior of P (ρ0) in

the limit ρ0 → 0. If one writes P (ρ0 → 0) = ρβ0 , the condition to be in the superfluid



82 The Fragmentation Criterion

phase is β > 0, whereas a nonzero value of P (ρ0 → 0), i.e. β ≤ 0, results in a glassy
phase.

This argument concerning the density fragmentation can be easily switched to the
distribution of the ground-state wavefunction, P (φ0). Keeping in mind that this quantity
has to satisfy

P (φ0)dφ0 = P (ρ0)dρ0, (4.15)

expression (4.14) can be rewritten as

1

ρS
=

∫
1

|φ0|2
P (φ0)dφ0. (4.16)

Given that P (φ0 → 0) = φζ0, this integral is convergent if and only if ζ > 1, thus
P (φ0 → 0) is super-linear in the SF phase. This relation is less useful both because of the
lower relevance to experimental data and because of the difficulty of identifying a linear
relation.

4.2.2 Numerical simulations

The PDD can be computed numerically, by solving the GPE (2.8) on finite size sys-
tems and performing a configuration average to increase the accuracy of the statistical
sampling. The phase boundary, for such a system, has been characterized in Chapter 3
in independent ways, through the study of the superfluid fraction and of the one-body
density matrix.

Fig. 4.1.a shows the PDD computed in presence of Gaussian disorder for
fixed disorder amplitude ∆g = 12.8 Ec and different values of interaction
U0 = 25.6 Ec, 38.4 Ec, 46.08 Ec (all in the TF regime). These three values
correspond to cases in the BG, phase boundary and SF phases respectively.
In the homogeneous case P (ρ0) is expected to have a single peak at the value
ρ0/ρH = 1, where ρH is the constant solution of the homogeneous problem.
The inclusion of a small disorder [Sanchez-Palencia, 2006] broadens this peak,
but P (ρ0) preserves a vanishing tail for ρ0 → 0 in the superfluid phase (solid
curve in Fig. 4.1a). For decreasing interaction the weight of the low-density
part becomes more important (dashed curve in Fig. 4.1a) until the phase
boundary is eventually crossed and the PDD develops a finite component
in the limit ρ0 → 0 (dot-dashed lines in Fig. 4.1a). Fig. 4.1b shows a
similar analysis carried out for the WN regime, for ∆g = 0.016 Ec and U0 =
0.0032 Ec, 0.0048 Ec, 0.0064 Ec. As for the TF case, these three cases lie in
the BG, phase boundary and SF phases respectively.

Comparing panels a. and b. in Fig. 4.1, it is clear that the PDD has different
shapes in the TF and WN regimes. However, in both cases, the fragmentation
allows to differentiate between SF and BG phases. The numerical analysis
summarized in Fig. 4.1 confirms the criterion stemming from Eq. (4.14),
namely that the SF fraction is nonzero if and only if P (ρ0 → 0) = 0.
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Figure 4.1: Probability distribution of the density in two different regimes in presence of Gaus-
sian disordered potential. a. Towards the TF regime, ∆g = 12.8 Ec for U0 = 25.6 Ec (dot-
dashed), 38.4 Ec (dashed), 46 Ec (solid). b. Towards the WN limit, ∆g = 0.016 Ec for
U0 = 0.0032 Ec (dot-dashed), 0.0048 Ec (dashed), 0.0064 Ec (solid). ρH is the density in the
homogeneous case.

P (ρ0) can be evaluated analytically in certain regimes. In the TF regime, when the
kinetic term is negligible, the density follows the external potential according to the TF
approximation as

ρ0(x) = [µ − V (x)]/g if V (x) < µ,

ρ0(x) = 0 if V (x) > µ. (4.17)

In this regime the distribution of ρ0(x) reproduces the distribution of the potential at
any finite value, with an additional finite contribution in zero, given by the sum of the
regions where V (x) > µ. A very similar feature can be indeed noticed in the insulating
case of Fig. 4.1a (dot-dashed line) where the PPD has a Gaussian-like shape with a
peaked contribution in 0. Following the fragmentation argument, this case is always
insulating as it can be expected, since the absence of a kinetic component prevents the
formation of any quasi-long range order or superfluid flow. This is not in contradiction
with the phase transition occurring at large values of U0/Ec, because the kinetic energy
corrections to (4.17) are responsible for the build-up of the quasi-long-range order, while
if the description (4.17) holds strictly the state is insulating.

To make a link with current experiments, the same analysis in presence of at-
tractive speckle pattern (presented in Chapter 1.3.2) has been performed. The
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Figure 4.2: Probability distribution of the density in presence of attractive speckle potential,
obtained from an average on disorder configurations. Three value of interaction across the phase
boundary are shown, U = 2.6 Ec (dot-dashed), 3.1 Ec (dashed), 3.5 Ec (solid), for fixed disorder
strength ∆s = 3.2 Ec. ρH is the density in the homogeneous case.

fragmentation study, shown in Fig. 4.2, is performed for fixed disorder am-
plitude, ∆s = 3.2 Ec, for different interaction energies, U0 = 2.6, 3.1, 3.5 Ec.
Being the attractive speckle potential bound from above, the distribution is
not centered around its mean value. The choice of the potential strongly
affects the shape of the PDD, but the limiting behavior P (ρ0 → 0) is only
determined by the phase of the gas, consistently with the conclusions drawn
for Gaussian disorder. From this inspection we extract the critical value of
the interaction energy U0 ≃ 3.1 Ec that will be important in the analysis that
follows.

4.3 Realistic conditions

The experimental study of ultracold atomic gases in real systems shows many compli-
cations that one has to deal with, as, among others, the presence of a trap, the finite
number of particles, the fact that the system is not strictly one-dimensional. As this
chapter is intended to give a new viable route to determine the phase transition in cur-
rent experiments, the effect of some real-life factors on the fragmentation analysis will be
discussed.

In particular, the quantum degenerate Bose gas is experimentally realized as a cloud
trapped by a harmonic potential that gives a parabolic shape to the density profile.
In Section 4.3.1 the effect of the trapping potential is analyzed and a way to include its
presence in the fragmentation analysis through a local investigation is suggested. Another
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crucial experimental limitation [Hulet, 2011] comes from the finite spatial resolution of the
in-situ imaging apparatus. This limits the capability of describing correctly the density
profile and it can, therefore, invalidate the study of the PDD. The effect of a finite spatial
resolution is investigated in Section 4.3.2. The aim of this analysis is to give an idea of the
effect of these elements on the density distribution and to understand which conclusions
can be extracted from the experimental data.

4.3.1 Trapped case

Homogeneous systems are useful theoretical tools to inspect the phase transition, but
current experiments [Chen et al., 2008, Deissler et al., 2010] are performed on trapped
systems. The harmonic trap introduces a spatial inhomogeneity in the density profile,
and thereby in the interaction energy U(x) = gρ0(x). To deal with a realistic situation
we consider a speckle disorder on the top of a harmonic trapping potential, as it has
been investigated in recent experiments [Chen et al., 2008, Clément et al., 2008], and
we perform the simulations on a system of experimentally achievable size (200ηs) [Dries
et al., 2010].

The harmonic trap is implemented by adding to the external potential a
quadratic term of the form Vtrap = mω2

rr
2/2. The inclusion of a harmonic

potential requires to convert the expression of the quadratic potential in units
of Ec, Ṽtrap. Some straightforward calculations give

mω2
rr

2

2Ec
=
mω2

rη
2

2Ec
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η

)2
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)2

. (4.18)

Typically the frequency of the trap is given in Hz and it is sufficient to know
its relation with the correlation energy to describe a realistic system via Eq.
(4.18).

The local density approximation is valid as long as the trapping potential is
shallow with respect to the interaction energy, i.e. U ≫ Vtrap. The gas has
to be in the TF regime with respect to the trap frequency: this means that
ξ ≪ RTF where RTF is the Thomas-Fermi radius, i.e. the semi-extension
of the cloud computed neglecting the kinetic term. In this way, the density
profile in presence of the disorderless trap is approximately parabolic and can
be extracted from the GP equation. In fact,

ρ0(r) = [µ −mω2
rr

2/2]/g if Vtrap(r) < µ,

ρ0(r) = 0 if Vtrap(r) > µ. (4.19)

Here µ takes the value of the interaction energy at the center of the trap,
where Vtrap = 0.

On the contrary, if the condition is not fulfilled, the profile is Gaussian and
the quasi-1D Thomas-Fermi approximation starts to break down. For clarity,
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Figure 4.3: Local probability distribution of the interaction energy (proportional to the density)
in a harmonic trap (~ωt = 0.064 Ec) for three different values of the interaction energy UC(0):
a. 3.2 Ec, b. 3.84 Ec, c. 6.4 Ec and for fixed speckle disorder intensity (∆s = 3.2 Ec). The
distributions are obtained by averaging over 2000 configurations of disorder. The red solid lines
are the interaction energy profiles in the disorderless cases. Blue dashed lines represent the spatial
distribution of the average interaction energies. The green thin lines indicate the boundary in
the thermodynamic limit extracted analyzing the untrapped case.

this condition does not imply that the gas is in the TF regime with respect
to the underlying disorder, in fact η ≪ RTF .

The PDD can be obtained by evaluating the histogram of the density at a fixed
position for several disorder realizations. In what follows, we represent these histograms
as Px(U), namely as a function of the interaction energy, U(x) = gρ0(x), rather than as
a function of the density ρ0. In this way the average of Px(U) is the average interaction
energy and can be directly associated to a point on the phase diagram.

The presence of a trap allows to vary spatially the interaction energy, so that, for a
fixed value of disorder the two phases can coexist in the trap: the superfluid phase close
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to the center of the trap, where interaction is stronger, and the insulator in the regions
closer to the edges. This can be depicted as a situation of spatial phase separation, where
a critical spatial point rc separating the two coexisting phases, can be identified. One can
wonder whether the critical interaction UC , extracted from the critical spatial point rC ,
is compatible with the result in the thermodynamic limit where the trap is absent.

The density plots in Fig. 4.3 show the spatially resolved probability distributions,
Px(U), as a function of position and interaction energy for fixed disorder amplitude, ∆s =
3.2 Ec. The blue dashed line is the average interaction energy U(x) =

∫
gρ0(x)Px(ρ0)dρ0,

and the red solid line represents the interaction profile in absence of disorder UC(x), i.e.
the solution of the GPE with V (x) = mω2

t x
2/2, where ωt is the trapping frequency. Note

that the disorder combined with a shallow trapping potential makes the average density
profile different from the disorderless one. In fact, it extends beyond the disorderless TF
radius and reaches a lower value in the center of the trap. This fact is relevant when
comparing the critical values of interaction at the transition between the trapped and
untrapped cases.

It is important to understand whether the fragmentation threshold, in the trapped
case, coincides with the one extracted in the thermodynamic limit. For the chosen value of
the disorder amplitude, the fragmentation analysis in the untrapped case gives a transition
at an interaction strength UH ≃ 3.1 Ec (cfr. Fig. 4.2). In Fig. 4.3a the gas is fragmented
at all positions, consistent with the homogeneous boundary, as the maximal interaction
energy U(0) ≃ 2.7 Ec < UH . When the interaction energy is increased, SF and BG phases
coexist (see panels b. and c.). The fragmentation threshold of the interaction energy
can be extracted directly from the spatially resolved PDDs. The values of the average
interaction at the threshold is in good agreement with UH (cfr. Fig. 4.3b and c) even if
one can already notice a signature of a small penetration of the superfluid phase into the
insulator. The good agreement of the trapped case with the untrapped one occurs as long
as the local density approximation is valid (~ωt ≪ U). For tighter traps (simulations not
shown), the fragmentation line moves to lower values of the average interaction energy
and the effect of the quasicondensate that penetrates the BG is more pronounced. This
effect, that in fluid dynamics can be seen as the superfluid propagating into the insulating
phase (cfr. Fig. 4.5), becomes obvious when considering the limit ~ωt ≫ U,∆, where the
density profile is the non-fragmented harmonic oscillator ground state. The penetration
effect is more pronounced when the transition occurs at the edges of the trap where the
density gradient is steeper. Therefore, the best agreement between the phase transition
of the trapped and homogeneous gases is obtained when the transition occurs close to the
center of the trap.

4.3.2 Finite Resolution

In current experiments the resolution of the apparatus represents one of the main lim-
itations to the correct interpretation of the experimental data. For this purpose, here,
we study the role of a finite spatial resolution on the statistical analysis proposed in this
chapter. The resolution is included in the simulation via a convolution of the ground state
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Figure 4.4: Effect of a finite resolution on the local probability distribution of the interaction
energy in a harmonic trap (~ωt = 0.064 Ec) for the insulating state of Fig. 4.3a: UC(0) = 3.2 Ec

and ∆s = 3.2 Ec. Panel a. shows a resolution R = η, whereas in panel b. R = 2η.

wavefunction with a Gaussian of standard deviation R. The finite resolution makes it
harder to identify the insulating phase through a statistical study of the density because
it smooths out the profile, cutting narrow minima from the statistics. This limitation acts
differently in different regimes: supposing the ratio η/R fixed, the finite resolution would
not affect the statistics in the WN limit, where modulations of the density occur on the
scale of the healing length, much longer than η and thus than R. In other words, inde-
pendently on the value of η/R, going towards the WN limit one can reach a regime where
R ≪ ξ, where the density profile is correctly described. On the contrary, the condition
η/R . 1, would strongly affect the statistics in the TF regime, where the length scale
of the modulation is the correlation length of the potential. Fig. 4.4 shows the effect of
finite resolution on the probability distribution of a trapped Bose gas for UC(0) = 3.2 Ec

and ∆s = 3.2 Ec. The statistical analysis of the distribution (Fig. 4.3a) identifies a
completely fragmented state. The introduction of a finite resolution (R = η) in Fig. 4.4a
opens a window in the center of the trap as if the Bose gas was partially superfluid. This
effect become even more significant for a worse resolution (R = 2η), as shown in Fig.
4.4b, where the gas appears to be predominantly superfluid. For this set of parameters,
the transition would be placed at U ∼ 3, 2.9 Ec respectively. Therefore, a reasonable
criterion to correctly estimate the fragmentation threshold is R .

√

η2(1 + E2
c/∆

2) + ξ2,
where the resolution is smaller with respect to all the other relevant length-scales, namely
the single particle localization, the correlation length and the healing length.

Both the finite resolution and the harmonic trap tend to displace the apparent frag-
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Figure 4.5: Sketch of the phase diagram of the 1D Bose gas in presence of disorder. The effect
of realistic limitations in experiments are qualitatively shown. The solid thin line represents the
actual phase boundary, the dotted line is the phase boundary extracted with a finite resolution
of the experimental setup, for a fixed ratio η/R (see text). The dashed line is the fragmentation
boundary considering a harmonic potential of fixed trapping frequency. The trap tends to displace
the boundary towards the insulating phase. For ~ωt & U the local density approximation breaks
down and the profile is never fragmented. The combined effect is shown by the thick solid line.

mentation threshold towards the insulator phase with respect to the actual boundary.
Therefore, in experiments, the superfluid fraction is overestimated, but a quantitative
correction to the boundary can be computed knowing the value of the resolution and the
trapping frequency. A qualitative sketch of the effect of real conditions on the actual
phase diagram is shown in Fig. 4.5. From this sketch it appears that the trapped system
does no longer reflect the properties of the thermodynamic limit deep in the WN regime.
Indeed, fragmentation would occur on a scale much longer than the ground state of the
trap.
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4.3.3 Current experiments

These predictions have been tested for realistic data referring to an experiment carried
out at Rice University (Texas, USA) [Dries et al., 2010,Hulet, 2011]. The motivation of
simulating a real system was to identify the best regime to spot the phase transition and
to estimate the error due to the presence of the trap and to the finite resolution of the
imaging apparatus.

The experiment is performed with 7Li, a bosonic alkali gas with a very wide Feshbach
resonance [Pollack et al., 2009] that allows to explore a large range of interaction strength.
Disorder is created by scattering light through a diffusive plate, resulting in a repulsive
speckle potential. Among the relevant data to inspect the phase transition there are
the mass of the Lithium atoms (m7Li ≃ 7u) and the correlation length of the speckle
potential, ηs = 3.4µm. The value of the correlation energy comes from the combination
of these two: Ec ∼ 62 × ~ Hz. A crucial parameter for the creation of the cloud is the
trapping frequency ωr = 4.5 Hz. Exploiting the Feshbach resonance they realized atomic
clouds for different values of the chemical potential (µ1,2,3,4 = 220, 105, 50, 23 Hz×~):
in the present scheme this quantity coincides with the interaction energy in the center of
the trap in absence of disorder. In the table shown below the experimental data for the
chemical potential and the TF radius are listed together with the conversions in the units
used for the numerical simulations (ηs and Ec).

µ/~ Rz µ[Ec] Rz[ηs]

220 Hz 178 µm 3.5 50

105 Hz 123 µm 1.7 36

50 Hz 85 µm 0.8 25

23 Hz 58 µm 0.37 17

The lowest value of the interaction will not be considered in the analysis that follows
because the TF approximation with respect to the trapping frequency starts to break
down at such low values of interaction (µ ∼ 5~ωr). Disorder amplitude ∆s is considered
tunable at will, as it depends on the intensity of the laser field.

The effect of changing the chemical potential is twofold: first of all a larger µ increases
the size of the cloud by increasing the TF radius. The three density profiles (or rather
the interaction profiles U(x)) are shown in Fig. 4.6, as computed in absence of disorder.
The cloud sizes are consistent with the ones listed above. In second place, in presence
of disorder, as the correlation length is kept fixed, an increase of µ corresponds to a
reduction of the healing length. A decrease of the ratio ξ/ηs drives the system toward
the TF regime with respect to the underlying disorder.

The phase boundary has been determined by studying the fragmentation threshold
at fixed chemical potentials (µ1,2,3) in absence of the trap. This allowed to detect three
values of critical disorder. In Fig. 4.7 it is shown an example of probability distribution
of the density for µ = 3.5 Ec. The distribution is strongly asymmetric and, being the
speckle potential repulsive, it shows a slow decaying tail at low densities, the crucial zone
for detecting the phase transition. An attractive speckle potential would be peaked closer
to the origin, with a slow tail at large densities (cfr. Fig. 4.2). Instead, a Gaussian



4.3. Realistic conditions 91

−60 −40 −20 0 20 40 60

0

1

2

3

4

Position [η] 

U
 [E

c]
 

Figure 4.6: Interaction energy profiles in absence of disorder for three value of the chemical
potential µ = 3.5, 1.7, 0.8 Ec. the size of the atomic cloud increases for larger µ and it extends
from −RTF to RTF . The profiles are approximately parabolic, except for the tails where the TF
approximation fails because the kinetic component becomes significant.

potential would have a more symmetric distribution, as shown in Section 4.2. In this
sense, this feature is disadvantageous for spotting the transition and it translates into the
requirement of a larger number of disorder realization to obtain a smooth and reliable
configuration average for the PDD. The repulsive speckle potential is probably the less
advisable disorder type to investigate the fragmentation of the gas because its large-
amplitude fluctuations decay only exponentially.

Considering the presence of a trapping potential, a fragmentation analysis, as the one
performed in Section 4.3.1, can be carried out by tuning the disorder strength. Since the
chemical potential is spatially dependent, for each value of disorder a critical interaction
energy can be found at the fragmentation threshold. Each pair of values for disorder
and interaction represents a point on the phase boundary: this result is reliable provided
that the trap is not too steep in the point where the spatial phase transition occurs and
that the local density approximation holds. These simulations give the points of the
phase boundary via the critical interaction strength extracted from the fragmentation
threshold for different values of disorder. The sketch of phase diagram in Fig. 4.8 (dashed
curve) shows some points (�) extracted from this fragmentation analysis. This is the
phase diagram in presence of repulsive speckles: despite the few available points and the
small interval under investigation, it is possible to identify a trend analogous to the one
appearing in the phase diagram obtained in presence of Gaussian disorder (Fig. 3.4).

The main limitation of their experimental apparatus is the spatial resolution of the
imaging system. The spatial resolution correspond to a Gaussian of width ∼ 3µm, thus
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Figure 4.7: Probability distribution of the density in presence of repulsive speckle potential,
obtained from an average on disorder configurations. Three value of disorder across the phase
boundary are shown, ∆s = 2.9 Ec, 1.6 Ec, Ec, for fixed interaction strength µ = 3.5 Ec. ρH is a
constant value, the density in the homogeneous case.

comparable to the correlation length of the potential1. It is important to quantitatively
estimate the shift of the phase boundary given by the finite spatial resolution of the
apparatus. To do so, the investigation carried out in the previous section is repeated by
taking into account the spatial resolution as explained in Chapter 4.3.2. In Fig. 4.8 the
true phase boundary is plotted together with the apparent phase boundary estimated in
presence of a finite resolution. As expected the shift due to the finite resolution is larger
for larger values of the interaction energy, i.e. for smaller healing length. In fact, a small
healing length is hardly sampled with a poor resolution. This confirms that the effect of
a finite resolution on the fragmentation analysis is to overestimate the superfluidity of
the gas.

In which regime is it more convenient to investigate the phase transition? Moving to
small values of the chemical potential presents some advantages because the density distri-
bution can be sampled correctly (the resolution does not play a relevant role any longer),
and, in addition, this regime is closer to the “smoothing regime” where the dynamics of
the system occur on length-scales larger than the scale given by the disorder: the Bose gas
distribution is not simply the replica of the disorder distribution. This regime is further
from the regime of classical localization [Aspect & Inguscio, 2009] and it highlights the
quantum nature of the phase transition. On the other hand the system turns out to be
smaller, therefore, the statistics and the accuracy of a spatial analysis would be poorer.

1This is not a coincidence, the imaging system that creates the speckle potential is the same used for
the in-situ imaging.
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with a solid line as a guideline). Both these phase boundaries are extracted from a fragmentation
analysis.

In the other direction (large chemical potential) the cloud (and so the statistics) would
be more extended, but the error due to the resolution would be non-negligible. In some
sense a perfect trade-off has to be found. An alternative way to move towards the WN
limit would be by reducing the correlation length of the potential. This length scale does
not have to be sampled by the imaging apparatus and can be tuned via the numerical
aperture of the focusing lens.





Chapter 5

Beyond the 1D Bose gas

at zero temperature
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The study presented so far concerned the 1D Bose gas at zero temperature, where
a quantum phase transition takes place. In one dimension there is no phase transition
occurring at any finite temperature because the thermal fluctuations destroy quasi-long
range order. On the other hand, the experiments deal with finite ultracold temperatures
and finite trapped system, not the ideal configuration to inspect the quantum phase
transition. In section 5.1 the finite temperature case is briefly discussed, within the limits
of validity of the extended Bogoliubov model (see Section 2.3).

Another natural development of the previous analysis consists in studying the two-
dimensional case. The physics of the 2D Bose gas is very rich and a brief review is given in
section 5.2 together with some results obtained within the extended Bogoliubov method.

5.1 The 1D Bose gas at finite temperature

No condensation or quasi-condensation occurs in 1D at finite temperature. The inclusion
of thermal fluctuations entails an exponentially decaying one-body density matrix at any
finite temperature. On the other hand, as shown in Section 1.2.3, the presence of a
harmonic trap can restore quasi-condensation and even true condensation for sufficiently
low temperatures, thanks to a cutoff in the long distance phase fluctuations [Petrov et al.,
2000].

Here we present a simple study of the effect of thermal fluctuation on a 1D Bose gas
in the thermodynamic limit in the regime where the extended Bogoliubov theory is still
valid. In Fig. 5.1 the degree of coherence of a uniform gas at finite temperature is shown.
Temperature is included via the thermal energy ET = 1/(kBT ) in units of the correlation
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energy Ec. A finite temperature produces thermal fluctuations, namely occupation of the
Bogoliubov modes that contribute in decreasing the coherence according to Eq. (2.27).
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Figure 5.1: Degree of coherence G1(r) for a unidimensional uniform Bose gas at fixed interaction
energy U0 = 0.8 Ec and finite temperature. The thick solid line marks the degree of coherence in
the zero-temperature case and it overlaps – in this finite size system – with the lowest temperature
case analyzed here and marked by the thin gray line. Increasing the temperature, a discrepancy
in the long-range behaviour arises at long distance (dashed line), even if an overlapping region
can still be identified. A further increase in temperature makes the difference between the two
degrees of coherence substantial, and the exponential decay does not overlap at all with the
zero-temperature algebraic decay. The effect of a finite temperature on the coherence is not
substantially different from the one played by disorder (cfr. Fig. 3.2))

The case shown here is superfluid at T = 0 and the finite temperature here has a very
similar effect to the presence of disorder. As far as the temperature is very low, the dis-
crepancy with respect to the zero-temperature case occurs at very large distances, where
the coherence develops an exponential tail and the difference with the algebraic decay at
T = 0 becomes evident. This somehow justifies the experimental studies performed on
atomic gases at very low temperature and inspecting the quantum phase transition that
in principle only occurs at T = 0. A finite temperature is expected to have an analogous
effect in presence of disorder, indeed both temperature and disorder are detrimental to
long-range coherence.

The spectrum of excitations at finite temperature is not modified with respect to the
one at T = 0 because there is no dependence on temperature in the BdGE. According
to the study performed in this thesis, the nature of the insulating phase originating from
disorder, that is marked by a diverging DoS, is substantially different to the one coming
from thermal fluctuations, because of a different nature of the decoherence mechanism.
However, being the spectrum identical, also the thermal Bose gas should show a diverging



5.2. The 2D Bose gas 97

DoS at a certain value of disorder. This change could be inspected by looking at the
specific heat of the Bose gas, indeed, this quantity can be expressed as

c ∝ dE

dT
, (5.1)

i.e. as the derivative of the energy with respect to the temperature. The total energy
can be expressed as a component coming from the ground state and a contribution of the
excited states that follows a Bose distribution

E = E0 +

∫
ε

eε/(kBT ) − 1
D(ε)dε, (5.2)

where the DoS D(ε) appears. Hence, a change in the functional behaviour of the DoS
should have measurable consequences on the specific heat of the gas that is experimentally
accessible at ultra-low temperatures.

In addition, this model could be employed to inspect transport properties. This would
be a way to test a phase transition that has been recently predicted for the 1D Bose gas
at finite temperature [Aleiner et al., 2010]. This prediction would seem to contradict
the common belief that no phase transition occurs in 1D at finite temperature. On the
contrary, according to the authors, the thermodynamic functions are not singular at the
transition and this unconventional phase transition – between an insulating and a fluid
phase – occurs in the transport and energy-dissipation properties, although both phases
are marked by exponentially decaying correlations.

5.2 The 2D Bose gas

The formalism presented in Chapter 2, valid for low-dimensional Bose gases, can describe
the two-dimensional situation. Some preliminary numerical results are presented here.

The uniform 2D Bose gas at zero temperature is supposed to form a real condensate.
The ground state solution would be a flat surface and its one-body density matrix decays
to a constant finite value at infinite distance.

An investigation performed with the extended Bogoliubov method in presence of gaus-
sian disorder is shown in Fig. 5.2. In Fig. 5.2a the density profile of the ground state wave-
function φ0(x, y) is shown together with the underlying disorder potential profile (5.2b).
The excitation spectrum can be computed diagonalizing the Bogoliubov-de Gennes ma-
trix and two sample solution, at low and high energy, are shown in Figs. 5.3a (v⊥1(x, y))
and 5.3b (v⊥60(x, y)) respectively. From the excitation spectrum and the solution of the
BdG problem the one-body density matrix and the degree of coherence can be extracted,
as it has been done in Chapter 3 for the 1D case. Being the numerical problem more
demanding than in the 1D case, thermodynamic properties cannot be easily inferred. In
fact, given our computing facilities and the short time devoted to the 2D case, the numer-
ical complexity limits the achievable size to arrays of the order of 200 × 200. Sampling
the disordered potential with four points per correlation length means that the system
is limited to about 50η × 50η: this turns out to be not sufficient to infer properties of
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the gas in the thermodynamic limit. Even the constant value attained by g1(r − r′) for
|r − r′| → ∞ cannot be reproduced by these finite size simulations. The simulations
shown here are performed on a two dimensional grid (20η× 20η) with periodic boundary
conditions, that makes it topologically equivalent to a torus.
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Figure 5.2: a. Ground state normalized wavefunction φ0(x, y), solution of the GPE. b. Disorder
profile V (x, y) in units of the correlation energy Ec.
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Figure 5.3: a. First v⊥(x, y)-mode solution of the BdGE: this excitation has a phase character.
b. Profile of v⊥60(x, y): this excitation start to develop a fast-oscillating behaviour, typical of
density fluctuations. The intensity of the modes deceases by increasing the excitation energy (cfr.
the scale of the color bars).

Beyond the numerical issues, there are some conceptual complications that one has to
take into account when moving to 2D at finite temperature. First of all, the occurrence
of the phase transition comes along with the creation of vortex-antivortex pairs that



5.2. The 2D Bose gas 99

destroy superfluidity. This phenomenology is not contained in a Bogoliubov-like theory
and derives from entropic arguments [Berezinskǐi, 1972,Kosterlitz & Thouless, 1973]. For
this reason a standard mean-field analysis would overestimate the critical temperature
of the transition. To overcome this issue, the most viable way would be to supply the
Bogoliubov method with an entropic analysis. Symmetry breaking approaches cannot
describe the onset of topological excitations because the topology of the quasicondensate
is fixed. However, in the past, perturbative field approaches have been combined with
thermodynamic arguments to infer an estimate of the universal jump in the SF fraction of
the uniform 2D Bose gas [Stoof & Bijlsma, 1993,Andersen et al., 2002,Lim et al., 2008].
Similar methods were also employed by Monte Carlo studies [Kagan et al., 2000, Pilati
et al., 2008] and we argue that an analogous technique could be used within this extended
Bogoliubov method.

In second place, the study of the quasicondensate-BG transition in 2D is obviously
more difficult than in one dimension, because of the presence of a temperature component
that competes with interaction and disorder in the determination of the quantum phase
of the gas. Even the generalization of the fragmentation criterion would not be trivial.
The fragmentation criterion holds in 1D because of the disconnected topology of two
fragments separated by a large barrier. This argument does not hold in 2D because of
the possibility to percolate around large bumps of the potential, therefore, if a similar
criterion exists it has to be related to topological arguments.





Conclusions

In this thesis the phase diagram of a 1D Bose-gas at zero temperature in presence of spa-
tially correlated disorder has been investigated. Using an extended Bogoliubov method,
the superfluid-insulator quantum phase transition has been characterized by inspecting
the long-range decay of the one-body density matrix, that discriminates two quantum
phases: a quasicondensate and a Bose-glass phase. This analysis led to the identification
of two regimes in which the boundary follows a power-law relation between disorder and
interaction: a white noise limit, where a 3/4 power-law relation holds, and a Thomas-
Fermi regime, where this relation becomes linear. This phase diagram has been confirmed
by inspecting the superfluid fraction of the system. The phase fluctuations that trigger
the phase transition by destroying the quasi-long-range coherence have been identified
with the low-energy Bogoliubov modes. Their density of states diverges at low energy in
the Bose-Glass phase while it approaches a constant value in the quasicondensed case.
Moreover, the localization of the excitations always shows an E−α divergence with α = 1
marking the phase transition. Finally, we have demonstrated a relation between the
quantum phase transition of the 1D Bose gas and the probability distribution of the
density in the mean field limit. We found that the superfluid phase is marked by a van-
ishing probability at zero density, whereas in the insulating phase it develops a non-zero
component.

From the theoretical point of view, the phenomenology behind the role of the phase
fluctuations has been elucidated. The proliferation of the low-energy modes, due to
the presence of weak-links in the system, explains the loss of long-range coherence. In
addition, the phase diagram in the limit of vanishing interaction (infinite density) has
been quantitatively determined and explained in the light of the existing results. An
interesting point to clarify is the role of the finite density corrections on this mean-field
prediction. In other words, it would be useful to quantify the link between the analysis
at low-filling, e.g. obtained from discrete models, and the present investigation.

This theoretical analysis is crucial for future experiments aimed at the determination
of the superfluid to Bose-glass phase transition. The weakly interacting regime analyzed
in this thesis is indeed the closest to actual experimental setups that achieved Anderson
localization in 1D bosonic systems with vanishing interaction. Current techniques allow
to realize large atomic clouds with tunable interaction and disorder configurations with
highly controllable features. The present analysis provides different ways to characterize
the phase transition and it is precious in determining the most proper regime of the gas
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to spot the transition. The criterion obtained for the fragmentation threshold gives an
innovative way of characterizing the quantum phase of the gas, based on a local property
of the gas that can be extracted from simple statistical averages and does not require
large system sizes. This gives a viable route to the determination of the phase transition
through a statistical analysis of the density profile.

The natural outlook of this work is an extension to two dimensional systems. How-
ever, this entails some difficulties that have to be taken into account. In two dimensions
vortices, of entropic origin, are not considered in a Bogoliubov-like model, and have to be
included to correctly describe the phenomenology leading to the BKT phase transition.
In addition, the extension of the fragmentation argument cannot be trivially generalized
because of the possibility of the gas to percolate around potential barriers. In addition,
the problem would be numerically more demanding and the deduction of thermodynamic
properties is not trivial. Finally, at zero temperature in 2D real condensation occurs,
whereas quasicondensation arises at low temperature as a consequence of thermal fluctu-
ations: this interplay with temperature bears an even richer phenomenology.



Appendix A

One-body density matrix

In this appendix, the expression of Eq. (2.28) is derived starting from the results of the
extended Bogoliubov theory presented in Ref. [Mora & Castin, 2003].

The one-body density matrix in the density phase formalism is defined as

G1(r, r
′) = 〈Ψ̂†(r)Ψ̂(r′)〉 = 〈

√

ρ̂(r)ei[θ̂(r
′)−θ̂(r)]

√

ρ̂(r′)〉. (A.1)

Expanding this expression to the second order, Mora & Castin obtained for the reduced
one-body density matrix

g1(r
′, r) = exp

[

−1

2
〈: (∆θ)2 :〉2 −

1

8
〈: (∆δρ̃)2〉2

]

, (A.2)

where the normal ordering is taken with respect to the Λ̂-operators defined as the pro-
jection of the B̂ operator, rid of the P̂ and Q̂ operators, orthogonal to φ0

Λ̂(r) =
∑

j

u⊥j(r)b̂j + v⊥j(r)b̂
†
j , (A.3)

the subscript ⊥ denotes the projection orthogonal to φ0. The Λ̂ operators describe the ex-
citations orthogonal to the quasicondensate [Castin & Dum, 1998] and they obey the com-
mutation rules [Λ̂(r), Λ̂†(r′)] = δr,r′/ℓ − φ0(r)φ0(r

′). The expectation value 〈Λ̂†(r)Λ̂(r)〉
gives the density of non-condensed atoms at the position r.

The expressions for ∆θ and ∆δρ̃ read

∆θ = θ̂(r′)− θ̂(r) =
1

2i
(∆Λ̃−∆Λ̃†) (A.4)

∆δρ̃ = δρ̃(r′)− δρ̃(r) =
δρ̂(r′)
ρ0(r′)

− δρ̂(r)

ρ0(r)
, (A.5)

where

∆Λ̃ = Λ̃(r′)− Λ̃(r), Λ̃(r) =
Λ̂(r)
√

ρ0(r)
(A.6)

δρ̂(r) =
√

ρ0(r)[Λ̂(r) + Λ̂†(r)]. (A.7)
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With these definitions the exponent of Eq. (A.2) can be expressed in terms of the Λ̂-
operators by carefully inserting the expression for (∆θ)2 and (∆δρ̃)2. Taking the normal
ordering of the Λ̂-operators and substituting their expressions in terms of the Bogoliubov
modes in Eq. (A.3), one obtains

g1(r
′, r) =

exp

[
∑

j

(

2v∗⊥j(r
′)v⊥j(r

′) + 2v∗⊥j(r)v⊥j(r)− 2v∗⊥j(r)v⊥j(r
′)− 2v∗⊥j(r

′)v⊥j(r)
)

× (1 + pj)

+ (2u∗⊥j(r
′)u⊥j(r

′) + 2u∗⊥j(r)u⊥j(r)− 2u∗⊥j(r)u⊥j(r
′)− 2u∗⊥j(r

′)u⊥j(r))pj

]

, (A.8)

where pj = (eεj/(kBT )−1)−1 comes from the term b̂†j b̂j, whereas the quantum fluctuations

come from b̂j b̂
†
j. The last expression can be rewritten as

g1(r, r
′) = exp



−1

2

∑

j

(1 + pj)

∣
∣
∣
∣
∣

v⊥j(r)
√

ρ0(r)
− v⊥j(r

′)
√

ρ0(r′)

∣
∣
∣
∣
∣

2

+ pj

∣
∣
∣
∣
∣

u⊥j(r)
√

ρ0(r)
− u⊥j(r

′)
√

ρ0(r′)

∣
∣
∣
∣
∣

2


 ,

(A.9)

that coincides with the expression for the one-body density matrix in Eq. (2.27). The
zero temperature case is recovered by imposing pj = 0, so that the only contribution left
comes from the Bogoliubov v⊥-modes.



Appendix B

Crank-Nicholson algorithm

This appendix is devoted to the description of the semi-implicit Crank-Nicholson al-
gorithm [Ames, 1992]. This finite difference method is typically used for the solution of
partial differential equation and in particular has found a large popularity in the ultracold-
quantum gases community for its efficiency in the solution of the GP equation (see among
others [Chiofalo et al., 2000,Cerimele et al., 2000,Muruganandam & Adhikari, 2009]).

The time-independent GPE, reported here for convenience

[

− ~
2

2m
∆r + V (r) + g0N0|φ0(r)|2

]

φ0(r) = µφ0(r), (B.1)

is a partial differential equation in the spatial variable. Its peculiarity is the non-linear
term entering the effective potential that makes it a non-linear Schrödinger equation. The
numerical procedure to compute the solution φ0 is achieved by discretizing the space in
unphysical segments of length ℓ much smaller than the other length-scales coming into
play, as discussed in Section 2.3. In this manner both the wavefunction and its derivatives
are defined on a spatial grid and the solving procedure becomes a finite difference method.

The solution of the problem is achieved by introducing a fictitious imaginary time
variable t → τ = it and evolving an initial trial wavefunction. The introduction of an
imaginary time component modifies the partial differential equation into

~
∂

∂τ
ψτ
r = −Hψτ

r , (B.2)

where ψτ
r denotes ψ(r, τ), i.e. the wavefunction at the spatial point r at the imaginary

time τ . Eq. (B.2) reads as a diffusion equation with an absorption term. If the solving
algorithm is stable, the trial wave function, when propagated in imaginary time, converges
to the ground state solution. In fact, the trial wavefunction can be decomposed on the
basis of the eigenvectors of H as

ψ(r, τ) =
∑

i

φi(r, τ), where Ĥφi(r) = εiφi(r). (B.3)
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Applying the time-evolution operator to the trial wavefunction one obtains

ψ(r, τ2) = e−Ĥ(τ2−τ1)ψ(r, τ1) =
∑

i

e−εi(τ2−τ1)φ(r), (B.4)

and considering that the ground state energy ε0 is the lowest eigenvalue

lim
τ→∞

ψ(r, τ) = Ce−ε0(τ)φ0(r), (B.5)

where τ = τ2 − τ1. The trial wavefunction evolved in imaginary time converges to the
ground state solution. The evolution in real time is a unitary transformation and as
such conserves the norm of the wavefunction. On the contrary, imaginary-time evolution
reduces the norm of the vector, therefore after each time-step the normalization of the
wavefunction has to be restored.

Being the space-time discrete, the wavefunction is defined on a two-dimensional grid
(x, τ) where the space and time steps are respectively ∆x and ∆τ . The standard explicit
method to solve partial differential equations approximates the function and its derivatives
as

ψ = ψk
j , (B.6)

∆ψ =
−2ψk

j + ψk
j+1 + ψk

j−1

∆x2
, (B.7)

∂

∂τ
ψ =

ψk+1
j − ψk

j

∆τ
, (B.8)

where the differences in space are centered at the point j − k of the grid. Inserting these
expressions in Eq. (B.2) one obtains an explicit expression for the wavefunction at time
k + 1 (ψk+1

j ) as a function of the wavefunction at the time k. However, this numerical
procedure is unstable, in the sense that small errors may grow with time instead of being
damped, and it converges only for small values of ∆τ/∆x2. This algorithm is second
order accurate in the spatial coordinate, but only first-order accurate in time.

This instability is cured by using implicit algorithms. The Crank-Nicholson scheme
described here is a semi-implicit algorithm that has the advantage of being unconditionally
stable, i.e. any trial wavefunction would converge to the solution of the GP problem. In
this scheme the field operator and its spatial and time derivatives are centered at the time
k +∆τ/2 and can be expressed as

ψ =
ψk
j + ψk+1

j

2
, (B.9)

∆ψ =
−2ψk

j + ψk
j+1 + ψk

j−1 − 2ψk+1
j + ψk+1

j+1 + ψk+1
j−1

2∆x2
, (B.10)

∂

∂τ
ψ =

ψk+1
j − ψk

j

∆τ
, (B.11)

where the wavefunction is expressed as its average at the time k and k + 1.
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Inserting these definitions, the time-dependent GPE reads

~
ψk+1
j − ψk

j

∆τ
=

~
2

2m

(

−2ψk
j + ψk

j+1 + ψk
j−1 − 2ψk+1

j + ψk+1
j+1 + ψk+1

j−1

2∆x2

)

−(Vj + U |ψk
j |2)

ψk
j + ψk+1

j

2
.

(B.12)

The effective potential at time k is renamed for simplicity Ṽ k
j = Vj + U |ψk

j |2. One can
split the components at different times (k and k + 1) as

ψk+1
j

(

~

∆τ
+

~
2

2m∆x2
+
Ṽ k
j

2

)

− ~
2

4m∆x2

(

ψk+1
j+1 + ψk+1

j−1

)

=

= ψk
j

(

~

∆τ
− ~

2

2m∆x2
−
Ṽ k
j

2

)

+
~
2

4m∆x2

(

ψk
j+1 + ψk

j−1

)

.

(B.13)

Dividing by ~
2/(4m∆x2) one obtains

ψk+1
j

(
2

∆y
+ 2 + Ṽ k

j

)

︸ ︷︷ ︸

Aj

−
(

ψk+1
j+1 + ψk+1

j−1

)

= ψk
j

(
2

∆y
− 2− Ṽ k

j

)

+
(

ψk
j+1 + ψk

j−1

)

︸ ︷︷ ︸

Bj

,

(B.14)

where ∆y = ~∆τ/(2m∆x2). This can be conveniently written in matrix form taking into
account the periodic boundary conditions as

Mψk+1 =










A1 −1 0 . . . −1
−1 A2 −1 . . . 0
0 −1 A3 . . . 0
...

...
...

. . .
...

−1 0 0 . . . AN



















ψk+1
1

ψk+1
2

ψk+1
3
...

ψk+1
N










=










B1

B2

B3
...
BN










, (B.15)

where the wavefunction at time k+1 appears in the first term, whereas the wavefunction
at time k appears in the last one. The only assumption hidden in this procedure consists
in taking Ṽ k+1

j , contained in the M matrix of Eq. (B.15), as Ṽ k
j ., i.e. the effective

potential at the time k. Being the wavefunction at time k (ψk) known, the wavefunction
at the following time step ψk+1 results from the inverted matrix: ψk+1 =M−1B.

This algorithm is unconditionally stable, disregarding conditions on the values of the
parameters ∆x and ∆τ and it is second-order accurate both in space and time. Despite
this, the choice of the time step affects the precision of the results, therefore, the best value
has to be found as a trade-off between simulation time and precision. The price to pay
for choosing an implicit algorithm that does not have convergence issues is the inversion
of a matrix and the solution of a linear problem at each step. However, in the simulations
shown here, the CPU and memory usage for solving the GPE are less demanding than
the requirements for the diagonalization of the BdG matrix that represents the main
numerical limitation in our scheme.
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