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Abstract

The main topics discussed in this thesis are supersymmetric low-energy effective theo-

ries and metastability conditions in generic non-renormalizable models with global and

local supersymmetry.

In the first part we discuss the conditions under which the low-energy expansion

in space-time derivatives preserves supersymmetry implying that heavy multiplets can

be more efficiently integrated out directly at the superfield level. These conditions

translate into the requirements that also fermions and auxiliary fields should be small

compared to the heavy mass scale. They apply not only to the matter sector, but

also to the gravitational one if present, and imply in that case that the gravitino mass

should be small. We finally give a simple prescription to integrate out heavy chiral and

vector superfields consisting respectively in imposing stationarity of the superpotential

and of the Kähler potential; the procedure holds in the same form both for global and

local supersymmetry.

In the second part we study general criteria for the existence of metastable vacua

which break global supersymmetry in models with local gauge symmetries. In par-

ticular we present a strategy to define an absolute upper bound on the mass of the

lightest scalar field which depends on the geometrical properties of the Kähler target

manifold. This bound can be saturated by properly tuning the superpotential and its

positivity therefore represents a necessary and sufficient condition for the existence of

metastable vacua. It is derived by looking at the subspace of all those directions in

field space for which an arbitrary supersymmetric mass term is not allowed and scalar

masses are controlled by supersymmetry-breaking splitting effects. This subspace in-

cludes not only the direction of supersymmetry breaking, but also the directions of

gauge symmetry breaking and the lightest scalar is in general a linear combination of

fields spanning all these directions. Our purpose is to show that the largest value for

the lightest mass is in general achieved when the lightest scalar is a combination of the

Goldstone and the Goldstino partners.

We conclude by computing the effects induced by the integration of heavy multiplets

on the light masses. In particular we focus on the sGoldstino partners and we show that

heavy chiral multiplets induce a negative level-repulsion effect that tends to compromise

vacuum stability, whereas heavy vector multiplets in general induce a positive-definite

contribution.

Our results find application in the context of string-inspired supergravity models,

where metastability conditions can be used to discriminate among different compactifi-

cation scenarios and supersymmetric effective theories can be used to face the problem

of moduli stabilization.

Keywords: Standard Model, Supersymmetry Breaking, Hidden Sector, Moduli,

Supergravity, Effective Field Theories, Vacuum Stability.





Riassunto

I principali argomenti trattati in questo lavoro di tesi sono le teorie supersimmetriche

effettive di bassa energia e le condizioni di metastabilità nell’ambito di generici modelli

non rinormalizzabili con supersimmetria globale e locale.

Inizialmente discutiamo le condizioni per cui la supersimmetria viene preservata

dallo sviluppo in derivate, in modo tale che i multipletti pesanti possano essere integrati

via direttamente in supercampi. Le condizioni si traducono nel richiedere che anche i

bilineari fermionici ed i campi ausiliari siano piccoli rispetto alla massa dei multipletti

pesanti. Le stesse condizioni si applicano sia ai campi di materia che a quelli del

settore gravitazionale, qualora esso sia presente; in quest’ultimo caso però, è necessario

richiedere che anche la massa del gravitino sia piccola. Concludiamo definendo una

procedura per integrare via i multipletti chirali e vettoriali che consiste nell’imporre

rispettivamente la stazionarietà del superpotenziale e del potenziale di Kähler; la stessa

procedura vale sia nel caso di supersimmetria rigida che di supergravità.

Nella seconda parte studiamo alcuni criteri generali per l’esistenza di vuoti metasta-

bili che rompono la supersimmetria in modelli con simmetrie di gauge. In particolare,

proponiamo una strategia per definire un limite superiore assoluto per la massa dello

scalare più leggero che dipende dalle proprietà geometriche della varietà di Kähler.

Questo limite può essere saturato fissando opportunamente i parametri del superpoten-

ziale e pertanto, il fatto che esso sia positivo, costituisce una condizione necessaria e

sufficiente per la metastabilità. Il limite è ottenuto considerando le direzioni nello spazio

dei campi che non ammettono una massa supersimmetrica arbitrariamente grande e tali

che le masse degli scalari associati siano interamente controllate da effetti di rottura di

supersimmetria. Questo sottospazio include non soltanto la direzione di rottura della

supersimmetria, ma anche le direzioni di rottura delle simmetrie di gauge e, in generale,

lo scalare più leggero risulta essere una combinazione lineare di queste direzioni. Il nos-

tro obbiettivo è di mostrare che il valore massimo per la massa più leggera si ottiene in

generale quando lo scalare più leggero è una combinazione dei partner scalari associati

al Goldstino e ai Goldstones.

Concludiamo studiando gli effetti indotti dall’integrazione di multipletti pesanti

sulle masse di quelli leggeri; in particolare ci concentriamo sulla massa dei partner

scalari del Goldstino e mostriamo che i multipletti chirali pesanti contribuiscono con

un effetto negativo di level-repulsion che tende a compromettere la metastabilità mentre

i multipletti vettoriali pesanti inducono in generale un contributo positivo.

I nostri risultati possono trovare applicazione nell’ambito dei modelli di supergravità

derivanti dalla Teoria delle Stringhe, dove le condizioni di mestabilità possono essere

usate per discriminare tra differenti scenari di compattificazione mentre le teorie effet-

tive possono essere usate per affrontare il problema della stabilizzazione dei moduli.

Keywords: Modello Standard, Rottura di Supersimmetria, Supergravità, Moduli,

Settore Nascosto, Teorie di Campo Effettive, Stabilità del Vuoto.
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“But precisely to the hero

is beauty

the hardest thing of all.

Unattainable is beauty

by all ardent wills.”

Friedrich Nietzsche

Thus Spake Zarathustra.





Introduction

We are entering a very exciting era for high energy physics! In November 2009 the

Large Hadron Collider (LHC) at CERN in Geneva officially became the most powerful

particle accelerator in the world. The energy scale which is going to be systematically

explored by the LHC is the teraelectronvolt (TeV= 1012 eV) which is 11 orders of

magnitude larger than the energy required to ionize a hydrogen atom. At these energies,

physicists are going to probe the fundamental interactions between matter constituents

up to distances of the order of 100 zeptometers (10−19 m) which is 9 orders of magnitude

smaller than the typical atomic size! The theoretical framework describing physics at

such scales is the quantum theory of fields which combines in a unified formalism the

two most important physical theories of the 20th century namely Special Relativity and

Quantum Mechanics.

The Standard Model is the universally accepted quantum theory of the fundamental

particles and forces; it describes the physics of three fermionic generations of quarks

and leptons and their interactions mediated by the exchange of gauge bosons. The

Standard Model has been tested with extremely high accuracy up to energies of the

order of 102 GeV and no significant deviations have been observed so far between

theoretical predictions and experimental data. Despite this enormous success, one

fundamental building block of the Standard Model is still missing: the Higgs boson.

This particle is the elementary excitation of a fundamental field (the Higgs field) which

is expected to trigger the spontaneous breaking of the electroweak symmetry and to

give mass to both the gauge bosons of weak interactions and to the matter fermions. On

top of that, the Higgs boson is a crucial ingredient of the Standard Model also because

it ensures the unitarity of the scattering amplitudes of longitudinally polarized gauge

bosons at energies of the order of 1 TeV. If the Higgs boson is not found in the near

future, some new mechanism is expected to show up at the TeV scale, and this is

exactly the energy range which is going to be extensively investigated by the LHC.

Besides the obvious interest for the Higgs sector, there exist other important mo-

tivations to expect very exciting physics at the TeV scale; this is because, even if the

Higgs boson is discovered at the LHC, there are still several reasons to consider the

Standard Model a partly unsatisfactory theory. The first problem we can mention is

the fact that the Standard Model depends on too many free parameters (precisely 19)

which must be fixed by experimental measurements; in particular the theory does not

predict the values of the quark and lepton masses and there is no fundamental ex-
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2 Introduction

planation for the different hierarchies among them. Another important aspect is that

the Standard Model describes only three of the four fundamental interactions so far

discovered in nature namely the electromagnetic, the strong and the weak interactions.

The inclusion of gravity in this scheme presents some important difficulties. In par-

ticular it implies that the Standard Model is not a truly fundamental theory but just

a low-energy effective description which is valid only up to the energy scale at which

gravity becomes as strong as the other interactions. The energy scale at which this is

expected to happen is the Planck scale which is of the order of 1028 eV, 16 orders of

magnitude larger than the TeV scale! There exist, however, some potential problems in

considering the Standard Model as a low-energy effective theory valid up to the Planck

scale. The major difficulty comes from the fact that the Higgs boson mass receives very

large quantum corrections from the exchange of virtual particles at the quantum level

and these contributions are in general of the order of the Planck mass, which is very

large compared to the expected order of magnitude of the Higgs physical mass. Such a

small value can arise only as a consequence of bizarre cancellations of large unrelated

contributions, achieved by an extremely accurate fine tuning of the parameters of the

theory, and is then very unnatural. This problem associated to the naturalness of the

Higgs mass is known as the hierarchy problem and it is the main theoretical argument

to expect new physics beyond the Standard Model at the TeV scale. Other important

limitations of the Standard Model emerge when we also consider cosmological obser-

vations; indeed the theory does not include a candidate sector for the dark matter

and there is no natural explanation for the small value of the cosmological constant,

introduced in Einstein’s equations of General Relativity to explain the cosmological

expansion of the Universe.

The quest for the high energy completion of the Standard Model and for the fun-

damental theory unifying gravity with the other interactions is the major challenge

of modern high energy physics research. In the construction of realistic models of

physics beyond the Standard Model, theoretical physicists are commonly guided and

inspired, as in the case of the hierarchy problem, by aesthetic criteria like naturalness,

elegance and simplicity; the most successful theories are considered to be those which,

starting from the smallest number of hypotheses or assumptions, succeed in explaining

the greatest number of empirical facts. There is nothing wrong in being inspired by

subjective criteria like beauty or symmetry to formulate physical theories; on the other

hand, the greatest mystery of science is probably the fact that nature seems to follow

exactly the same criteria!

There are essentially two approaches to the study of physics beyond the Standard

Model: on one hand one can try to guess what the theory describing all the interac-

tions in an unified way at the Planck scale is and identify the low-energy features of

the theory using consistency arguments. On the other hand one can look at the low-

energy experimental facts which are not naturally explained in the Standard Model

and search for a more natural explanation for them. It is very remarkable that these

two approaches appear to converge in the same direction defining a special ingredi-
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ent which is expected to characterize physics beyond the Standard Model: the idea

of supersymmetry (SUSY). From the low-energy phenomenological perspective, super-

symmetry represents a natural mechanism to explain the small value of the Higgs mass;

the way this is achieved is by postulating the existence of a fundamental symmetry

relating bosons and fermions which automatically enforces the miraculous cancellations

among the large quantum corrections to the Higgs mass. On the other hand, from the

purely theoretical high-energy perspective, supersymmetry appears also to be a neces-

sary ingredient of String Theory, which is the only presently known candidate theory

for a unified fundamental description of all the interactions at the Planck scale.

Despite the enormous appeal of supersymmetry, the construction of realistic super-

symmetric models presents some very non-trivial aspects. The difficulties are associated

to the fact that SUSY cannot exist as an exact symmetry of nature since in that case

it would predict a degenerate spectrum of fermion and boson masses which is not ex-

perimentally observed. On the other hand, if one expects supersymmetry to be the

mechanism responsible for the stabilization of the Higgs mass, it cannot be arbitrarily

broken. Most of the difficulties then arise because it is known from some general sum

rules that the spontaneous breaking of supersymmetry must involve a completely new

sector, called hidden sector, which interacts with the Standard Model particles only

through suppressed interactions and whose physics is a priori completely unknown.

A very common paradigm is to assume that the hidden sector contains the moduli

sector of String Theory. Moduli fields are neutral scalar fields whose vacuum expecta-

tion values determine the geometrical properties of the compactification manifold and

which interact with Standard Model fields only through gravitational interactions sup-

pressed by inverse powers of the Planck mass. The fact that moduli are in general ex-

pected to be stabilized with non-vanishing vacuum expectation values makes them very

natural candidates for triggering the spontaneous breaking of supersymmetry. In this

scenario, gravity is assumed to be the principal mechanism by which supersymmetry-

breaking effects are transmitted to Standard Model superpartners. This suggests that

the most natural theoretical framework to study supersymmetry breaking is actually

supergravity (SUGRA).

In this thesis work we will review and extend some useful tools that can be used

to simplify the study of the moduli sector physics in string-inspired models. There

are two fundamental difficulties that one has to face in this context. The first one

is the fact that there exists a very large variety of models which correspond to dif-

ferent compactification scenarios, but not all of them are expected to give a realistic

description of our universe. The second problem is the fact that for each particular

model there is a proliferation of moduli fields and in general an analytical study of

the full dynamics is totally prohibitive. The first complication requires the study of

some general criteria to efficiently discriminate among different scenarios. As a matter

of fact, the only strong condition one can impose on realistic models is the existence

of (at least) one metastable vacuum which breaks supersymmetry with a small and

positive cosmological constant. Tackling the second difficulty requires the possibility
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of reducing the number of moduli fields that are effectively important in the study of

the low-energy supersymmetry breaking dynamics. This can be done by integrating

out all the heavy moduli that are stabilized with large supersymmetric masses and con-

structing a low-energy effective field theory describing the dynamics of the remaining

light moduli. To summarize, the main objective of this thesis is to develop some useful

strategies to tackle the two problems mentioned above; metastability conditions and

supersymmetric effective theories are the principal instruments we introduce to achieve

our purpose and are the main topics we are going to extensively study in this work.

This thesis is structured as follows. In the first two chapters we review the main

ideas and results in global and local supersymmetry that are relevant for our discus-

sions; the remaining three chapters represent the original core of this work and collect

our main results on supersymmetric effective theories and vacuum stability. To be

more precise, in Chapter 1 we first discuss more in depth the fundamental arguments

motivating the study of supersymmetry; the second part of the chapter is a technical

review of the most general non-renormalizable models containing matter and gauge

fields in SUSY and SUGRA. Particular attention is given to the derivation of the su-

pergravity Lagrangian which, for later convenience, is performed in the superconformal

formalism. In Chapter 2 we discuss in some detail supersymmetry breaking focusing

our attention on the constraints imposed by the supertrace formula and the hidden

sector paradigm; we then present two important transmission mechanisms, namely

gravity and gauge mediation. We conclude by discussing the characteristics of the

hidden sector in string-inspired models and by better defining the problematics which

inspire this work.

Chapter 3 is dedicated to the study of low-energy effective theories and the consis-

tent supersymmetric integration of heavy multiplets in global and local supersymme-

try. This part is based on the results presented in our paper Brizi, Gomez-Reino and

Scrucca, 2009 [1]. Our main contribution relates to the integration of heavy multiplets

in supergravity theories, since the case of rigid supersymmetry has already been ex-

tensively studied in the literature both for chiral and vector multiplets. In the case of

SUGRA we find that one can use the same procedure valid in the rigid case to integrate

out heavy multiplets at the superfield level provided that the mass of the gravitino,

or equivalently the cosmological constant, is small compared to the heavy field mass

scale.

Chapter 4 is devoted to the study of metastability conditions in general non-linear

σ-models including both chiral and vector multiplets. This part is based on the results

presented in our paper Brizi and Scrucca, 2011 [2]. Our main contribution consists in

this case in clarifying the role of Goldstone partners in defining the strongest upper

bound on the mass of the lightest scalar in models in which the superpotential can be

arbitrarily varied while the Kähler potential and the gauged isometries are assumed

to be fixed. This work extends and improves some previous studies in which only

the Goldstino partners were taken into account to define necessary conditions for the

existence of metastable vacua.
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In Chapter 5 we combine the general ideas of the previous two chapters and study

the effects induced by the integration of heavy multiplets on the masses of the light

scalars and on the metastability conditions; this is done in the special case for which all

vector multiplets are heavy and the only potentially dangerous modes are the Goldstino

partners. This part is based on the results presented in our paper Brizi and Scrucca,

2010 [3]. In this chapter we show that the correction to the effective sGoldstino mass

induced by heavy chiral multiplets is always negative and tends to compromise vacuum

metastability, whereas the contribution from heavy vector multiplets is always positive

and tends, on the contrary, to reinforce it.

In the section dedicated to the conclusions we present a detailed summary of the

main results achieved in this thesis and discuss some possible future directions.
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Chapter 1

Supersymmetry and Supergravity

In this chapter we present a review of the basic ideas and tools in global and local

N = 1 supersymmetry that will be useful for future discussions; in particular we

focus our attention on the class of generic non-renormalizable models called non-linear

σ-models.

In the first part we review the most important arguments singling out supersymme-

try as one of the most fascinating conjectured feature of physics beyond the Standard

Model. We show that there exist several hints, mostly based on phenomenological and

on purely theoretical arguments, which suggest that supersymmetry may play a rele-

vant role in describing physics at the TeV scale and beyond. This first part has the form

of a brief non-technical review of the main motivations for studying supersymmetry.

In the following sections we review in a pragmatic way the structure of non-linear

σ-models both in SUSY and SUGRA, focusing our attention on the derivation of the

scalar potential and the mass matrices. In the rigid case we schematically recall the

derivation of the full Lagrangian and the masses of scalar, spinor and gauge fields; we

will use these expressions to revisit the supertrace formula which imposes strong con-

straints on the possibility of realizing realistic scenarios for supersymmetry breaking.

This part is presented as a brief technical review of the main formulas that we will

need in the following chapters; since this topic is quite standard and well established

we will focus on the main concepts avoiding too many details.

In the case of supergravity theories, we will present in some detail the construction

of the most general Lagrangian. This part is less standard since in the literature there

exist several different approaches to the subject; for this reason we will perform a more

careful and detailed analysis. It turns out that the most suitable framework for our

purposes is the superconformal supergravity formalism. We therefore revisit the main

steps and arguments followed in the construction of the supergravity Lagrangian in this

approach and we recall the expressions of the scalar potential and the scalar masses

which will be extensively used in the following chapters.

7



8 Supersymmetry and Supergravity

1.1 Effective Field Theories and Natural Hierar-

chies

At present time there exist several indications suggesting that supersymmetry [4–6]

should be considered as a plausible guiding principle for physics beyond the Standard

Model [7–9]. Before discussing the main arguments in favor of this hypothesis, let us

first review the modern point of view on the Standard Model and why it is expected

to be an incomplete theory.

The very first consideration we can do is that the Standard Model cannot be a

fundamental theory because it does not include a truly fundamental description of

gravitational interactions at the quantum level. More precisely, the canonical quanti-

zation of General Relativity produces a non-renormalizable quantum field theory with

a dimensionful coupling 1/M2
P proportional to the inverse of the Planck mass. From

a modern perspective, the fact the Standard Model plus General Relativity is a non-

renormalizable quantum field theory means that it is an effective description which is

valid only for energies much smaller than the cut-off scale MP at which the effective

coupling E2/M2
P becomes of order one. At the Planck scale this picture is expected

to break down and should be replaced by a more fundamental theory which includes

new degrees of freedom. A priori there are no serious motivations to believe that this

ultimate theory is a renormalizable quantum field theory; in fact, most attempts to

construct a truly fundamental quantum theory of gravitational interactions are based

on completely new paradigms (e.g. String Theory). We conclude that renormalizabil-

ity should not be considered as a fundamental principle in quantum field theory model

building; non-renormalizable theories are perfectly fine as long as we consider them as

low energy effective descriptions of more fundamental theories; it is exactly in this sense

that we consider the Standard Model as an incomplete (or not fundamental) theory.

Renormalizable quantum field theories are very peculiar theories; technically renor-

malizability corresponds to the possibility of extrapolating long range physics to small

distances without encountering new degrees of freedom. In this sense renormalizable

quantum field theories can be truly fundamental descriptions of nature. However,

more in general, effective Lagrangians do not contain only renormalizable operators

of dimension di 6 4 but include also a tower of higher-dimensional operators whose

couplings are suppressed by the mass scale Λ at which new physics shows up:

Leff = Ldi64 +
∑
di>4

λdi
Odi

Λdi−4
, (1.1)

where Odi are operators of dimension di and λdi are dimensionless couplings; Ldi64 is

the renormalizable Lagrangian. At tree level, the effect of each coupling can be tracked

by simple dimensional analysis; in particular only the dimensionless effective couplings

λ̃di(E) ∼ λdi (E/Λ)di−4 can enter in the definition of observable amplitudes. This anal-

ysis shows that in the infrared region E � Λ only the operators in the renormalizable

Lagrangian are important whereas the contributions coming from the higher dimen-
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sional ones flow to zero. Operators with mass dimension di < 4 are called relevant

since they always give important contributions in the infrared; the ones with di > 4 are

called irrelevant since their effects disappear in the low-energy regime; finally operators

with di = 4 are called marginal and the associated tree -level effects are independent

of the energy scale. Despite the infinite tower of higher-dimensional operators, non-

renormalizable Lagrangians conserve a predictive power. Indeed at each finite order

(E/Λ)n, only a finite number of operators contribute to the amplitudes; this is in fact

not too restrictive since theoretical predictions must be matched with experimental ob-

servations which have finite precision. Quantum corrections introduce some technical

subtleties in this analysis but do not spoil the general picture. This can be seen by

choosing a regularization scheme (such as Dimensional Regularization) which does not

exhibit power-like divergencies; in that case, simple dimensional analysis considerations

hold also true at the quantum level. It is also possible to see that renormalizable La-

grangians are stable under loop corrections in the sense that no new higher-dimensional

operator is generated at the quantum level. On the other hand, if a non-renormalizable

operator is included at tree level, infinitely many higher-dimensional operators are gen-

erated by quantum effects.

The Standard Model, by itself, is a renormalizable theory, and a priori it is thus a

good candidate to be a fundamental theory; however, as we have seen, when gravity

is included this is not true anymore. Actually, even without introducing gravity, there

is no reason to assume that there does not exist any new physical effect arising at

some high energy scale smaller than the Planck mass, since the Standard Model has

been tested only up to energies of order 102 GeV. From a low energy perspective,

what we can do is to experimentally estimate the scale Λ at which new physics can

appear. At present time no significant deviations from Standard Model predictions have

been experimentally observed; moreover the accuracy achieved in past experiments is

sufficiently high to conclude that new physics effects are strongly suppressed and the

new physics scale should be very large. More precisely, we observe for example that

dimension-six four-fermion operators violating baryon number are suppressed by a scale

of order [10]

ΛB/ & 1015 GeV . (1.2)

Other constraints on new physics come from flavor-violating processes and the associ-

ated operator are found to be suppressed by a scale of order [10]

ΛF/ & 106 GeV . (1.3)

Despite the good agreement between Standard Model predictions and observations,

there are still some unsatisfactory aspects of the model which motivate theoretical

particle physicists to expect that some new physics should actually show up at smaller

scales. In particular, some problematic aspects of the Standard Model, as we are going

to see, require a solution in terms of new physics in the TeV region. In the following we

are going to discuss the so called hierarchy problem (or naturalness problem) [11, 12],

which is one of the most significant theoretical drawbacks of the Standard Model. It
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has inspired most of the modern scenarios for physics beyond the Standard Model

and, more relevantly, it is the most important phenomenological motivation to study

supersymmetry.

The hierarchy problem is associated with the theoretical difficulty in explaining in a

natural way the small value of the Higgs mass that is suggested by precision electroweak

measurements [10]:

mh . 150GeV. (1.4)

As we are going to discuss in a moment, this value is very unnatural if the energy

scale Λ associated to the new physics is much larger than the TeV scale. It is worth

to stress that the hierarchy problem is not a theoretical inconsistency of the Standard

Model; it is however a well motived question about the naturalness of one of its pa-

rameters which appears to be unnaturally adjusted. The existence of this fine-tuning

suggests that, very likely, some new underlying mechanism is “conspiring” to produce

such an unexpected value.

The problem consists in the fact that a large hierarchy between the Higgs mass

and the physical cut-off is not automatically stable under quantum corrections; more

precisely, loop corrections to the Higgs mass are quadratic in Λ:

(m2
h)eff = m2

h(Λ) + cΛ2 + ... (1.5)

and tend to destroy the hierarchy unless the tree-level mass is unnaturally tuned. The

amount of the necessary fine tuning increases with the scale at which new physics effects

become sizable and for Λ 'MP it turns out to be a formidable task to naturally explain

such a huge hierarchy between the Higgs mass and the Planck scale.

It is natural to expect that if a particle has a mass which is much smaller than Λ

there should exist a symmetry (at least an approximate one) under which the mass

term is forbidden; in this case we say that the mass is “protected” by a symmetry 1.

In ordinary quantum field theory, many examples of naturally small masses protected

by symmetries are known. For example, the photon is naturally massless since gauge

invariance prevents quantum corrections from generating a mass term for it. Similarly,

chiral symmetry forbids a mass term for Dirac fermions implying that quantum cor-

rections are not proportional to the large cut-off but to the fermion mass itself. Scalar

particles, on the other hand, can be naturally light if they are (pseudo) Goldstone

bosons of a spontaneously broken (approximate) global symmetry. In this case shift

symmetry forbids a mass term and the scalar field has only derivative couplings.

In the Standard Model, none of the above mentioned mechanisms prevents large

quantum corrections to the tree-level mass of the Higgs scalar. In absence of any

symmetry principle we then expect mh ' Λ.

1This naturalness criterium has been rigorously formulated by ’t Hooft [13].
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1.2 SUSY as a Solution to the Hierarchy Problem

and Beyond

As we anticipated, supersymmetry offers a natural explanation for the small value

of the Higgs mass; this is achieved by protecting the mass of scalar fields by a new

(unconventional) symmetry relating bosons and fermions. Supersymmetry is not an

ordinary symmetry in the sense that its algebra is a graded Lie algebra; besides the

ordinary (commuting) bosonic generators of the internal and Poincaré symmetries, it

contains anticommuting fermionic generators Q implementing transformations of boson

into fermions and vice-versa; schematically:

Q |B〉 = |F 〉 , Q |F 〉 = |B〉 . (1.6)

Global supersymmetry requires that particles belonging to the same supermulti-

plet are degenerate in mass; this implies that the same chiral symmetry which forbids

fermion mass terms protects also scalar masses from large quantum corrections. Tech-

nically, the way in which this is achieved is through the cancellation of the dangerous

loop diagrams among superpartners of different spins; such cancellations are enforced

by the peculiar structure of the dimensionless couplings required by supersymmetry

invariance. More precisely, the large quadratic quantum corrections to the Higgs mass

associated to loops of heavy fermions (the top or some new heavy particle) are cancelled

by loop diagrams of the corresponding scalar superpartners:

∆m2
h ∝

1

8π2
(λφ − |λψ|2 ) Λ2 + ... ; (1.7)

the cancellation is possible thanks to the special relations between the couplings which

hold in supersymmetry and which guarantee that:

λφ = |λψ|2 . (1.8)

However, as explained more extensively in Chapter 2, supersymmetry cannot be an

exact symmetry of nature and must be broken by some mechanism in order to explain

the non-observation of the predicted degeneracy between Standard Model particles and

superparticles. On the other hand, if supersymmetry is the mechanism responsible for

the stabilization of the electroweak scale, it cannot be broken in an arbitrary way.

In the next chapter we will discuss in some detail soft supersymmetry breaking; here

we limit ourselves to mention the fact that supersymmetry breaking terms should not

spoil the relation between dimensionless couplings which ensure the cancellation of

the dangerous quantum corrections to all orders in perturbation theory. This means

that supersymmetry-breaking terms should be relevant operators with dimensionful

couplings. If we call msoft the scale associated to these operators we have that:

∆m2
h ∝ m2

soft , (1.9)
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which implies that msoft cannot exceed too much the TeV range to avoid fine-tuning

problems.

Supersymmetry is not the only mechanism which has been investigated to solve the

hierarchy problem. A more conventional mechanism to generate naturally large hierar-

chies is by dimensional transmutation of dimensionless couplings in asymptotically-free

non-Abelian gauge theories (as for example in QCD). The basic idea is to start with

a theory which has no dimensionful couplings; the fundamental scale ΛIR of the the-

ory is then dynamically generated at the quantum level by the anomalous breaking of

the scale invariance. More precisely, the low energy scale ΛIR at which the coupling

becomes of order one and perturbation theory breaks down is given by:

ΛIR

Λ
= e

−8π2

b g20 , (1.10)

where g0 denotes the value of the gauge coupling at the large ultra-violet cut-off scale Λ.

At the scale ΛIR, gauge interactions become strong and the creation of fermion conden-

sates 〈ψ̄ψ〉 with a scale of order ΛIR can take place. An example of such condensates

in QCD are pions. These mesons are three pseudo-Goldstone bosons associated with

chiral symmetry breaking and have masses which are much smaller than the other

hadronic resonances. The important aspect is that the presence of light scalar mesons

does not give rise to any fine-tuning problem since a large hierarchy between ΛIR and

Λ can be achieved in a natural way without need to tune the coupling g0 with an ex-

tremely high accuracy. Models based on this mechanism are called Technicolor [14, 15];

in these models the Higgs is not a fundamental particle but (effectively) a composite

one, similarly to the case of pions in QCD. In this case however the scale at which the

postulated new interaction becomes strong is much larger than the one associated to

strong interactions (ΛQCD ' 200 MeV) and it is of the order of ΛTC ' 500 GeV. With-

out entering any further into the details of these models, we just mention the fact that

the minimal realization of the Technicolor scenario as a scaled version of QCD does

not work; qualitatively speaking, this is because the six-dimensional operators which

generate quark masses is as relevant as the dangerous higher-dimensional (4-quarks)

operators which produce anomalous flavor changing effects.

We conclude this general and not completely exhaustive discussion 2 on the possible

solutions to the hierarchy problem by mentioning a third class of models which assumes

the existence of large extra dimensions [17]. In this scenario the large hierarchy between

the electroweak scale and the Planck scale is completely removed and gravity becomes

strong at the TeV scale, which is assumed to be the only fundamental scale in the theory.

The observed weakness of gravity at distances larger than the millimeter range is due to

the existence of (at least 2) new compact spatial dimensions which are large compared

to the weak scale; Standard Model particles are supposed to be constrained by some

mechanism to live on a four-dimensional manifold whereas gravity can also propagate

over all the extra dimensions. The phenomenological signature of this scenario is the

2For a more complete review at the same level of details see for example [16].
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appearance of quantum gravity effects at the TeV scale.

Even though we introduced supersymmetry as a very plausible solution to the

hierarchy problem, this is not the only reason to be interested in it. There exist

in fact at least two other remarkable indications which suggest that supersymmetry is

likely to play a relevant role for physics beyond the Standard Model. These are indirect

evidences coming from theoretical speculations about physics at very high energy scales

(much larger than the TeV scale). In this context, the main paradigm guiding the

theoretical investigation is the idea of unification of gauge interactions (Grand Unified

Theories, GUT) and, at higher energy, the unification of all the interactions, including

gravity (String Theories). It is a remarkable fact that, in both cases, supersymmetry

seems to emerge as the fundamental ingredient which must be taken into account. In

the case of GUTs [18], the unification of gauge couplings within the Standard Model

is inconsistent with the observations at LEP (see for instance [19]). This rules out any

minimal GUTs which break directly to the Standard Model gauge group with only

ordinary matter field content. The inclusion of additional particles or intermediate

steps in the symmetry breaking pattern may improve the situation but a large amount

of model dependence is unavoidably introduced in this way. On the contrary, in the

case of supersymmetric GUTs case (see [20] for an extended review), unification is

achieved with a very good precision within the minimal supersymmetric extension of

the Standard Model (see Chapter 2); the grand unification scale is predicted to be

at MG ' 1016 GeV, quite close to MP which is considered as the scale at which also

gravity is expected to unify with all the other interactions.

As we anticipated, supersymmetry is also intimately connected to String Theory

[21, 22]; in this context its role seems to be even more fundamental. More precisely, any

of the five known String Theories admits an effective low-energy description in terms of

a supergravity theory in 10 space-time dimension; moreover some of these supergravity

models can be obtained from dimensional reduction of N = 1 supergravity in 11

dimensions, which is supposed to be the low energy limit of an even more fundamental

theory called M-theory. Most of these topics go beyond the principal objectives of

this thesis and they will not be developed any further in the following. However, we

think it is worth to mention them to stress again the fact that the hierarchy problem

should not be considered as the unique motivation to study supersymmetric models;

the most relevant hints indicating supersymmetry as a very appealing ingredient of

physics beyond the Standard Model come not only from bottom-up analyses based on

phenomenological observations but also from more abstract theoretical considerations

in a top-bottom approach.

With these considerations, we conclude this non-technical review of the main ar-

guments motivating the study of supersymmetry; in the remaining sections of this

chapter we will review in some detail the more technical aspects of globally and locally

supersymmetric models.
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1.3 Global Supersymmetry

To start we review some basic ingredients of supersymmetric quantum field theories.

The most compact and efficient framework to represent the supersymmetry algebra on

fields is the formalism of superfields in superspace; for an exhaustive introduction to the

subject see [23–26]. The concept of superspace emerges very naturally in the context of

the usual coset construction as an extension of Minkowski space-time and requires the

introduction of four extra fermionic coordinates (Grassmannian coordinates) θα and

θ̄α̇. The fermionic nature of these new coordinates implies that any series expansion of

superfields along these extra directions will involve a finite (small) number of ordinary

fields. The basic building blocks used to construct supersymmetric Lagrangians are

chiral superfields and vector superfields which contain respectively matter and gauge

fields, as well as their superpartners and auxiliary fields. Chiral superfields have the

following content in terms of ordinary fields 3:

Φ(x, θ, θ̄) =φ(x) + i θσµθ̄ ∂µφ(x) +
1

4
θ2θ̄2�φ(x)

+
√

2 θψ(x)− i√
2
θ2 ∂µψ(x)σµθ̄ + θ2 F (x)

(1.11)

and satisfy the supersymmetric covariant constraint D̄α̇Φ = 0, where D̄α̇ is the super-

covariant derivative. Vector superfields are given by:

V (x, θ, θ̄) = −θσµθ̄ Aµ(x) + i θ2 θ̄λ̄(x)− i θ̄2 θλ(x) +
1

2
θ2θ̄2D(x) (1.12)

and satisfy the reality condition V = V †. In fact the expression (1.12) is not the most

general definition and is obtained from the general expression of the vector superfield

by gauge fixing to zero two scalars (C and N) and one spinor (ξα) corresponding

respectively to the θ0, θ2 and θα components; this gauge choice is known as the Wess-

Zumino gauge. The superfield formalism is very practical to construct supersymmetric

Lagrangians since the tensor product of representations of the SUSY algebra (supermul-

tiplets) simply reduces to the product of superfields; supersymmetric invariant actions

can then be constructed by properly integrating arbitrary functions of superfields over

the whole superspace.

1.3.1 Models with only Chiral Multiplets

In this section we recall the structure and properties of non-linear σ-models containing

only chiral superfields [27, 28]; we restrict ourselves to models which contain the min-

imal number of space time derivatives, which means two derivatives acting on scalar

fields, one derivative acting on fermion fields and no derivatives acting on auxiliary

fields. This assumption corresponds to require that each field propagates the minimal

3In this work we adopt the same conventions as [25].
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amount of degrees of freedom (d.o.f.’s), which means two for each complex scalar, two

for each Weyl fermion and zero for auxiliary fields. The most general Lagrangian that

satisfies these properties is parametrized by two functions, the Kähler potential K(Φ, Φ̄)

and the holomorphic superpotential W (Φ), and can be expressed in the compact form:

L =

∫
d4θ K(Φ, Φ̄) +

∫
d2θW (Φ) + h.c. . (1.13)

The requirement of minimal number of space-time derivatives implies that K and

W cannot depend on supersymmetric covariant derivatives Dα. Indeed, suppose for

example that W depends also on the chiral superfield

D̄2Φ̄ = −4 F̄ − 4
√

2 iθσµ∂µψ̄ − 4�φ̄ θ2 ; (1.14)

in this case it is easy to verify that the Lagrangian contains terms which are second

order in space-time derivatives acting on the spinor fields and are controlled by second

derivatives of superpotential.4

The situation is even worse if we suppose that also K depends on the same chiral

superfields D2Φ̄; in this case the Lagrangian contains also terms with higher derivatives

acting on scalar fields which are controlled by second derivatives of the Kähler potential.

On top of that, also the auxiliary fields F i get kinetic terms and become dynamical in

order to compensate for the fact that spinor fields are now propagating more degrees

of freedom.

The off-shell Lagrangian in component fields is easily found to be:

L = − gi̄ ∂µφi∂µφ̄̄ − i gi̄ ψ̄̄σ̄µ
(
∂µψ

i + Γikl ∂µφ
kψl
)

+ gi̄ F
iF̄ ̄ +

[
F i (Wi −

1

2
gi̄ Γ̄

k̄l̄
ψ̄k̄ψ̄ l̄) + h.c.

]
−
[ 1

2
Wij ψ

iψj + h.c.
]

+
1

4
gi̄,kl̄ ψ

iψk ψ̄̄ψ̄ l̄

(1.15)

where gi̄ and Γijk are respectively the Kähler metric and the Levi-Civita connection of

the Kähler manifold associated to the target space spanned by the scalar fields. Notice

that we adopt the short notation in which the derivatives with respect to chiral and

antichiral superfields are denoted by lower indices i and ı̄ which are raised through the

inverse of the Kähler metric.

The Lagrangian is invariant under the action of SUSY transformations on compo-

nent fields:

δφi =
√

2 ε ψi , (1.16)

δψi =
√

2 ε F i + i
√

2σµε̄ ∂µφ
i , (1.17)

δF i = i
√

2 ε̄ σ̄µ∂µψ
i. (1.18)

4 Note that a superpotential linear in D̄2Φ̄ of the form W (Φ) = f(Φ) + g(Φ) D̄2Φ̄ is perfectly fine;
however we can rewrite the second term as a total D̄2 derivative and interpret it as a correction to
the Kähler potential K ′(Φ, Φ̄) ≡ K(Φ, Φ̄) + Φ ḡ(Φ̄) + Φ̄ g(Φ).



16 Supersymmetry and Supergravity

A remarkable property of the Lagrangian (1.15) is that it is not only of leading order in

space-time derivatives, as expected by construction, but also quadratic in the auxiliary

fields F i and in fermion-bilinears ψiψj; this is again a simple consequence of requiring

that the Kähler potential and the superpotential do not depend on supersymmetric

covariant derivatives Dα. From this analysis we learn a very important lesson that

will be useful for future discussions on supersymmetric low energy-effective theories:

supersymmetric models with a limited number of space-time derivatives contain limited

powers of auxiliary fields and fermion bilinears.

The on-shell Lagrangian can be obtained by solving the algebraic equations of

motion of the auxiliary fields F i, which give:

F i = −gi̄ W̄̄ +
1

2
Γijk ψ

jψk . (1.19)

Substituting back this relation into L we finally obtain:

L = − gi̄ ∂µφi∂µφ̄̄ − igi̄ ψiσ̄µ
(
∂µψ

̄ + Γ̄m̄n̄ ∂µφ̄
m̄ψ̄n̄

)
+

1

4
Ri̄kl̄ ψ

iψkψ̄̄ψ̄ l̄

− 1

2
∇iWj ψ

iψj + h.c.− VS ,
(1.20)

where VS is the scalar potential which has the form:

VS = gi̄WiW̄̄ . (1.21)

A vacuum is defined by constant values of the scalars φi and vanishing values of

the fermions ψi, such that VS is stationary; the stationarity condition then implies:

∇iWj F
j = 0 . (1.22)

The masses for the scalar and fermion fields describing fluctuations around the vacuum

are then found to be given by:

(m2
0)i̄ = ∇iWk∇̄W̄

k −Ri̄kl̄ F
kF̄ l̄ , (1.23)

(m2
0)ij = −∇i∇jWk F

k , (1.24)

and

(m1/2)ij = ∇iWj . (1.25)

From the expressions of the SUSY transformations discussed above, we see that the

vacuum is invariant and supersymmetry is preserved as long as all the auxiliary fields

get vanishing vacuum expectation values (v.e.v’s). On the contrary supersymmetry is

broken whenever one of the auxiliary fields F i is non-vanishing on the vacuum and in

this case the only non-vanishing SUSY variation is: δψi =
√

2 ε 〈F i〉. The direction

〈F i〉 in field space is special. For fermions it defines at any stationary point the spinor

field

η =
√

2 〈F̄i〉ψi , (1.26)
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which transforms inhomogeneously and can then be identified with the Goldstino field

associated to the spontaneous breaking of supersymmetry. As expected, we can easily

verify that the Goldstino has a vanishing mass mη = 0 by using the stationarity

condition (1.22) and the expression of the fermion mass matrix (1.25). For scalar

fields, the direction 〈F i〉 defines instead the supersymmetric partner of the Goldstino,

the sGoldstino

ϕ =
√

2 〈F̄i〉φi, (1.27)

which transforms under SUSY as δϕ =
√

2 ε η. The complex sGoldstino field describes

two real scalar fields whose masses are entirely controlled by supersymmetry breaking

effects; we will see in the following chapters that these special modes play an important

role in discussing the stability properties of the scalar potential.

We conclude this section by recalling the expression of the supertrace of the tree

level mass matrices defined as [29, 30]:

sTr[m2] ≡ Tr[m2
0]− 2 Tr[m2

1/2] = 2Ri̄ F
iF̄ ̄ . (1.28)

This formula and its generalization to include vector multiplets (see next section) will

be used in Chapter 2 to review the main obstructions in constructing realistic models

in which supersymmetry is spontaneously broken within the minimal supersymmetric

extension of the Standard Model.

1.3.2 Models with Chiral and Vector Multiplets

In this section we generalize the previous model to include also vector superfields V a

associated to gauge symmetries [31, 32]. We proceed by first considering a model with

only chiral superfields which is invariant under some group G of global symmetries; note

that a group transformation is a symmetry of the action only if it leaves the Kähler

metric invariant or, in other words, if it is an isometry of the Kähler manifold. The

generators of such isometries are holomorphic Killing vectors Xa(Φ) ≡ X i
a ∂i and, at

the infinitesimal level, a generic transformation can be written in terms of some real

parameters λa: δ = λa (X i
a ∂i + X̄ ı̄

a ∂ı̄). It is important to note that the Killing vectors

are not restricted to be linear functions of the superfields; this is because, in general,

at any arbitrary point of the scalar manifold, only the the stabilizer subgroup of G
admits a linear realization [33] whereas generic group transformations may act non-

linearly on a subset of fields (on the Goldstone bosons for example). Under isometry

transformations, the Kähler potential is demanded to be invariant at least up to a

Kähler transformation: δK = λa [ pa(Φ
i) + p̄a(Φ̄

ı̄) ]; this implies that:

X i
aKi + X̄ ı̄

aKı̄ = pa(Φ
i) + p̄a(Φ̄

ı̄) . (1.29)

By taking two sequential covariant derivatives of this expression we obtain Killing’s

equations, which express the invariance of the Kähler metric under Lie dragging:

∇iXa̄ +∇̄X̄ai = 0 . (1.30)
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The next step to construct a gauge invariant non-linear σ-model consists, as usual,

in promoting the global symmetry to a local one. First of all we need to promote

each constant parameters λa to be a function of the superspace coordinates (xµ, θ, θ̄);

more precisely, in order to preserve the chiral nature of matter superfields under gauge

transformations, each group parameter must be promoted to a chiral superfield Λa,

which implies that the gauge group must be complexified. Moreover, we need to intro-

duce a vector superfield V a for each group generator and to require that they properly

transform under gauge transformations in order to make the action invariant under

local symmetry transformations. The Kähler potential must be generalized to include

a dependence on vector fields and it must be invariant under gauge transformation, at

least up to a Kähler transformation:

δK(Φ, Φ̄, V ) = Λa pa(Φ) + Λ̄a p̄a(Φ̄) . (1.31)

Gauge transformations must form a Lie group with an algebra defined by some structure

constants f c
ab :

[Xa, Xb] = −f c
ab Xc , (1.32)

and the action of gauge transformation on fields at leading order in Λa is:

δΦi = ΛaX i
a(Φ) , (1.33)

δV a = − i
2

(
Λa − Λ̄a) +

1

2
f a
bc

(
Λb + Λ̄b)V c +O(V 2) . (1.34)

When the symmetry is linearly realized these expressions reduce to ordinary gauge

transformations with X i
a(Φ) = −i (TaΦ)i, where the generators Ta satisfy the Lie alge-

bra [Ta, Tb] = i f c
ab Tc; note that the transformation laws for V a do not depend on the

way the symmetry is realized on the chiral fields (whether linearly on non-linearly).

The most general non-renormalizable Lagrangian with leading number of derivatives

is given by:

L =

∫
d4θ
[
K(Φ, Φ̄, V )

]
+

∫
d2θ
[
W (Φ) +

1

4
Hab(Φ)W aαW b

α

]
+ h.c. , (1.35)

where, in addition to the standard potentials K and W we introduced a holomorphic

gauge kinetic function Hab multiplying the kinetic term of gauge fields; for simplic-

ity we also exclude Fayet-Iliopoulos terms since such terms are not guaranteed to be

compatible with gravitational interactions.

To write down the previous Lagrangian in terms of ordinary fields, it is useful to

fix the Wess-Zumino gauge. In this gauge we can expand K in powers of V and use

the fact that V 3 = 0:

K(Φ, Φ̄, V ) = K(Φ, Φ̄) +Ka(Φ, Φ̄)V a +
1

2
Kab(Φ, Φ̄)V aV b . (1.36)

The functions Ka and Kab are not arbitrary and are constrained by gauge invariance to

be functions of the holomorphic Killing vectors. To derive Ka we can use the relation

(1.31) at leading order in Λa evaluated in V a = 0 and we obtain:

Ka = −2iX i
aKi + 2i pa . (1.37)
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Taking one derivative of the previous expression with respect to anti-chiral superfields,

we obtain:

X i
a =

i

2
gi̄Ka̄ ; (1.38)

this expression shows that −1
2
Ka can be identified with the Killing potentials for the

Killing vectors X i
a. To obtain Kab we can use the fact that the imaginary part of (1.37)

is actually approximately satisfied also for V a 6= 0 up to the second order:

X i
aKi − X̄ ̄

aK̄ − iKa = pa − p̄a +O(V 2) . (1.39)

By taking a derivative of this equation with respect to vector superfields and evaluating

it at V a = 0 we finally obtain:

Kab = 4 gi̄X
i
(aX̄

̄
b) . (1.40)

Another important relation can be obtained by imposing the gauge invariance of the

superpotential:

X i
aWi = 0 . (1.41)

Gauge invariance of the gauge kinetic Lagrangian implies that the variation of the

gauge kinetic function must cancel the variation of W a
α transforming in the adjoint.

This implies that:

X i
aHbci = −2f d

a(b Hc)d . (1.42)

Finally an important relation can be obtained by exploiting the equivariance condition

(1.32) on the Killing vectors, which guarantees that the Killing potentials can be chosen

in the adjoint representation, so that:

gi̄X
i
[aX̄

̄
b] =

i

4
f c
ab Kc . (1.43)

We are now ready to recall the expression for the full Lagrangian in terms of com-

ponent fields; the computation shows that also in this case the Lagrangian contains,

by construction, the minimal number of space-time derivatives and it is quadratic in

fermion-bilinears and in the auxiliary fields F i and Da. This time, for simplicity, we

give directly the expression of the final Lagrangian in which the auxiliary fields F i and

Da have been replaced by their equations of motion.

L =− gi̄Dµφ
iDµφ̄̄ − 1

4
hab F

a
µνF

bµν +
1

4
θab F

a
µνF̃

bµν − igi̄ ψi
(
D/ ψ̄̄ + Γ̄m̄n̄D/ φ̄

m̄ψ̄n̄
)

− i

2
hab λ

aD/ λ̄b + h.c.+
1√
2
habi λ

aσµνψiF b
µν + h.c.

− 1

2

[
∇iWj ψ

iψj − gi̄habiW̄̄ λ
aλb +

√
8
(
gi̄X̄

̄
a +

i

4
hbchabiKc

)
ψiλa

]
+ h.c.

+
1

4
Ri̄kl̄ ψ

iψkψ̄̄ψ̄ l̄ − 1

4
gi̄habihcd̄ λ

aλbλ̄cλ̄d − 1

2
hcdhacihbd̄ ψ

iλaψ̄̄λ̄b

+
1

4

[
∇ihabj ψ

iψjλaλb + hcdhacihbdjψ
iλaψjλb

]
+ h.c.− VS ,

(1.44)
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where VS is the scalar potential defined as:

VS = gi̄WiW̄̄ +
1

8
habKaKb . (1.45)

In these expressions Dµ is the covariant derivative acting as Dµφ
i = ∂µφ

i + AaµX
i
a,

Dµψ
i = ∂µψ

i + Aaµ∂jX
i
a ψ

j and Dµλ
a = ∂µλ

a + f a
bc A

b
µλ

c, whereas F a
µν is the field-

strength F a
µν = ∂µA

a
ν−∂νAaµ+f a

bc A
b
µA

c
ν and hab and θab denote the real and imaginary

parts of Hab.

The equations of motion of the auxiliary fields are given by:

F i = −gi̄W̄̄ +
1

2
Γijk ψ

jψk +
1

2
gi̄hab̄ λ̄

aλ̄b , (1.46)

Da = −1

2
habKb −

i√
2
habhbci ψ

iλc + h.c. . (1.47)

The previous Lagrangian is not invariant under ordinary SUSY transformations; this

is because the Wess-Zumino gauge is not preserved by SUSY transformations and

a compensating gauge transformation is required to restore the gauge choice. The

additional gauge transformation has the effect of changing ordinary derivatives into

covariant derivatives in the variation of matter fields whereas it has no effects on the

transformation laws of the vector multiplets:

δφi =
√

2 ε ψi , (1.48)

δψi =
√

2 ε F i +
√

2iD/ φi ε̄ , (1.49)

δAaµ = iε σµλ̄
a − iλaσµ ε̄ , (1.50)

δλa = iεDa + σµνε F a
µν . (1.51)

Note finally that the Wess-Zumino gauge does not fix completely the gauge freedom

and the Lagrangian (1.44) is still invariant under ordinary gauge transformations with

real parameter λa ≡ Re Λa|θ = 0 .

A vacuum is defined by constant values of the scalars φi and vanishing values of

the fermions ψi, λa and the vectors Aaµ, such that VS is stationary. The stationarity

conditions ∇iVS = 0 imply that:

∇iWj F
j +

1

2
habiD

aDb + iX̄aiD
a = 0 . (1.52)

One further important relation can be derived by taking a particular linear combination

of the stationarity conditions. We can contract the previous system of equations with

the Killing vectors X i
a; the real part of X i

a VS,i vanishes once we use the relations (1.42)-

(1.43) as we expect from the gauge invariance of the scalar potential under real gauge

transformations. On the contrary, the imaginary part does not vanish automatically

and it represents a constraint relating F-type and D-type auxiliary fields. Using (1.41)

and its derivatives as well as (1.42), one finds the following relation:

i∇iXa̄ F
iF̄ ̄ − gi̄X i

(aX̄
̄
b) D

b +
1

2
f d
ab θdcD

bDc = 0 . (1.53)
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This relation is very interesting since it shows that the values of the auxiliary fields F i

and Da are not completely independent and we will use it to discuss some important

consequences for spontaneous supersymmetry breaking.

The masses of the scalars and fermions describing fluctuations around the vacuum

are found to be given by:

(m2
0)i̄ =∇iWk∇̄W̄

k −Ri̄kl̄ F
kF̄ l̄ + habX̄aiXb̄ + habhacihbd̄D

bDc

+
(
i∇iXa̄ − i hbchabiXc̄ + i hbchabjX̄ci

)
Da , (1.54)

(m2
0)ij = −∇i∇jWk F

k − habX̄aiX̄bj −
1

2

(
∇ihabj − 2hcdhacihbdj

)
DaDb

+ 2i hbchab(iX̄cj)D
a , (1.55)

and

(m1/2)ij = ∇iWj , (1.56)

(m1/2)ab = habi F
i , (1.57)

(m1/2)ia =
√

2 X̄ai −
i√
2
habiD

b , (1.58)

whereas the masses of vector fields are given by:

(m2
1)ab = 2X i

(aX̄b)i . (1.59)

Form the expressions of the SUSY transformations we see that the vacuum is in-

variant as long as all the F and D auxiliary fields vanish; on the contrary SUSY is

spontaneously broken whenever some F i and/or Da is non-vanishing on the vacuum

and in this case we have δψi =
√

2 ε F i and δλa = i εDa. As discussed before, however,

the values of the F and D auxiliary fields are not completely independent and using eq.

(1.53) we can conclude that supersymmetry breaking scenarios in which D 6= 0 while

F = 0 cannot be realized in models in which the Kähler potential is strictly invariant

under gauge transformations (1.31). More precisely, this is because F i = 0 implies that

either Da or X i
a should vanish in eq. (1.53) but X i

a = 0 implies Da = 0 by equation

(1.37) when pa = 0; we will discuss in more detail this aspect in Chapter 4 where

we will derive an accurate inequality involving F and D in the case of renormalizable

models. From now on we exclude for simplicity the possibility of non-zero variations

of the Kähler potential under gauge transformations and we assume

pa = 0 (1.60)

since other situations are not guaranteed to be compatible with a coupling to gravity

and can also not emerge in low-energy effective descriptions of microscopic theories

where the variations were strictly vanishing (see [34] for a recent discussion of this

point). In particular, this is also the motivation to exclude Fayet-Iliopoulos terms from

the beginning.
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The directions 〈F i〉 and 〈Da〉 in the fermion field space are special since at any

stationary point they define the Goldstino spinor

η =
√

2 〈F̄i〉ψi − i 〈Da〉λa , (1.61)

which is massless and represents the Goldstone mode of broken supersymmetry. The

identification of the scalar superpartners of the Goldstino turns out to be more com-

plicated than in the pure chiral case; indeed, we can see that there does not exist

any simple linear combination of scalar fields φi which is trivially mapped into the

Goldstino fermion under SUSY transformations, the main complications arising in re-

producing the term which involves the gauginos. These difficulties are associated to

the fact that we have fixed a non-supersymmetric gauge (the Wess-Zumino gauge);

to better understand which scalar fields should be associated to the gauginos λa it is

easier to work in a supersymmetric gauge. When the gauge symmetry is spontaneously

broken it is practical to fix the so called “Fayet gauge” [35] in which one chiral field

for each broken generator is frozen to an arbitrary scale: Φa ≡ 〈X̄ai〉Φi = Ma with

a = 1, ...nB and nB is the number of broken generators. Note that we are allowed to

gauge away an entire superfield for each broken generator as consequence of the fact

that in supersymmetric models the gauge parameter is promoted to a chiral superfield.

In the Fayet gauge the model contains nB massive vector superfields; the dynamics

of the chiral superfields we gauged away reappears in each massive vector superfield

through new propagating d.o.f’s: the real scalars Ca, the spinors ξa , the longitudinal

polarizations of Aaµ and new complex auxiliary fields Na. In this gauge it is natural to

identify the fields Ca as the scalar partners of the gauginos and the ambiguity that we

described above is eliminated.

In the Wess-Zumino gauge, however, the identification of the scalar partners is more

involved. The longitudinal polarizations of the gauge fields Aaµ is associated to the real

scalar fields:

σa = Re 〈X̄ai〉φi ; (1.62)

these fields are associated with zero modes of the scalar mass matrix and they cor-

respond to unphysical would-be Goldstone fields of the spontaneous gauge symmetry

breaking. This can be seen by using the gauge invariance of the scalar potential under

ordinary gauge transformations parametrized by the real parameter λa; we have:

δVS = λa
(
Xj
a Vj + X̄ ̄

a V̄
)

= 0 ⇒ Vij X
j
a + Vi̄ X̄

̄
a = 0 , (1.63)

where the second expression on the right hand side is evaluated at stationary points.

These real scalar fields are non-physical and can be gauged away by exploiting the

residual gauge symmetry left by the Wess-Zumino gauge choice; the model that we

obtain has the same d.o.f’s of the gauge-fixed Lagrangian in the Fayet supersymmet-

ric gauge that we discussed above. Indeed it can be shown that in general the two

Lagrangians are equivalent up to a non-linear field redefinition [35]. The real phys-

ical scalars representing the extra d.o.f.’s of massive vector supermultiplets are then
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naturally identified with the fields:

ρa = Im 〈X̄ai〉φi ; (1.64)

it is easy to verify that these fields, in the supersymmetric limit in which all the F

and D auxiliary fields vanish, have the same masses of the gauge vector fields. It

is also interesting to note that, when the gauge symmetry is not broken and all the

〈X i
a〉 vanish, we have that σa = ρa = 0 as is to be expected since in this case Aaµ’s

have only two d.o.f and there are no physical propagating scalars associated to vector

multiplets. Notice that a priori the gauge part in the Goldstino field (1.61) may be

different from zero even when the gauge symmetry is not broken; in this case there still

remains a problem related to the identification of the scalar partner of the Goldstino

since the previous analysis does not apply. However we have seen that this situation

can be realized only if there are non-trivial holomorphic functions pa in the gauge

transformations of the Kähler potential and we have excluded this possibility.

The previous analysis shows that in the Wess-Zumino gauge the supersymmetric

structure of massive vector multiplets is not manifest in the Lagrangian and this com-

plicates the identification of the scalar partner of the Goldstino; in particular it is not

easy to find a linear combination of scalars which transforms into η under supersym-

metry transformations. We can however define a projected Goldstino η′ =
√

2 〈F̄i〉ψi
to which we can associate, without ambiguity, the projected sGoldstino:

φ =
√

2 〈F̄i〉φi . (1.65)

Under SUSY transformations one then finds δϕ =
√

2 ε η′ and also in this case the

complex sGoldstino field describes two real scalar fields whose masses are entirely

controlled by supersymmetry breaking effects. We will see in Chapter 4 that these

special modes play a relevant role for discussing the stability properties of the scalar

potential. The previous analysis, however, suggests that also the special direction

Im 〈DaX̄ai〉 (1.66)

should be somehow associated to the scalar superpartners of the Goldstino. This

suggests that the value of the scalar mass matrix projected on this direction should

not be completely arbitrary. This argument will be discussed in more detail in Chapter

4 where the role of the directions 〈F i〉 and 〈X i
a〉 for the study of vacuum stability is

extensively analyzed.

We conclude this section by recalling the expression of the supertrace for non-linear

gauged σ-models [29]:

sTr[m2] ≡ Tr[m2
0]− 2 Tr[m2

1/2] + 3 Tr[m2
1]

= 2
(
Ri̄ − hachbdhabihcd̄

)
F iF̄ ̄

+ i
(
∇iXa̄ + 2hbchabiX

i
c

)
Da + h.c. .

(1.67)

The implications of this formula for SUSY phenomenology are discussed in the next

chapter.
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1.4 Local Supersymmetry

In this section we will review in some detail the basic ideas and procedures to construct

locally supersymmetric invariant models. For simplicity we start as before by consid-

ering models containing only chiral multiplets and then we discuss the generalization

including gauge symmetries and vector multiplets.

1.4.1 Models with only Chiral Multiplets

There exist several different versions of N = 1 supergravity; each formulation is charac-

terized by a different choice of the auxiliary fields that are included in the gravitational

sector together with the graviton and the gravitino. Here will focus on the so called

“old minimal supergravity” [36, 37] in which the off-shell supergravity multiplet, in

addition to the graviton eaµ and the gravitino ψαµ fields, contains two auxiliary fields

namely one complex scalar Fφ and one vector field Aµ :{
eaµ, ψ

α
µ , Aµ, Fφ

}
. (1.68)

Supergravity can be obtained as a gauge theory of the Super-Poincaré group, pro-

vided that certain constraints are implemented to remove non-physical gauge d.o.f’s

in the gravitational sector. Since the concept of supergravity as a gauge theory plays

a fundamental role in our derivation of the Lagrangian, we shall clarify this point

by briefly recalling how General Relativity can be obtained as a gauge theory of the

Poincaré group. This idea is implemented by the so called Cartan formalism 5 which

consists in introducing a vierbein eaµ, which is the gauge field associated to local transla-

tions Pa and a spin connection ωabµ , which is the gauge field associated to local Lorentz

transformations Mab. General Relativity can be obtained by gauging the Poincaré

group and by imposing the torsion-free constraint, which fixes the spin connection as a

function of the vierbein. The reason why this constraint must necessarily be imposed

to recover ordinary General Relativity can be understood in the following way: the

generator Pa is associated to local translations and satisfies the algebra [δ1
P , δ

2
P ] = 0;

however General Relativity requires invariance under general coordinate transforma-

tions (diffeomorphisms) which in general do not commute. The standard procedure

to convert local translations to general coordinate transformations is to impose that

the torsion tensor vanishes. In this case the group algebra must be modified since the

constraint turns out to be non-invariant under local translations. In other words, we

need to define new transformation laws δP̂ ≡ δP + δ′ to compensate the non vanish-

ing transformation of the constraint and, in general, the new transformations will not

commute as expected for diffeomorphisms. We will see that this construction can be

generalized also to derive the supergravity Lagrangian.

As for the case of ordinary gauge theories, one can choose among three different

approaches to construct locally supersymmetric theories; let us recall them:

5See [38] for a comprehensive introduction to Cartan’s formalism.
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1. The Noether approach, which is the standard procedure by which the invari-

ance under local transformations is implemented, at the level of the component

Lagrangian, by coupling the gauge vectors to the conserved currents of global

symmetries; when necessary, gauge invariance must be enforced by adding extra

terms to compensate for the non-vanishing variation of the action [39–41] (see

also [42]).

2. The superspace approach, which generalizes the geometric techniques of gauge

theories to superspace. For ordinary gauge theories, it reduces to introduce a

gauge connection Aa{µ,α,α̇} for each generator of the symmetry group in order

to define supersymmetric gauge covariant derivatives and field strengths. For

gravitational interactions, however, this approach implies further complications

since it requires the study of curved superspaces geometry; this implies also that

one has to generalize ordinary superfields to be functions of curved superspace

coordinates [25, 43].

3. The tensor calculus approach, in which the ordinary (rigid) SUSY tensor calculus

gets properly “covariantized”. In this case, one works with standard (global)

superfields in which space-time derivatives are replaced by covariant derivatives

and the component fields transform covariantly under both gauge and SUSY

transformations [44, 45].

The first approach, even if didactically more enlightening, turns out to be quite cum-

bersome; this is because in general the procedure must be implemented several times

and at each step new terms must be introduced to compensate for the variation of

the action. In the second approach, the gauge group is maximally extended in order

to implement gauge transformations on the whole superspace; this introduces several

new gauge fields which must finally be fixed by performing appropriate gauge choices

and by imposing several covariant constraints. This procedure, though more appealing

from a geometrical point of view, is rather tedious and not particularly enlightening.

In this work we will use the third formalism to construct the supergravity La-

grangian. This approach may appear less elegant than the one in superfields but it has

the advantage that it requires to manipulate only the minimal set of physical (grav-

itational) gauge fields. Moreover, the tensor calculus is only slightly modified with

respect to the rigid one and it is possible to exploit all the powerful machinery of or-

dinary superfields. Finally we anticipate that, in general, also in this formalism it is

necessary to impose some constraints to discard unphysical gauge d.o.f.’s but, in our

opinion, the few constraints that one has to impose are less arbitrary and more easy to

be solved than those of the curved superspace approach. These constraints are essen-

tially of the same nature as the torsion-free constraint in ordinary General Relativity

described above. Summarizing, in the following we adopt the tensor calculus approach

to construct SUGRA as a gauge theory since, from a technical point of view, it is the

most efficient for our purposes.
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Historically, there exist two different formalisms based on the tensor calculus ap-

proach. The references we gave at the point 3 above refer to the construction of

supergravity as a gauge theory of the super-Poincaré group; on the other hand, one

can also obtain minimal supergravity as a gauge theory of the superconformal group

[46–49]. This alternative is not peculiar of supersymmetry; also ordinary General Rel-

ativity can be obtained as a gauged-fixed version of a scale invariant theory. Indeed,

we can promote General Relativity to be scale invariant by adding a new real scalar

field φ called compensator which transforms in a suitable way under local scale (Weyl)

transformations:

L =
1

2

∫
d4x
√
−g [

1

6
φ2R + ∂µφ∂

µφ ] , (1.69)

where the transformation laws of the metric and compensator are:

δgµν(x) = −2λ(x) gµν(x) , δφ(x) = λ(x)φ(x) . (1.70)

General Relativity in the Einstein frame is then obtained after gauge-fixing the extra

symmetry by imposing φ =
√

3/4πGN . One may wonder why it is convenient to opt

for the superconformal approach, which a priori looks more complicated; indeed, the

conformal group has 15 generators instead of 10 and it will be necessary to impose

more constraints to fix the extra gauge symmetries. The answer to this question is

related to the intimate nature of the scalar auxiliary field Fφ in the minimal SUGRA

multiplet. The main feature of the superconformal approach is that, in this formalism,

Fφ is disentangled from the rest of the gravitational multiplet. It belongs to a different

supermultiplet, called conformal compensator multiplet, which has the same function

of the compensator φ that we discussed above. Fφ is the only field in the gravitational

sector that can affect the scalar potential; for this reason, having a formalism in which

Fφ can be manipulated avoiding all the complications introduced by the other gravita-

tional fields, is very attractive. As we are going to see, the computation of the scalar

potential and the scalar masses in this formalism can be done in a very economical

way.

Superconformal Supergravity

Let us start by reviewing the main ingredients that are necessary to construct the su-

pergravity Lagrangian in the superconformal formalism. In this analysis we will follow

the notation and the arguments of [48] (see also [50] for a review). The group of super-

conformal transformations is generated by the 15 bosonic generators of the conformal

group: Pa for local translations, Mab for local Lorentz transformations, Ka for local

special conformal transformations and D for local dilatations. In addition there are 2

kinds of fermionic supersymmetry generators Qα and Sα and one generator TR associ-

ated to a local U(1)R R-symmetry. The gauge fields associated to each transformation

are summarized in Tab. 1.1, where we use greek letters for global indices and latin
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Pa Mab D Ka Qα Sα TR
eaµ ωabµ bµ faµ ψαµ ϕαµ Aµ

Table 1.1: Superconformal generators and gauge fields

letters for frame indices. As usual the transformation laws for the gauge vectors are

given by:

δgauge(ε)h
A
µ = ∂µ ε

A + hBµ ε
C f A

CB , (1.71)

where hAµ and εA collectively denote the gauge fields and the parameters of the various

transformations whereas f A
CB are the structure constants of the algebra. The gauge

theory associated to this setup is still very different from minimal Poincaré supergravity.

Indeed, there are still 7 independent gauge fields whereas in minimal SUGRA there

are only 3: eaµ, ψ
α
µ and Aµ. Actually this gauge theory is not yet a gravity theory

(in the Einsteinian sense), not even a superconformal version of SUGRA, since the

translation generators do not behave as expected for a gravitational theory. In this

case, as carefully discussed in [46], one has to impose 3 constraints in order to promote

Pa to be the generators of general coordinate transformations. These constraints can

be solved by expressing ωabµ , faµ and ϕαµ in terms of:{
eaµ, ψ

α
µ , Aµ, bµ

}
. (1.72)

Once these constraints are imposed the algebra must be deformed; indeed, as in General

Relativity, the constraints are not invariant under the whole symmetry group and the

transformation laws of the gauge fields need to be properly modified in order to preserve

the constraints. Notice finally that the independent gauge fields in (1.72) correspond

to the gravitational multiplet of conformal supergravity.

The next step of the procedure consists in constructing the superconformal gener-

alization of the action (1.69). One starts by considering the general Lagrangian (1.13)

in rigid supersymmetry:

L =

∫
d4θ K(Φi, Φ̄ı̄) +

∫
d2θW (Φi) + h.c. (1.73)

=
[
K(Φi, Φ̄ı̄)

]
D

+
[
W (Φi)

]
F

+ h.c. ,

and modifies it in such a way to make it invariant under global superconformal transfor-

mations. For this, one needs to introduce the conformal compensator multiplet, which

will be finally used to gauge fix the extra superconformal symmetries that are not in

the super-Poincaré group, namely D, TR, Ka and the S-supersymmetry. Note that

there is a certain freedom regarding the choice of the compensator multiplet; minimal

supergravity is obtained by taking a chiral multiplet Φ = {φ , χφ , Fφ} as conformal

compensator.

The coupling of the conformal compensator to ordinary matter is completely fixed

by its transformation laws under scale and U(1)R symmetries. For the following analysis



28 Supersymmetry and Supergravity

we refer to [51]. The Lagrangian (1.73) must have conformal weight (dimension)

d(L) = 4 and chiral weight (R-charge) R(L) = 0. Since d(θα) = −1
2

and R(θα) = 1,

this implies that:

d(K) = 2 , d(W ) = 3 ; (1.74)

R(K) = 0 , R(W ) = 2. (1.75)

To find the right powers of the compensator field which should be inserted in each term

of the supersymmetric Lagrangian it is useful to assume, without loss of generality, that

matter fields have vanishing conformal weight d(φi) = 0 and vanishing chiral weight

R(z) = 0, whereas the compensator has d(φ) = 1; this fixes also R(φ) = 2/3 since it

is possible to show that the conformal and the chiral weights are not independent for

chiral multiplets. Note that having matter chiral superfields with zero mass dimension

is not a problem since, in the end, it is possible to perform a field redefinition to restore

the right dimensions.

From the previous analysis, one can guess the proper coupling of the conformal

compensator to matter fields in superconformal supergravity:

L =
[
K(Φi, Φ̄ı̄) Φ̄Φ

]
D

+
[
W (Φi) Φ3

]
F

+ h.c. . (1.76)

Note that we did not express the Lagrangian in terms of integrals over (rigid) spinor

coordinates θα. This is because ordinary D and F terms cannot be used to construct

covariant actions of the type
∫
d4x e [ ]D +

∫
d4x e [ ]F , where e is the determinant of

the vierbein. The problem is that ordinary F and D terms do not transform properly

under local supercovariant transformations, and some new terms must be added to

obtain invariant actions. As explained in [48] (see also [52] for conventions compatible

with ours), the right expression for the superconformal F -term that should be used to

construct locally superconformal invariant action is :∫
d4x [ Σ ]F , [ Σ ]F = e

(
F − i

√
2χσµψ̄µ − z ψ̄µσ̄µνψ̄ν

)
, (1.77)

where Σ = {z, χ, F} is a chiral multiplet with conformal weight d(Σ) = 3 as required in

the Lagrangian (1.76). The expression for the the superconformally invariant D-term

is slightly more complicated; we just recall the most interesting terms:∫
d4x [ Ω ]D , [ Ω ]D = e

( 1

2
D − 1

2
(λσµψ̄µ − i ξσµνDcµψν + h.c )

+
C

3

( 1

2
R− 1

e
L0

RS

))
+ ... , (1.78)

where Ω = {C, ξ,M,Bµ, λ,D} is a vector multiplet with conformal weight d(Ω) =

2; L0
RS represents the standard kinetic term of the Rarita-Schwinger action for the

gravitino ψαµ , whereas the ellipsis represents terms quadratic and cubic in the gravitino

multiplied by the vector and spinorial components of Ω which do not contribute to the

gravitino mass. Note finally that the function K in the superconformal Lagrangian
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(1.76) is not what is called Kähler potential in the supergravity literature; in order

to recover the canonical form of the kinetic terms of the matter multiplets one has to

perform the redefinition K → −3M2
P e
−K/3M2

P .6 Setting M2
P = 1 one finally obtains

the Lagrangian of superconformal supergravity:

L =
[
−3 e−K/3 Φ̄Φ

]
D

+
[
W Φ3

]
F

+ h.c. . (1.79)

Notice that, in order to obtain the full Poincaré supergravity Lagrangian in com-

ponent fields, one has now to gauge-fix the extra-symmetries in (1.79) by using the

compensator superfield. As a matter of fact, however, it is often convenient to work

with the full superconformally invariant Lagrangian, manipulating the compensator

superfield as an ordinary matter chiral superfield, and substitute its gauge-fixed ex-

pression only at the very end of the computations. This is because, as argued in

[48] (see also [53]) the superconformal tensor calculus is substantially simpler than the

super-Poincaré tensor calculus. It turns out that under ordinary SUSY transformations

generated by Qα, superconformal multiplets transform in the usual way (1.16)-(1.18)

with the only change that ordinary space-time derivatives must be replaced by super-

conformal covariant derivatives. Also the multiplet components and the tensor calculus

are easily covariantized by using the same technique. This makes it is possible to use

rigid SUSY superfields to represent a superconformal chiral multiplets Φi = {φi, χi, F i}
in the following way:

Φi(x, θ, θ̄) = φi +
√

2 θχi + θ2F i (1.80)

+ i θσµθ̄Dcµφi −
i√
2
θ2Dcµχiσµθ̄ +

1

4
θ2DcµDcµ φi ;

where Dcµ = ∂µ−haµTa is the conformal covariant derivative and the sum over the group

generators Ta excludes the local translations Pa. A similar (rigid-like) covariantized ex-

pression can be defined also for vector multiplets. The results of superconformal tensor

calculus can be smartly reproduced by multiplying the above-defined “covariantized”

superfields; for example the highest components of the real multiplet obtained by taking

the product of one chiral and one anti-chiral multiplet is given by:

ΦiΦ̄ı̄ = ... + θ2θ̄2 [F iF̄ ı̄ −Dcµφ̄ı̄Dcµφi − i χ̄ı̄σ̄µDcµχi ] + tot. deriv. . (1.81)

Using these results, it is easy to understand which is the fundamental simplification

introduced by this formalism. Indeed, if one focuses only on the scalar potential, it is

possible to discard the gravitational gauge fields eaµ, ψαµ and Aµ, and the expressions

for the supercovariant F -terms (1.77) and D-terms (1.78) then reduce to the usual

ones in rigid supersymmetry. Moreover, in this case also the expressions (1.80) and

(1.81) reduce to the ordinary ones, so that the tensor calculus works exactly as in rigid

superspace. One can then rewrite (1.79) in terms of rigid superspace integrals:

L =

∫
d4θ

(
−3 e−K/3 Φ̄Φ

)
+

∫
d2 θW Φ3 + h.c. + ... , (1.82)

6A more detailed discussion of this part can be found for example in [50].
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where the ellipsis indicates the gravitational terms which do not admit a simple expres-

sion in terms of integral over the rigid superspace and are usually expressed directly in

components fields.7

The last aspect we need to discuss is the gauge-fixing of the extra symmetries of

the superonformal group [54] (see also [52]). The special conformal transformations Ka

can be fixed by setting the dilatation gauge field to zero:

bµ = 0 . (1.83)

In order fix D, TR and Sα symmetries, it is useful to redefine the compensator multiplet

in the following way:

Φ = φ { 1 , χφ , U} , φ = |φ|eiσ , (1.84)

where we defined the normalized auxiliary field U as:

Fφ = φU . (1.85)

One common gauge choice consists in using the modulus and the phase of the scalar

φ to fix D and TR, and the spinor χφ to fix the S-supersymmetry; the field U is left

unfixed and, together with Aµ, it is an auxiliary field of the Poincaré gravitational

multiplet (1.68). The actual values at which the fields are fixed are chosen in order

simplify as much as possible the resulting Lagrangian. |φ| is fixed in such a way that

the kinetic term of graviton is canonically normalized (Einstein frame); by inspection

of (1.78), one is led to chose:

C ≡ −3 |φ|2 e−K/3 = −3 ⇒ |φ| = eK/6 . (1.86)

The phase of φ can be fixed in such a way that the gravitino mass is real; the relevant

term to consider is −z ψ̄µσ̄µνψ̄ν . This suggests the following choice:

Im z ≡ Im(φ3W ) = 0 ⇒ σ =
i

6
(logW − log W̄ ) . (1.87)

Finally χφ is fixed in such a way to cancel the non-canonical mixing i ξσµν∂µψν in the

gravitino kinetic term. This implies:

ξ ≡ 3i
√

2 |φ|2 e−K/3
(
χφ −

1

3
Kiχ

i

)
= 0 ⇒ χφ =

1

3
Ki χ

i . (1.88)

After the gauge fixing we then get:

Φ = exp

[
1

6
(K − logW + log W̄ )

]
·
{

1 ,
1

3
Ki χ

i , U

}
. (1.89)

7Examples of applications in which one is not allowed to naively ignore these terms are discussed
in [52]; in such situations, the authors propose to use a smarter gauge choice which produces some
useful simplifications.
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This gauge, proposed in [54], is very useful since it avoids the field redefinitions which

are usually needed to recover the canonical kinetic terms and masses for the graviton

and the gravitino.

The compensator field and the SUGRA Lagrangian (1.79) are usually rewritten in a

more compact form by exploiting the invariance of the action under generalized Kähler

transformations. Under these transformations the Kähler potential, the superpotential

and the compensator field transform in the following way:

( Φ , K , W )→ ( Φ eY/3 , K + Y + Ȳ , W e−Y ) . (1.90)

By choosing Y = logW we obtain:

L =
[
−3 e−G/3 Φ̄Φ

]
D

+
[

Φ3
]
F

+ h.c (1.91)

where:

G(Z, Z̄) = K(Z, Z̄) + logW (Z) + log W̄ (Z̄) (1.92)

and the new compensator multiplet is given by:

Φ = eG/6 ·
{

1 ,
1

3
Gi χ

i , U

}
. (1.93)

We conclude this discussion on the superconformal gauge fixing by recalling that the

ordinary supersymmetry transformations of Poincaré SUGRA emerge as a combination

of supersymmetry and extra conformal transformations which preserves the supercon-

formal gauge choice; this is similar to what happens in ordinary supersymmetric gauge

theories, in which supersymmetry transformations must be modified in order to pre-

serve the Wess-Zumino gauge choice, see eq. (1.48)-(1.51).

Let us now recall the expressions for the scalar potential and the mass matrix of

scalar fields in the non-linear σ-model coupled to gravity [55, 56]. As already discussed,

these quantities can be efficiently computed by using the superfield version of the

SUGRA Lagrangian (1.91):

L =

∫
d4θ
[
−3 e−G(Φi,Φ̄ı̄)/3 Φ̄Φ

]
+

∫
d2θΦ3 + h.c + ... . (1.94)

After eliminating the auxiliary fields of the matter and the compensator chiral multi-

plets, one finally finds:

VS = eG (GkGk − 3 ) . (1.95)

A vacuum is defined by constant values of the scalar fields for which VS is stationary

whereas spinor and tensor fields must have vanishing expectation values in order to

preserve Lorentz invariance. The stationarity conditions have the form:

Gi +Gk∇iGk = 0 , (1.96)
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and at any stationary point the auxiliary fields of the compensator and of chiral matter

multiplets are given respectively by the expressions:

U = eG/2 ( 1− 1

3
GkGk ) , (1.97)

F i = −eG/2 gi̄G̄ . (1.98)

The expectation value 〈VS〉 defines the cosmological constant, which must be almost

vanishing (' 10−3eV), as suggested by cosmological observations [57]; this implies that

the space-time must be approximately Minkowski. Note that a small value of the

cosmological constant is not stable against quantum corrections and can be achieved

only by a severe fine tuning of the parameters in the Lagrangian. This is the so called

cosmological constant problem [58]; it has the same nature of the hierarchy problem

that we discussed in the first section of this chapter but in this case the amount of

fine-tuning is dramatically larger: 120 order of magnitudes! We see that the condition

for a vanishing cosmological constant is given by:

VS = 0 ⇒ GiGi = 3 . (1.99)

The masses of scalar fields are found to be:

(m2
0)i̄ = eG∇iGk∇̄G

k −Ri̄kl̄ F
k F l̄ +m2

3/2 gi̄ , (1.100)

(m2
0)ij = −eG/2 F k∇(i∇j) Gk + 2m2

3/2∇(iGj) , (1.101)

where we have introduced the gravitino mass given by:

m3/2 = eG/2 . (1.102)

The mass mixing term involving the gravitino and matter fermions has instead the

form:

− i
2

√
2 〈eG/2Gi〉χi σµ ψ̄µ + h.c. . (1.103)

From this expression we recognize that the Goldstino is defined by the direction 〈Gi〉
in the spinor field space. This can also be seen by using the SUSY transformation

laws of matter fields; indeed it is possible to show that the only non-homogeneous

transformation on the vacuum is [25]:

δχi = −
√

2 ε 〈eG/2Gi〉 =
√

2ε 〈F i〉 . (1.104)

This expression shows that SUSY is broken in SUGRA whenever 〈Gi〉 6= 0. In super-

gravity, however, the Goldstino is not a physical degree of freedom and it can be gauged

away by a proper gauge choice; in common language one says that it is “eaten” by

the massive gravitino through the super-Higgs mechanism [59]. When the cosmological

constant vanishes we can define the normalized Goldstino as:

η =

√
2√
3
m3/2 〈Gi〉χi. (1.105)
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The associated scalar superpartner, the sGoldstino, is defined as:

ϕ =

√
2√
3
m3/2 〈Gi〉φi. (1.106)

This transforms under SUSY as δϕ =
√

2 ε η.

1.4.2 Models with Chiral and Vector Multiplets

Let us now recall the main ingredients of the non-linear gauged σ-model coupled to

gravity [60, 49]; for an exhaustive review of this part see also [61]. The generalization of

the previous construction to include ordinary gauge symmetries and vector multiplets

does not present any important complication. The suitable coupling of the compensator

multiplet to the gauge fields can be guessed by performing the same analysis as for

chiral multiplets, which was based on the transformation properties of the compensator

under superconformal transformations. It turns out that there is no dependence on Φ

in the gauge kinetic Lagrangian; this is because assuming d(V ) = 0 and R(V ) = 0 it

is easy to see that:

d(WαaW a
α) = 3 , R(WαaW a

α) = 2 . (1.107)

Superconformal invariance then implies that a coupling between the compensator

and the vector multiplets can only arise in the non-holomorphic part of the Lagrangian.

It is easy to promote the Lagrangian (1.35) to be superconformal invariant:

L =
[
−3 e−K/3 Φ̄Φ

]
D

+
[
W Φ3

]
F

+
1

4

[
Hab(Φ

i)WαaW b
α

]
F

+ h.c , (1.108)

where [ ]D and [ ]F have the same expressions we gave in the previous section. In

particular, it is still true that the computation of the scalar potential and the mass

matrix of the scalar fields can be more efficiently performed by rewriting the previous

lagrangian as an integral over rigid superspace:

L =

∫
d4θ
[
−3 exp

{
− 1

3
G(Φi, Φ̄ı̄, V )

}]
Φ̄Φ +

(∫
d2θΦ3 + h.c.

)
+

(∫
d2θ

1

4
Hab(Φ

i)W aαW b
α + h.c.

)
+ ... , (1.109)

where, again, the terms that we discard depend on the non-scalar fields of the gravi-

tational supermultiplet. In addition, the same gauge fixing of the extra symmetries of

the superconformal group can be applied [54] and the compensator multiplet has the

same form:

Φ = eG/6 ·
{

1 ,
1

3
Gi χ

i , U

}
. (1.110)

where G(Φi, Φ̄ı̄) and its derivative are evaluated at V a = 0.
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As for pure chiral models, the gauge vectors are associated to the gauging of the

isometry group of the target space of scalar fields; in this case one must require that

G(Φi, Φ̄ı̄, V ) is strictly invariant under gauge transformations generated by the holo-

morphic Killing vectors X i
a associated to the isometries of the metric Gi̄ . In order to

easily manipulate the Lagrangian (1.109), it is useful to fix the Wess-Zumino gauge

for the internal gauge symmetries; we can then develop the integrand of the non-

holomorphic part of the lagrangian Ω = −3e−
1
3
GΦ̄Φ as:

Ω = −3 e−
1
3
G Φ̄Φ +Ga e

− 1
3
G Φ̄ΦV a +

1

2

(
Gab −

1

3
GaGb

)
e−

1
3
G Φ̄ΦV a V b (1.111)

where G and its derivatives with respect to vector fields are now evaluated at V a = 0.

As before, the relevant functions Ga(Φ
i, Φ̄ı̄) and Gab(Φ

i, Φ̄ı̄) are determined by using

the invariance condition δ G(Φi, Φ̄ı̄, V ) = 0 and taking multiple derivatives. We finally

obtain:

X i
aGi −

i

2
Ga = 0 , (1.112)

X i
a =

i

2
gi̄Ga̄ , (1.113)

Gab = 4 gi̄X
i
(a X̄

̄
b) . (1.114)

The second expression shows that the Killing potentials for X i
a can be identified with

−1
2
Ga The transformation properties of the gauge kinetic function are fixed by re-

quiring the gauge invariance of the kinetic Lagrangian of the vector multiplets. This

implies:

X i
aHbci = −2f d

a(bHc)d . (1.115)

The last useful relation comes from the equivariance condition of the Killing vectors,

which guarantees that the Killing potentials can be chosen in the adjoint representation:

gi̄X
i
[aX̄

̄
b] =

i

4
f c
ab Gc . (1.116)

Again we avoid to present the full expression of the Lagrangian and we focus on the

scalar potential and the masses, which can be easily computed from the Lagrangian

(1.109) by exploiting the superfield machinery. In particular, as in the previous case, we

can manipulate the compensator as an independent chiral superfield and substitute its

gauge-fixed expression (1.110) only at the very end of the computation. Moreover, since

we are interested mainly in the scalar part of the Lagrangian, the spinor components

of matter, gauge and compensator superfield can be set to zero..

The scalar potential is found to be:

VS = eG
(
GkGk − 3

)
+

1

8
habGaGb , (1.117)
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where hab represents the real part of the gauge kinetic function Hab and we used the

scalar parts of the equations of motion of the auxiliary fields F i and Da, which give:

F i = −eG/2 gi̄G̄ , (1.118)

Da = −1

2
habGb . (1.119)

The vacuum is defined by constant values of the scalar fields for which VS is stationary.

As already discussed, for phenomenological reasons we shall require a vanishing vacuum

energy (flatness condition); this gives the relation:

−3 +GiGi +
1

8
e−GGaGa = 0 . (1.120)

The stationarity conditions are then given by:

Gi +Gk∇iGk +
1

4
e−G

[
Ga
(
∇i −

1

2
Gi

)
Ga −

1

2
habiG

aGb
]

= 0 . (1.121)

In this case too, one can deduce from the stationarity conditions a relation between

F and D auxiliary fields which is valid at any stationary point. Following [61] we

multiply the stationarity condition by X i
a and consider the two independent relations

given by the real and imaginary parts. The real part is trivial and vanishes because of

gauge invariance of the scalar potential under ordinary (real) gauge transformations.

The imaginary part insted does not vanish automatically and gives a “dynamical”

constraint between F and D terms which is valid at any stationary point. Using the

relations (1.112) and (1.113),8 one finds [61–64]:

i∇iX̄aF
iF̄ ̄ − gi̄X i

aX̄
̄
b D

b +
1

2
f d
ab θdcD

bDc − (FiF̄i −m2
3/2)Da . (1.123)

where m3/2 is the gravitino mass which is defined as in the previous section as:

m3/2 = eG/2 . (1.124)

In SUGRA, however, there exists another “kinematical” constraint between F and D

auxiliary fields which is valid, contrarily to the previous one, at any point of the scalar

field space. It follows directly from (1.112), which gives:

Da = i
hab

m3/2

X̄biF
i = −i h

ab

m3/2

Xbı̄F̄
ı̄. (1.125)

This constraint is purely gravitational and it becomes trivial in the rigid limit MP →∞
and m3/2 → 0 whereas the “dynamical” constraint reduces to expression (1.53) in the

8One also needs to use the relation

Xi
a +Xj∇iGk +Gj∇iXj

a = 0 , (1.122)

which can be obtained by taking one covariant derivative of the equation that expresses the invariance
of G(Φi, Φ̄ı̄) under isometry transformations.
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same limit. The rigid limit is performed by sending also m3/2 to zero. This corresponds,

in a flat space, to keep the SUSY breaking scale fixed. In this case too, it is possible

to use the above constraints to derive interesting bounds on the ratio between F and

D auxiliary fields, which have important consequences for SUSY breaking scenarios.

Using the stationarity and the flatness conditions, it is possible to show that the

mass matrices of scalar fields are given by [61]:

(m2
0)i̄ = eG∇iGk∇̄G

k −Ri̄kl̄F
kF̄ l̄ + habX̄aiXb̄ +m2

3/2 gi̄

− 1

2

(
gi̄ −GiG̄

)
DaDa +

(
G(ihab̄) + hcdhacihbd̄

)
DaDb

+
(
i∇iXa̄ − i hbchabiXc̄ + i hbchabjX̄ci

)
Da

−
(
i GiXa̄ − i G̄X̄ai

)
Da , (1.126)

(m2
0)ij = −eG/2 F k∇(i∇j)Gk − habX̄aiX̄bj + 2m2

3/2∇(iGj)

− 1

2

(
∇ihabj − 2hcdhacihbdj − 2G(ihabj)

)
DaDb

− 1

2

(
∇(iGj) −GiGj

)
DaDa + 2 i hbchab(iX̄cj)D

a

+ 2 i G(iX̄aj) D
a . (1.127)

The fermion mass term that is relevant to discuss SUSY breaking is the mixing between

gravitino with matter and gauge fermions. The mixing is given by [25]:

− i√
2
〈eG/2Gi〉χiσµψ̄µ −

1

4
〈Ga〉λaσµψ̄µ . (1.128)

In this case we see that there are two relevant directions in the spinor field space, namely

〈Gi〉 and 〈Ga〉, which define the proper linear combination of fermions associated to

the would-be Goldstino of the super-Higgs mechanism. This can again also be seen by

studying the transformation laws of matter and gauge fermions at the vacuum, which

read

δχi = −
√

2ε 〈eG/2 gi̄G̄〉 =
√

2 ε 〈F i〉 , (1.129)

δλa =
i

2
ε 〈Gb h

ba〉 = −i ε 〈Da〉 . (1.130)

We verify that, as expected, χi and λa transform by a shift. In flat space we can then

define the normalized Goldstino as:

η = i

√
2√
3
eG/2〈Gi〉χi −

1

2
√

3
〈Ga〉λa . (1.131)

In this case too there are some subtleties related to the identification of the scalar

superpartners of the Goldstino. Again, the difficulties come from the term containing
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the gaugino. Following the same arguments discussed in the rigid case, we can conclude

that the physical scalars associated to heavy vector multiplets are:

ρa = Im
[
〈X̄ai〉φi

]
. (1.132)

Finally, we define also in this case the projected Goldstino to which we associate without

ambiguity the sGoldstino field:

ϕ = i

√
2√
3
eG/2〈Gi〉χi . (1.133)

We are going to discuss the relevance of this mode for the study of vacuum stability in

Chapter 4.
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Chapter 2

Supersymmetry Breaking

In the previous chapter we have mostly studied the formal and technical aspects of

supersymmetric models without discussing the phenomenological constraints which

should be taken into account. In this chapter we present a review of the main ideas

developed to construct realistic supersymmetric extensions of the Standard Model. We

start by briefly reviewing the structure of the Minimal Supersymmetric Standard Model

(MSSM) and then we discuss the breaking of supersymmetry and the implications of

the sum rules that we introduced in the previous chapter. This analysis brings us to the

formulation of the hidden sector paradigm. We then recall two possible mechanisms

to transmit supersymmetry breaking effects to the visible sector, namely gravity and

gauge mediation, and we discuss the origin of the soft terms.

We conclude this chapter by reviewing the main features of the hidden sector in

supergravity models inspired by String Theory. In particular we remark that, in string

compactification scenarios, the hidden sector naturally includes the moduli sector. This

part is not supposed to be a technical review of string compactification nor of moduli

stabilization; its scope is to discuss the main motivations which inspire the forthcom-

ing discussions and to define the context in which our results can have interesting

applications.

2.1 The Minimal Supersymmetric Standard Model

Let us start by reviewing the main ingredients of the minimal supersymmetric extension

of the Standard Model (MSSM). Since this topic is quite standard and widely studied

in literature, we will focus on those aspects which are most relevant for our discussions.

A good pedagogical introduction to the subject can be found in [65] (see also [51]) and

in our presentation we mostly follow these references.

The building blocks of supersymmetric models, as we have seen in the previous

chapter, are chiral and vector multiplets. To construct a supersymmetric extension

of the Standard Model, each observed fundamental particle should properly fit into a

supermultiplet and should have a superpartner with spin differing by 1/2 unit. Matter
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 families) uc ũ∗R u†R ( 3, 1, −2
3
)

dc d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) ec ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Table 2.1: Chiral supermultiplets in the MSSM.

particles, namely quarks and leptons, can be arranged into chiral multiplets; on the

contrary vector multiplets are used to describe gauge fields, namely the photon, the

gluon and the three weak gauge bosons. The Higgs scalar boson must be included into

a chiral multiplet since it has spin 0. Actually, it turns out that two Higgs superfields

are necessary to give masses to quarks through Yukawa couplings. This is essentially a

consequence of the holomorphicity of the superpotential and the fact that only a Higgs

scalar Hu with hypercharge Y = +1/2 can couple to up-type quarks (u,c,t) whereas

only a Higgs scalar Hd with hypercharge Y = −1/2 can couple to down-type quarks

(d,s,b). Another less trivial reason for demanding two Higgs superfields is anomaly

cancellation, which is spoiled if we include only one fermion superpartner associated to

the Higgs scalar. The neutral scalar which corresponds to the physical standard model

Higgs boson is a linear combination of the neutral components of the Higgs doublets

H0
u and H0

d .

The Supersymmetry algebra imposes that fields which belong to the same supermul-

tiplet must have the same Standard Model quantum numbers; this strongly constrains

the number of realistic possibilities of arranging Standard Model particles into super-

multiplets. In particular, it turns out that it is not possible to fit two Standard Model

particles into the same supermultiplet 1 and that all supersymmetric particles must be

truly new (undiscovered) particles. In Tab. 2.1 we summarize the chiral multiplets of

MSSM and their transformation properties under the Standard Model gauge group.

The superpartners of Standard Model particles are indicated as usual with an extra

tilde (∼) over the Standard Model symbol; we adopt the convention that all the chiral

superfields are expressed in terms of left-handed Weyl spinors. The vector multiplets

associated to gauge fields are summarized in Tab. 2.2.

Having defined the particle content and the gauge symmetries of the MSSM, we

1As explained in [65], early attempts in this sense do not work; for example a neutrino cannot be
taken to be the superpartner of a Higgs scalar.
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 2.2: Gauge supermultiplets in the MSSM.

can now write down the most general Lagrangian compatible with these assumptions.

In particular, following the standard paradigm, we expect that at sufficiently low en-

ergies, physics is described by a renormalizable Lagrangian in which only relevant and

marginal operators compatible with all the postulated symmetries appear. Supersym-

metry allows very little arbitrariness in the choice of the Lagrangian and most of the

couplings are obtained as a supersymmetric generalization of the Standard Model cou-

plings. The relevant operators admitted by supersymmetry and gauge symmetries are:∫
d2θ
(
µHuHd + ki L

iHu

)
+ h.c. , (2.1)

The µ-term is a supersymmetric mass mixing between the Higgs multiplets whereas

the other terms are mixings between Higgs and leptons doublets; note that the mixing

terms are admitted because Hd and Li have the same quantum numbers. These last

terms are dangerous since they violate lepton number conservation. In the Standard

Model, lepton number as well as baryon number turn out to be accidental U(1) global

symmetries of the renormalizable Lagrangian which quite remarkably explain the ob-

served stability of the proton. Operators which violate lepton and baryon numbers in

the Standard Model are irrelevant operators and as discussed in the previous chapter

they are suppressed by a large (new physics) mass scale. On the contrary, this is not

the case in the MSSM since dangerous relevant operators are in fact admitted by the

symmetries. Actually, as we are going to see, there exist some other dangerous inter-

actions which can be included in the Lagrangian; we will discuss in a moment how to

get rid of these problematic operators. The marginal operators include all the kinetic

terms of chiral and vector superfields as well as the standard Yukawa couplings:

LYukawa =

∫
d2θ (uc λuQHu + dc λdQHd + ec λe LHd ) , (2.2)

where each term has been expressed for simplicity in compact form in which the color

index a, the weak index α and the family index i have not been displayed. In full

notation we have for example:

uc λuQHu ≡ (uc)ia(λu)
j
i Qjaα(Hu)β ε

αβ . (2.3)
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In addition to these standard couplings it is possible to include the following dangerous

marginal operators:

Ldangerous =

∫
d2θ ( dc λLQQQL+ ec λLLL LL+ λQQQu

cdcdc ) . (2.4)

The first two operators violate lepton number by one unit whereas the last operator

violate baryon number by one unit. As discussed in the first chapter, experimental

bounds on couplings which violate lepton and/or baryon number are quite stringent

and imply that they must be strongly suppressed with respect to other interactions.

The only natural way to achieve this suppression is to assume that these operators

are forbidden by some new global symmetry. Quite remarkably, all the dangerous

interactions can be excluded in an economical way by postulating just one new discrete

symmetry called R-parity or (matter parity); under this symmetry ordinary Standard

Model particles have charge +1 whereas their supersymmetric partners have charge

−1. At the superfield level, this can be achieved by the following transformation laws:

Φ(θ)→ ±Φ(−θ) V → +V (−θ,−θ̄) , (2.5)

where the minus sign in the transformations of chiral fields holds for L,Q, ū, d̄ while

the sign plus holds for Hu and Hd. Postulating R-parity conservation has two major

phenomenological signatures: in collider experiments, sparticles can only be produced

in pairs and the lightest supersymmetric particle (LSP) must be absolutely stable. This

last feature in particularly interesting since it provides a natural candidate for Dark

matter.

So far we have only discussed the structure of the SUSY-preserving part of the

MSSM Lagrangian but, as already discussed, supersymmetry breaking terms must be

included to construct a realistic model. The SUSY breaking Lagrangian contains the

most interesting operators from the point of view of phenomenology but, as we are going

to see in the following sections, it turns out to be the major source of arbitrariness in

the MSSM.

2.2 The Hidden Sector Paradigm and Soft SUSY

Breaking

It is obvious that supersymmetry cannot be an exact symmetry of nature because none

of the supersymmetric partner of the Standard Model particles has been observed so

far in collider experiments. Supersymmetric particles must have a mass larger than

∼ 100GeV in order to be consistent with the experimental bounds; however, as we

discussed in the previous chapter, their mass cannot exceed too much the TeV range

if we expect that supersymmetry is the mechanism that is responsible for the natural

stabilization of electroweak scale. Any satisfactory supersymmetric extension of the

Standard Model must then include a supersymmetry breaking sector which naturally
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explains the non-observation of supersymmetric particles and which is consistent with

all the experimental bounds.

It is natural to try to construct a model in which supersymmetry is broken by

tree-level effects and communicated to MSSM fields by renormalizable interactions; as

an obvious analogy we can take the SU(2)× U(1) electroweak symmetry of the Stan-

dard Model whose breaking is triggered by the Higgs field v.e.v. and transmitted to

fermions through Yukawa interactions and to vector bosons through gauge interactions.

However, as anticipated, there exists a major difference between electroweak and su-

persymmetry breaking which prevents us to push this analogy any further. Indeed, in

supersymmetric models some non-trivial constraints associated to the supertrace for-

mulas reviewed in the previous chapter rule out any scenario in which supersymmetry

breaking is communicated to MSSM multiplets by tree level renormalizable couplings.

Let us analyze more in detail this aspect. The supertrace formula (1.67) for a renor-

malizable model and linearly realized symmetries (as the MSSM) reduces to:

sTr[m2] = 2 Tr[Ta ]Da . (2.6)

This trace formula holds separately for each set of conserved quantum numbers, namely

electric charge, color, baryon and lepton number; this is due to the fact the mass

matrices cannot have elements which connect particles with different values of these

quantum numbers. The trace of Ta vanishes automatically, unless Ta is a U(1) gener-

ator; moreover, the cancellation of the gravitational anomaly imposes that also all the

U(1) generators must be traceless. This finally implies that the supertrace is always

vanishing in any renormalizable supersymmetric model. This result is a disaster from

the phenomenological point of view since it implies that at least one of the superpar-

ticles must be lighter than its fermionic superpartner, and this is absolutely excluded

by experimental observations.

It is actually not too hard to overcome these difficulties, since the supertrace for-

mula (2.6) is only valid for renormalizable models and, furthermore, it does not take

into account radiative corrections. The standard paradigm to construct realistic su-

persymmetric scenarios is to postulate that the sector responsible for supersymmetry

breaking has no renormalizable tree-level couplings with the MSSM fields. Following

the standard conventions, we call this sector the hidden sector in order to distinguish

it from the observable sector which contains ordinary matter, gauge and Higgs fields

as well as their superpartners. Supersymmetry-breaking effects are communicated to

the MSSM supermultiplets by messenger fields, which interact with both observable

and hidden sector fields. In this scenario, the restrictions encountered in the minimal

setup can be avoided through a non-vanishing supertrace for the non-renormalizable

low energy effective theory which describes the dynamics of the observable sector fields.

The hidden sector paradigm allows to solve the severe constraints imposed by renor-

malizability in the trace formula but, as a draw back, it introduces a large amount of

arbitrariness since the field content of the hidden sector and the interactions responsible

for the transmission of SUSY-breaking effects are unspecified. Concerning the identi-
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fication of the transmission mechanism, there are essentially two natural candidates:

gravity and gauge interactions.

In gravity-mediated supersymmetry breaking [66–68], the hidden sector and the

observable sector communicate only through gravitational interactions, which are as-

sumed to be the strongest interaction connecting the two sectors. In this case the

complete theory is intrinsically non-renormalizable, in such a way that the supertrace

over the whole mass spectrum is non-vanishing.

On the contrary, gauge mediation [69] assumes that the high-energy microscopic

theory describing the dynamics of both hidden and observable sector is a renormalizable

theory. At tree level the theory has a vanishing supertrace and no mass splitting within

the observable sector. However non-canonical kinetic terms for both chiral and vector

supermultiplets are generated at the quantum level by radiative corrections and the

supertrace is non-vanishing in the effective Lagrangian.

In general, from a low energy perspective, it is not of fundamental importance to

understand in detail the hidden sector dynamics. In first approximation we may then

be interested in simplified models which can be used to study the main features of the

low-energy effective theory obtained by integrating out the hidden sector dynamics.

With this purpose in mind we can briefly study the following two benchmark mod-

els of gravity and gauge mediation, which lead to a characteristic structure for the

supersymmetry-breaking Lagrangian.

2.2.1 Gravity Mediation

The minimal model for the hidden sector we can imagine is a neutral chiral field X,

which interacts with MSSM supermultiplets only through gravitational interactions

suppressed by the Planck mass MP and breaks supersymmetry by a non-vanishing

v.e.v. for its auxiliary field 〈FX〉 6= 0. For simplicity we can assume that the hidden

sector is characterized by only one mass scale defining the amount of supersymmetry

breaking in the hidden sector: 〈X〉 = M2
S θ

2 . Without loss of generality the v.e.v. of

the lowest component has been taken equal to zero. Since there are no relevant and

marginal interactions between the hidden and the observable sector fields, the leading

interactions allowed by the SU(3) × SU(2) × U(1) gauge symmetry and R-parity are

schematically given by:

LSUSY/ =

∫
d4θ

{
ZQ
i̄

M2
P

XX̄QiQ̄̄ + (Q↔ u, d, L, e,Hu, Hd )

+
b

MP

X̄HuHd +
b′

M2
P

XX̄HuHd + h.c.

}
(2.7)

+

∫
d2θ

Sa

MP

XWα
aWaα + h.c.

+

∫
d2θ

{
Auij
MP

X (uc)j QiHu +
Adij
MP

X (dc)j QiHd +
Aeij
MP

X (ec)j LiHd + h.c.

}
,
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where Z, S and A are dimensionless parameters. By expanding the Lagrangian in

components and substituting the v.e.v of the X superfield we can read out the most

significant SUSY breaking effects in the effective theory (see [70, 71] for a complete

discussion). From the first line we obtain a Hermitian flavor-mixing mass term for the

squarks:

(m2eQ)i̄ Q̃
iQ̃∗̄ , (m2eQ)i̄ ∼

M4
S

M2
P

ZQ
i̄ , (2.8)

as well as soft masses for sleptons and the two scalar Higgses. In the second line, the

first term produces a supersymmetric mass term for the Higgs supermultiplets (the

µ-term we discussed above) whereas the second term produces a mixing for the two

Higgs scalars known as Bµ-term:∫
d2θ µHdHu , µ ∼ M2

S

MP

b , (2.9)

BµHuHd , Bµ ∼ M4
S

M2
P

b′ . (2.10)

The third line produces a mass term for the gluinos, the winos and the bino:

1

2
Mg g̃ g̃ , Mg ∼

M2
S

MP

Sg . (2.11)

Finally the last line gives cubic terms containing two sfermions and one Higgs scalar;

in the literature these terms are known as A-terms:

˜̄uj(au)ij Q̃iHu , (au)ij ∼
M2

S

MP

Aij . (2.12)

Notice that we have not introduced linear terms in X multiplying matter supermulti-

plets in the d4θ term because they are redundant. Indeed, once the auxiliary fields of

matter supermultiplets are eliminated through their equation of motion, these terms

would produce contributions of the same form as the sfermion masses (m2eQ) and the

A-terms.

From the above analysis we conclude that the effects induced by supersymmetry

breaking are encoded in a finite number of relevant operators. This aspect is remarkable

because, as already discussed, the fact that no dimensionless SUSY breaking coupling

appears is of fundamental importance to preserve the supersymmetric stabilization of

the Standard Model Higgs mass. In fact, the terms we discussed above, even if derived

in the context of this simple model, are more in general the only admitted supersym-

metry breaking operators that do not re-introduce quadratic divergencies at loop level.

These terms have been carefully classified (see for example [72]) and are known in

literature as soft terms. Any realistic microscopic supersymmetric model must look

in the low-energy limit like softly broken supersymmetric Lagrangian. Actually, there
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exists a further class of soft terms, called C-terms, which includes non-holomorphic

cubic scalar terms, which can are only if the theory does not admit singlet fields. In

the MSSM there are no singlet fields, but C-terms are usually not included since in

most SUSY breaking scenarios they are not generated with sizable coefficients. In our

situation, these terms are generated by operators of the type:

∆LC =

∫
d4θ

XX̄

M3
P

uc H̄dQ , (2.13)

which are suppressed by extra powers of MS/MP .

Summarizing, in this model all the soft terms are characterized by the same scale:

msoft ∼
M2

S

MP

, (2.14)

which defines the effective scale of supersymmetry breaking in the observable sector;

as we have already anticipated, msoft must not exceed the TeV range in order to avoid

fine tuning problems. An interesting feature of this model is that it contains a natural

mechanism to generate a µ-term and a Bµ-term of the same order of magnitude as

the other soft masses; this is very important since for phenomenological reasons these

terms are expected to be of the order of the weak scale.

Finally we can compute the energy scale at which supersymmetry is expected to

be broken in the hidden sector. Taking msoft of the order of 1 TeV we deduce that in

the hidden sector supersymmetry must be broken at the intermediate scale:√
〈FX〉 = MS ∼ 1011GeV . (2.15)

The main difficulty associated to gravity-mediated supersymmetry breaking is that

the soft masses and the A-terms which are generated by this mechanism can violate

flavor. The A-terms arise from holomorphic operators containing one power of X and

we can imagine to control them by imposing some extra symmetry on X; however

the soft masses arise from terms involving XX̄, which are invariant under all possible

symmetries. In this scenario there is then no natural reason to expect that the soft

masses of squarks and sleptons should be almost flavor-diagonal, unless we postulate

the existence of flavour symmetries at the Planck scale.

Given their phenomenological importance, we conclude this section by recalling the

general expression of soft scalar masses in supergravity models. Ignoring D-type effects

and restring to the case of vanishing cosmological constant, these masses can be ob-

tained from expression (1.100) by distinguishing between observable and hidden sector

indices (respectively u, v and i, j). The last term in the expression can be discarded;

this is a consequence of the fact that the observable sector fields have vanishing v.e.v.’s

and do not have holomorphic quadratic invariants. In this situation, the soft masses

are given by:

(m2eQ)uv̄ = −Ruv̄ij̄F
iF̄ ̄ + guv̄m

2
3/2 . (2.16)
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2.2.2 Gauge Mediation

In gauge mediated supersymmetry breaking (see [73] for an extensive review on the sub-

ject), the microscopic (high energy) Lagrangian which describes the dynamics of both

observable and hidden sector fields is renormalizable; in this scenario, the difficulties re-

lated to the supertrace formula are overcome by the fact that at low energies, quantum

effects produce a non-vanishing supertrace for the effective theory. The main ingredi-

ents in gauge mediation are: a hidden sector responsible for supersymmetry breaking,

which has no renormalizable interactions with observable fields, and a messenger sector

composed by fields charged under Standard Model symmetries. Messengers interact by

Yukawa interactions with the (neutral) hidden sector fields and by gauge interactions

with observable fields. In general, tree-level Yukawa couplings between messenger and

observable fields can also be included, but in many interesting applications one does

not consider these kind of interactions to avoid any new source of flavor breaking (see

[74] for more details).

The dynamics of the hidden and the messenger sectors is a priori not known and

it represents the main source of model dependence. Nevertheless, as in the gravity

mediation paradigm, the main features and the general predictions of the model can

be analyzed by studying some simplified model. In this case we are interested in

the case in which the messenger characteristic mass scale M and the supersymmetry

breaking scale MS are fixed by the v.e.v. of one chiral field X of the hidden sector:

〈X〉 = M + θ2M2
S . (2.17)

The messenger scale is assumed to be large: M � 1TeV, but still sufficiently small

with respect to MP to avoid comparable flavor violating effects induced by gravity. The

X field gives a supersymmetric mass M to the messenger supermultiplets Φ and Φc by

the Yukawa coupling:

W =

∫
d2θXΦΦc . (2.18)

We consider the situation in which the supersymmetry breaking splittings induced on

messenger field are small with respect to the messenger scale: FX = M2
S � M2. In

this limit, messenger supermultiplets are stabilized in an approximately supersymmet-

ric way and can be integrated out directly at superfield level (an extended review of

this technique in a more general context and several new developments are the main

topics of Chapter 3). In this simplified situation, it is possible to efficiently study the

structure of soft terms in the effective theory by using superspace techniques. By direct

computation it is possible to show that gaugino masses are generated at one loop level

whereas sfermion masses are generated at two loops. The characteristic scale of soft

terms is in this case:

msoft ∼ g2 M
2
S

M
. (2.19)

A very elegant derivation of the soft SUSY breaking terms in gauge mediation

has been given in [74]; let us briefly review this procedure, which is based on Renor-
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malization Group (RG) techniques. At low energies E � M , the dynamics of the

observable-sector fields can be described by a Wilsonian effective Lagrangian at the

renormalization scale µ� M , defined by integrating out at the quantum level all the

modes with momentum larger than µ. The messenger fields can be completely inte-

grated out and, because of the non-renormalization of superpotential (see [75] for a

smart derivation of this result), the effective action is parametrized only by the wave

function Z(X, X̄, µ) and the holomorphic gauge kinetic functions Sg(X,µ):

Leff =

∫
d4θ Z(X, X̄, µ)QQ̄+

∫
d2θ Sg(X,µ)WαgW g

α + ... . (2.20)

Contrarily to the gravity mediation scenario, in this case the wave function Z is au-

tomatically flavor-diagonal, as required to avoid new sources of flavor violation. As

anticipated, the functional dependence of Sg and Z on the X superfield are obtained

by solving the RG equations for Sg(M,µ), Zi(M,µ) and by substituting back X to M

in a proper way. Gaugino and sfermion masses, as well as A-terms, can then be easily

found to be given by:

Mg(µ) = −1

2

∂ lnSg(X,µ)

∂ lnX

∣∣∣∣
X=M

M2
S

M
, (2.21)

m2eQ(µ) = −∂
2 lnZ(X, X̄, µ)

∂ lnX∂ ln X̄

∣∣∣∣
X=M

M4
S

M2
, (2.22)

Ai(µ) =
∂ lnZi(X,X

†, µ)

∂ lnX

∣∣∣∣
X=M

M2
S

M
. (2.23)

From a technical point of view this method significantly simplifies the computation of

the soft terms and drastically reduces the number of Feynman diagrams to be com-

puted.

Without describing any further the details of the mechanisms which communicate

supersymmetry breaking effects to the observable sector, let us summarize what we

learnt from the previous examples. We have seen that the supertrace formula for-

bids scenarios in which the supersymmetry breaking sector interacts with the MSSM

supermultiplets through renormalizable interactions. This implies that the minimal

supersymmetric generalization of the Standard Model must be extended to include

a new non-standard sector whose physics is mostly unknown and is the main source

of arbitrariness in SUSY phenomenology. From a pragmatic point of view, we can

parametrize our ignorance by breaking explicitly SUSY in the MSSM through the

addition of soft terms that preserve the main features of SUSY as a solution of the

hierarchy problem. Any realistic microscopic theory which includes supersymmetry

must look in the infrared like a softly broken SUSY Lagrangian. In addition we have

seen that phenomenology imposes important constraints on the form and on the rel-

ative size of soft terms. The structure of soft terms is mostly related to the mecha-

nism by which supersymmetry breaking is communicated to the observable sector and
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several phenomenological constraints can be exploited to characterize the possible vi-

able scenarios. In our discussion we emphasized that the most stringent constraints

come from flavor physics. We have also stressed the fact that the structure of the

soft terms does not depend too much on the details of the hidden sector physics and

that the most relevant features of the soft SUSY breaking Lagrangian can be easily

captured by studying the simple models discussed above. This implies that from the

phenomenological point of view, very few low-energy constraints can be imposed on

the hidden sector physics. In other words, from the low-energy perspective, the hidden

sector looks like a “black box”and the only strong constraints that can be imposed on

the supersymmetry-breaking dynamics is demanding that the scalar potential for the

hidden sector fields admits a sufficiently long-lived metastable vacuum and that the

associated cosmological constant is positive and almost vanishing. Other constraints

come for instance from Big Bang nucleosynthesis [76], which is not compatible with

the existence of light scalars with masses smaller than 1 TeV.

In the last decades, many attempts have been made to describe the physics of the

hidden sector in the context of String Theory models. Indeed, as we are going to

discuss in the next section, a general feature of the low energy effective models derived

from String Theory is the existence of several neutral fields (moduli) which are natural

candidates to constitute the hidden sector responsible for supersymmetry breaking.

2.3 Hidden Sector in String-Inspired Models

In this section we present a qualitative review of the main topics in string phenomenol-

ogy which are relevant for our discussions (see [77] for a concise review in the spirit

of this section). The problematics we are going to discuss can be considered as the

principal motivation and inspiration for the studies presented in the next chapters.

Nevertheless, our results apply to more general contexts and, in practice, depend only

marginally on the arguments presented in this section.

At the present time, String Theory is the most accredited candidate for a truly

fundamental description of all interactions and, in particular, it is the most important

candidate theory to describe gravity at the quantum level. There exist five different

String Theories and all of them are consistent in 10 space-time dimensions (see [21, 22]).

A common feature of these theories is that the string spectrum contains a massless spin

2 particle, the graviton Gµν , a singlet massless scalar, the dilaton and antisymmetric

tensors of different ranks depending on the theory. In the low energy limit, obtained

by discarding all the massive excitations in the string spectrum, these theories are

described by ordinary supergravity models in 10D. Despite the uniqueness of the 10

dimensional theories, a large amount of arbitrariness is introduced when the six extra

dimensions are compactified (à la Kaluza-Klein) in order to obtain four-dimensional

theories. Most of the model dependence comes from the choice of the compactification

manifold; the requirement of having N = 1 supersymmetry in the four-dimensional
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theory constrains the manifold to be a Calabi-Yau manifolds, which is a 6D Ricci flat

complex manifold.

The major problem in string phenomenology is that there exists a huge number of

topologically inequivalent Calabi-Yau manifolds (see for instance [22]) whose geometry

is controlled by the expectation values of moduli fields. These fields arise from the

dimensional reduction of the higher-dimensional graviton and other tensor fields; by

construction they are associated to the massless levels of the Kaluza-Klein tower. The

number of moduli that characterize each Calabi-Yau manifold is given by a set of

topological numbers known as Hodge numbers; they correspond to the number of

independent harmonic forms that can be defined on the compactification manifold.

There exist essentially two classes of moduli fields:

1. The Complex Structure moduli U , which characterize the shape of the compact-

ification manifold;

2. The Kähler moduli T , which control the size of the compact manifold.

Beside these fields and independently from the details of the compactification, each 4D

models contains the dilaton field S which fixes the string coupling.

We see that in String Theory there is then a twofold degeneracy on the “space” of

possible theories: the first one is a “discrete” degeneracy associated to the choice among

the topologically different Calabi-Yau manifold ,whereas the second one is a “contin-

uous” degeneracy, in the sense that, for each manifold, there is a set of massless fields

which can be freely varied and whose vacuum expectation values fix the shape and the

size of the compact manifold. This huge degeneracy can be visualized as a landscape

of string vacua [78] where each vacuum corresponds to a particular 4D model. In order

for String Theory to have any chance to be a realistic and predictive description of our

universe, it must incorporate a mechanism which explains how a particular vacuum

is selected or, in other words, how the compactification manifold is dynamically fixed.

This is one of the most challenging problems in string phenomenology and it is strongly

related to the problem of finding a natural mechanism to stabilize the moduli fields.

In the basic string constructions, the moduli fields U , T and S are massless fields

associated to flat directions of the scalar potential. In the last years, two main mecha-

nisms have been explored to generate a non-trivial dynamics for moduli fields and lift

the associated flat directions. Let us recall them.

1. Gaugino condensation (see for example [79–83]). Roughly speaking, in this

case, a non-trivial superpotential for certain moduli fields is generated by non-

perturbative effects due to the fact that they control also the gauge couplings

through the gauge kinetic function. If the gauge sector contains asymptotically-

free gauge interactions, gaugino condensation can naturally occur at the dynam-

ically generated scale Λ ∼ e−1/g. Through this mechanism a non perturbative

moduli-dependent superpotential à la ADS [84] (see also [85]) is generated.
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2. Flux compactication (see for example [86] for a detailed review). In this case a

tree-level moduli dynamics is generated by the addition of quantized background

fluxes. This mechanism stabilizes the moduli with a supersymmetric mass of the

order of the string scale, which is large with respect to the intermediate super-

symmetry breaking scale. One may then integrate out these heavy moduli and

work with a low energy supersymmetric effective theory describing the dynamics

of the remaining light moduli.

It is important to remark at this point that the quest for a natural mechanism

for moduli stabilization is essentially connected with the problem of finding a realistic

mechanism to break supersymmetry in the hidden sector; more precisely, it is natural

to expect that the same mechanism that is responsible for supersymmetry breaking

also produces a non-trivial dynamics for the light moduli fields. In many situations

that have been explored, none of the previous mechanisms is completely satisfactory

and in general, a combination of tree-level flux-induced dynamics and non-perturbative

effects is necessary to fully stabilize all the moduli and break supersymmetry. One fa-

mous example in this sense is the so called KKLT scenario [87]. The KKLT proposal

consists in a two steps moduli stabilization. In the first step fluxes are used to induce

a non-trivial potential for the dilaton S and the Complex Structure moduli U ; these

fields are stabilized with a supersymmetric mass which is assumed to be much larger

than the Kähler moduli masses. The author suggests that under these assumptions it

is possible to freeze S and U to their vacuum expectation values. The Kähler moduli T ,

on the other hand, remain unstabilized. In the second step, non-perturbative (gaugino

condensation) effects are invoked to stabilize T at a supersymmetric AdS minimum.

Finally, the authors use a brane sector to generate an uplifting (fine-tuned) poten-

tial that breaks supersymmetry and leads to a local minimum with a small positive

cosmological constant.

Many concerns have been raised regarding the validity of the KKLT procedure (see

for instance [88]). The weak point consists in the fact that the stabilization of S and U

fields is performed before including the non perturbative potential and without taking

into account the dynamics of T fields. The main question to be answered is whether one

is allowed to freeze the heavy moduli to their vacuum expectation values and decouple

them from the low energy dynamics. A more careful analysis would consist in properly

integrate them out in the complete supergravity theory describing the dynamics of all

the S, U and T fields.

This question is the main motivation for the study presented in Chapter 3 where,

in a completely general context, we discuss under which conditions it is possible to

integrate out heavy supermultiplets that are stabilized with large masses in order to

define an effective theory for the light modes. This problem is well understood in

the rigid limit whereas, as we will see, a more careful analysis is necessary in the

supergravity case. The importance of effective theories is evident in many research

fields in physics; in the case of moduli stabilization however it seems really crucial,
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since it represents a fundamental tool to deal efficiently with the may moduli fields

that arise in most of the string compactification scenarios.

The physics of the hidden sector in string-inspired supergravity models is also the

main motivation for the second topic we are going to discuss in the forthcoming chapters

which, as anticipated, is metastability. The “continuous” degeneracy of string vacua

that we discussed above can be faced with the use of effective field theories; however

the “discrete”degeneracy associated to the choice among topologically different com-

pactification manifolds needs some new and more refined tool to be investigated. In

Chapter 4 we will derive some general criteria that allow to establish whether a su-

pergravity model can admit realistic metastable vacua depending on the geometrical

properties of the associated scalar (Kähler) manifold. In general, the geometry of the

scalar target space is completely determined by the details of the compactification and

having a model-independent procedure to discriminate among different compactifica-

tion scenarios can be very helpful.



Chapter 3

Supersymmetric Effective Field

Theories

Low-energy effective field theories are a very useful tool which can be used to simplify

the study of complicated systems involving a large number of fields. Whenever there

exist large hierarchies in the mass spectrum one expects that the dynamics of the

light degrees of freedom can be more efficiently described by a simpler low-energy

macroscopic Lagrangian in which heavy modes do not explicitly appear and the small

effects induced by their dynamics are encoded into a new set of effective parameters.

In string-inspired supersymmetric models, effective field theory is a particularly useful

instrument to study the dynamics of moduli fields of the hidden sector. In that case, the

large number of fields makes it prohibitive to study analytically the vacuum structure

in the microscopic Lagrangian and a drastic simplification is required.

In this chapter we address the problem of how to construct low-energy effective the-

ories in globally and locally supersymmetric theories by integrating out heavy fields.

We consider general non-linear sigma models with chiral and vector multiplets and we

study under which conditions the low-energy effective theory turns out to be approxi-

mately supersymmetric. These conditions translate into the requirements that all the

derivatives, fermions and auxiliary fields should be small in units of the heavy mass

scale. They apply not only to the matter sector, but also to the gravitational one if

present, and imply in that case that the gravitino mass should be small. We then argue

that in this limit the ordinary procedure, which applies also for non-supersymmetric

models, can be replaced by a more efficient one which consists in integrating out heavy

fields directly at the superfield level. We show how to determine the unique exactly

supersymmetric theory that approximates this effective theory at the lowest order in

the counting of derivatives, fermions and auxiliary fields, by working both at the su-

perfield level and with component fields. As a result we give a simple prescription for

integrating out heavy superfields in an algebraic and manifestly supersymmetric way,

which turns out to hold in the same form both for globally and locally supersymmetric

theories, meaning that the process of integrating out heavy modes commutes with the

53
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process of switching on gravity. More precisely, for heavy chiral and vector multiplets

one has to impose respectively stationarity of the superpotential and the Kähler poten-

tial. We will mainly discuss the tree-level (classical) integration of heavy fields; a brief

qualitative analysis of quantum corrections is discussed in the last part of the chapter.

This chapter is based on our paper [1].

3.1 Integrating Out Heavy Fields: General Setup

In supersymmetric theories there exist essentially two approaches to construct low-

energy effective theories by integrating out heavy fields. The superspace formalism

suggests that it should be possible to do this directly at the superfield level by solv-

ing the superfield equations of motion of the heavy multiplets. On the other hand,

working with the extended Lagrangian written in component fields, one is induced to

integrate each heavy field by separately solving the corresponding equations of mo-

tion, and in general this turns out to be a more involved procedure. The questions

we want to address in this chapter are then the following: are these two procedures

equivalent? Under which conditions is it possible to apply the superfield approach and

in which limit do the two effective Lagrangians coincide? To answer these questions

we need to discuss the possible scenarios that may arise for the stabilization of heavy

modes. In general, the heavy fields will be stabilized at values implying a spontaneous

breakdown of supersymmetry, and the low-energy effective theory will consequently be

non-supersymmetric. In such a case, the best thing that one can do is to proceed in

the same way as for ordinary effective theories. In particular, at the leading order in

derivatives the effective theory is obtained by determining the heavy fields in terms of

the light ones by requiring stationarity of the potential with respect to the heavy fields.

However, it may happen that the heavy fields are stabilized in an approximately super-

symmetric way, with vacuum expectation values that break only very little or not at all

supersymmetry. In this limit we expect that the manifestly supersymmetric approach

in superfields differs from the actual effective theory only by small effects. It is then

of general interest to understand more precisely under which conditions such a situa-

tion can arise and to develop a systematic procedure to construct the supersymmetric

low-energy effective theory.

The case of theories with global supersymmetry is well understood, both for chi-

ral [84, 89] and vector multiplets [90–92], but we will nevertheless review it in some

detail. In this case one arrives very naturally at a simple procedure allowing to inte-

grate out heavy superfields directly at the superspace level, and thus in a manifestly

supersymmetric way. One particularly relevant situation where this procedure can be

very usefully employed is that of supersymmetric Grand Unified Theories, with a high

scale of gauge symmetry breaking yielding large masses for several fields [90, 91]. The

case of supergravity theories, on the other hand, seems to be less understood, and the

main aim of this chapter is to clarify how one should proceed in that case. For chiral
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multiplets, the question has been investigated some time ago in [93], and some diffi-

culties seem to appear, whereas for vector multiplets the situation seems to be simpler

[92] (see also [94, 61, 95]). We will however show that also in this case under suitable

conditions one arrives at a simple prescription for integrating out heavy superfields in a

manifestly supersymmetric way. The main result of our analysis is that the procedure

to integrate out heavy multiplets in supergravity is the same as in the rigid case once

the condition of small gravitino mass is satisfied.

The basic reason why gravity does not affect the way in which one integrates out

heavy fields at the leading order in the low-energy expansion is due to the fact that

when requiring also gravity to be described at the two-derivative level, its couplings

are essentially fixed. This is true in general, for any theory with fields of spin 0, 1/2

and 1, independently of whether it is supersymmetric or not. It can be understood

through the following argument. A generic two-derivative theory without gravity is

entirely parametrized by a potential V and some wave-function factors Z defining

the kinetic terms, which are functions of the fields. To get the effective theory at

the two-derivative level, one can then integrate out the heavy fields ξh by using as

equations of motion ∂hV = 0 and completely neglecting space-time derivatives. As

a matter of fact, this correctly determines not only the effective potential, but also

the effective wave-function factors. The reason is that the corrections to the equation

∂hV = 0 involve derivatives of the fields. Their effect can then be neglected in the wave

function Z, since this would give terms with more than two derivatives in the action.

It is easy to see that their effect can also be neglected in V . The reason for this is

that only the leading linear effect can produce a term with two or less derivatives, but

this term is proportional to ∂hV evaluated on the approximate solution and therefore

vanishes. When switching on gravity, the potential and kinetic terms get covariantized

in a unique way, and the only new allowed term is an Einstein-Hilbert kinetic term

for gravity, multiplied by a function Ω of the fields. One can then repeat exactly the

same reasoning as without gravity, treating Ω in a similar way as Z, and arrive again

to the conclusion that one can use the simple equation ∂hV = 0 to define the effective

theory at the two-derivative level. The case of supersymmetric theories is then just a

special case of this. For heavy chiral multiplets Φh, the Kähler potential K plays a role

similar to Z, whereas the superpotential W corresponds essentially to V . For heavy

vector multiplets V x, it is instead the gauge kinetic function H that plays the role of

Z and the Kähler potential K that plays the role of V . In the case where such heavy

chiral and vector superfields are stabilized in an approximately supersymmetric way,

the analogs of the equation ∂hV = 0 turn then out to be respectively ∂hW = 0 and

∂xK = 0. For exactly the same reasons as before, these equations allow to correctly

compute not only the effective potential but also the wave function factors, and turn

out to be valid also in the presence of gravity. The only assumption behind this is that

gravity can be treated at the two-derivative level, and we shall see that this implies

that the gravitino mass should be small.

As anticipated in the previous chapter, the study we are going to present is partic-
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ularly relevant in the context of the effective supergravity description of string models,

where some of the moduli fields may be stabilized in a supersymmetric way with a

large mass, like for example in the scenarios of [96, 87]. There has been some debate

on the circumstances in which it is justified to freeze such heavy moduli to constant

values [88, 97, 98] (see also [99, 100]), and although this issue has recently been settled

in [101–103], it is important to know the procedure to integrate them out in general.

3.1.1 The Derivative Expansion

In quantum field theories, one can get rid of heavy degrees of freedom at tree level

by integrating the equations of motion of the associated fields at leading order in

space-time derivatives. To illustrate this point and in order to better understand the

considerations done in the last part of the previous section, let us consider a simple non-

supersymmetric model containing two sectors of real scalar fields with a large hierarchy

in the mass spectrum. We indicate with φi the light fields, with φα the heavy ones and

with Mαβ the heavy-field mass scale:

L =
1

2
∂µφ

i∂µφi +
1

2
∂µφ

α∂µφα − V (φi, φα) , (3.1)

with

V (φi, φα) =
1

2
M2

αβ φ
αφβ + Ṽ (φi, φα) . (3.2)

At low energy we can solve perturbatively the equations of motion of the heavy fields:

φα = (�+M2)−1αβ(−Ṽβ) ≈ −M−2αβ Ṽβ +O
(
�φi

M2

)
. (3.3)

At leading order in space-time derivatives, we can replace φα in the microscopic La-

grangian (3.1) by :

φα → φα0 (φi) +O
(
�φi

M2

)
, (3.4)

where φα0 (φi) is defined as the solution of the algebraic approximate equations of motion

M2
αβ φ

β
0 (φi) + Ṽα(φi, φα0 (φi)) = 0, which gives:

Vα(φi, φα0 (φi)) = 0 . (3.5)

The effective Lagrangian at the two-derivative level is then given by:

Leff =
1

2
Zij(φ

i) ∂µφ
i∂µφj − V (φi, φα0 (φi)) (3.6)

with

Zij(φ
i) = δij +

∑
α

∂φα0
∂φi

∂φα0
∂φj

,
∂φα0
∂φi

= −
∑
β

V αβ
inv Vβi . (3.7)

The relation on the right side can be derived from (3.5) by taking a derivative with

respect to light fields and V αβ
inv denotes the inverse of Vαβ as a matrix. We see now



3.2. Integrating Out Heavy Chiral Multiplets in Global SUSY 57

explicitly that in the effective Lagrangian we are allowed to keep the corrections to

the wave function since the next-to-leading contributions of order O (�φi/M2
α) in the

scalar potential are proportional to Vα(φi, φα0 (φi)), which automatically vanishes.

The crucial point to take into account when dealing with supersymmetric low-

energy effective theories is that the usual expansion in number of derivatives does not

preserve order by order supersymmetry. Any truncation on the number of space-time

derivatives spoils then supersymmetry, unless some other measure is taken. This point

has already been discussed in Sections 1.3.1 and 1.3.2 where we studied the most

general non-renormalizable supersymmetric models in rigid SUSY; we have seen that

a restriction on the number of space-time derivatives implies also a restriction on the

number of fermions and auxiliary fields. As a matter of fact, this feature turns out to

be valid more in general also for SUGRA models and it is essentially due to the general

form taken by supersymmetry transformations.

When heavy multiplets are integrated out to define a low-energy effective theory

valid below a certain mass scale M , infinitely many terms with arbitrarily large num-

ber of auxiliary fields and fermions are generated and these terms are suppressed by

inverse powers of M . One may then decide to retain only those terms with the leading

number of space-time derivatives, auxiliary fields and fermions in order to preserve

supersymmetry, but this truncation is justified solely when not only derivatives but

also the auxiliary fields and fermions bilinears are small in units of M .

This means physically that the modes that are integrated out should not only be

heavy, but also be stabilized in a way that approximately preserves supersymmetry,

with small values for the fermions and auxiliary fields, implying in particular small

mass splittings. The supersymmetric low-energy effective theory defined in this way, by

truncating the total number of derivatives, fermion bilinears and auxiliary fields, is then

different from the standard low-energy effective theory, obtained by truncating only the

number of derivatives, and the two approximately coincide only in those regions of field

space where fermions and auxiliary fields are small. One can summarize this reasoning

by simply saying that a multiplet of fields can be integrated out in a supersymmetric

way only if it has a large supersymmetric mass.

In the following sections we study in detail how to supersymmetrically integrate out

heavy multiplets, both by working in components and by using the superfield approach.

3.2 Integrating Out Heavy Chiral Multiplets in

Global SUSY

Let us first consider the simplest case of a globally supersymmetric theory with light

chiral multiplets Φi and heavy chiral multiplets Φα, denoted collectively by ΦI . As we

have seen in Section 1.3.1 the most general Lagrangian containing the leading number
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of space-time derivatives is:

L =

∫
d4θ K(ΦI , Φ̄Ī) +

∫
d2θW (ΦI) +

∫
d2θ̄ W̄ (Φ̄Ī) , (3.8)

where K and W are not allowed to depend on supercovriant derivatives Dα. It is useful

to define a weight n which counts the number of space-time derivatives n∂, auxiliary

fields nF and fermion bilinears nψ of each term in the component Lagrangian and which

is preserved by supersymmetry. More precisely, by inspection of the supersymmetry

transformations of chiral multiplets (1.16)-(1.18), we see that we can assign n[φI ] = 0

to scalar fields and n[∂µφ
I ] = 1 to their derivatives. In order for δψI to have a well

defined n, we then need to assign n[F I ] = 1 also to the auxiliary fields. Finally to

assign the correct weight to ψ we should observe that the expression for δφI implies

that the operator δ carries the same weight as ψI , or schematically n[δ] = n[ψI ]. Using

again the transformation law δψI , we deduce that 2n[ψ] = 1, which implies n[ψ] = 1/2.

By this analysis we are then led to define the following parameter:

n = n∂ +
1

2
nψ + nF . (3.9)

Using this definition, we see that restricting to a supersymmetric Lagrangian with at

most 2 space-time derivatives translate into requiring n 6 2. But this, as already

discussed, produces also a limitation on the number of spinor and auxiliary fields.

We will use this weight to establish which terms give the leading contributions in the

supersymmetric limit of the low energy effective theory.

To work at the superfield level, it is more useful to define a weight p which just

counts the number of supercovariant derivatives:

p =
1

2
nDα +

1

2
nD̄α̇ . (3.10)

By rewriting any integral on the superspace as supercovariant derivatives plus vanish-

ing boundary terms, we can verify that this definition is consistent with the previous

one, in the sense that to any term with a given weight p in superfield correspond terms

with weight n = p in components; more precisely, we see that all the terms coming

from the d4θ integral have n = 2 whereas all the terms coming from the d2θ integral

have n = 1. In superfield language, restricting to two-derivatives Lagrangians then

consistently translates in requiring p 6 2.

Superfield approach

Let us start by studying in detail how to supersymmetrically integrate out the heavy

multiplets using the superfield approach. The exact superfield equation of motion for

Φα is obtained by first rewriting the first term in eq. (3.8) as an F -term by making use



3.2. Integrating Out Heavy Chiral Multiplets in Global SUSY 59

of supercovariant derivatives, and then varying L with respect to the unconstrained

chiral superfield Φα. This yields:

Wα −
1

4
D̄2Kα = 0 . (3.11)

The presence of a large supersymmetric mass for Φα means that around the value Φα
0

at which the superfield is stabilized, the superpotential W has a large second derivative

Wαβ(Φi,Φα
0 ) setting the mass scale M . This implies that the first term in eq. (3.11)

dominates over the second and that, at leading order in 1/M , we can integrate out the

heavy chiral multiplets by replacing Φα in the microscopic Lagrangian (3.8) by:

Φα → Φα
0 (Φi) +O

(
D̄2Φ̄i/M

)
, (3.12)

where Φα
0 (Φi) is determined by the algebraic equation Wα(Φi,Φα

0 ) = 0 .

It turns out that the corrections O
(
D̄2Φ̄/M

)
can be completely neglected in our

approximation, as the leading contributions that they would give to the effective action

would have p = 3. This statement is obvious for the terms coming from K, which gives

terms with p = 2 in the absence of extra supercovariant derivatives. For the terms

coming from W , which gives terms with p = 1 in the absence of extra supercovariant

derivatives, this is on the other hand due to the fact that the leading correction is

proportional to Wα, and therefore vanishes on the leading order solution. Summarizing,

one can thus integrate out the superfields Φα by using the simple chiral superfield

equation

Wα = 0 . (3.13)

This equation determines in an algebraic way the heavy chiral superfields in terms of

the light chiral superfields:

Φα = Φα
0 (Φi) . (3.14)

The effective theory for the Φi is then obtained by plugging back this solution into K

and W . This yields:

Keff(Φi, Φ̄ı̄) = K(Φi, Φ̄ı̄,Φα
0 (Φi), Φ̄ᾱ

0 (Φ̄ı̄)) , (3.15)

W eff(Φi) = W (Φi,Φα
0 (Φi)) . (3.16)

Component approach

It is instructive to rederive these results by using component fields. The Lagrangian

has the usual form L = T −V and it is given by expression (1.15). The kinetic part is

T = −KIJ̄

(
∂µφ

I∂µφ̄J̄ + iψ̄J̄ σ̄µDµψ
I
)
, (3.17)

with Dµψ
I = ∂µψ

I + ΓIMN∂µφ
MψN , and the potential is given by

V =−WIF
I − W̄J̄ F̄

J̄ +
1

2
WIJψ

IψJ +
1

2
W̄ĪJ̄ ψ̄

Īψ̄J̄

− KIJ̄F
IF̄ J̄ +

1

2
KIJ̄K̄F

Iψ̄J̄ ψ̄K̄ +
1

2
KJ̄MNF

J̄ψMψN − 1

4
KIJ̄P Q̄ψ

IψP ψ̄J̄ ψ̄Q̄ .

(3.18)
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Recall that the capital indices run over all fields whereas we reserve i and α indices

to refer respectively to light and heavy fields. Recall also that the auxiliary fields are

actually determined by their algebraic equations of motion, and are given by:

F I = −KIJ̄
(
W̄J̄ −

1

2
KJ̄MNψ

MψN
)
. (3.19)

We can now derive the exact equations of motion of Fα, ψα and φα. These corre-

spond to the θ0, θα and θ2 components of (3.11) and determine respectively the values

of the auxiliary fields Fα, the wave equation for ψα and the wave equation for φα. One

finds, without needing to use eq. (3.19), the following equations:

Wα +KαJ̄ F̄
J̄ − 1

2
KαĪJ̄ ψ̄

Īψ̄J̄ = 0 , (3.20)

WαIψ
I +KαIJ̄ψ

IF̄ J̄ − 1

2
KαIJ̄K̄ψ

I(ψ̄J̄ ψ̄K̄) + iKαJ̄σ
µDµψ̄

J̄ = 0 , (3.21)

WαIF
I − 1

2
WαIJψ

IψJ +KαIJ̄F
IF J̄ − 1

2
KαIJ̄K̄F

Iψ̄J̄ ψ̄K̄ − 1

2
KαJ̄MNF

J̄ψMψN

+
1

4
KαIJ̄P Q̄ψ

IψP ψ̄J̄ ψ̄Q̄ +KαJ̄�φ̄
J̄ +KαJ̄K̄∂µφ̄

J̄∂µφ̄K̄ = 0 . (3.22)

Under supersymmetry transformations, these equations get mapped into each other

and remain thus satisfied.

In the situation in which the fields φα and ψα have a large supersymmetric mass

M , there must be a quadratic term in W leading to a second derivative Wαβ of order

M . The equations of motion (3.21) and (3.22) for ψα and φα are then dominated by

the first terms, which involve second derivatives of W . Similarly, in the equation of

motion (3.20) for Fα, the first term is expected to dominate, since the other two do not

involve W at all. In the brutal limit in which one takes M → ∞ one would find that

φα is determined by the condition Wα(φα) = 0 whereas ψα and Fα vanish. However,

this brutal approximation does not preserve supersymmetry. One therefore needs to

look at the subleading terms and check which ones should be kept in order to get a set

of equations that is supersymmetric. The appropriate criterion to do so is related to

the counting of the total number n of derivatives, fermion bilinears and auxiliary fields.

Indeed, in order to obtain an effective theory with n ≤ 2, each of the equations used to

integrate out the heavy fields in terms of the light ones should involve terms with the

same minimal value of n. Looking at eqs. (3.20)–(3.22), it is easy to see that the terms

depending on W have a value of n that is one unit less than the terms depending on

K and are therefore the dominant ones. One may then drop all the terms involving K

and find the following set of approximate equations:

Wα = 0 , (3.23)

WαIψ
I = 0 , (3.24)

WαIF
I − 1

2
WαIJψ

IψJ = 0 . (3.25)



3.2. Integrating Out Heavy Chiral Multiplets in Global SUSY 61

It is easy to check that these are now exactly supersymmetric. More precisely, under

supersymmetry transformations each equation transforms into a combination of its

space-time derivative and one of the other equations. These equations are in fact the

non-trivial components of a chiral superfield equation, which is nothing but eq. (3.13).

The first of them is now understood as determining φα, the second ψα and the third

Fα. The bottom line is that the appropriate equation to be used to integrate out

the scalar fields is indeed the naive one, whereas for the fermion and auxiliary fields

supersymmetry forces us to keep some subleading terms suppressed by the mass scale

M .

Let us finally spell out more concretely the content of the three components (3.23)–

(3.25) of the superfield equation (3.13) by explicitly expressing heavy fields in terms of

the light ones. It is useful to introduce the following notation for the supersymmetric

masses of the heavy fields and the light fields, their mixings and ratios:

Mαβ = Wαβ , mij = Wij , µαi = Wαi , εαi = −M−1αβ µβi . (3.26)

The other relevant parameters are the cubic couplings in the superpotential involving

heavy chiral multiplets, namely:

λαij = Wαij , λαβj = Wαβj , λαβγ = Wαβγ . (3.27)

The first equation (3.23), compared to (3.20), states that the scalar components φα of

the heavy chiral multiplets must adjust to values compatible with the assumption that

all the ψI and F I vanish in first approximation:

φα0 (φi) : solution of Wα(φi, φα0 ) = 0 . (3.28)

The second equation (3.24) tells us instead that the heavy fermions ψα are not exactly

zero but proportional to the light ones, ψi, through a coefficient given by the ratio

between the supersymmetric mass mixing µ between light and heavy fields and the

mass M of the heavy fields:

ψα0 (φi, ψi) = −(M−1µ)αi ψ
i = εαi ψ

i . (3.29)

Finally, the third equation implies that the Fα are not exactly zero, but proportional

to the F i, plus some terms quadratic in the ψi, again through coefficients involving the

ratio between µ and M :

Fα
0 (φi, ψi) = εαi F

i (3.30)

+
1

2

(
M−1αβλβij + 2M−1αβλβγi ε

γ
j + M−1αβλβγδ ε

γ
i ε
δ
j

)
ψiψj .

In summary, we see that this procedure automatically keeps track of the fact that

the heavy superfields have small but yet non-vanishing fermion and auxiliary field

components. The effects of these suppressed components are in general relevant and
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cannot be neglected. The final result is then a supersymmetric effective theory that is

accurate at leading order in ∂µ/M , ψI/M3/2 and F I/M2, but a priori not limited to

small φI/M .

We have checked in a variety of examples that the supersymmetric effective theory

defined by the superfield equation Wα = 0 and the standard effective theory defined

by the ordinary equation Vα = 0 do indeed approximately coincide under the above as-

sumptions. Focusing for concreteness on the scalar potential, the region in the space of

scalar fields φi where the two theories match is defined by the following two conditions:1

m(φi), µ(φi)�M , F i(φi), Fα(φi)�M2 . (3.31)

3.3 Integrating Out Heavy Chiral Multiplets in

Supergravity

Let us consider next the case of a locally supersymmetric theory with light chiral mul-

tiplets Φi and heavy chiral multiplets Φα, denoted collectively by ΦI , as well as the

gravitational multiplet. As anticipated in Section 1.4 we will work in the superconfor-

mal formalism; in this framework it is possible to rewrite as superspace integrals all the

relevant terms of the Lagrangian, which contain the couplings between the auxiliary

field Fφ and the matter and gauge fields. Schematically we can write:

L =

∫
d4θ

(
−3 e−K/3 Φ̄Φ

)
+

∫
d2 θW Φ3 + h.c. + gravity(eaµ, ψµ, Aµ) . (3.32)

The superspace part of the SUGRA Lagrangian turns out to be the most significant

one for our purposes and in our analysis we will focus on it. The omitted terms, as we

have already discussed in Chapter 1, are completely fixed by covariance and for this

reason we will not keep track of them in our computations. In this formalism, the total

number n of derivatives, fermion bilinears and scalar auxiliary fields corresponds again

to half the number of supercovariant derivatives. Requiring n ≤ 2 amounts then to

work at leading order in space-time derivatives, auxiliary fields and fermion bilinears

in both matter and gravitational sector.

1Note that in general the whole supersymmetric mass matrix, including all the blocks m, µ and
M , is field dependent. One has therefore to make sure that not only m but also the mixing term
µ stay small compared to M (see also [104] regarding this point). One can however focus on the
supersymmetric part of the mass matrix, since the F I are independently assumed to be small.



3.3. Integrating Out Heavy Chiral Multiplets in Supergravity 63

Superfield approach

Working as in the rigid case, we can integrate out the heavy chiral multiplets by solving

their approximate equations of motion. The exact superfield equations are given by:

Wα −
1

4
D̄2(Kα e

−K/3Φ̄)Φ−2 = 0 . (3.33)

We assume that as before the presence of a large supersymmetric mass means that

around the value Φα
0 at which the heavy superfields Φα are stabilized, the superpotential

W has a large second derivativeWαβ(Φi,Φα
0 ) setting the mass scaleM . The equations of

motion are then dominated by the first term, and we can integrate out the heavy chiral

multiplets, at leading order in 1/M , by replacing Φα in the microscopic Lagrangian

(3.32) by:

Φα → Φα
0 (Φi) +O

(
D̄2Φ̄i/M, D2Φ̄/M

)
, (3.34)

where Φα
0 (Φi) is determined by the algebraic equation Wα(Φi,Φα

0 ) = 0.

As before, the sub-leading correctionsO
(
D̄2Φ̄i/M, D2Φ̄/M

)
can be neglected, since

they would give corrections with n > 2.2 The heavy chiral superfields can thus be

integrated out by using the same simple chiral superfield equation as in the rigid case,

namely

Wα = 0 . (3.35)

As before, the solution of this equation determines the heavy chiral fields in terms

of the light chiral fields:

Φα = Φα
0 (Φi) . (3.36)

The effective theory for the Φi is then obtained by plugging back this solution into K

and W . This yields:

Keff(Φi, Φ̄ı̄) = K(Φi, Φ̄ı̄,Φα
0 (Φi), Φ̄ᾱ

0 (Φ̄ı̄)) , (3.37)

W eff(Φi) = W (Φi,Φα
0 (Φi)) . (3.38)

Notice now that, as discussed in Section 1.4, the microscopic theory involving all

the fields has a Kähler symmetry acting as (Φ, K,W ) → (Φ eY/3, K + Y + Ȳ ,We−Y ),

where Y (ΦI) is an arbitrary holomorphic function of the matter chiral superfields.

On the other hand, the superfield equation (3.35) defining the effective theory is not

manifestly invariant under such a transformation for generic Y . More precisely, it is

invariant if Y depends only on the Φi, corresponding to Kähler transformations within

the effective theory. But it is not invariant if Y depends also on the Φα. The reason

for this is that we have assumed in our derivation that the large mass scale M of the

heavy fields is associated only with a large quadratic term in W , and no large term in

K. This is clearly a gauge-dependent assumption and it selects a restricted subclass of

2A similar reasoning has also been used in [102, 103] in the special case of effective theories de-
scribing string models with fluxes.
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Kähler gauges, which is particularly well-suited to work out the effective theory.

One may wonder at this point whether it is really justified to neglect supercovari-

ant derivatives acting on the compensator, and try to see what is the outcome when

one keeps such terms and neglects only those where supercovariant derivatives act on

the other chiral superfields. Proceeding in this way, eq. (3.33) would not reduce to

eq. (3.35), but rather to

Wα −
1

4
Φ−2Kαe

−K/3D̄2Φ̄ = 0 . (3.39)

In order to get rid of the dependence on the compensator, one can now use the exact

superfield equation of motion of Φ. From the Lagrangian (3.32), one finds that this

equation of motion is given by

W +
1

4
D̄2
(
e−K/3Φ̄

)
Φ−2 = 0 . (3.40)

For the same reasons as before, all the terms involving supercovariant derivatives acting

on K can certainly be neglected. However, one should keep the terms where the

supercovariant derivatives act on the compensator. Eq. (3.40) then becomes

−1

4
D̄2Φ̄Φ−2 = eK/3W . (3.41)

Plugging this relation back into eq. (3.39) allows finally to eliminate completely the

dependence on the compensator, and the final equation simply reads:

Wα +KαW = 0 . (3.42)

This equation can also be derived in a more direct way by choosing from the beginning

a Kähler gauge defined by Y = lnW . In this way one does not need to use the

compensator equation of motion, but the derivation still implicitly assumes that W 6= 0

and D̄2Φ̄ 6= 0. More in detail, from the Lagrangian (1.94) we can derive the exact

superfield equation of motions for the heavy superfields:

D̄2(Gα e
−G/3Φ̄) = 0 . (3.43)

By keeping only the term in which the supercovariant derivative acts on the compen-

sator superfield we obtain:

Gα e
−G/3D̄2Φ̄ = 0 , (3.44)

which is equivalent to (3.42) if the above-mentioned assumptions are satisfied.

Notice that eq. (3.42) reduces to the equation Wα = 0 in the rigid limit, and is

moreover manifestly invariant under Kähler transformations. However, a closer look

shows that it cannot possibly be the correct equation. An obvious problem is that it is

a vector and not a chiral superfield equation. This means that it cannot be solved as a

superfield equation by just setting the Φα to some functions of the Φi, due to the fact
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that there are more component equations than component fields. On the other hand,

the original exact equation of motion (3.33) for Φα is chiral, and it is by dropping only

part of the terms involving supercovariant derivatives that one arrives at an equation

which is no longer chiral. Thus, the new equation must somehow also be approximately

chiral, meaning that only its chiral components should really be significant, the non-

chiral ones being approximately satisfied in an automatic way. This means that the

equation Wα + KαW = 0 cannot be used as an exact equation to define a manifestly

supersymmetric approximate version of the low-energy effective field theory, and that

the appropriate equation should instead be Wα = 0, as already argued. Through

this argument, which clarify the problems raised in [93], we have moreover learned

that neglecting terms involving supercovariant derivatives acting on the compensator

amounts to neglect W compared to M , i.e. to have approximately

W ' 0 . (3.45)

This equation should however not be imposed as an exact superfield equation as it

comes from a reasoning on the compensator superfield Φ, for which most of the compo-

nents can be gauged away. More precisely, in the formulation where the superconformal

symmetry is gauge-fixed to the super Poincaré symmetry, only the lowest component

of this equation, corresponding to the equation coming from the auxiliary field of the

compensator (3.40), should be considered. Finally, it should also be emphasized that

although W must be neglected in the equation that is used to integrate out the Φα, one

should a priori not neglect terms involving W in the Lagrangian where the solution for

the Φα is substituted to obtained the effective theory for the Φi.

The crucial point behind this extra difficulty that one encounters in the gravitational

case is that space-time derivatives and supersymmetry-breaking auxiliary fields must

be small also in the gravitational sector. This brings up a new condition that needs to

be fulfilled in order to be in the situation in which an approximate two-derivative super-

symmetric low-energy effective theory is expected to exist: the compensator auxiliary

field Fφ should be much smaller than M :

Fφ �M . (3.46)

Once all the other auxiliary fields F I are also assumed to be small, F I � M2, this

condition implies that:

1. the gravitino mass (and therefore W ) is small, m3/2 �M ;

2. the cosmological constant is small, VS �M4.

The first statement is justified by the fact that m3/2 turns out to be a linear combi-

nation of F I and Fφ auxiliary fields; to see this we can use the equation of motion

of Fφ evaluated at the vacuum, which can be derived as the lowest component of the

superfield equations (3.40). We then obtain:

m3/2 = |W | eK/2 =

∣∣∣∣ e−K/6 Fφ − 1

3
KIF

I

∣∣∣∣�M . (3.47)
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The second statement can be verified by rewriting the scalar potential (1.95) in a more

suitable way:

VS = gi̄ F
iF̄ ̄ − 3m2

3/2 �M4 . (3.48)

The effect induced by Fφ 6= 0 is to produce a splitting ∆m among the masses

of fields belonging to the same multiplet; we understand then that the reason for

requiring Fφ to be small is twofold. In a flat background it can represent a genuine

supersymmetry breaking effect and then it should be small in order to not induce too

large mass splittings. On the other hand, when SUSY is unbroken, it represents the

expected mass splitting in an AdS background, which is proportional to the inverse of

the curvature radius, and we must require

∆m ∝ 1/RAdS �M , (3.49)

in order to justify a two-derivative small-curvature approximation for the graviton. We

will discuss in more detail later on these aspects when we will study the role of Fφ on

mass splittings.

It should be finally emphasized that this further condition Fφ �M (or equivalently

m3/2 � M) can in general not be achieved in a natural way, but must instead be

implemented through an adjustment of parameters in the Lagrangian. Notice however

that for phenomenological applications it is anyhow necessary to eventually tune this

cosmological constant to a yet smaller value in the low-energy effective theory. This

step does therefore not represent a really severe restriction. Nevertheless, it is not

possible to define a locally supersymmetric two-derivative low-energy effective theory

below M without making sure that this condition is satisfied.

Component approach

One can derive the same results using component fields in the ordinary formulation of

supergravity. We will work in the Einstein frame defined by the gauge fixing (1.89) of

the Lagrangian (1.82); in this case we find it useful to reabsorb the factorized phase

associated to W through a field redefinition. In addition, since we are not interested

in keeping track of the fermionic couplings, we will set the spinorial component of the

compensator multiplet to zero. We finally have:

Φ = eK/6 · {1, 0, U} . (3.50)

This gauge choice has the advantage of getting rid of the mentioned phase but has the

disadvantage that the component Lagrangian is not manifestly invariant under Kähler

transformations. As explained in [25] Kähler invariance is restored if Kähler transfor-

mations are accompanied by a redefinition of the gravitino and the chiral fermions. We

finally remark that, as before, we will discard the dependence on all the gravitational

fields except U .
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With these assumptions, the Lagrangian has the usual form L = T − V , with a

kinetic term that is the same as in global supersymmetry,3

T = −KIJ̄ ∂µφ
I∂µφ̄J̄ , (3.51)

and a potential taking the following form:

V =− WIF
IeK/2 − W̄J̄ F̄

J̄eK/2 − 3WUeK/2 − 3 W̄ ŪeK/2

−
(
KIJ̄ −

1

3
KIKJ̄

)
F IF̄ J̄ −KIF

IŪ −KJ̄ F̄
J̄U + 3UŪ . (3.52)

The auxiliary fields F I and U are determined by their algebraic equations of motion,

which give:

F I = −KIJ̄
(
W̄J̄ +KJ̄W̄

)
eK/2 , (3.53)

U =
(

1− 1

3
KIK

IJ̄KJ̄

)
W̄eK/2 − 1

3
KIK

IJ̄W̄J̄e
K/2 . (3.54)

From these equations it follows that:

WeK/2 = Ū − 1

3
KJ̄ F̄

J̄ , (3.55)

WIe
K/2 = −

(
KIJ̄ −

1

3
KIKJ̄

)
F̄ J̄ −KIŪ . (3.56)

We can now derive the equations of motion of Fα and φα. These correspond to the

θ0 and θ2 components of the exact equations of motion after performing the supercon-

formal gauge fixing on the compensator. One finds:

Wαe
K/2 +

(
KαJ̄ −

1

3
KαKJ̄

)
F̄ J̄ +KαŪ = 0 , (3.57)

WαIF
IeK/2 +

(
KαIJ̄ −

1

3

(
KIKαJ̄ +KJ̄KαI

)
−KαKIJ̄ +

1

3
KαKIKJ̄

)
F IF̄ J̄

+
(
KαI −KαKI

)
F IŪ − 2KαJ̄ F̄

J̄U +KαJ̄�φ̄
J̄ +KαJ̄K̄∂µφ̄

J̄∂µφ̄K̄ = 0 . (3.58)

In order to arrive at this last equation, we have used the relations (3.56) and (3.55)

that follow from eqs. (3.53) and (3.54).

To define an approximate low-energy effective theory, we can now neglect in each of

these equations those terms which are subleading in the counting of the total number

n of derivatives and auxiliary fields. In this way we get:

Wα = 0 , (3.59)

WαIF
I = 0 . (3.60)

3Note that the Kähler covariant derivative emerges only after taking into account the couplings
to the vector auxiliary field that remains in the gravitational multiplet after superconformal gauge
fixing.
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We recognize now that these equations correspond indeed to the θ0 and θ2 components

of the superfield equation (3.35) obtained in the superfield approach.

To check the effect of the compensator auxiliary field Fφ = eK/6U , one may re-do

the same analysis without considering it as an auxiliary field but rather as an ordinary

scalar field. This can be easily done by first eliminating the field U from the two

equations for φα and Fα by using its equation of motion U = W̄eK/2 + 1/3KIF
I .

Using also eq. (3.53), and dropping then in (3.57) and (3.58) only terms that are

subleading in the total number of derivatives and matter auxiliary fields, one would

find the following two equations:(
Wα +KαW

)
eK/2 = 0 , (3.61)(

WαI +KαIW +KαWI

)
F IeK/2 − 2KαJ̄W̄ F̄ J̄eK/2 = 0 . (3.62)

These should correspond to the θ0 and θ2 components of eq. (3.42). As a matter of

fact, this is indeed the case if one discards the last term in eq. (3.62). This is related to

the fact that (3.42) is a vector superfield equation which is only approximately chiral

and has, as already argued, also some θ̄2 and θ2θ̄2 components that must somehow

be automatically satisfied within our approximations. Its θ̄2 component, in particular,

implies that the quantity KαJ̄W̄ F̄ J̄ should be discarded. Under this assumption, the

above equations correspond then indeed to the chiral components of eq. (3.42). As

already argued, this equation cannot be taken as an exact superfield equation, and

this shows up here through the fact that the above set of component equations is not

preserved by supersymmetry transformations.

Let us finally study a bit more in detail, as promised, the role of the compensator

auxiliary field in the mass splitting between scalars and pseudo-scalars. In the limit

in which all the F I and U are small, the only term that survives at second order in

the expansion of the scalar potential around the vacuum is the supersymmetric mass

eKWIP W̄J̄N̄K
PN̄ φI φ̄J̄ . On the other hand, if we only discard F I and we assume that

U cannot be neglected we obtain:

Lmass = −
(
NIPK

PQ̄N̄Q̄J̄ − 2KIJ̄ |U |2
)
φI φ̄J̄ +

1

2
NIJUφ

IφJ +
1

2
N̄ĪJ̄ Ū φ̄

Ī φ̄J̄ , (3.63)

where

NIJ = eK/2WIJ + (KIJ −KIKJ)Ū . (3.64)

The physical masses are then no-longer degenerate in pairs, but display now a splitting

between scalars and pseudo-scalars, of the order of the off diagonal elements NIJU in

eq. (3.63). As anticipated, if supersymmetry is unbroken and the background geometry

is AdS, the mass splittings coincide with those required by the supersymmetry algebra

in AdS space. U represents then a curvature scale and more precisely the inverse of the

radius RAdS of AdS. In this case one must require that the Compton wave length 1/M

of the heavy fields should be much smaller that this curvature length L, in order to be
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able to integrate out these states in the small curvature approximation. This implies in

particular U �M . If on the other hand supersymmetry is broken and the background

geometry is Minkowski, the mass splittings represent a soft supersymmetry breaking

effect. U corresponds then to an effective supersymmetry breaking scale. In this case

one must require that the square mass M2 of the heavy fields should be much larger

than the mass splittings of order MU and U2 arising in eq. (3.63). This implies again

U � M . Notice finally that if the condition U � M is not satisfied, it is impossible

for any light chiral multiplets to heave both its scalar and pseudo scalar components

with a mass much smaller than M , 4 and the gravitino is also not light.

The content of the superfield equation (3.35) is the same as the one displayed in

eqs. (3.28)–(3.30) for the rigid case. The first equation states again that the φα must

adjust to values compatible with the assumption that all the ψα and Fα vanish in first

approximation, whereas the second and the third equations tell that ψα and Fα must

actually have small but non-vanishing values. As before, these suppressed components

are important and cannot be neglected. The final result is then a supersymmetric

effective theory that is accurate at leading order in ∂µ/M , ψI/M3/2, F I/M2 and U/M ,

but again a priori not limited to small φi/M .

We have checked in a number of examples that the supersymmetric effective theory

defined by the superfield equation Wα = 0 and the standard effective theory defined by

the ordinary equations Vα = 0 do indeed approximately coincide under the assumptions

mentioned above. For the scalar potential, in particular, the region in the space of scalar

fields φi where the two theories match is now defined by three conditions:5

m(φi), µ(φi)�M , F i(φl), Fα(φi)�M2 , m3/2(φi)�M . (3.65)

In this case, it is not possible to perform analytic checks. The reason for this is that the

validity of the approximation requires not only the F i(φi) to be small, but also U(φi)

(corresponding to m3/2(φi)) to be negligible as compared to the mass scale M . One has

then one more condition than scalar fields, and this makes it impossible to re-express

the deviation between the two effective potentials as a function of F i(φi) and U(φi)

instead of φi. This reflects the fact that, as already mentioned, there generically exists

a domain in field space where all the F i(φi) are small, but in order to have in addition

that also U(φi) is small in a non-empty portion of this domain, one needs in general to

adjust some coefficients in the theory. Nevertheless, we performed a numerical point-

by-point check for several non-trivial examples and verified that indeed our general

conclusions hold true.

4A point similar to this last observation was already made in [98].
5The first two conditions are as before required to make sure that there is indeed a hierarchy

between the light and heavy eigenvalues of the full supersymmetric mass matrix. The last additional
condition is, as already explained, equivalent to the condition U(φi)�M .
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3.4 Integrating Out Heavy Vector Multiplets in

Global SUSY

Let us consider again the case of global supersymmetry, but including both chiral

multiplets ΦI and vector multiplets V A, which we split into light ones V a and heavy

ones V x (we will use the latin indices a, b, c, .... for light vectors and x, y, w, z, .... for

heavy ones). For simplicity we restrict to Abelian gauge fields, but the generalization

to the non-Abelian case is straightforward. As we discussed in Section 1.3.2, the most

general Lagrangian with the leading number of space-time derivatives is given by (1.35),

which we rewrite here in a slightly different form for convenience:

L =

∫
d4θ
[
K(Φ, Φ̄, V )

]
+

∫
d2θ
[
W (Φ) +

1
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HAB(Φ) D̄2DαV AD̄2DαV

B
]

+ h.c. .

(3.66)

The new important aspect to take into account when vector multiplets are introduced

is the fact that the counting of the total number of derivatives, fermion bilinears and

auxiliary fields gets modified; this is essentially related to the fact that vector multiplets

have mass-dimension 0 rather than 1 and this implies that in the superfield Lagrangian

there may appear operators with a higher number of supercovariant derivatives. We

can naively generalize the weight n to include vector multiplets by assigning to AAµ , λ
A

and DA respectively n = 0, 1/2, 1; to the additional components CA, χA and NA arising

in non-Wess-Zumino gauges must then be assigned n = −1,−1/2 and 0 to preserve

supersymmetry. This counting guarantees that the minimal Lagrangian has still n 6 2

but it has two major disadvantage: first of all, it does not preserve gauge invariance

(as one can easily verify by looking for example at the gauge transformation of AAµ
or the covariant derivatives); second, it is not true anymore that to each superfield

expression with a fixed weight p correspond terms with n = p. Indeed, we can see

that the d4θ integral which has p = 2 produces also terms with n equal to 0 (e.g.

from KAB|θ=0(V AV B)|θ2θ̄2) and 1 (e.g. from KA|θ=0V
A|θ2θ̄2). More remarkably, with

this definition the kinetic term for gauge fields has p = 4 but the associated terms

developed in components have n = 2. This raises then the question of whether one

should in this case keep subleading terms with a higher number of covariant derivatives

acting on chiral and vector superfields. We will see that it turns out that this is again

not necessary, but for a slightly less trivial reason than the previous case.

Let us start our analysis by first studying the integration of heavy chiral multiplets

in the presence of light vector multiplets, both in global and local supersymmetry. We

will finally concentrate on the integration of heavy vector multiplets .

Heavy Chiral Multiplets in Gauged Models

Before to start studying the integration of heavy matter fields in supersymmetric gauge

theories, let us briefly discuss how this can be done in non-supersymmetric models; this

analysis will be useful as a guideline for the supersymmetric generalization. Consider
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for simplicity the following Abelian gauge theory with light complex scalar fields φi, a

light gauge vector Aµ and heavy scalar fields indicated by φα. The Lagrangian is given

by:

L = Dµφ
I D∗µφ̄Ī − 1

4
F µνFµν − V (φ, φ̄) , with Dµ + iAµ . (3.67)

The equations of motion of the heavy fields are given by:

D2φα +
∂V

∂φ̄ᾱ
= 0 . (3.68)

We want to integrate the heavy fields at tree level by solving their approximate equa-

tions of motions.

The new aspect that one has to consider at this point is the fact that a naive

truncation on the number of ordinary space-time derivatives spoils gauge invariance

in the low energy effective theory. What one can do in this case to preserve gauge

invariance is to perform a truncation on the number of covariant derivatives instead

of ordinary derivatives; one may then ask under which conditions the additional terms

involving gauge vectors can be safely discarded. It is easy to verify that such terms

are controlled by the ratio between the mass of the gauge vector and the heavy mass

scale of the scalar fields, which is assumed to be small in the region of validity of the

low-energy effective theory. In this situation one is then allowed to neglect subleading

corrections depending on covariant derivatives in the solution of (3.68) and heavy scalar

fields can be integrated out exactly as in the non-gauged case by solving the algebraic

equation Vα = 0.

The same analysis can now be generalized to supersymmetric models with heavy

chiral multiplets in the presence of light vectors multiplets. Working at superfield level,

the equations of motion for heavy chiral multiplets are:

Wα −
1

4
D̄2Kα(Φ, Φ̄, V ) +

1
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Habα(Φ) D̄2DβV aD̄2DβV

b = 0 . (3.69)

As we have already discussed in this chapter, in order to preserve supersymmetry in the

low-energy effective theory, we need to solve these equations perturbatively in the su-

percovariant derivatives. At leading order one obtains Φα = Φα
0 +O(D̄2Φ̄i/M, D̄2V/M),

where Φα
0 is the solution of Wα = 0. It is easy to verify that the subleading terms in-

volving supercovariant derivatives acting on chiral superfields produce only terms with

n > 3 when substituted into the superfield Lagrangian (3.66); we can then reasonably

discard these terms in first approximation. On the contrary, as anticipated in the final

part of the previous subsection, subleading terms involving supercovariant derivatives

of vector superfields are more subtle since they may generate terms in the effective

Lagrangian with n 6 2 and should in principle be kept. On the other hand, discarding

only supercovariant derivatives of chiral superfields while keeping the ones of vector

superfields spoils the gauge invariance of the low-energy effective theory. Indeed, at the

leading order and keeping only supercovariant derivatives of vector superfields (3.69)

becomes:

Wα −
1

4
(KαabD̄V

aD̄V b +KαaD̄
2V a) +O(D̄2Φ̄i/M, D̄4V/M2) = 0 . (3.70)
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The perturbative solution is:

Φα = Φα
0 + Φα

1 aD̄
2V a + Φα

1 abD̄V
aD̄V b +O(D̄2Φ̄i/M, D̄4V/M2) , (3.71)

where the coefficients of the sub-leading terms are found to be:

Φα
1 a(Φ

i) =
1

4
M−1αβKβa , (3.72)

Φα
1 ab(Φ

i) =
1

4
M−1αβKβab . (3.73)

One can verify that the supercovariant derivative part in expression (3.71) spoils gauge

covariance of the solution and when substituted back into the original Lagrangian it

breaks explicitly gauge invariance of the effective theory. However, exact gauge in-

variance is restored if one neglects also supercovariant derivatives of vector superfields;

from expressions (3.72) and (3.73) we discover that these terms can be consistently

discarded if one assumes that:6

|XI
a | �M . (3.74)

This corresponds to require, as in the non-supersymmetric case, that the gauge vectors

must have small masses in order for gauge invariance to be preserved in the low-energy

effective theory. When this extra condition is satisfied, the exactly supersymmetric

gauge invariant effective theory can be constructed as in the pure chiral case by solving

the algebraic equation Wα = 0 obtained from eq. (3.71) by neglecting also the leading

corrections in supercovariant derivatives of the vector superfields.

In the more general case in which the theory contains also heavy vector superfields,

one should first integrate them out and then integrate out heavy chiral fields following

the prescription that we have just described. Let us then pass to study how to properly

integrate out heavy vector multiplets.

Heavy Vector Multiplets in Global Supersymmetry

The integration of heavy vector superfields does not introduce new complications. Let

us start as usual by studying the case of non-supersymmetric Abelian gauge theories

and then generalize it to the supersymmetric case. Let us consider the same Lagrangian

(3.67), but this time assuming that all the scalar fields are light and all the vector

fields are assumed heavy. Since each gauge field is massive, it propagates one extra

degree of freedom and one real scalar becomes unphysical. One usually gets rid of this

unphysical mode by fixing the unitary gauge. We can however work without fixing the

gauge freedom and check that the unphysical mode is automatically decoupled in the

low-energy effective theory.

The equation of motion of Aµ is:

∂νFνµ + 2|φi|2Aµ + i (φi∂µφ̄
ı̄ − φ̄ı̄∂µφi ) = 0 . (3.75)

6 Use the fact that Kaα = 2i gIJ̄ X̄ J̄
a and Kabα = 4 gIJ̄∇αXI

(aX̄
J̄
b) .
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At leading order in space-time derivatives, we can neglect the term involving the field

strength; the subleading corrections contain 3 derivatives and can be discarded. We

then see that there are no subtle contributions to be discussed in this case and the

solution of the approximate equation of motion is given by:

Aµ = −i(φ
i∂µφ̄

ı̄ − φ̄ı̄∂µφi )
2|φi|2

. (3.76)

The only non-trivial feature to discuss is the fact that when we substitute this solution

back we obtain a non-invertible effective wave function, which admits a zero mode:

Leff =
1

2

(
∂µφ̄

ı̄ , ∂µφ
i
) (P⊥ı̄j P‖ı̄̄

P‖ij P⊥i̄

) ( ∂µφj

∂µφ̄̄

)
, (3.77)

where

P⊥ı̄j = δı̄j −
1

2

φ̄ı̄ φj
|φ|2

, P‖ij −
1

2

φiφj
|φ|2

. (3.78)

The direction associated to the vanishing eigenvalue of the kinetic mode is (φi, φ̄ı̄)

and it corresponds to the unphysical would-be Goldstone, which is automatically pro-

jected out.

The same analysis can now be generalized to supersymmetric models. For conve-

nience in this case we prefer however to fix the gauge symmetries associated to heavy

vector multiplets, even if as discussed this is not really necessary. The most conve-

nient type of gauge fixing is the one in which some charged chiral superfield is fixed

to some reference scale (the Fayet gauge discussed in Chapter 1). In such a gauge,

the corresponding vector multiplet becomes a general real vector multiplet, with all its

components being physical. This way of proceeding allows to integrate out the heavy

vector superfields at the superfield level. The exact superfield equations of motion for

the heavy vector superfields V x are obtained by first rewriting the last two terms of

the Lagrangian (3.66) as D-terms by dropping two supercovariant derivatives, and then

varying L with respect to V x. This gives:

Kx +
1

8
Dα
(
HxAD̄

2DαV
A
)

+
1

8
D̄α̇

(
H̄xAD

2D̄α̇V A
)

= 0 . (3.79)

The presence of large supersymmetric mass for V x means in this case that around the

value V x
0 at which it is stabilized, the Kähler potential K has a large second derivative

Kxy(V
x

0 ) proportional to M2. The first term in eq. (3.79) then dominates over the

others, and V x is approximately determined by the simple equation Kx(V
x

0 ) = 0.

The departure from this approximate solution is in this case found to be ∆V x
0 ∼

O(D4V a/M2, D4Φm/M2), where Φm denotes all the chiral multiplets that have not

been frozen by gauge-fixing conditions. In our approximation, this correction can be

neglected, since it would contribute only terms with n ≥ 3. For the terms coming from

H, which already lead to terms with n = 2 without extra supercovariant derivatives,
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this is obvious. On the other hand, for the terms coming from K, which can now lead

to terms with n = 1 due to the vector superfields, this is due to the fact that the

leading correction is proportional to Kx, which vanishes on the approximate solution.

Summarizing, one can thus integrate out the superfields V x by using the simple vector

superfield equation

Kx = 0 . (3.80)

This equation determines the heavy vector superfields as real functions of the light

vector superfields and the chiral superfields plus their conjugates:

V x = V x
0 (V a,Φm, Φ̄m̄) . (3.81)

The effective theory for the V a and Φm is then obtained by plugging back this solution

into the original Lagrangian. In the particular case in which there are no light vector

multiplets one needs to consider only K and W , and one finds:

Keff(Φi, Φ̄ı̄) = K(Φi, Φ̄ı̄, V x
0 (Φi, Φ̄ı̄)) , (3.82)

W eff(Φi) = W (Φi) . (3.83)

In the case where there are also light vector multiplets, one can also get new effects

from the gauge kinetic terms. In particular, the effective gauge kinetic function is easily

found to be:

Heff
ab = Hab −HaxK

−1xyKyb −HbxK
−1xyKxb +HxyK

−1xzK−1xwKzaKwb . (3.84)

As in the case of chiral multiplets, the components of the superfield equation (3.80)

have a simple interpretation. To spell it out, let us first notice that the supersymmetric

mass matrix for the heavy vector superfields, the light ones and their mixing are given

by:

M2
xy = 2Kxy , m2

ab = 2Kab , µ2
xa = 2Kxa . (3.85)

The other object that enters is the coupling between one heavy vector multiplet and

two chiral multiplets:

Qxi̄ = −1

2
Kxi̄ . (3.86)

Notice next that eq. (3.80) makes sense in any gauge. In order to interpret its com-

ponents in physical terms, the most convenient choice is a supersymmetric gauge. In

this way, one finds that the real scalar component Cx must adjust its value in a way

compatible with the approximate vanishing of Dx, whereas the other components are

related to corresponding components of the light superfields through coefficients sup-

pressed by inverse powers of the heavy mass. One may also go to the Wess-Zumino

gauge to simplify the component expansion. The first few components of (3.80) imply

then restrictions on the charged chiral multiplets fields. In particular, their scalar fields

must adjust in such a way that the tadpole for Dx cancels, whereas their auxiliary fields

are subject to a linear relation corresponding to the gauge invariance of the superpo-

tential. The higher components of (3.80) imply on the other hand that the non-trivial
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components of the vector superfield can be re-expressed in terms of components of the

charged chiral-multiplets. In particular, one finds that

Dx = −(M−2
0 µ2

0)xaD
a + (M−2

0 Q0)xi̄ F
iF̄ ̄ . (3.87)

This equation coincides with the exact equation of motion of the complex partner of

the would-be Goldstone boson eaten by the gauge boson (see equation (1.53)). Notice

that the first term has n = 1 and is always relevant whereas the second gives n = 2

and can thus give a relevant contribution only in K.

3.5 Integrating Out Heavy Vector Multiplets in

Supergravity

Let us finally consider the case of local supersymmetry, but including both chiral

multiplets ΦI and vector multiplets V A that are split into light ones V a and heavy

ones V x. Using the superconformal superspace formalism, the requirement n ≤ 2

corresponds as before to simply neglect any dependence on supercovariant derivatives,

except the ones in the kinetic terms for the gauge fields. The theory can then again be

parametrized in terms of a real Kähler potential K = K(ΦI , Φ̄Ī , V A), a holomorphic

superpotential W = W (ΦI) and a holomorphic gauge kinetic function HAB(ΦI) [49,

105, 60]. The Lagrangian takes in this case the form

L =

∫
d4θ
(
−3 e−K/3

)
Φ̄Φ +

∫
d2θWΦ3 +

∫
d2θ̄ W̄ Φ̄3 (3.88)

+
1

64

∫
d2θ HAB D̄

2DαV AD̄2DαV
B +

1

64

∫
d2θ̄ H̄ABD

2D̄α̇V
AD2D̄α̇V B .

As in the rigid case, we shall fix the local gauge symmetry associated to each heavy

vector superfield, and the most convenient way to do this is to set a charged chiral

superfield to some reference value. The exact superfield equations of motion for the

heavy vector superfields are then obtained as before, and read:

Kx +
1

8
eK/3(Φ̄Φ)−1

[
Dα
(
HxAD̄

2DαV
A
)

+ D̄α̇

(
H̄xAD

2D̄α̇V A
)]

= 0 . (3.89)

The presence of a large supersymmetric mass implies again that around the values

V x
0 at which the heavy superfields V x are stabilized, the Kähler potential K has a

large second derivative Kxy(V
x

0 ) proportional to M2. The first term in eq. (3.89)

dominates then over the others, and V x is approximately determined by the equation

Kx(V
x

0 ) = 0. As before, the departure from this approximate solution is found to be

∆V x
0 ∼ O(D4V a/M2, D4Φm/M2), and can be neglected. Summarizing, one can thus

integrate out the superfields V x by using the same simple vector superfield equation

as in the rigid case, namely

Kx = 0 . (3.90)
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Note that this equation is automatically and trivially invariant under Kähler transfor-

mations, since these are not allowed to depend on the vector superfields.

The components of this superfield equation admit exactly the same interpretation

as in the global case. This makes sense as long as the auxiliary field of the compensator

is small, implying m3/2 � M . In particular, eq. (3.87) still holds true, but comparing

it with the exact equation of motion of the complex partner of the would-be-Goldstone

mode eq. (1.123) (see for instance [61, 62, 64, 63] and also [94, 95]), one finds that it

agrees with it only in the limit where m3/2 � M and also F i � M , which are indeed

satisfied in our approximation.

3.6 Summary

In this chapter, we have addressed the general question of understanding under which

conditions it is possible to define a two-derivative supersymmetric low-energy effective

theory by integrating out a heavy superfield with mass M , and we defined a procedure

to explicitly construct it. We studied the cases of chiral and vector multiplets, both

in global and in local supersymmetry. Concerning the conditions for the existence of

such a theory, we have argued that one has to require that all the derivatives, fermion

fields and auxiliary fields should be small in units of M . In the global case, this

means ∂µ � M on all the fields, ψI , λA � M3/2 for the chiralini and gaugini, and

F I , DA � M2 for the chiral and vector auxiliary fields. In the local case, one has in

addition to impose ∂µ �M on all the gravitational fields, ψµα �M3/2 for the gravitino

and U � M for the gravitational scalar auxiliary field. This implies that M should

correspond to a supersymmetric mass, that comes from W for chiral multiplets and

from K for the vector fields. We have then shown that under the above conditions the

superfield equations allowing to integrate out heavy chiral and vector superfields Φα

and V x in terms of light chiral and vector superfields Φi and V a are respectively the

stationarity of the superpotential and the Kähler potential W and K:

∂αW (Φi,Φα) = 0

∂xK(Φi, Φ̄ı̄,Φα, Φ̄ᾱ, V a, V x) = 0

⇒
Φα = Φα

0 (Φi) ,

V x = V x
0 (Φi, Φ̄ı̄, V a) .

(3.91)

The fact that these equations are exactly the same in globally and locally supersym-

metric theories is a consequence of the assumption that higher-derivative terms should

be negligible also in the gravitational sector. This implies that the gravitino mass

should be much smaller than the supersymmetric mass M of the superfield to be in-

tegrated out: m3/2 � M . One is then in a situation where the coupling to gravity is

minimal and essentially dictated by the space-time symmetries, except for the Einstein

term, which can however be canonically normalized in a universal way by going to the

Einstein frame from the start. As a result, the operations of integrating in/out heavy

fields and switching on/off gravitational interactions commute. Exactly the same thing
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is true also for a generic non-supersymmetric theory, where the two-derivative effective

theory can be deduced by integrating out the heavy fields by imposing stationarity of

the potential.

In general, integrating out heavy superfields induces relevant corrections to the dy-

namics of the light superfields, which cannot be ignored in many interesting situations.

In principle, to compute these corrections one simply needs to solve the superfield

equations (3.91), which is a simple algebraic problem. In practice this may however

be a non-trivial task, for example due to non-linearities or due to the proliferation of

fields. It is then of interest to understand in which cases the effect of integrating out

heavy superfields is trivial, in the sense that it is equivalent to freezing these to some

constant values independent of the light superfields. According to the above superfield

equations (3.91), we see that for chiral superfields this is the case when W is separable,

W = WL(Φi) + WH(Φα), which still allows for non-trivial heavy-light interactions in

K. On the other hand, for vector superfields one would need K to be separable (for

supersymmetric gauges), K = KL(Φm, Φ̄m̄, V a) + KH(V x), which implies that there

are no heavy-light interactions at all since vector superfields are not allowed to appear

in W . Actually, as far as the effective potential is concerned, this still approximately

works even in the case where W or K respectively consist of a dominant term depend-

ing only on the heavy superfields and an other one depending also on the light ones but

suppressed by some small parameter ε, provided that the gravitino mass is at most of

the same order ε.7 The reason is that W and K are stationary with respect to the ap-

proximate solution for the heavy chiral and vector fields and corrections can thus arise

only at second order. This property was already derived in a different way in [101],

and further generalized in [106]. Notice however that there may be cases in which W

and/or K are not separable but can be made separable after a superfield redefinition.

In that case, the integration of heavy superfields will also be trivial, but only in the new

superfield basis. Using the original field basis, one would find non-trivial corrections

for the light field dynamics, but these clearly simply implement in an automatic way

the field redefinition to the clever basis of light fields. On the other hand, in a generic

effective theory a heavy field can be integrated out in a exactly trivial way only if the

potential V is separable, at least at the point where the heavy fields are stabilized. For

supersymmetric theories, to have such an exact trivialization one needs the stronger

conditions that both K and W are separable in the rigid case, and that K is separable

and W factorizable in the local case [107], again at least at the point where the heavy

fields are frozen [108, 99, 100].

As a final remark, let us emphasize that although the above results were derived at

the classical level, similar considerations apply also at the quantum level. In particular,

it is always true that superfields with large supersymmetric masses can be integrated

out at the level of superfields to define a two-derivative supersymmetric low-energy

effective action. Due to the non-renormalization theorem for W , these loop corrections

7Note that this generically implies that m3/2 ∼ m, which is a stronger condition than the restriction
m3/2 �M that is needed to be able to define a supersymmetric effective theory.
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affect only K. See for example [109] and [110] for explicit examples in globally and

locally supersymmetric theories.



Chapter 4

Vacuum Stability and Bound on

the Lightest Scalar

In this chapter we study some general criteria for the existence of metastable vacua

with spontaneously broken global supersymmetry in generic supersymmetric models

with local gauge symmetries. In particular we derive an absolute upper bound on the

mass of the lightest scalar field which depends essentially on the geometrical proper-

ties of the scalar manifold and its gauged isometries. This bound can be saturated

by properly tuning the superpotential and its positivity therefore represents a nec-

essary and sufficient condition for the existence of metastable vacua. It is derived

by looking at the subspace of all those directions in field space for which an arbi-

trary supersymmetric mass term is not allowed and scalar masses are controlled by

supersymmetry-breaking splitting effects. This subspace includes not only the direc-

tion of supersymmetry breaking, but also the directions of gauge symmetry breaking

and the lightest scalar is in general a linear combination of fields spanning all these

directions. We explicitly present analytic results for the simplest case of globally super-

symmetric theories with a single Abelian gauge symmetry. For renormalizable gauge

theories, the lightest scalar is a combination of the Goldstino partners and its square

mass is always positive. For more general non-linear sigma models, on the other hand,

the lightest scalar can involve also the Goldstone partner and its square mass is not

always positive. The generalization of this analysis to local supersymmetry does not

present new conceptual obstructions even though it appears to be more involved from

the technical point of view; we qualitatively discuss this topic at the end of the chapter.

This chapter is based on our paper [2].

4.1 General Criteria for Metastability

In Chapter 2 we have seen that there exist several phenomenological arguments con-

straining the structure of the soft masses and the mechanism by which supersymmetry

breaking effects are transmitted to the visible sector. On the contrary, the only simple

79
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constraints one can impose on the actual mechanism responsible for supersymmetry

breaking in the hidden sector are the metastability of the vacuum and the value of the

cosmological constant.1 Even though these constraints may appear to be weak, they

can be used to define some relevant criteria to discriminate among different scenarios

for hidden sector physics. The important aspect to take into account is the fact that

the structure of the mass matrices in supersymmetric models is strongly constrained

and the spontaneous breaking of supersymmetry allows to split the masses of bosons

and fermions but not to achieve totally arbitrary mass matrices. In general, these mass

matrices consist of a supersymmetric contribution that is common to all the states of a

multiplet plus a non-supersymmetric contribution splitting the masses of these states

within each multiplet.

The first source of constraints is that the various non-supersymmetric contributions

to the masses are correlated among each other. A simple consequence of these correla-

tions is expressed by the celebrated supertrace formula that we discussed in Chapter

1. When computing this quantity, the supersymmetric contributions to masses drop

out and the non-supersymmetric contributions combine into a remarkably simple result.

This then constrains to some extent the relative masses that can be achieved for bosons

and fermions and has, as we have seen, important implications in phenomenological

model building.

The second source of constraints, which is the most relevant for our discussion,

consists in the fact that some of the supersymmetric contributions to the mass ma-

trices are constrained by symmetry arguments. More precisely, there exist particular

directions in field space which are associated to supersymmetric masses that cannot be

made arbitrarily large; such directions are dangerous in the sense that supersymmetry

breaking effects can make them unstable. One important example is the supersymmet-

ric contribution to the mass of the Goldstino chiral multiplet which must vanish, since

the fermion of this multiplet is constrained by Goldstone’s theorem to have vanishing

mass. As a result, the two scalar partners of this fermion have masses that are en-

tirely controlled by splitting effects. Similarly, the supersymmetric contribution to the

mass of the vector multiplets is fixed by the expectation value of the Killing vectors,

since the vector boson masses arise through the Higgs mechanism. As a result, the

real scalar partner of each massive gauge boson has a mass that differs from the gauge

boson mass only by splitting effects, and this can also be viewed as the statement that

the would-be Goldstone chiral multiplet has a constrained mass in the supersymmetric

limit.

A remarkable consequence of this second class of constraints is that there exists

an upper bound on the mass of the lightest scalar, even if the superpotential is freely

tuned. More importantly, the direction associated to the lightest scalar is in general

not arbitrary and it belongs to the subspace spanned by the Goldstino and the Gold-

1Other constraint from cosmological arguments is the existence of viable inflationary trajectories
ensuring a “slow-roll” motion of the inflaton field. See for instance [111–114]. In this work however
we will not take into account this class of constraints.
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stone partners. This suggests that to establish whether a model can admit metastable

vacua breaking supersymmetry, it is not really necessary to study the whole scalar

mass matrix, since the relevant information concerning metastability is contained in

some special sub-blocks associated to the dangerous directions discussed above. In this

chapter we want to develop this idea to derive some general necessary and sufficient

conditions for the existence of metastable vacua in models in which the Kähler geom-

etry and the gauged isometries are fixed whereas the superpotential can be arbitrarily

varied in order to saturate the bound on the mass of the lightest scalar. This analysis

can be relevant for string-inspired supersymmetric models obtained by compactifica-

tion since, as we discussed in Chapter 2, the structure of the Kähler potential is in

general determined by the details of the compactification whereas the structure of the

superpotential is more difficult to be determined. Since a priori there exist a plethora

of different compactification manifolds which are admitted by String Theory, it is very

useful to have some general criteria to discriminate among scenarios with different

Kähler geometries independently of the form of the superpotential, and to be able to

characterize the possible geometries which allow for realistic vacua.

The case of theories with only chiral multiplets and no gauge symmetries is well

understood. What matters in this case is the two-dimensional sub-block of the scalar

mass matrix restricted to the two Goldstino partners. For renormalizable models, the

two eigenvalues of this matrix are equal and opposite, and the best situation that can

occur is that both vanish. This implies the presence of two pseudo-moduli fields with

vanishing mass, which actually represent flat directions of the classical potential with

peculiar properties [115, 116]. For more general non-renormalizable chiral non-linear

sigma-models, one similarly finds that the two eigenvalues are split around an aver-

age value that is fixed by the Riemann curvature of the Kähler manifold, and in the

best situation one has two scalars with identical masses given by this value [108, 117].

Similar results also hold in supergravity theories, and these give a useful guideline to-

wards the ingredients that are needed to achieve metastable de Sitter vacua in string

models [118, 119]. More precisely, in the case in which supersymmetry breaking is

dominated by chiral multiplets, the requirement of metastability and positivity of the

cosmological constant can be operatively translated into constraints on the parameters

of the theory and it is possible to implement a well-defined procedure to locally re-

construct a scalar potential which admits metastable de Sitter vacua (see [120]). The

idea of using metastability criteria to characterize supersymmetry breaking scenarios

in string-inspired models has been proven to be very powerful in many situations; for

instance, it has been applied to prove in a simple and sharp way the fact that su-

persymmetry breaking dynamics cannot be dominate by a single Kähler Modulus or

by the dilaton unless subleading corrections to the Kähler potential are considered

[121–123, 108]

The case of theories involving also vector multiplets and local gauge symmetries is

more complicated and less understood (see for example [124, 125]). As anticipated, one

should in principle look at a higher-dimensional sub-block of the scalar mass matrix
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that includes not only the two Goldstino partners but also the Goldstone partners. In

this case the complexity of the analysis increases with the number of generators of the

symmetry transformations and studying the relevant sub-blocks of the mass matrix

may turn out to be a non-trivial task as much as studying the whole mass matrix. It

has been argued in [61] that the presence of D-type in addition to F -type supersym-

metry breaking tends to alleviate the metastability condition which can be derived by

looking only at the Goldstino direction. But a full analysis including also the Gold-

stone partners was still missing and, in particular, it is not obvious that the improving

effects associated to gauge vectors can always be used to achieve metastability.

The purpose of this chapter is to perform a detailed study of the scalar mass matrix

of generic theories with rigid N=1 supersymmetry and local gauge symmetries, and to

derive an upper bound on the value of its lightest eigenvalue. The main improvement

that we aim to achieve compared to previous analyses is to obtain the strongest possible

bound, with the property that it should be possible to saturate it by adjusting only

the superpotential. To achieve this goal, we will need not only to consider the effect of

the vector multiplets on the two Goldstino partners, but also to include in the analysis

the Goldstone partners, and focus our attention on the full dangerous sub-block of the

scalar mass matrix for which supersymmetric effects are constrained. The aim of this

analysis is to show that in general situations the directions associated to the Goldstone

partners play a relevant role in discussing metastability.

4.2 Structure of the Scalar Mass Matrix

Let us consider a generic globally supersymmetric model with n chiral multiplets Φi

and k vector multiplets V a defined by the Lagrangian (1.35):

L =

∫
d4θ
[
K(Φ, Φ̄, V )

]
+

∫
d2θ
[
W (Φ) +

1

4
Hab(Φ)W aαW b

α

]
+ h.c. . (4.1)

As we did in the previous chapters, we exclude for simplicity the possibility of non-zero

variations of the Kähler potential under gauge transformations. In particular, we thus

exclude Fayet-Iliopoulos terms. In the following, we shall also restrict for simplicity to

the special case where the gauge kinetic function Hab is constant, so that Habi = 0.

This does not represent a very big conceptual limitation, but it leads to a substantial

simplification of the theory. We shall on the other hand retain the possibility of having

a generic Kähler potential K and generic Killing vectors X i
a defining the non-constant

matrices

Qa
i
j = i∇jX

i
a . (4.2)

The particular case of renormalizable gauge theories corresponds to choosing K =

δijΦ
iΦ̄̄, X i

a = −i TaijΦj and Qa
i
j = Ta

i
j, with constant T aij.

For later convenience, we shall furthermore introduce an arbitrary gauge coupling

constant g, although this could be reabsorbed in the normalization of Hab; this amounts
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to slightly modify some relevant expressions that we encountered in Section 1.3.2 and

in particular the relation following from gauge invariance:

X i
aKi =

i

2
g−1Ka , (4.3)

Kai = 2igX̄ai , (4.4)

gi̄X
i
[aX̄

̄
b] =

i

4
g−1f c

ab Kc . (4.5)

The values of the auxiliary fields F i and Da are fixed by their equations of motion and

read:

F i = −gi̄W̄̄ , Da = − 1

2
habKb = ighabX i

bKi = −ighabX̄ ı̄
bKı̄ . (4.6)

The vacuum energy V is still given by

V = gi̄F
iF̄ ̄ +

1

2
habD

aDb . (4.7)

The stationarity condition Vi = 0 implies that

∇iWj F
j + igX̄aiD

a = 0 . (4.8)

We recall the fact that contracting the stationarity conditions with the Killing vector

and taking the imaginary part one obtains a very useful relation constraining F and

D term, which in this case reads:

Qai̄F
iF̄ ̄ − 1

2
g–1M2

abD
b = 0 . (4.9)

Finally, with these assumptions the masses of scalar fields (1.54) and (1.55) are sim-

plified in the following way:

m2
i̄ = gkl̄∇iWk∇̄W̄l̄ −Ri̄kl̄ F

kF̄ l̄ + g2habX̄aiXb̄ + g Qai̄D
a , (4.10)

m2
ij = −∇i∇jWk F

k − g2habX̄aiX̄bj . (4.11)

Let us now study more in detail the structure of the whole mass matrix of scalar

fields. Since the two real components of each complex scalar field are allowed to split,

one has to consider the space of all the independent real modes. This can be described

by 2n-dimensional vectors φI built out of the n fields φi and their complex conjugates

φ̄ı̄:

φI =
(
φi φ̄ı̄

)
, φJ̄ =

φ̄̄
φj

 . (4.12)

With this parametrization,2 the quadratic Lagrangian for the scalar fields can be writ-

ten in the following form:

L =
1

2
gIJ̄∂µφ

I∂µφJ̄ − 1

2
m2
IJ̄φ

I φ̄J̄ , (4.13)

2Notice that in this chapter capital indices are exceptionally used with another meaning respect
to the previous chapter.
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with wave-function and square-mass matrices given by

gIJ̄ =

gi̄ 0

0 gı̄j

 , m2
IJ̄ =

m2
i̄ m

2
ij

m2
ı̄̄ m2

ı̄j

 . (4.14)

To obtain the physical masses, one can then proceed as follows. First, one choses a

parametrization of the fields such that the wave-function gIJ̄ locally trivializes to the

identity matrix and the kinetic terms are canonically normalized. This corresponds

to choose normal coordinates around the vacuum point. Next, one diagonalizes the

Hermitian matrix m2
IJ̄

to find the mass eigenvalues m2
(I). Equivalently, one can consider

the matrix m2
IJ̄

in a new basis defined by a set of vectors vI(K) that are orthonormal

with respect to the metric gIJ̄ . The eigenvalues of the new matrix defined by all the

matrix elements of m2
IJ̄

on the basis of vectors vI(K) then yield directly the physical

masses. This is the approach that we will use.

To make progress in our quest for an interesting bound on the physical mass eigen-

values, and in particular the minimal physical eigenvalue m2
min, we will use some stan-

dard results in linear algebra. The basic point is that the value of the matrix m2
IJ̄

along

any particular direction must be larger that m2
min. A slight generalization of this fact

is that the eigenvalues of any sub-block of the matrix m2
IJ̄

, corresponding for example

to the subspace spanned by a set of several particular directions, must similarly be all

larger than m2
min. This means that we can find an upper bound to m2

min by computing

the smallest eigenvalue of any principal sub-matrix of m2
IJ̄

. In general, the obtained

bound improves in quality by considering larger and larger sub-matrices, and the ex-

act value of m2
min can be obtained only by considering the full matrix. Nevertheless,

there is a well-defined limiting situation in which the bound derived by considering a

finite diagonal block actually saturates m2
min. This happens when the complementary

diagonal block has eigenvalues that are very large compared to the elements of the off-

diagonal block. For this reason, to detect the obstructions against making m2
min large

it is enough to study the mass matrix along those directions where its values cannot

be made arbitrarily large by adjusting the superpotential.

Each direction defined by a unit vector vi in the space of complex scalar fields φi

defines a plane in the space of real scalar fields φI , which can be described by a basis

of two orthonormal unit vectors vI+ and vI− defined as follows:

vI+ =
1√
2

(
vi v̄ ı̄

)
, vI− =

1√
2

(
ivi – iv̄ ı̄

)
. (4.15)

Strictly speaking, the vector space of all real scalar fields is a real vector space, and

one is therefore allowed to perform only real orthogonal transformations. However, for

the problem of studying the eigenvalues of the mass matrix m2
IJ̄

, which is Hermitian,

one may also consider complex unitary transformations, because such more general

transformations still preserve these eigenvalues. For a given complex direction vi, one

may then also use as alternative basis the two orthonormal vectors vA,B = 1√
2
(vI+∓ivI−),
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which take the form:

vIA =
(
vi 0

)
, vIB =

(
0 v̄ ı̄

)
. (4.16)

From the discussion of previous section, we know that there are two kinds of

special complex directions along which the mass matrix displays particular restric-

tions. These are the supersymmetry-breaking Goldstino direction F i and the gauge-

symmetry-breaking Goldstone directions X i
a. In all the other orthogonal directions,

one can have arbitrary supersymmetric contributions to the mass. Taking these to be

large one can then forget about these extra directions altogether, as already explained.

Let us then focus on the subspace defined by the complex directions F i and X i
a. We

already know that F i is always orthogonal to all the X i
a, as a consequence of the gauge

invariance of the superpotential. On the other hand, the X i
a are in general not orthog-

onal to each other, and the matrix of their scalar products defines in fact the vector

mass matrix. We may however perform an orthogonal transformation in the space of

vector multiplets, to go to a basis where at the vacuum all the X i
a are orthogonal to

each other and the vector mass matrix is diagonal. The norms of the vectors F i and

X i
a define respectively the supersymmetry breaking scale

√
|F | in the chiral multiplet

sector and the masses Ma of the vector fields. More precisely, these quantities are

defined as follows:

|F | =
√
gi̄F iF̄ ̄ , Ma =

√
2g
√
gi̄X i

aX̄a
̄ . (4.17)

One then finds:

gi̄F
iF̄ ̄ = |F |2 , gi̄X

i
aX̄

̄
b =

1

2
g–2MaMb δab , gi̄F

iX̄ ̄
b = 0 . (4.18)

We may finally define the following normalized vectors:

f i =
F i√
F kF̄k

=
F i

F
, xia =

X i
a√

Xk
a X̄ak

=
√

2g
X i
a

Ma

. (4.19)

These form an orthonormal basis for the subspace of complex directions we want to

study, and satisfy:

gi̄ f
if̄ ̄ = 1 , gi̄ x

i
ax̄

̄
b = δab , gi̄ f

ix̄̄b = 0 . (4.20)

Following our general discussion on the map between a complex direction in the

space of complex scalars and a basis of two independent directions in the space of real

scalars, we now introduce the following orthonormal basis of real directions:

f I+ =
1√
2

(
f i f̄ ı̄

)
, f I− =

1√
2

(
if i – if̄ ı̄

)
, (4.21)

xIa+ =
1√
2

(
xia x̄ı̄a

)
, xIa− =

1√
2

(
ixia – ix̄ı̄a

)
. (4.22)
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Alternatively, we may as already explained also use the alternative but less physical

basis defined by

f IA =
(
f i 0

)
, f IB =

(
0 f̄ ı̄

)
, (4.23)

xIaA =
(
xia 0

)
, xIaB =

(
0 x̄ı̄a

)
. (4.24)

The directions f I+ and f I− describe the two real scalar partners of the massless Goldstino

fermion. Due to the symmetric roles of these two modes, it will in fact be convenient to

use the alternative description in terms of f IA and f IB. In the limit of unbroken super-

symmetry, the modes defined by f I+ and f I− would both belong to the same multiplet

as the massless Goldstino fermion and would thus be massless too. As a result, their

masses can be non-zero only because of splitting effects. The directions xIa+ and xIa−
describe instead two different kinds of real scalars which are respectively the unphysical

would-be Goldstone modes, which correspond to fake null vectors of the mass matrix

that we should discard, and their partners, which we should instead consider. Due to

the asymmetric roles of these two kinds of modes, it will not be convenient to use the

alternative description in terms of xIaA and xIaB. In the limit of unbroken supersymme-

try, the modes xIa− would belong to the same multiplet as the massive vector bosons

and would thus be massive too. As a result, their mass can differ from that of the gauge

fields only by splitting effects. We thus find a total of 2 + k scalar modes which are

dangerous for metastability: the 2 modes associated to f I± and alternatively described

by f IA,B, whose masses are equal to zero plus supersymmetry breaking effects, and the

k modes associated to xIa−, whose masses are equal to the gauge boson masses plus

supersymmetry breaking effects.

Let us then look at the mass matrix m2
IJ̄

in the (2 + k)-dimensional subspace

spanned by the vectors f IA = (f i 0), f IB = (0 f̄ ı̄) and xIa− = (ixIa – ix̄ı̄a), which

form an orthonormal set. More precisely, we need to compute the matrix elements

m2
αβ̄

= m2
IJ̄
vIαv̄

J̄
β̄
, where vIα can be either f IA, f IB or xIa−. Exploiting gauge invariance,

we can rewrite most of the contributions coming from the non-Hermitian blocks m2
ij

and m2
ı̄̄ in terms of the Hermitian blocks m2

i̄. Indeed, Goldstone’s theorem implies that

m2
ijx

j
a = −m2

i̄x̄
̄
a at a stationary point. One then finds that the (2 + m)-dimensional

sub-matrix m2
αβ̄

takes the form

m2
αβ̄ =


m2
ff̄

∆ –
√

2im2∗
fx̄b

∆∗ m2
ff̄

√
2im2

fx̄b

√
2im2

fx̄a
–
√

2im2∗
fx̄a

2m2
xax̄b

 , (4.25)

where

m2
ff̄ = m2

i̄ f
if̄ ̄ , m2

fx̄b
= m2

i̄ f
ix̄̄b , m2

xax̄b
= m2

i̄ x
i
ax̄

̄
b , (4.26)

and

∆ = m2
ijf

if j . (4.27)
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It is important to emphasize that the above structure is completely general, since it

depends only on the gauge invariance of the theory and not on the detailed structure

of the masses.

It is a straightforward exercise to compute the entries m2
ff̄

, m2
fx̄b

and m2
xax̄b

, which

are given by the Hermitian block m2
i̄ of eq. (4.10) along the directions defined by F i

and X i
a. The resulting expressions can be significantly simplified by making use of

the stationarity condition, which holds at the vacuum, as well as the relations implied

by gauge invariance, which hold at any point and can therefore also be differentiated.

Most importantly, the dependence on the second derivatives of the superpotential can

be completely eliminated. Defining the obvious notation Rvw̄yz̄ = Ri̄kl̄ v
iw̄̄ykz̄ l̄ and

Qavw̄ = Qi̄ v
iw̄̄ for any complex directions vi, wi, yi and zi, and recalling that M2

ab =

MaMb δab, one finds:

m2
ff̄ = −

[
Rff̄f f̄ − 4g2

∑
c

Qcff̄ Qcff̄

M2
c

]
|F |2 , (4.28)

m2
xax̄b

=
1

2
M2

ab−
[
Rff̄xax̄b− 2g2

∑
c

Qcff̄ Qcxax̄b

M2
c

− 2g2 (Qa ·Qb)ff̄
MaMb

]
|F |2 , (4.29)

m2
fx̄b

= −
[
Rff̄fx̄b− 4g2

∑
c

Qcff̄ Qcfx̄b

M2
c

]
|F |2. (4.30)

The entry ∆ has instead a more complicated expression, and it is not possible to

simplify it in any relevant way by using the stationarity and the gauge invariance

conditions. Most importantly, the dependence on the third derivatives of the superpo-

tential cannot be eliminated, and varying such derivatives allows to vary ∆ over the

entire complex plane. Therefore:

∆ = generic complex number that can be adjusted by tuning Wijk . (4.31)

We may now ask what is the upper bound on the smallest eigenvalue of the above

matrix m2
αβ̄

when m2
ff̄

, m2
fx̄b

and m2
xax̄b

are held fixed and ∆ is freely varied. As already

explained, this would also represent an upper bound on the smallest eigenvalue m2
min

of the full mass matrix m2
IJ̄

. Unfortunately, this question is still quite complicated for

generic theories with arbitrary gauge symmetries, where k can be arbitrarily large and

it is thus difficult to study the full (2 + k)-dimensional matrix. The importance of the

Goldstone directions with respect to the Goldstino direction depends however crucially

on the relative size of the vector masses Ma compared to the chiral supersymmetry

breaking scale
√
|F |. When the Ma are much larger than

√
|F |, the situation sim-

plifies substantially and the heavy vector multiplets can in fact be integrated out in

a supersymmetric way to define an effective theory for the light chiral multiplets; the

way in which this can be done has been described in detail in the previous chapter. In

this situation the only dangerous light modes are those associated with f IA and f IB, and

the largest value for the smallest mass is obtained by tuning ∆ to zero. The detailed

computation of the effects induced by heavy vector multiplets on the mass along the

Goldstino direction will be explicitly presented in the next chapter. For the moment
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we can anticipate the main result: the upper bound m2
min is given by (4.28), up to

negligible effects of order O(|F |4/M2
a ), and the square bracket in (4.28) can be inter-

preted as the effective Riemann curvature of the low energy theory along the Goldstino

direction [61]. When the Ma are instead comparable-or-smaller than
√
|F |, the modes

associated to xIa− are a priori as light and as dangerous as the modes associated to f IA
and f IB, and the study of the bound become more complicated. It is this situation that

we would like to study in some detail.

For the sake of clarity, we shall mostly restrict our study to the simplest case of

theories with a single U(1) gauge symmetry and k = 1. In this case, it is possible to

extract analytically the full information and derive a simple necessary and sufficient

bound, which can be saturated by adjusting the superpotential. In more complicated

theories with several gauge symmetries forming a more general group G, on the other

hand, one may get some partial analytic information by studying smaller sub-blocks of

dimension one, two and three, and derive simple necessary but not sufficient bounds,

which can a priori not be saturated by adjusting the superpotential. In particular, one

may look separately at all the possible directions in the generator space and figure out

which one leads to the strongest bound. A natural naive guess for a special direction

to look at is the direction DaX i
a/|D| defined by the vector auxiliary fields Da. As

anticipated in Section 1.3.2, the relevance of this special direction is suggested by the

fact that it appears together with F i in the definition of the Goldstino fermion. When

looking at this special direction, some partial and interesting simplifications do indeed

occur in the expressions (4.29) and (4.30), but since we were not able to reach a really

simple and useful result by pursuing this direction, we will not comment any further on

this, and restrict from now on to the basic case involving only one symmetry generator.

4.3 Bound on the Lightest Scalar Mass

Let us now consider the case of theories with a single U(1) gauge symmetry, where the

index a takes a single value and can therefore be dropped. The matrix (4.25) is then 3-

dimensional, and it turns out that it is possible to study the behavior of its eigenvalues

in a fully analytic way. In order to illustrate the fact that the study of larger sub-blocks

of the mass matrix leads to sharper bounds on the lightest eigenvalue, we shall however

successively study sub-blocks of dimensions one, two and three.

There are three possible principal blocks of dimension one, which correspond to the

diagonal elements, but only two of them are independent, namely:

m2
ff̄ , 2m2

xx̄ . (4.32)

Both of these values represent upper bounds on m2
min. Which one is the smallest and

thus leads to the strongest bound depends however on the situation. We therefore

conclude that a first bound that we can write is:

m2
min ≤ m2

(1) , m2
(1) = min

{
m2
ff̄ , 2m

2
xx̄

}
. (4.33)
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There are then three possible principal blocks of dimension two, but again only

two of these are independent. The first possibility is the upper 2-dimensional block

of (4.25), with two identical diagonal elements given by m2
ff̄

and off-diagonal element

given by ∆. The two eigenvalues of such a matrix are m2
ff̄
± |∆|. The maximal value

for the smallest of these is achieved by choosing ∆ = 0 and is given by m2
ff̄

. This sets

an upper bound on m2
min, but this bound is already contained in the previously derived

bound (4.33). The second possibility is the lower 2-dimensional block of (4.25), which

is given by  m2
ff̄

√
2im2

fx̄

–
√

2im2∗
fx̄ 2m2

xx̄

 . (4.34)

The eigenvalues of this matrix are easily computed and are given by:

m2
± =

1

2

(
m2
ff̄ + 2m2

xx̄

)
± 1

2

√(
m2
ff̄
− 2m2

xx̄

)2
+ 8 |m2

fx̄|
2
. (4.35)

Both of these eigenvalues set upper bounds on m2
min. The smallest one that leads to

the strongest bound is always the one with the negative sign choice. This leads to a

new bound, which is always stronger-or-equal than the previous bound (4.33) and takes

into account the non-trivial level-repulsion effect induced by the off-diagonal element

m2
fx̄:

m2
min ≤ m2

(2) , m2
(2) =

1

2

(
m2
ff̄ + 2m2

xx̄

)
− 1

2

√(
m2
ff̄
− 2m2

xx̄

)2
+ 8 |m2

fx̄|
2
. (4.36)

Finally, one may try to look at the full block of dimension three, which should in

this case yield the full information. This is given by:
m2
ff̄

∆ –
√

2im2∗
fx̄

∆∗ m2
ff̄

√
2im2

fx̄

√
2im2

fx̄ –
√

2im2∗
fx̄ 2m2

xx̄

 . (4.37)

For generic ∆, the eigenvalues of this matrix are quite complicated, since they are

determined by the roots of a cubic characteristic polynomial. However, their values

for the optimal choice of ∆ that maximizes the smallest of them can be determined

analytically. To understand this, let us first recall that by the anti-crossing theorem of

Wigner and von Neumann, one generically needs to tune two or three real parameters

to force the eigenvalue of a real-symmetric or Hermitian matrix to cross. In our case,

the matrix is Hermitian but due to its very special form it actually behaves like a

real-symmetric one.3 One can then verify that its eigenvalues always cross at isolated

points in the ∆ complex plane. Knowing this, it becomes clear that the highest value

3In fact we know that there actually exists a basis where the matrix simplifies from Hermitian to
real-symmetric.
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for the minimal eigenvalue is obtained at such a crossing point. But since at that point

two eigenvalues become degenerate, the cubic characteristic polynomial simplifies and

it should be possible to solve the problem analytically. One way to derive the desired

result is to start from the characteristic equation written after decomposing the two

complex entries ∆ and m2
fx̄ in the form of a modulus times a phase:(

λ−m2
ff̄

)2(
λ− 2m2

xx̄

)
− 4 |m2

fx̄|
2(
λ−m2

ff̄

)
− |∆|2

(
λ− 2m2

xx̄

)
+ 4 |∆||m2

fx̄|
2

cos
(

arg ∆− 2 argm2
fx̄

)
= 0 . (4.38)

Form the form of this equation, it is clear that the optimal choice for the phase of ∆

is the one minimizing the last term, in such a way that the cosine is equal to −1, that

is:

arg ∆ = 2 argm2
fx̄ + π . (4.39)

Plugging back this expression into the characteristic equation (4.38), this simplifies to(
λ − m2

ff̄
+ |∆|

)[(
λ − 2m2

xx̄

)(
λ − m2

ff̄
− |∆|

)
− 4 |m2

fx̄|
2]

= 0. The three solutions

of this cubic equation for λ are now easy to find analytically and they are given by

m2
ff̄
− |∆| and 1

2

(
m2
ff̄

+ 2m2
xx̄ + |∆|

)
± 1

2

[(
m2
ff̄
− 2m2

xx̄ + |∆|
)2

+ 16 |m2
fx̄|2
]1/2

. The

optimal value for |∆|, which maximizes the minimal eigenvalue, is obtained when the

first eigenvalue crosses the smallest of the other two, which is the one with the relative

minus sign. This fixes:

|∆| = 1

2

(
m2
ff̄ − 2m2

xx̄

)
+

1

2

√(
m2
ff̄
− 2m2

xx̄

)2
+ 8 |m2

fx̄|
2
. (4.40)

At the optimal point defined by (4.39) and (4.40), the values of the two degenerate

lowest eigenvalues and the highest eigenvalues are finally given by:

m2
± =

1

2

(
m2
ff̄ + 2m2

xx̄

)
± 1

2

√(
m2
ff̄
− 2m2

xx̄

)2
+ 8 |m2

fx̄|
2
. (4.41)

Both of these eigenvalues give upper bounds on m2
min. The smallest one that leads to

the strongest bound is, as before, the one with the negative sign choice. This leads to a

new bound, which is however seen to be identical to the previous bound (4.36), showing

that the potential level-repulsion effect that is induced by a generic off-diagonal element

∆ can be trivialized by optimally choosing the value of this element through a tuning

of the superpotential:

m2
min ≤ m2

(3) , m2
(3) =

1

2

(
m2
ff̄ + 2m2

xx̄

)
− 1

2

√(
m2
ff̄
− 2m2

xx̄

)2
+ 8 |m2

fx̄|
2
. (4.42)

Summarizing, we have managed to find explicit expressions for the upper bounds

m2
(1), m

2
(2), m

2
(3) on the lightest mass that descend from blocks of dimension 1, 2, 3. As

expected, these are increasingly strong and satisfy:

m2
(1) ≥ m2

(2) ≥ m2
(3) . (4.43)
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These bounds hold however for a fixed theory at a fixed vacuum. In particular, they

depend on the direction f i and on the vacuum coordinates φi, which determine the

direction xi and the values of Ri̄kl̄ and Qi̄. We may then derive a more useful and

universal bound by further optimizing the superpotential W to maximize the smallest

mass. The strongest version of this fully optimized bound, which is our main result,

then takes the form

m2
min ≤ m2 , (4.44)

where

m2 = max

{
1

2

(
m2
ff̄ + 2m2

xx̄

)
− 1

2

√(
m2
ff̄
− 2m2

xx̄

)2
+ 8 |m2

fx̄|
2

}
. (4.45)

More precisely, the optimization of W defining (4.45) can be performed as follows. At

any given point one can adjust n− 1 independent complex first derivatives Wi, n(n−
1)/2 independent complex second derivatives Wij, and (n− 1)n(n+ 1)/6 independent

complex third derivatives Wijk, compatibly with gauge invariance. One may then tune

the n − 1 Wi to freely adjust the direction f i and
√
|F |, n − 1 of the Wij to adjust

the values of n − 1 of the fields φi compatibly with the n − 1 stationary conditions

in the non-Goldstone directions, and finally 1 of the Wijk to adjust the quantity ∆

to its optimal value. In this optimized situation, however, there is still 1 combination

of fields φi related to the vector mass M2 = 2 g2|X|2 that cannot be freely adjusted,

because the stationarity condition (4.9) along the Goldstone direction does not depend

on Wij and Wijk. As a result, (4.9) represents a relation between the scales
√
|F |

and M , for given gauge coupling g. One may however still imagine to tune the real

gauge coupling g to achieve any desired value of
√
|F | and M compatibly with this

real stationarity condition. Notice finally that after the above optimization procedure

we are left with (n − 1)(n − 2)/2 free complex Wij and (n − 1)n(n + 1)/6 − 1 free

complex Wijk. This is more than enough to be able to decouple all the n− 2 complex

scalar fields that occur in addition to the Goldstino and the Goldstone partners. The

simplest possibility is to take the left-over Wij to be large and the left-over Wijk to be

moderate, so that all these extra scalars become very massive and do not induce any

sizable negative level-repultion effect on the masses of the Goldstino and Goldstone

partners. This shows that the bound (4.45) can indeed always be saturated by a last

tuning of the superpotential. An explicit implementation of this procedure is illustrated

with a numerical example in Appendix A.

4.4 Renormalizable Gauge Theories

Let us illustrate the implications of our result in the simplest case of renormalizable

gauge theories with a single U(1) gauge group, where the Kähler potential is quadratic

and the Killing vector is linear:

K = δi̄Φ
iΦ̄̄ , X i = −iqiΦi . (4.46)
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In this situation, Qi̄ = qiδij. Moreover, one finds Ki = δi̄φ̄
̄ and Ki = φi. It then

follows that X i = −i Qi
jK

j. Thanks to this last property, and calling Q–1i
j the inverse

of Qi
j restricted to the subspace of non-vanishing charges, one may write:

D = g Q–1
i̄X

iX̄ ̄ , (4.47)

M2 = 2 g2δi̄X
iX̄ ̄ . (4.48)

In this simple situation, the scale of the D auxiliary field is related in a very simple

and direct way to the mass scale M . Indeed, it follows from the above definitions that

D = 1
2
g–1Q–1

xx̄M
2. Moreover, the condition (4.9) holding at stationary points reads in

this case Qff̄ |F |2 = 1
2
g–1M2D. Using the above relation for D, and assuming that

Qff̄ 6= 0, this further implies that |F |2 = 1
4
g–2Q–1

xx̄(Qff̄ )
–1M4. From these relations, we

see that stationary points are possible only if

Q–1
xx̄Qff̄ ≥ 0 . (4.49)

Even though this constraint appears to be not too stringent, it can impose some non-

trivial restrictions especially in the case of models with a small number of fields. For

example, in the case of only two charged chiral fields, the previous relation implies that

vacua which break supersymmetry by F and D terms exist only if the two fields have

charges of the same sign.

The values of the overall |F | and of |D| are related to M and their ratio is fixed in

terms of the values of Qi
j along the directions f i and xi:

|D| = 1

2
g–1|Q–1

xx̄|M2 , (4.50)

|F | = 1

2
g–1
√
Q–1
xx̄(Qff̄ )

–1M2 . (4.51)∣∣∣∣DF
∣∣∣∣ =

√
Q–1
xx̄Qff̄ . (4.52)

When instead Qff̄ = 0, eq. (4.9) implies that |D| = 0, whereas |F | and M can be

arbitrary. This is the only situation where M can be adjusted independently of |F |.
Notice that we may write down the following simple bound on the relative impor-

tance of D-type and F -type supersymmetry breaking, in terms of the pair of charges

qmin and qmax which possess the largest possible ratio with the constraint that they

have the same sign [126]: ∣∣∣∣DF
∣∣∣∣ ≤

√∣∣∣∣qmax

qmin

∣∣∣∣ . (4.53)

This bound can be saturated by choosing the directions f i and xi to be the eigenvectors

of Qi
j corresponding to the eigenvalues qmax and qmin.

The scalar masses (4.28), (4.29) and (4.30) undergo two relevant simplifications.

The first is that all the curvature terms drop, since in this case the scalar manifold is
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flat. The second is that due to the relation (4.51) the supersymmetric term in m2
xx̄ is

forced to be of the same order of magnitude as the non-supersymmetric terms. One

then finds the following simple expressions:

m2
ff̄ =

[
Q–1
xx̄Qff̄

]
M2, (4.54)

m2
xx̄ =

1

2

[
1 +Q–1

xx̄Qxx̄ +Q–1
xx̄(Qff̄ )

–1Q2
ff̄

]
M2, (4.55)

m2
fx̄ =

[
Q–1
xx̄Qfx̄

]
M2. (4.56)

We observe now that by the restriction (4.49) and some simple linear algebra, we can

get some useful constraints on the various pieces of these masses. In particular, we have

that Q–1
xx̄Qff̄ ≥ 0 and Q–1

xx̄(Qff̄ )
–1Q2

ff̄
≥ Q–1

xx̄Qff̄ ≥ 0, since Q2
ff̄
≥ (Qff̄ )

2. Moreover,

Q–1
xx̄Qxx̄ has indefinite sign but becomes equal to 1 whenever xi is an eigenvector of

Qi
j, and Q–1

xx̄Qfx̄ has indefinite sign but becomes equal to 0 whenever either f i or xi

is an eigenvector of Qi
j.

In this class of models, the masses m2
ff̄

, m2
xx̄ and m2

fx̄ depend on the vacuum point

only through the orientation of the direction xi and the size of M . Moreover, by

varying the vacuum point at fixed M one may achieve all the possible orientations for

xi, thanks to the simple linear form of X i and quadratic form of K. The optimization

of the superpotential defining the bound (4.45) then amounts in this case to optimizing

the orientation of the directions f i and xi, with the only constraint that they should

be orthogonal. There is then a natural guess for the optimal choice of f i and xi. This

consists in choosing these two orthogonal directions to be the eigenvectors of Qi
j with

largest and smallest eigenvalues with common sign, namely qmax and qmin. With such a

choice, m2
ff̄

is maximal, m2
fx̄ vanishes and 2m2

xx̄ is larger than m2
ff̄

. The precise values

are

m2
ff̄ →

∣∣∣∣qmax

qmin

∣∣∣∣M2 , m2
xx̄ →

[
1 +

1

2

∣∣∣∣qmax

qmin

∣∣∣∣ ]M2 , m2
fx̄ → 0 . (4.57)

With this choice, one gets that m2
(1), m

2
(2) and m2

(3) all coincide with the maximal

possible value of m2
ff̄

. This value certainly represents the maximal possible value for

m2
(1) taken on its own. But then it must necessarily represent also the maximal possible

value for m2
(2) and m2

(3), because by construction one has m2
(1) ≥ m2

(2) ≥ m2
(3) for any

choice of f i and xi. This proves that the above choice for f i and xi is indeed the

optimal one, and the bound (4.45) thus reads in this case

m2 =

∣∣∣∣qmax

qmin

∣∣∣∣M2 . (4.58)

Notice finally that the optimal configuration corresponds in this case to the one that

maximizes the size of the D auxiliary field relative to the F auxiliary fields:∣∣∣∣DF
∣∣∣∣→

√∣∣∣∣qmax

qmin

∣∣∣∣ . (4.59)
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Summarizing, we see that in the case of a flat scalar manifold and a linear isometry,

the lightest scalar field is identified with a partner of the Goldstino, and its square

mass is positive. In this particular case, one would thus have obtained the same bound

by looking only at the Goldstino partners and maximizing the smallest of their masses

by making the effect of the gauging as large as possible. This is however an accidental

feature of these models, which is due to the flatness and maximal symmetry of the

space, as well as the fact that there is a single generator. In next section we will show

that in the case of curved scalar manifolds, the situation is no-longer so trivial.

4.5 Non-linear Gauged Sigma Models

Let us next consider the more general case of effective theories with a non-trivial Kähler

potential and a single U(1) gauge symmetry generated by a Killing vector of unspecified

form:

K = K(ΦiΦ̄̄) , X i = X i(Φi) . (4.60)

This situation is of course much more complex than the simple particular case consid-

ered in previous section. Yet one may try to follow the same steps as before. A major

difference is that since the Killing vector X i is not linear and K is not quadratic, X i

and Kj are no longer linearly related through Qi
j. One may however introduce the

new quantity

Q̃i
j =

iX iKj

KmKm

, (4.61)

which allows to write the relation X i = −i Q̃i
jK

j. In the case of renormalizable gauge

theories with a phase symmetry, Q̃i
j coincides with Qi

j and is constant, but in the

more general situation considered here Q̃i
j differs from Qi

j and is not constant. With

this notation, and calling Q̃–1i
j the inverse of Q̃i

j in the subspace where it does not

vanish, one can then write:

D = g Q̃–1
i̄X

iX̄ ̄ , (4.62)

M2 = 2 g2gi̄X
iX̄ ̄ . (4.63)

In this more complicated case, the auxiliary field D is again related to the mass

scale M , but in a more involved and implicit way. Indeed, from the above definitions

one deduces that D = 1
2
g–1Q̃–1

xx̄M
2. Moreover, the condition (4.9) implies that at a

stationary point Qff̄ |F |2 = 1
2
g–1M2D. Using the above relation for D, and assuming

thatQff̄ 6= 0, this further implies that |F |2 = 1
4
g–2Q̃–1

xx̄(Qff̄ )
–1M4. From these relations,

we see that stationary points are possible only if

Q̃–1
xx̄Qff̄ ≥ 0 . (4.64)

The values of the overall |F | and of |D| are again related to M and their ratio takes

as before a simple form, but now these relations depend not only on Qi
j but also on
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the new quantities Q̃i
j, taken respectively along the directions f i and xi:

|D| = 1

2
g–1 |Q̃–1

xx̄|M2 , (4.65)

|F | = 1

2
g–1
√
Q̃–1
xx̄(Qff̄ )

–1M2 . (4.66)∣∣∣∣DF
∣∣∣∣ =

√
Q̃–1
xx̄Qff̄ . (4.67)

When instead Qff̄ = 0, eq. (4.9) implies that |D| = 0, whereas |F | and M can be

arbitrary. As before, this is the only situation where M can be adjusted independently

of |F |.
In this case, the relative importance of D-type and F -type supersymmetry breaking

depends on the vacuum point not only through the direction xi but also through Qi
j

and Q̃i
j. Finding an explicit and quantitative bound on their ratio is then more difficult

(see for instance [127] for some attempts). Nevertheless, from the above relations one

may still infer a simple although somewhat implicit bound that involves the maximal

eigenvalue Qmax of Qi
j and the minimal eigenvalue Q̃min of Q̃i

j, with the constraint

that these should have the same sign:∣∣∣∣DF
∣∣∣∣ ≤

√∣∣∣∣Qmax

Q̃min

∣∣∣∣ . (4.68)

In general, this bound can however not be saturated, because Qi
j and Q̃i

j are different

matrices that cannot be diagonalized simultaneously, and it is therefore not possible

to choose the orthogonal directions f i and xi in such a way to get simultaneously

Qff̄ = Qmax and Q̃xx̄ = Q̃min.

The masses (4.28), (4.29) and (4.30) can now be computed more explicitly. In this

case there is an additional contribution coming from the curvature. As before, the

relation (4.66) allows to rewrite the non-supersymmetric pieces in terms of the same

scale as the supersymmetric piece. One then finds the following expressions:

m2
ff̄ =

[
− 1

4
g–2M2Rff̄f f̄ Q̃

–1
xx̄(Qff̄ )

–1+ Q̃–1
xx̄Qff̄

]
M2, (4.69)

m2
xx̄ =

1

2

[
1− 1

2
g–2M2Rff̄xx̄ Q̃

–1
xx̄(Qff̄ )

–1+ Q̃–1
xx̄Qxx̄ + Q̃–1

xx̄(Qff̄ )
–1Q2

ff̄

]
M2, (4.70)

m2
fx̄ =

[
− 1

4
g–2M2Rff̄fx̄ Q̃

–1
xx̄(Qff̄ )

–1+ Q̃–1
xx̄Qfx̄

]
M2. (4.71)

There are again various restrictions on the ingredients appearing in these expressions.

Concerning the contractions ofQi̄ and Q̃i̄, the restriction (4.64) implies as before useful

constraints. In particular, we have Q̃–1
xx̄Qff̄ ≥ 0 and Q̃–1

xx̄(Qff̄ )
–1Q2

ff̄
≥ Q̃–1

xx̄Qff̄ ≥ 0.

Moreover, Q̃–1
xx̄Qxx̄ is indefinite and deviates from 1 even when x is an eigenvector of

Qi
j, whereas Q̃–1

xx̄Qfx̄ has indefinite sign but becomes as before equal to 0 whenever

either f i or xi is an eigenvector of Qi
j. Concerning the contractions of Ri̄kl̄, on the

other hand, there does not seem to exist any sharp inequality.
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The masses m2
ff̄

, m2
xx̄ and m2

fx̄ depend on the vacuum point not only through the

orientation of the direction xi and the size of M , but also through the values of Ri̄kl̄,

Qi̄ and Q̃i̄, which are in general not constant. Moreover, it is no longer granted that

by varying the vacuum point at fixed M one may achieve all the possible orientations

for xi. The optimization of the superpotential defining the bound (4.45) is then a

complicated task, and does not simply amount to optimizing the orientation of the

directions f i and xi. Moreover, even ignoring this difficulty, finding the optimal choice

is more involved also because of the fact that generically it emerges from a competition

between the terms that depend only on Qi̄ and Q̃i̄ and those that depend also on

Ri̄kl̄, although there may be regimes where one or the other of these two contributions

dominates. As a consequence of this, we were not able to find any general result for this

type of models based on curved geometries. We will however study in some detail a few

particular examples in the next section, based on simple geometries with covariantly

constant curvature and simple isometries. The only few remarks that can be made

in general concern the behavior of the various contractions that appear in the masses

m2
ff̄

, m2
xx̄ and m2

fx̄ when the directions f i and xi are varied. To get an idea of what

may happen, we may treat f i and xi as arbitrary directions and enforce the constraints

that gi̄f
if̄ ̄ = 1, gi̄x

ix̄̄ = 1 and gi̄f
ix̄̄ = 0 through Lagrange multipliers. Proceeding

in this way, one then finds the following results. When Qff̄ is extremal Qfx̄ = 0, when

Q̃–1
xx̄ is extremal Q̃–1

fx̄ = 0, when Qff̄ Q̃
–1
xx̄ is extremal Qfx̄ Q̃

–1
xx̄+Qff̄ Q̃

–1
fx̄ = 0, and finally

when Rff̄f f̄ is extremal Rff̄fx̄ = 0.

Summarizing, we see that in the case of a curved scalar manifold and a generic

isometry, the lightest scalar field is generically identified with a linear combination of

Goldstino and Goldstone partners, and its square mass is not necessarily positive. In

this case, one would thus have obtained a too optimistic bound by proceeding along the

lines of [61] and looking only at the Goldstino partners and maximizing the smallest of

their mass. Notice finally that the optimal situation does not necessarily correspond

to the one that maximizes the effect of the gauging.

4.6 Explicit Examples with Constant Curvature

In this section, we study in some detail a few concrete examples to illustrate our

general results. We focus on models with two fields and one gauge symmetry. In this

situation, the Goldstino and Goldstone directions f i and xi are rigidly tied and can be

parametrized with a single angle θ, which we shall define in such a way that the mass M

is constant. Another simplification that occurs in the two-field case is that one simply

has Q2
ff̄

= (Qff̄ )
2 + |Qfx̄|2. We shall take θ ∈ [0, 2π], but in all the examples below

the behaviors of the masses in the four quadrants are related by simple reflections.
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4.6.1 Flat Kähler Potential and Linear Isometry

As a first simple example, let us discuss the case of quadratic Kähler potential and

linear Killing vector, which corresponds to a flat scalar manifold with a phase isometry

defined by positive charges:

K = Φ1Φ̄1 + Φ2Φ̄2 , X i = −i
(
q1Φ1, q2Φ2

)
. (4.72)

In this case, we can parametrize the vacuum in the following way:

Φi =
1√
2
g–1M

(
q–1

1 cos θ, q–1
2 sin θ

)
. (4.73)

The Goldstone and Goldstino directions are then given by xi = −i
(

cos θ, sin θ
)

and

f i = −i
(

sin θ,− cos θ
)
, and the metric is clearly trivial: gi̄ = δij. The relations

between |D|, |F | and M2 are in this case:

|D| = 1

2
g–1
(
q–1

1 cos2 θ + q–1
2 sin2 θ

)
M2 , (4.74)

|F | = 1

2
g–1(q1q2)–1/2M2 . (4.75)

We then get: ∣∣∣∣DF
∣∣∣∣ =

√
q2

q1

cos2 θ +

√
q1

q2

sin2 θ . (4.76)

In this case Ri̄kl̄ vanishes identically and we therefore get:

Rff̄f f̄ = 0 , Rff̄xx̄ = 0 , Rff̄fx̄ = 0 . (4.77)

The matrix elements of Qi̄ are instead given simply by:

Qff̄ = q2 cos2 θ + q1 sin2 θ , (4.78)

Qxx̄ = q1 cos2 θ + q2 sin2 θ , (4.79)

Qfx̄ = (q1 − q2) cos θ sin θ . (4.80)

The elements m2
ff̄

, m2
xx̄, m

2
fx̄ and the eigenvalues m2

± of the mass matrix are equal

to M2 times some functions of θ and q1/q2. The behavior of m2
ff̄
/M2 and m2

−/M
2 as

functions of θ is shown in Fig. 4.1 for some particular choice of q1/q2. More in general,

one finds the following behavior. If q1 > q2, m2
ff̄

and m2
− both reach their maxima for

θ = π
2
, and at that point m2

ff̄
/M2 = q1/q2, m2

xx̄/M
2 = 1

2
(2 + q1/q2) and m2

fx̄/M
2 = 0,

so that m2
−/M

2 = q1/q2. The optimal direction is therefore θ = π
2
, and the bound

is m2/M2 = q1/q2. If instead q2 > q1, the situation is similar but with q1 ↔ q2 and

θ ↔ π
2
− θ.
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Figure 4.1: Plot of m2
ff̄
/M2 (upper curve) and m2

−/M
2 (lower curve) as functions of

θ for the model with quadratic Kähler potential and linear Killing vectors defined by

(4.72), with q1/q2 = 3.

4.6.2 Logarithmic Kähler Potential and Shift-Isometry

As a second simple example, let us discus the case of logarithmic Kähler potential and

constant Killing vector, which corresponds to a constantly and positively curved scalar

manifold with a shift isometry defined by positive shifts:

K = −Λ2
1 log

(
Φ1 + Φ̄1

Λ1

)
− Λ2

2 log

(
Φ2 + Φ̄2

Λ2

)
, X i = i

(
A1, A2

)
. (4.81)

The two scales Λ1 and Λ2 define the curvatures of the two field sectors, whereas the

two scales A1 and A2 define the gauge shifts. It is then convenient to introduce the

following dimensionless parameters:

λ1 =
gΛ1

M
, λ2 =

gΛ2

M
, a1 =

gA1

M
, a2 =

gA2

M
. (4.82)

In this case, we can parametrize the vacuum in the following way, by including absolute

values to take into account that the fields are in this case restricted to have a positive

real part:

Φi =
1√
2
g–1M

(
a1λ1| sec θ|, a2λ2| csc θ|

)
. (4.83)

The Goldstone and Goldstino directions are then given by xi =
√

2i
(
a1, a2

)
and f i =√

2i
(
a1| tan θ|,−a2| cot θ|

)
, whereas gi̄ = 1

2
diag

(
a–2

1 cos2 θ, a–2
2 sin2 θ

)
. The relation

between |D|, |F | and M2 are in this case:

|D| = 1√
2
g–1
(
λ1| cos θ|+ λ2| sin θ|

)
M2 , (4.84)

|F | = 1√
2
g–1
√
λ1λ2 |2 cos θ sin θ|–1/2M2 . (4.85)
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We then get: ∣∣∣∣DF
∣∣∣∣ =

√
|2 cos θ sin θ|

(√
λ1

λ2

| cos θ|+
√
λ2

λ1

| sin θ|
)
. (4.86)

The contractions of Ri̄kl̄ are given by

Rff̄f f̄ = 2g2M–2
(
λ−2

2 cos4 θ + λ−2
1 sin4 θ

)
, (4.87)

Rff̄xx̄ = 2g2M–2
(
λ−2

2 + λ−2
1

)
cos2 θ sin2 θ , (4.88)

Rff̄fx̄ = 2g2M–2
(
λ−2

1 sin2 θ − λ−2
2 cos2 θ

)
| cos θ sin θ| . (4.89)

The matrix elements of Qi̄ are instead found to be independent of the shifts ai and

dominated by the effect of the connection term in their definition, as a result of the

fact that the Killing vectors are constant:

Qff̄ =
√

2
(
λ–1

2 | cos θ|+ λ–1
1 | sin θ|

)
| cos θ sin θ| , (4.90)

Qxx̄ =
√

2
(
λ–1

1 | cos3 θ|+ λ–1
2 | sin3 θ|

)
, (4.91)

Qfx̄ =
√

2
(
λ–1

1 | cos θ| − λ–1
2 | sin θ|

)
| cos θ sin θ| . (4.92)

The elements m2
ff̄

, m2
xx̄, m

2
fx̄ and the eigenvalues m2

± of the mass matrix are equal

to M2 times some functions of θ and λ1/λ2. The behavior of m2
ff̄
/M2 and m2

−/M
2

as functions of θ is shown in Fig. 4.6.2 for some particular choice of λ1/λ2. More in

general, one finds the following behavior. m2
ff̄

reaches its maximum for θ = π
4

and

at that point m2
ff̄
/M2 = 1 + 1

4
(λ1/λ2 + λ2/λ1), m2

xx̄/M
2 = 1 + 1

2
(λ1/λ2 + λ2/λ1) and

m2
fx̄/M

2 = −1
4
(λ1/λ2−λ2/λ1), so that m2

−/M
2 is smaller-or-equal than m2

ff̄
/M2. The

maximum of m2
−/M

2 occurs instead for some θ ≤ π
4

if λ1 > λ2 and for some θ ≥ π
4

if

λ1 < λ2, and takes a value that is smaller than 1 + 1
4
(λ1/λ2 + λ2/λ1). For λ1 ' λ2, the

optimal direction is θ ' π
4

and the bound is m2/M2 ' 3
2
, which is identical to the one

that one would have obtained by looking just at the Goldstino direction. For λ1 � λ2,

on the other hand, a numerical study shows that the optimal direction is θ ' 0.67 and

the bound is m2/M2 ' 0.13λ1/λ2, which is a factor 1.86 smaller than the one that one

would have inferred by looking just at the Goldstino direction, although still positive.

For λ1 � λ2, the situation is similar but with λ1 ↔ λ2 and θ ↔ π
2
− θ.

4.6.3 Logarithmic Kähler Potential and Linear Isometry

As a third slightly more complicated and richer example, let us finally discus the

case of logarithmic Kähler potential and linear Killing vector, which corresponds to

a constantly and positively curved scalar manifold with a phase isometry defined by

positive charges:

K = −Λ2
1 log

(
1−Φ1Φ̄1

Λ2
1

)
− Λ2

2 log

(
1−Φ2Φ̄2

Λ2
2

)
, X i = −i

(
q1Φ1, q2Φ2

)
. (4.93)

The two scales Λ1 and Λ2 define as before the curvatures of the two field sectors. It

turns out that by varying the overall scale of these curvatures with respect to the
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Figure 4.2: Plot of m2
ff̄
/M2 (upper curve) and m2

−/M
2 (lower curve) as functions of θ

for the model with logarithmic Kähler potential and constant Killing vectors defined

by (4.81), with λ1/λ2 = 1
6
.

vector mass scale, this new model interpolates between the two previous ones. This

can be seen as follows. The small curvature limit corresponds to take Λi large and Φi

finite, so that Φi/Λi is close to 0. In this limit one can keep the same coordinates and

just expand the logarithm in K. In this way one then recovers the model (4.72). The

large curvature limit corresponds instead to take Λi small and Φi also small, so that

Φi/Λi is close to 1. In this limit, it is convenient to change coordinates to describe the

model in a more transparent way. The appropriate reparametrization turns out to be

Φi/Λi → (1− 1
2
Φi/Λi)/(1 + 1

2
Φi/Λi). Discarding an irrelevant Kähler transformation,

one then finds K → −
∑

i Λ
2
i log((Φi + Φ̄i)/Λi) and X i → i qiΛi (1 − 1

4
Φi2/Λ2

i ). In

these new coordinates, Φi/Λi is close to 0. In this limit one then manifestly recovers

the model (4.81) with the same field parametrization and shifts given by Ai = qiΛi.

To parametrize the effects of the curvatures, we introduce as before the dimensionless

parameters

λ1 =
gΛ1

M
, λ2 =

gΛ2

M
. (4.94)

It will also be useful to introduce the short-hand notation

u(θ) = H

(
cos θ

q1λ1

)
, v(θ) = H

(
sin θ

q2λ2

)
. (4.95)

where H(x) is the following monotonically decreasing function:

H(x) =

√
1 + 2 x2 − 1

x2
'

{
1 , |x| � 1

√
2/|x| , |x| � 1

. (4.96)
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In this case, we can parametrize the vacuum in the following way:

Φi =
1√
2
g–1M

(
q–1

1 u(θ) cos θ, q–1
2 v(θ) sin θ

)
. (4.97)

The Goldstone and Goldstino directions then read xi = −i
(
u(θ) cos θ, v(θ) sin θ

)
and

f i = −i
(
u(θ) sin θ,−v(θ) cos θ

)
, and the metric is gi̄ = diag

(
1/u2(θ), 1/v2(θ)

)
. The

relation between |D|, |F | and M2 are in this case:

|D| = 1

2
g–1
(
q–1

1 u(θ) cos2 θ + q–1
2 v(θ) sin2 θ

)
M2 (4.98)

|F | = 1

2
g–1

√
q–1

1 u(θ) cos2 θ + q–1
2 v(θ) sin2 θ

q2

[
2/v(θ)− 1

]
cos2 θ + q1

[
2/u(θ)− 1

]
sin2 θ

M2 . (4.99)

We then get:∣∣∣∣DF
∣∣∣∣ =

√√
q2

q1

u(θ) cos2 θ +

√
q1

q2

v(θ) sin2 θ

×

√√
q2

q1

[
2/v(θ)− 1

]
cos2 θ +

√
q1

q2

[
2/u(θ)− 1

]
sin2 θ . (4.100)

The contractions of Ri̄kl̄ are given by

Rff̄f f̄ = 2g2M–2
(
λ−2

2 cos4 θ + λ−2
1 sin4 θ

)
, (4.101)

Rff̄xx̄ = 2g2M–2
(
λ−2

2 + λ−2
1

)
cos2 θ sin2 θ , (4.102)

Rff̄fx̄ = 2g2M–2
(
λ−2

1 sin2 θ − λ−2
2 cos2 θ

)
cos θ sin θ . (4.103)

The matrix elements of Qi̄ are instead found to be:

Qff̄ = q2

[
2/v(θ)− 1

]
cos2 θ + q1

[
2/u(θ)− 1

]
sin2 θ , (4.104)

Qxx̄ = q1

[
2/u(θ)− 1

]
cos2 θ + q2

[
2/v(θ)− 1

]
sin2 θ , (4.105)

Qfx̄ =
(
q1

[
2/u(θ)− 1

]
− q2

[
2/v(θ)− 1

])
cos θ sin θ . (4.106)

The elements m2
ff̄

, m2
xx̄, m

2
fx̄ and the eigenvalues m2

± of the mass matrix are equal to

M2 times some functions of θ, λ1/λ2, q1/q2 and q1q2λ1λ2. The behavior of m2
ff̄
/M2

and m2
−/M

2 as functions of θ is shown in Fig. 4.3 for some particular choice of λ1/λ2,

q1/q2 and q1q2λ1λ2. More in general, one finds the following behavior. m2
ff̄

and m2
−

reach maxima for two different values of θ, and the maximal value of m2
− is always

smaller than the maximal value of m2
ff̄

. This shows once again that the bound that

one would have inferred by looking only at the Goldstino direction is weaker than the

bound m2 that one obtains by taking into account also the Goldstone direction. One

moreover verifies that in the limit λi � 1 one recovers the behavior of the model with

quadratic K and linear X i with charges qi, whereas in the limit λi � 1 one reaches

the behavior of the model with logarithmic K and constant X i with shifts Ai = qiΛi.



102 Vacuum Stability and Bound on the Lightest Scalar

0 Π
4

Π
2

"1

0

1

2

3

Figure 4.3: Plot of m2
ff̄
/M2 (upper curve) and m2

−/M
2 (lower curve) as functions of θ

for the model with logarithmic Kähler potential and linear Killing vectors defined by

(4.93), with λ1/λ2 = 1
6
, q1/q2 = 3 and q1q2λ1λ2 = 1.

4.7 Summary

In this chapter, we have shown that it is possible to derive an absolute upper bound

on the mass of the lightest scalar field of a theory with spontaneously broken su-

persymmetry and local gauge symmetries. This can be obtained by focusing on the

subset of scalar fields corresponding to the partners of the Goldstino fermion and the

gauge vector bosons, for which the mass is constrained by symmetry arguments. The

resulting bound has the property that it can be saturated by adjusting the superpo-

tential. Requiring it to be positive is therefore a necessary and sufficient condition on

the remaining functions specifying the kinetic terms for the existence of a metastable

supersymmetry-breaking vacuum. We have shown that by including also the Goldstone

partners one finds in general a stronger bound than by considering just the Goldstino

partners, and we have illustrated this fact through several explicit examples.

The results we presented in this chapter have interesting implications on the condi-

tions for the existence of metastable supersymmetry breaking vacua in generic super-

symmetric theories with local gauge symmetries. Indeed, the region of parameter space

where tachyons can be avoided is reduced when one considers not only the Goldstino

partners but also the Goldstone partners, since there are points where the former have

positive square mass while the latter or linear combinations of the two have negative

square mass. We believe that there may in fact exist models where the upper bound

derived from just the Goldstino partners is positive whereas the upper bound derived

by including also the Goldstone partners is negative. In such a situation, one would

then find an obstruction against the existence of metastable supersymmetry-breaking

vacua that comes from the Goldstone partners rather than from the Goldstino partners.
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In the light of this possibility, it would be interesting to apply the result that we have

derived to reexamine the conditions for the existence of metastable supersymmetry-

breaking vacua in theories where the gauging plays a crucial role. One class of models

where this could perhaps uncover new instabilities is that of theories with extended su-

persymmetry, and more specifically those where the Goldstino partners do not seem to

lead necessarily to tachyons. This is for instance the case of N = 2 theories with non-

Abelian vector multiplets and/or charged hyper multiplets (see [128] for an extended

discussion on this topic).

To conclude, we would like to comment on the generalization of our result to the

case of supergravity theories. The only technical difficulty to extend our analysis to

that case is the fact that the Goldstino direction f i and the Goldstone directions xia
are no longer orthogonal, as a consequence of the additional gravitational term in

the definition of the auxiliary fields. More precisely, one gets gi̄f
ix̄̄a = ig–1m3/2Da.

As a consequence, the set of vectors f i and xia can no longer be chosen to form an

orthonormal set, although it still represents a complete set of dangerous directions. The

restriction of the mass matrix to this subspace is then no longer given just by eq. (4.25)

but by a more complex expression. As a result, the analysis becomes technically more

complicated. But for the rest one can apply the same strategy we developed in this

chapter for theories with rigid supersymmetry.
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Chapter 5

Effects of Heavy Multiplets on

Vacuum Stability

In this chapter we are going to combine the main results of the previous two chapters

to study the effects induced by heavy supermultiplets on the masses of light scalar

fields and in particular on the metastability conditions; this is done in the limit in

which the heavy mass scale is much larger than the supersymmetry breaking scale and

heavy multiplets can be integrate out supersymmetrically by following the procedure

described in Chapter 3. We restrict to the case in which all the vector multiplets

have large supersymmetric masses and the low-energy supersymmetric effective theory

contains only light chiral multiplets. As we have seen at the end of Section 4.2, in this

situation the Goldstino is the only dangerous direction in the scalar field space whereas

the directions associated to Killing vectors are automatically safe.

We will show that the square-masses of light scalar fields can get two different types

of significant corrections when a heavy multiplet is integrated out. The first is an indi-

rect level-repulsion effect, which may arise from heavy chiral multiplets and is always

negative. The second is a direct coupling contribution, which may arise from heavy

vector multiplets and can have any sign. We then apply these results to the sGoldstino

mass and study the implications for the vacuum metastability condition. We find that

the correction from heavy chiral multiplets is always negative and tends to compromise

vacuum metastability, whereas the contribution from heavy vector multiplets is always

positive and tends on the contrary to reinforce it. These two effects are controlled re-

spectively by Yukawa couplings and gauge charges, which mix one heavy and two light

fields respectively in the superpotential and the Kähler potential. Finally we will also

comment on similar effects induced in soft scalar masses when the heavy multiplets

couple both to the visible and the hidden sector. This chapter is based on our paper

[3].
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5.1 General Considerations

In the following we are interested in studying the low-energy dynamics and in partic-

ular the question of vacuum metastability within the supersymmetric effective theory

obtained by integrating out heavy fields in a manifestly supersymmetric way. In Chap-

ter 3 we have shown that at leading order in the low-energy expansion in the number

of derivatives, fermions and auxiliary fields, the basic recipe is that chiral and vector

superfields can be integrated out by using approximate equations of motion correspond-

ing to imposing stationarity of W and K respectively. In the forthcoming sections we

will make more explicit the computation of the scalar masses in the low energy effec-

tive theory in the case in which only chiral multiplets are light; as anticipated, this

analysis may play a relevant role in the study of the moduli sector of string models

where supersymmetry is supposed to be spontaneously broken (see Section 2.3).

More specifically, we ask the practical question of what is the effect of heavy modes

on the light masses, and in particular whether the induced corrections tend to improve

or to worsen the situation concerning metastability of the vacuum. It would be very

valuable to have some criterion to distinguish situations where the effect of heavy

modes on the scalar square-masses are negative, and must therefore necessarily be

computed to be able to assess vacuum stability, from situations where this effect is

positive and can thus be safely ignored to check vacuum metastability. To derive

such a criterion, we shall study in some detail the structure and the sign of the effect

induced by heavy modes on the sGoldstino mass, which captures the crucial condition

for achieving metastability. Most of the details are developed for simplicity in the

rigid case; however, as we explained in Chapter 3 gravity does not introduce new

complications and a similar analysis can be performed in the supergravity case. We

comment on these aspects at the end of the chapter.

In order to illustrate the basic point that we want to make, let us consider a generic

theory involving both light and heavy modes, indicated as φi and φα respectively, that

interact among each other. For simplicity, we shall think of these as real scalar fields

in a non-supersymmetric theory, but the results are clearly more general. In such

a situation, one may define a low-energy effective theory for the light modes φi by

integrating out the heavy modes φα. As we already discussed, at lowest order in the

low-energy expansion, this can be done by requiring stationarity of the potential energy

V with respect to the heavy modes and solving the equation Vα = 0. This determines

φα = φα0 (φi). By differentiating the stationarity equation with respect to the light

fields, one also deduces that ∂iφ
α
0 = −V αβ

inv Vβi, where V αβ
inv denotes the inverse of Vαβ as

a matrix.1

1We use ( )inv instead of ( )−1 to indicate inverse matrices in order to clearly distinguish between
two different kinds of inverse matrices which appear in the computations. More precisely, consider a
general square matrix X; as a general rule we adopt the convention that the subscript “inv” defines
the inverse of an arbitrary invertible sub-block of X, whereas the symbol “-1” is used to represent the
inverse of the whole matrix X. For example, Xαβ

inv represents the inverse of the sub-block Xαβ whereas
X−1αβ represents the (αβ) components of the inverse matrix X−1. It is then obvious that in general
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The effective Lagrangian for the low-energy theory is then obtained, as usual, by

substituting back this solution into the original Lagrangian. For the wave-function

factor and the potential, one easily obtains geff
ij (φi) = (gij + ∂iφ

α
0 gαj + ∂jφ

β
0giβ +

∂iφ
α
0∂jφ

β
0gαβ)(φi, φα0 ) and V eff(φi) = V (φi, φα0 (φi)). The light masses may finally be

derived by computing derivatives of V eff . Using the chain rule, these can be related

to derivatives of V . One finds V eff
i = Vi and V eff

ij = Vij − ViαV αβ
inv Vβj, so that the light

masses m2eff
ij = V eff

ij are given by the following expression in terms of the light, heavy

and mixing blocks m2
ij = Vij, M

2
αβ = Vαβ and µ2

iα = Viα of the full mass matrix:

m2eff
ij = m2

ij − µ2
iαM

−2αβµ2
βj . (5.1)

This expression is easily seen to coincide with the mass matrix of light states obtained

by diagonalizing the full mass matrix of the microscopic theory at leading order in an

expansion in powers of the inverse heavy mass matrix. The formula (5.1) moreover

shows that integrating out the heavy modes generically gives two types of effects on

the masses of the light modes. The first is a direct effect hidden in the first term on

the right hand side and is due to the fact that the light block of the mass matrix m2
ij

gets influenced by the coupling to the heavy modes. It has a sign that depends on

the form of the couplings between light and heavy modes. The second is an indirect

effect described by the second term on the right-hand side and is due to the fact that

the presence of an off-diagonal block in the mass matrix mixing light and heavy fields

makes the true light mass matrix differ from the original light block. It has a sign that

is manifestly always negative. In parallel with what happens to a quantum mechanical

system with two separated sets of low and high energy levels, we see that there is a

direct effect correcting significantly the light energy levels and negligibly the heavy

ones, which is due to diagonal interactions and can have any sign, and an indirect

level-repulsion effect that further splits apart the two sets of levels, which is due to

off-diagonal interactions and has a definite sign.

5.2 Effect of Heavy Chiral Multiplets

Let us now consider a situation where the chiral multiplets ΦI split into a set of light

multiplets Φi parametrizing the low-energy theory and a set of heavy multiplets Φα 2

with a large supersymmetric mass Wαβ to be integrated out. For later convenience we

recall the expressions of the scalar masses discussed in Section 1.3.1:

m2
0IJ̄ = ∇IWK∇J̄W̄

K −RIJ̄KL̄ F
KF̄ L̄ , (5.2)

m2
0IJ = −∇I∇JWK F

K . (5.3)

situations Xαβ
inv and X−1αβ do not coincide.

2Notice that here we come back to the notation of Chapter 3 in which capital indices indicate
collectively light and heavy fields.
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In order to distinguish light from heavy multiplets in a sensible way, we must assume

that the supersymmetric mass mixing Wiα between them is not too large. We denote

the heavy, light and mixing blocks of the whole supersymmetric mass matrix M1/2 in

the following way:

M1/2 =

 M µ

µ† m

 , (5.4)

where

Mαβ = Wαβ , µαi = Wαi , mij = Wij . (5.5)

The most relevant interactions for our purposes will be the cubic terms in W , namely

the Yukawa couplings (3.27)

λαij = Wαij , λαβj = Wαβj , λαβγ = Wαβγ . (5.6)

At leading order in the low-energy expansion in number of derivatives, fermions

and auxiliary fields, the low-energy effective theory can be obtained in component

fields by imposing stationarity of V with respect to each heavy field and substituting

back the solution into the original Lagrangian. Equivalently, this effective theory can

be derived directly in superfields, by demanding the stationarity of W with respect to

each heavy chiral multiplet. For convenience, we shall assume without loss of generality

normal coordinates in the microscopic theory around the point under consideration.

This substantially simplifies the computations, although the effective theory does not

automatically inherit normal coordinates, due to the corrections induced to the Kähler

metric.

The holomorphic coordinate transformations to go in normal coordinates is defined

by asking that the Kähler connection Γ is locally vanishing at an arbitrary point of the

scalar manifold. We get (see for example [129]):

ΦI′ = ΛI′

I

(
ΦI +

1

2
ΓIJK |ΦJΦK +

1

6
gIL̄∂PΓL̄JK |ΦJΦKΦP + · · ·

)
, (5.7)

where ΛI′
I is defined in such a way that:

KI′J̄ ′| = δI′J̄ ′ = Λ I
I′Λ

J̄

J̄ ′
KIJ̄ | . (5.8)

In the new coordinate system, the Käheler potential can locally be approximated as:

K(Φ, Φ̄) = K|+ F (Φ) + F̄ (Φ̄) + δIJ̄ ΦIΦ̄J +
1

4
RIJ̄KL̄|ΦIΦ̄J̄ΦKΦ̄L̄ +O(Φ5) , (5.9)

where F is an irrelevant holomorphic function. The Kähler metric is then:

gIJ̄(Φ, Φ̄) = δIJ̄ +RIJ̄KL̄|ΦKΦ̄L̄ +O(Φ3) . (5.10)
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We stopped at fourth order in the expansion of K since higher terms do not contribute

in the computation of sGoldstinos mass.

The corrections due to the supersymmetric mass mixing between heavy and light

multiplets are encoded in the following small dimensionless matrix:

εαi = −M−1αβµβi . (5.11)

It should be emphasized that it is always possible to perform a holomorphic field

redefinition in such a way to diagonalize the supersymmetric mass matrix WIJ at a

given point in field space, thereby setting εαi to zero. This means that all the effects

depending on εαi only serve to compensate a choice of light and heavy fields that does

not exactly diagonalize the supersymmetric part of the mass matrix, and therefore

do not represent genuine non-trivial corrections. Moreover, since εαi must be small,

these effects are anyhow quantitatively irrelevant. We may then set εαi = 0 by suitably

choosing the fields. We shall however keep εαi 6= 0 during the computations to verify

more explicitly the above claims and set εαi = 0 only at the very end. We can anticipate

that all the tensorial quantities characterizing the light fields will receive additional

contributions coming from heavy indices converted to light indices through the matrix

εαi . This leads us to introduce already at this stage the following deformed tensors:

gεi̄ = gi̄ + εαi gα̄ + ε̄β̄̄ giβ̄ + εαi ε̄
β̄
̄ gαβ̄ , (5.12)

λεαij = λαij + εβi λαβj + εγjλαiγ + εβi ε
γ
jλαβγ , (5.13)

Rε
i̄kl̄ = Ri̄kl̄ + εαi Rα̄kl̄ + ε̄β̄̄Riβ̄kl̄ + εγkRi̄γl̄ + ε̄δ̄l̄Ri̄kδ̄ + εαi ε̄

β̄
̄Rαβ̄kl̄

+ εαi ε
γ
kRα̄γl̄ + εαi ε̄

δ̄
l̄Rα̄kδ̄ + ε̄β̄̄ ε

γ
kRiβ̄γl̄ + ε̄β̄̄ ε̄

δ̄
l̄Riβ̄kδ̄ + εγk ε̄

δ̄
l̄Ri̄γδ̄

+ ε̄β̄̄ ε
γ
k ε̄
δ̄
l̄Riβ̄γδ̄ + εαi ε

γ
k ε̄
δ̄
l̄Rα̄γδ̄ + εαi ε̄

β̄
̄ ε̄
δ̄
l̄Rαβ̄kδ̄ + εαi ε̄

β̄
̄ ε
γ
kRαβ̄γl̄

+ εαi ε̄
β̄
̄ ε
γ
k ε̄
δ̄
l̄Rαβ̄γδ̄ . (5.14)

Finally, we shall define the following quantity for later use, which characterizes the

heavy block WαI g
IJ̄ W̄J̄ β̄ of the square of the supersymmetric mass matrix:

|M ε|2αβ̄ = Mαγ

(
gγδ̄ + εγi g

iδ̄ + ε̄δ̄̄g
γ̄ + εγi ε̄

δ̄
̄g
i̄
)
M̄δ̄β̄ . (5.15)

In the following, we shall compute within the component approach the average

sGoldstino mass in the low-energy effective theory, defined at a stationary point as 3

m2eff
ϕ =

m2eff
0i̄ F

ieffF̄ ̄eff

F keffF̄ eff
k

. (5.16)

We shall then reproduce the same result within the superfield approach by first com-

puting the Riemann tensor Reff
i̄kl̄

of the effective theory at a generic point and then

3For convenience in this chapter we indicate the mass in the Goldstino direction by m2
ϕ, avoiding

the heavier notation m2
ff̄

which would be confusing when generalized to the effective theory. For the
same reason we will also avoid the symbol Rff̄ff̄ introduced in the previous chapter to denote the
contraction of the Riemann tensor with the Goldstino direction.
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applying the standard expression for the sGoldstino mass at a stationary point (4.28),

correctly reinterpreted in the new notation and applied to the effective theory where

no vector multiplets are present. The relevant formula is:

m2eff
ϕ = ReffF ieffF̄ eff

i , (5.17)

where we defined the effective sectional curvature 4

Reff = −
Reff
i̄kl̄
F ieffF̄ ̄effF keffF̄ l̄eff

(FmeffF̄ eff
m )2

. (5.18)

5.2.1 Component Approach

Consider first the component approach. For simplicity we shall focus on the bosonic

fields and discard fermions, since we are interested in computing effective scalar masses;

in the low-energy expansion the values of the heavy scalar fields are defined by

φα = φα0 (φi, φ̄ı̄) solution of Vα(φi, φ̄ı̄, φα0 , φ̄
ᾱ
0 ) = 0 . (5.19)

At leading order in the number of auxiliary fields, this stationarity condition implies

that WαIW̄
I = 0 and gives the following values for the heavy auxiliary fields:

Fα = εαi F
i . (5.20)

The effective theory for the light fields is then obtained by substituting these expressions

for φα and Fα into the original Lagrangian.

To derive the effective theory, we will need to compute the derivatives of the heavy

fields φα0 and φ̄ᾱ0 with respect to the light fields φi. These can be deduced, as in the

non-supersymmetric case, by differentiating the stationarity conditions Vα = 0 with

respect to the light fields. One finds:

∂φα

∂φi
= −M−2αβ̄

0 µ2
0β̄i −M

−2αβ
0 µ2

0βi , (5.21)

∂φ̄ᾱ

∂φi
= −M−2ᾱβ

0 µ2
0βi −M

−2ᾱβ̄
0 µ2

0β̄i . (5.22)

where we defined the heavy and off-diagonal blocks of the complete scalar mass matrix

M2
0 of the microscopic theory:

M2
0 =

 M2
0 µ2

0

µ† 2
0 m2

0

 , (5.23)

4Notice the minus sign introduced to match the usual definition of sectional curvature for real
manifolds. See App. B of [130].
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where

M2
0 =

 Vαβ̄ Vαβ

Vᾱβ̄ Vᾱβ

 , µ2
0 =

 Vα̄ Vαj

Vᾱ̄ Vᾱj

 , m2
0 =

 Vi̄ Vij

Vı̄̄ Vı̄j

 , (5.24)

Notice that µ0 and M0 differ from µ and M , since the former refer to the full mass

matrix (5.2)-(5.3) whereas the latter parametrize only its supersymmetric part, namely

WIJ . More precisely:

(M2
0 )αβ̄ = Vαβ̄ , (µ2

0)α̄ = Vα̄ , (m2
0)i̄ = Vi̄ , (5.25)

coincide with M2, µ2 and m2 in (5.5) only in the supersymmetric limit. At quadratic

order in the auxiliary fields one finds:

M−2αβ̄
0 = V αβ̄

inv + V αγ̄
inv Vγ̄δ̄ V

δ̄σ
invVστ V

τβ̄
inv , (5.26)

M−2αβ
0 = −V αγ̄

inv Vγ̄δ̄ V
δ̄β

inv . (5.27)

It is convenient for the forthcoming analysis to roughly estimate the leading powers of

auxiliary fields F in each term of previous expressions. We have that V αβ̄
inv ∼ aF 0 +

b F 2 +O(F 3) whereas Vαβ ∼ c F and this implies, at quadratic order in F , that M−2αβ̄
0

contains only terms which are quadratic or constant in F whereas M−2αβ
0 contains only

linear terms.

The effective Kähler metric of the light fields can be determined by looking at the

scalar kinetic terms and substituting the values of the heavy scalar fields. One may in

this case work at leading order in the auxiliary fields, since these terms already involve

two derivatives. Focusing also on the leading order in the light masses and the heavy-

light mass mixing, the relations (5.21) and (5.22) then simplify to ∂iφ
α = εαi + O(F )

and ∂iφ̄
ᾱ = O(F ). Using these expressions, which actually turn out to be correct

even at order ε2, one finds that the kinetic term can be rewritten in the standard

supersymmetric form with an effective Kähler metric given by

geff
i̄ = gεi̄ . (5.28)

The effective mass matrix of the light scalar fields can on the other hand be deter-

mined by using the supersymmetric generalization of the expression (5.1), which can

be derived by using the same logic. More precisely the effective masses are obtained by

taking holomorphic and anti-holomorphic derivatives of V eff
i = Vi+Vα

∂φα0
∂φi

+Vᾱ
∂φ̄ᾱ0
∂φi

= Vi.

One then finds:

m2eff
0i̄ = m2

0i̄ − µ2
0iᾱM

−2ᾱβ
0 µ2

0β̄ − µ2
0iᾱM

−2ᾱβ̄
0 µ2

0β̄̄

− µ2
0iαM

−2αβ
0 µ2

0β̄ − µ2
0iαM

−2αβ̄µ2
0β̄̄ , (5.29)

m2eff
0ij = m2

0ij − µ2
0iᾱM

−2ᾱβ̄
0 µ2

0β̄j − µ
2
0iᾱM

−2ᾱβ
0 µ2

0βj

− µ2
0iαM

−2αβ̄
0 µ2

0β̄j − µ
2
0iαM

−2αβ
0 µ2

0βj . (5.30)
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As in the general non-supersymmetric case, the result corresponds to a perturbative

diagonalization of the full scalar mass matrixM2
0, at leading order in the inverse mass

matrix of the heavy scalars M−2
0 :

m2eff
0 = m2

0 − µ
† 2
0 M−2

0 µ2
0 . (5.31)

Let us now focus on the Hermitian block m2eff
0i̄ . Using eqs. (5.26) and (5.27) in the

formula (5.29), and restricting to terms that are at most quadratic in the auxiliary

fields as demanded by supersymmetry at the two-derivative level, we see that there are

three kinds of effects coming from the four correction terms. The first type involves

second derivatives of W and no auxiliary fields, and comes only from the first correction

term. The second type involves the Riemann tensor and two auxiliary fields, and comes

again only from the first correction term. The third type involves third derivatives of

W and two auxiliary fields, and comes from all four correction terms. All together,

these three effects give a negative level-repulsion correction with respect to m2
0i̄.

Let us now compute more specifically the average sGoldstino mass m2eff
ϕ defined by

eq. (5.16) at a stationary point of the effective theory and compare it to its analogue

m2
ϕ = m2

0i̄f
if̄ ̄ in the microscopic theory. Recall that we are using normal coordinates,

so that gi̄ = δi̄ and geff
i̄ = δi̄ + εαi ε̄

ᾱ
̄ . The first thing we need to make more explicit

are the effective auxiliary fields. To do so we start by deriving W eff by substituting the

solution (5.19) into in W . Taking a derivative we then find that W eff
i = Wi + εαiWα.

But using the stationarity condition WαIW̄Ī = 0 of the heavy scalars we see that

Wα = ε̄ᾱı̄Wi, so that W eff
i = (δi̄ + εαi ε̄

ᾱ
̄ )Wj = geff

i̄ Wj. The auxiliary fields in the

effective theory thus coincide with the light components of the auxiliary fields in the

microscopic theory: F ieff = −geffi̄W̄ eff
̄ = −W̄ı̄ = F i. Recalling (5.20) one also finds

that geff
i̄ F

ieffF̄ ̄eff = F IF̄ Ī . In summary, we get:

F ieff = F i , F ieffF̄ eff
i = F IF̄I . (5.32)

To proceed, we also need to compute more explicitly the mass-matrix blocks (5.26) and

(5.27) entering in the expression (5.29) for the effective mass matrix m2eff
0i̄ . In normal

coordinates, these quantities depend on |M ε|2
αβ̄

= Mαγ

(
gγδ̄ + εγi ε̄

δ̄
ı̄

)
M̄δ̄β̄ (see expression

(5.15)), and at quadratic order in the auxiliary fields one finds that

Vαβ̄ = |M ε|2αβ̄ −Rαβ̄KL̄F
KF̄ L̄ , (5.33)

Vαβ = −λαβKFK , (5.34)

V αβ̄
inv = |M ε|−2αβ̄ + |M ε|−2αδ̄|M ε|−2β̄γRγδ̄KL̄F

KF̄ L̄ . (5.35)

We are now in position to evaluate the average sGoldstino mass in the effective the-

ory by computing the four correction terms in eq. (5.29). As explained after eqs. (5.29)

and (5.30), these give rise to three types of effects. But when looking along the sGold-

stino direction, some simplifications occur, due to the fact that only supersymmetry-

breaking effects matter. The first type of effect cancels the corresponding leading part
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of m2
0i̄. The second type of effect combines with the corresponding subleading term in

m2
0i̄ to reconstruct the average sGoldstino mass of the microscopic theory. The third

type of effect gives instead a genuine correction. The precise evaluation of these effects

can be simplified by noticing that at a stationary point WIJW̄J̄ = 0, which implies that

at leading order in the auxiliary fields Vαı̄Wi = −Vαβ̄Wβ. After a straightforward com-

putation one finds that m2eff
ϕ = −

(
RIJ̄KL̄ + λαIK |M ε|−2αβ̄λ̄β̄J̄L̄

)
F IF̄ J̄FKF̄ L̄/FM F̄M .

Recalling then that Fα = εαi F
ieff and F IF̄I = F ieffF̄ eff

i , one may finally rewrite the

above result as

m2eff
ϕ =

(
Rε − λεα|M ε|−2αβ̄λ̄εβ̄

)
F ieffF̄ eff

i , (5.36)

with

Rε = −
Rε
i̄kl̄
F ieffF̄ ̄effF keffF̄ l̄eff

(FmeffF̄ eff
m )2

, (5.37)

λεα =
λεαijF

ieffF jeff

F keffF̄ eff
k

. (5.38)

The first term in the result (5.36) corresponds to m2
ϕ, whereas the second term describes

a negative level-repulsion effect controlled by the Yukawa couplings λαij mixing one

heavy and two light fields. As anticipated, the dependence on ε amounts to a transfor-

mation of all the tensorial quantities accounting for the need to disentangle light from

heavy eigenmodes of the supersymmetric mass matrix, and can thus be dropped by

setting ε to zero.

5.2.2 Superfield Approach

The above results can also be derived by integrating out the heavy fields directly at

the superfield level, and then computing the sGoldstino mass in the resulting effective

theory by applying eqs. (5.17) and (5.18). To do this, one derives the effective Kähler

potential and superpotential by solving the following approximate superfield equations

of motion:

Φα = Φα(Φi) solution of Wα(Φi,Φα) = 0 . (5.39)

As discussed in Chapter 3, the bosonic components of this superfield equations of

motion coincide, at leading order in the number of fermions and auxiliary fields, with

the equations of motion (5.19)–(5.20) that we have used in the component approach.

To proceed, we will need to compute the first and second derivatives of the heavy

scalar fields with respect to the light scalar fields. These can be derived by differenti-

ating eq. (5.39), and one finds the following results:

∂φα

∂φi
= εαi ,

∂2φα

∂φi∂φj
= −M−1αβλεβij . (5.40)

The effective geometry can be derived by taking derivatives with respect to the light

fields of the effective Kähler potential Keff , where the heavy fields have been substituted
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by the solution (5.39) in terms of light fields. We focus again on a given point in the light

field space, around which we choose normal coordinates, but this point no longer needs

to be a stationary point. Then, using the chain rule and eqs. (5.40), one easily computes

Keff
i̄ = δi̄+ε

α
i ε̄
ᾱ
̄ , Keff

ı̄jk = −M−1αβ ε̄ᾱı̄ λ
ε
βjk and Keff

i̄kl̄
= Rε

i̄kl̄
+λεαik|M |−2αβ̄λ̄ε

β̄̄l̄
. This finally

implies that the effective metric is given by geff
i̄ = gεi̄, the effective Christoffel symbol

by Γeff
ı̄jk = −M−1αβ ε̄ᾱı̄ λ

ε
βjk and finally the effective Riemann tensor by the following

expression:

Reff
i̄kl̄ = Rε

i̄kl̄ + λεαik|M ε|−2αβ̄λ̄εβ̄ ̄ l̄ . (5.41)

Plugging this expression into eqs. (5.17) and (5.18), we then reproduce the form of the

result (5.36).5

5.3 Effect of Heavy Vector Multiplets

Let us now suppose that all the vector multiplets have a large supersymmetric mass,

much larger than the splittings induced by supersymmetry breaking. We may then

integrate out in a supersymmetric way the modes associated with these heavy vector

multiplets, paying attention to the fact that in order to become massive they absorb

the modes of some chiral multiplets.

For later convenience we recall the expressions of the scalar masses discussed in

Section 1.3.2:

m2
0IJ̄ = ∇IWK∇J̄W̄

K −RIJ̄KL̄ F
KF̄ L̄ + habX̄aIXbJ̄ + habhacIhbdJ̄ D

bDc

+
(
i∇IXaJ̄ − ihbchabIXcJ̄ + ihbchabJ̄X̄cI

)
Da , (5.42)

m2
0IJ = −∇I∇JWK F

K − habX̄aIX̄bJ −
1

2

(
∇IhabJ − 2hcdhacIhbdJ

)
DaDb

+ 2i hbchab(IX̄cJ)D
a , (5.43)

and the relation between F and D auxiliary fields valid at the vacuum (1.53):

i∇IXaJ̄ F
IF̄ J̄ − gIJ̄XI

(aX̄
J̄
b) D

b +
1

2
f d
ab θdcD

bDc = 0 . (5.44)

The relevant scales in this case are the supersymmetric mass matrix 2gIJ̄X
I
(aX̄

J̄
b) =

1
2
Kab of the heavy vector multiplets and the quantity iXaI = 1

2
KaI controlling the

supersymmetric mixing between vector multiplets and chiral multiplets:

M2
ab =

1

2
Kab , νaI =

1

2
KaI . (5.45)

5Note that the results derived in this subsection are evaluated at values of the heavy scalar fields
solving Wα = 0, whereas the results of previous subsection were evaluated at values of the heavy scalar
fields solving Vα = 0. However it turns out that the difference between these two values is subleading
in the counting of auxiliary fields and can therefore be discarded.
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The couplings that are expected to be relevant are instead given by the cubic couplings

in K, namely the generalized charges

QaIJ̄ = −1

2
KaIJ̄ , QabI = −1

2
KabI , Qabc = −1

2
Kabc . (5.46)

At leading order in the expansion in number of derivatives, fermions and auxil-

iary fields, the low-energy effective theory for the light chiral multiplets can again be

obtained in two different but equivalent ways. One may proceed in components and

integrate out the heavy modes associated to the vector multiplets and the chiral multi-

plets that they absorb, by requiring stationarity of V with respect to them. One may

however also proceed in superfields and integrate out the heavy vector superfields by

requiring stationarity of K with respect to them. For convenience, we shall as before

assume without loss of generality normal coordinates in the microscopic theory around

the point under consideration.

In analogy with what happens in the case of only chiral multiplets, we expect that

the corrections due to the supersymmetric mixing between heavy and light multiplets

should be encoded in following parameter of dimension one:

δaI = −M−2abνbI . (5.47)

In this case, such a parameter cannot be set to zero by a simple holomorphic field

redefinition, because it corresponds to the non-holomorphic mixing between the heavy

gauge fields and the corresponding real would-be Goldstone modes. However, it can be

set to zero by making a suitable choice of gauge. With any different choice of gauge, δaI
would be non-zero and the terms depending on it in the effective theory would take into

account the mixing between light and heavy fields. By doing the computation in such

a gauge one would presumably end up getting deformed versions of all the tensorial

quantities for light fields, involving additional contributions where heavy indices are

converted to light indices by δaI . We shall however refrain from keeping a general δaI 6= 0

and set δaI = 0 from the beginning by choosing the unitary gauge.

To perform the splitting between light and heavy fields and the gauge fixing more

precisely, we may start by splitting the chiral multiplets ΦI into those that are or-

thogonal and those that are parallel to the Killing vectors XI
a evaluated at the point

under consideration. This decomposition can be done more explicitly with the help of

the parallel projector P I
J = 2XI

aM
−2abX̄bJ . We shall denote these two sets of fields

respectively with Φi and Φa. The orthogonal components Φi define the light chiral

multiplets of the low-energy effective theory. The parallel components Φa are instead

either heavy or eliminable through the gauge fixing.

In the following, we shall follow the same logic as in the previous section and first

compute within the component approach the average sGoldstino mass in the low-energy

effective theory, defined at a stationary point as

m2eff
ϕ =

m2eff
0i̄ F

ieffF̄ ̄eff

F keffF̄ eff
k

. (5.48)
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As we discussed in the previous chapter, in the limit in which the vector masses are

much larger than the supersymmetry breaking scale, the danger associated to the

Killing directions disappear, and the Goldstino direction is the only relevant direction

we should consider to discuss metastability.

We will finally reproduce the same result within the superfield approach by first

computing the Riemann tensor of the effective theory at a generic point and then

plugging it in the expression for the sGoldstino mass at a stationary point within the

effective theory, which is given by

m2eff
ϕ = ReffF ieffF̄ eff

i , (5.49)

in terms of an effective sectional curvature

Reff = −
Reff
i̄kl̄
F ieffF̄ ̄effF keffF̄ l̄eff

(FmeffF̄ eff
m )2

. (5.50)

5.3.1 Component Approach

Let us first consider the component approach, where it is convenient to choose the

Wess-Zumino gauge for the extra gauge symmetries implied by supersymmetry. For

simplicity we shall as before focus on bosonic fields and discard fermions since we are

interested in scalar masses. The relevant bosonic heavy modes coming from V a and

Φa are the following. In the vector multiplets V a, the gauge fields Aaµ contain heavy

physical modes and should of course be considered. In the chiral multiplets Φa, on the

other hand, the modes σa = Re(φa) correspond to the would-be Goldstone modes and

can be eliminated by choosing the unitary gauge for the standard gauge symmetries,

where the corresponding degrees of freedom are the longitudinal polarizations of the

gauge bosons, whereas the modes ρa = Im(φa) are physical and, as we already dis-

cussed, they have a mass comparable to that of the vector fields, so that they must

be considered. At leading order in the low-energy expansion, the heavy bosonic fields

Aaµ and ρa can then be integrated out by using the following approximate equations of

motion:

ρa = ρa0(φi, φ̄ı̄) solution of Va(φ
i, φ̄ı̄, ρa0) = 0 , (5.51)

Aaµ = 0 . (5.52)

Concerning the auxiliary fields, notice that those coming from the parallel chiral mul-

tiplets automatically vanish, as a consequence of the gauge invariance of the superpo-

tential

WI X
I
a = 0 , (5.53)

whereas those of the vector multiplets are given by eq. (5.44), which corresponds to

the equation of motion of ρa and reduces approximately to QaIJ̄F
IF̄ J̄ − 1

2
M2

abD
b = 0.
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At leading order in the low-energy expansion one then finds:

F a = 0 , (5.54)

Da = 2M−2abQbi̄ F
iF̄ ̄ . (5.55)

The effective theory for the light fields is finally obtained by substituting these expres-

sions into the Lagrangian.

To derive the effective theory, one needs in principle to compute the derivatives of

ρa0 with respect to φi. This can be deduced by taking a derivative of the stationarity

condition for ρa with respect to φi. One then finds a result that is inversely proportional

to the mass matrix of ρa, which is approximately equal to that of the vectors, and

directly proportional to the mass mixing between ρa and φi. This mixing can be

computed explicitly and after using the relation (5.53) ensuring the gauge invariance

of W , as well as its first and second derivatives, one verifies that it contains only terms

that are quadratic in the auxiliary fields or linear in the auxiliary fields but further

suppressed by the ratio between light chiral masses and heavy vector mass, which must

all be neglected. As a result, one finds:

∂ρa

∂φi
= 0 . (5.56)

The effective Kähler metric of the light fields is not affected. Indeed, neither Aaµ
nor ρa give any effect in the kinetic terms, as a consequence of eqs. (5.52) and (5.56).

One thus simply finds:

geff
i̄ = gi̄ . (5.57)

The effective scalar mass matrices can be computed by taking into account both

the direct effect of the heavy modes on the microscopic mass evaluated in the light

scalar directions φi and the indirect level-repulsion effect coming from the mass mixing

with the heavy scalar directions ρa. It turns however out that the level-repulsion effect

is negligible, for essentially the same reasons as those leading to eq. (5.56). We thus

finally get:

m2eff
0i̄ = m2

0i̄ , (5.58)

m2eff
0ij = m2

0ij . (5.59)

There is nevertheless a direct effect in the Hermitian block m2eff
0i̄ , which consists of

two significant contributions in m2
0i̄ coming from the couplings to heavy fields. The

first contribution comes from plugging back the small but non-vanishing value of Da

into the last term of (5.42); notice that the terms proportional to the first deriva-

tives of the gauge kinetic function vanish as a consequence of the orthogonality of F I

and XI
a . This effect is easily evaluated by using eq. (5.55), and one finds Qai̄D

a =

2Qai̄M
−2abQbkl̄F

kF̄ l̄. The second contribution arises instead from the part of the

first term in (5.42) that corresponds to values for the summed index K that run over
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the parallel chiral modes that are integrated out. It can be evaluated by using the

projected metric P IJ̄ = 2XI
aM

−2abX̄ J̄
b , and reads ∇iWa∇̄W̄

a = ∇iWKP
KL̄∇̄W̄L̄ =

2XK
a ∇iWKM

−2abX L̄
b ∇̄W̄L̄. But taking a derivative of the gauge invariance condi-

tion for the superpotential eq. (5.53) one deduces that XK
a ∇iWK = −iQaiK̄F̄

K̄ =

−iQaik̄F̄
k̄, and finally ∇iWa∇̄W̄

a = 2Qail̄M
−2abQbk̄F

kF̄ l̄. These two contributions

represent a direct correction to all the masses, which may be either positive or negative

depending on the value of the charges along the direction that is considered.

Let us now evaluate more precisely the average sGoldstino mass defined by eq. (5.48)

at a stationary point of the effective theory and compare it to its analogue defined by

eqs. (5.49) and (5.50) in the microscopic theory. Along the supersymmetry breaking

direction F ieff = F i the two direct corrections discussed above give identical contribu-

tions that sum up and one easily finds:

m2eff
ϕ =

(
R + 4QaM

−2abQb

)
F ieffF̄ eff

i , (5.60)

where

R = −
Ri̄kl̄ F

ieffF̄ ̄effF keffF̄ l̄eff

(FmeffF̄ eff
m )2

, (5.61)

Qa =
Qai̄ F

ieffF̄ ̄eff

F keffF̄ eff
k

. (5.62)

The first term in the result (5.60) corresponds to m2
ϕ, whereas the second term de-

scribes a positive direct effect controlled by the charges Qai̄ mixing one heavy and two

light fields. The absence of any indirect level-repulsion effect is due to the absence of

genuine heavy chiral multiplets mixing to the light chiral multiplets. The above result

reproduces through a more precise derivation the result advocated in [61].

5.3.2 Superfield Approach

It is straightforward to show that the above results can also be obtained by integrating

out the heavy vector multiplets at the level of superfields. The only complication is that

one should switch from the unitary plus Wess-Zumino gauge used in the component

formulation, which fix respectively the standard and the extra gauge symmetries, to

a supersymmetric unitary gauge to be used in the superfield formulation, which fixes

at once all the multiplet of gauge symmetries. More precisely, we shall gauge fix all

the parallel chiral multiplets Φa to constant values coinciding with their values at the

stationary point. The superfields V a become however general vector superfields in this

gauge, and compared to the Wess-Zumino gauge that was chosen in the component

approach, the modes that were described by the real scalar fields ρa in the Φa have now

been transfered to the real scalar fields Ca in the general V a. In this supersymmetric

gauge, all the heavy degrees of freedom are thus contained in V a, and can be integrated

out by using the following approximate superfield equations of motion:

V a = V a(Φi, Φ̄ı̄) solution of Ka(Φ
i, Φ̄ı̄, V a) = 0 . (5.63)
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The bosonic components of this superfield equations of motion map to the equations

of motion (5.51)–(5.55) that we have used in the component approach, modulo the

different gauge choice.

To proceed, we will need to compute the first and second derivatives of the lowest

component of the heavy vector superfields with respect to the light scalar superfields.

These can be derived by differentiating eq. (5.63), and at the point under consideration

where Kai = 0 one finds the following results:

∂ca

∂φi
= 0 ,

∂2ca

∂φi∂φ̄̄
= M−2abQbi̄ . (5.64)

The effective geometry can be derived by taking derivatives with respect to the light

fields of the effective Kähler potential Keff , where the heavy fields have been substituted

by the solution (5.63) in terms of light fields. We focus again on a given point in the

light field space and use normal coordinates. Then, using the chain rule and eq. (5.64),

and noticing that Kaij = 0 and Kai̄ = −2Qai̄, one easily computes Keff
i̄ = δi̄, K

eff
ı̄jk = 0

and Keff
i̄kl̄

= Ki̄kl̄ − 2Qai̄M
−2abQbkl̄ − 2Qail̄M

−2abQbk̄. This finally implies that the

effective metric is given by geff
i̄ = gi̄, the effective Christoffel symbol by Γeff

ı̄jk = 0 and

the effective Riemann tensor by the following expression:

Reff
i̄kl̄ = Ri̄kl̄ − 2Qai̄M

−2abQbkl̄ − 2Qail̄M
−2abQbk̄ . (5.65)

Plugging this expression into eqs. (5.49) and (5.50), we then reproduce the form of the

result (5.60).

5.4 Summary

Summarizing, we have shown that integrating out heavy chiral multiplets Φα and vec-

tor multiplets V a with large and approximately supersymmetric mass matrices M2αβ̄

and M2ab induces corrections to the square masses of light scalars φi that are due re-

spectively to an indirect level-repulsion effect and a direct coupling effect. The crucial

dimensionless couplings that are involved in these effects are respectively the Yukawa

couplings λαij = Wαij and the generalized gauge charges Qai̄ = −1
2
Kai̄, which corre-

sponds to cubic couplings mixing one heavy and two light multiplets respectively in

W and K. In particular, by looking along the chiral projection of the supersymmetry

breaking direction, which is defined by the chiral auxiliary fields F i, we showed that

the averaged sGoldstino mass in the effective theory takes the form:

m2eff
ϕ =

(
R− λα|M |−2αβ̄λ̄β̄ + 4QaM

−2abQb

)
M4

S . (5.66)

The first term is what one would find by just restricting to the light fields. It is

controlled by the sectional curvature R along the F -direction, and can have any sign.

The second term is the correction induced by heavy chiral multiplets. It is controlled

by the Yukawa couplings λα along the F -direction and is always negative. The third
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term is the correction induced by heavy vector multiplets. It is controlled by the gauge

charges Qa along the F -direction and is always positive. Finally MS is the scale of

supersymmetry breaking, which in our situation is set by the F auxiliary fields since

the D auxiliary fields are suppressed.

The result (5.66) has been derived in rigid supersymmetry, in the limit where the

supersymmetry breaking scale is much lower than the mass scale M of the heavy

modes that are integrated out. Its generalization to gravity can however be derived in

a straightforward way by using the results discussed in Chapter 3, where it has been

shown that whenever the gravitino mass m3/2 is also much smaller than the heavy mass

scale M , one may first integrate out the fields in the rigid limit and then switch on the

coupling to gravity. More precisely, the only modification induced by gravity in (5.66)

is the addition of the correction 2m2
3/2; this can be see from the expression of the scalar

masses eq. (1.100) by projecting along the Goldstino direction. One reconstructs in

this way the supergravity result of [108]:

∆m2eff
ϕ = 2m2

3/2 . (5.67)

The origin of the difference in sign in the corrections induced by heavy chiral and

vector multiplets is transparent in the component approach, where the first is due to

an indirect level-repulsion effect whereas the second is due to a direct coupling effect.

In the superfield approach, the two computations look instead very symmetric and

the difference in sign is at first sight surprising. A closer inspection shows however

that there too it can be understood quite robustly. For this we observe that for heavy

chiral multiplets the stationarity condition Wα = 0, the auxiliary fields F̄α = −Wα and

the relevant cubic couplings λαij = Wαij are all controlled by the superpotential W ,

whereas for heavy vector multiplets the stationarity condition Ka = 0, the auxiliary

fields Da = −1
2
Ka and the relevant cubic couplings Qai̄ = −1

2
Kai̄ are all controlled by

the Kähler potential K. There is then a perfect symmetry between the two dynamics,

which exchanges the roles of K and W . When one looks at the effects of these heavy

dynamics onto the supersymmetry-breaking part of the masses of light scalar fields,

this symmetry is however broken, because supersymmetry-breaking contributions to

scalar masses arise only from K and not from W . This is what causes the difference

in sign between the two effects.6

As anticipated in Section 2.3, the result that we have obtained may have interesting

applications in the context of string models, where the situation in which some of

the multiplets are stabilized in a supersymmetric way at a high energy scale naturally

occurs and the question of their effect on the dynamics of the light multiplets, which are

supposed to break supersymmetry, acquires a crucial importance. In such a situation

one has in principle to honestly integrate out the heavy fields to properly describe the

dynamics of the light fields. But it is in general cumbersome to do so, and this raises

the question of whether or when one may get a qualitatively reliable indication on the

6A similar phenomenon has also been encountered in different context in [126].
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light field dynamics by just freezing the heavy fields and truncating the theory. Some

particular situations where one can safely do this truncation and get the right effective

theory have been identified in [100, 101, 106]. Here we have shown more specifically and

more systematically what kind of dangers may arise from the heavy fields concerning

the masses of the light fields, which are the crucial issue for metastability of the vacuum.

A concrete example is that of string models where large classical effects related

to background fluxes stabilize some moduli in a supersymmetric way with a large

mass and small quantum effects related to gauge interactions stabilize some other

moduli in a non-supersymmetric way with a small mass [96, 87]. The dynamics of

these heavy and light modes, schematically denoted by H and L, is then described by

K = KL(L, L̄) +KH(H, H̄) +KQ(L, L̄,H, H̄) and W = 0 +WH(H) +WQ(L,H). For

gauge interactions with a field-dependent gauge kinetic function Hab ∝ L, the quantum

effects have the following structure. The correction KQ consists of both perturbative

and non-perturbative effects suppressed by inverse powers and exponentials of L + L̄,

and can usually be neglected, since it represents a small correction to the kinetic terms

of L. The correction WQ consists instead only of non-perturbative effects suppressed by

exponentials of L, and must be kept, since it represents the dominant source of potential

for L.7 In this situation, freezing the heavy moduli H to constant values is a priori

not justified [88, 97, 98], but turns out a posteriori to give a sensible approximation

to the effective theory for the light moduli L thanks to the smallness of the quantum

corrections mixing L and H [101]. Applying our general result, we may now establish

more quantitatively the importance of the corrections induced by integrating out the

heavy modes on the light masses, and in particular the sGoldstino massm. The relevant

Yukawa coupling λ between one H and two L fields will involve the same exponential

suppression factor as WQ. The dangerous indirect level-repulsion effect on m2 will

then be suppressed by the square of this exponential factor. On the other hand, the

direct effect induced on m2 from the mixing KQ involves both power and exponentially

suppressed corrections. Given then that in these models there is a unique ultraviolet

mass scale around MP , the indirect effect is a priori smaller than the direct effect, and

in all the situations where the direct effect is neglected also the indirect effect must be

discarded. There is thus no problem in the limit of small quantum effects.

One may finally wonder whether integrating out heavy chiral and vector multiplets

has similar effects on soft masses in scenarios where both the visible and the hidden

sectors couple to them. In fact, these effects are easily computed, since they are also

encoded in the effective Riemann tensor, but with two visible-sector and two hidden-

sector indices: m2eff
uv̄ = −Reff

uv̄i̄F
ieffF̄ ̄eff. Applying the results (5.41) and (5.65) one

would then find

m2eff
uv̄ = −

(
Ruv̄i̄+λαui|M |−2αβλ̄β̄v̄̄−2Qauv̄M

−2abQbi̄−2Qau̄M
−2abQbiv̄

)
F iF̄ ̄ . (5.68)

The first term is the usual expression for the soft masses,8 the second term represents

7See [83, 82, 131] for a more detailed discussion of these effects for gaugino condensation.
8We have already discussed the general expression for the soft masses in the supergravity case
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the correction induced by heavy chiral multiplets, and the third and fourth terms

describe the corrections induced by heavy vector multiplets. The various couplings

controlling these effects are however not always allowed by the Standard Model gauge

symmetry GSM. If the heavy states are neutral, only Qauv̄ and Qai̄ can be non-zero.

The only effect then comes from the third term, with an arbitrary sign. This is the

standard effect induced by a neutral heavy vector multiplet.9 If on the other hand

the heavy states are charged, only λαui and Qau̄ can be non-zero. The only effects

then come from the second and the fourth terms, which are respectively negative and

positive. However a charged chiral multiplet cannot have a supersymmetric mass term,

because GSM does not allow holomorphic invariants, whereas a charged vector multiplet

can, since non-holomorphic invariants exist; so actually only the fourth term is relevant.

This is a less-standard but already-known effect that can be induced by charged vector

multiplets.10 In addition to these effects, there is as usual a separate gravitational

effect, which for generic cosmological constant V = M4
S − 3m2

3/2M
2
P , and ignoring D-

type effects, is given by: (see for examle [70, 71])

∆m2eff
uv̄ = guv̄

(
m2

3/2 + VM−2
P

)
. (5.69)

We clearly see that eqs. (5.68) and (5.69) for the soft scalar masses correspond to

eqs. (5.66) and (5.67) for the average sGoldstino mass.

with vanishing cosmological constant (see eq. (2.16)); the rigid limit is obtained as usual by setting
m2

3/2 = 0 .
9See for example [92].

10This kind of effect is relevant in Grand Unified Theories, where charged massive vector fields occur
after the gauge symmetry is broken down from GGUT to GSM, and induces important corrections to
soft masses. This phenomenon and its phenomenological implications were studied in detail in [90, 91].
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The main topics discussed in this thesis are low-energy supersymmetric effective theo-

ries and metastability conditions in generic non-linear σ-models with chiral and vector

multiplets. This work has been motivated by some fundamental problems which occur

when studying supersymmetry breaking in string-inspired models, where the hidden

sector naturally includes the moduli sector of string compactification.

Effective field theories represent a very useful tool when dealing with the prolif-

eration of moduli fields; this is because, in many scenarios, some of the moduli are

stabilized in a supersymmetric way at the string scale and only induce mild indirect

effects on the low-energy dynamics. In this work we have studied the conditions under

which it is possible to consistently integrate out heavy multiplets directly at the su-

perfield level in both globally and locally supersymmetric models. We have found that

in the general case, the low-energy derivative expansion only preserves supersymmetry

provided that all the auxiliary fields and fermion bilinears are small compared to the

supersymmetric mass scale of the heavy multiplets. Our main result however concerns

the supergravity case where we have proven that one also has to require a small grav-

itino mass or, equivalently, a small cosmological constant to guarantee the validity of

the two-derivative expansion also in the gravitational sector. We have then shown that,

once these conditions are satisfied, heavy multiplets can be integrated out by solving

the associated (algebraic) superfield equations of motion obtained by discarding super-

covariant derivatives; this translates into the fact that for heavy chiral superfields one

has to impose the stationarity of the superpotential whereas for heavy vector super-

fields one has to impose the stationarity of the Kähler potential. Our most important

conclusion is that the same procedure holds true both for rigid supersymmetry and

supergravity, meaning that the process of integrating out heavy multiplets commutes

at leading order in the low-energy expansion with switching on gravitational interac-

tions. We have also discussed the conditions under which the integration procedure

trivializes in the sense that heavy multiplets can be frozen to their expectation values;

it turns out that this happens when the superpotential and the Kähler potential are

separable respectively in the chiral and vector multiplet cases.

The second problem motivating our study is the necessity of defining some general

criteria in order to efficiently discriminate among the plethora of different compactifi-

cation scenarios arising in String Theory. In general the strongest constraint that one

can imagine to impose is that any realistic model has to admit a sufficiently long-lived
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metastable vacuum, which breaks supersymmetry with a small value of the cosmo-

logical constant and provides sufficiently large masses for scalar fluctuations. A basic

observation is the fact that in this class of models the Kähler potential is in general

fixed by the compactification details whereas the form of the superpotential is more

difficult to be determined. One may then take the point of view that K is given and

W is arbitrary. In this work we have proposed a strategy to derive an absolute upper

bound on the mass of the lightest scalar which is only sensitive to the geometry of

the Kähler target manifold and can be saturated by properly tuning the superpoten-

tial. The bound is obtained by looking at all the directions in the scalar field space

which cannot obtain an arbitrarily large supersymmetric mass; these directions do in

general include not only the Goldstino direction, associated to supersymmetry break-

ing, but also the Goldstone directions, associated to gauge symmetry breaking. We

have studied more explicitly this bound in theories with rigid supersymmetry and one

Abelian gauge symmetry. For renormalizable gauge theories, the bound is saturated

by orienting the Goldstino along the direction of maximal charge and the Goldstone

partner along the direction of minimal charge; in this situation, the two degenerate

sGoldstini are the lightest scalars and their masses assume the maximal value that

can be achieved by optimizing the superpotential. In more general situations with

a non-trivial Kähler potential, the lightest scalar is a linear combination of the two

sGoldstini and the Goldstone partner. In that case, there is no simple way to derive

general results and we have performed a case-by-case analysis studying some simple

geometries with covariantly constant curvature. The main result is that the upper

bound obtained by only considering the Goldstino direction in general turns out to be

too optimistic and tends to overestimate the mass of the lightest scalar. This study

extends some previous analysis in which only the supersymmetry breaking direction

was assumed to be potentially dangerous for metastability and suggests that also the

directions associated to gauge symmetry breaking may play a significant role.

We have finally computed the effects induced by the supersymmetric integration

of heavy multiplets on the masses of light ones. In particular we have computed the

corrections to the masses of the Goldstino partners in the limit in which all the vector

multiplets are heavy and only the SUSY breaking direction is potentially dangerous

for metastability. In this case, we have shown that there exist two kinds of effects:

the first one is induced by heavy chiral multiplets and is a negative-definite level-

repulsion effect controlled by Yukawa couplings mixing one heavy and two light fields

in the superpotential; the second one comes from heavy vector multiplets, is controlled

by the charges mixing one heavy and two light fields in the Kähler potential and is

positive definite. Contrary to the former, this last contribution tends in general to

reduce the effective curvature of the scalar manifold and to improve the metastability

condition.

We conclude by discussing some future directions. Concerning the problem of

metastability, we remark that the aim of our analysis was to illustrate with some

simple examples the basic strategy one should follow to define the strongest upper
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bound on the mass of the lightest scalar. In particular, we wanted to clarify in some

simple situations the role of the Goldstone partners in defining a necessary and sufficient

condition for metastability. Even if the strategy we presented can be applied without

conceptual complications to more general situations, our analysis does not pretend to

be conclusive. In particular, the study which deserves more attention is, in our opinion,

the case of renormalizable non-Abelian gauge theories; in our work we have not been

able to find any simple general result, but we have given some indications for possible

simplifications. Finally, a more detailed analysis is also necessary for the extension to

supergravity, which is particularly interesting for applications to string-inspired models.
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I would like to acknowledge the École Polytechnique Fédérale de Lausanne and the
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Appendix A

Numerical Optimization of the

Local Superpotential

In this appendix we illustrate the procedure discussed in Section 4.3 to locally recon-

struct the optimized superpotential which saturates the bound on the mass of the light

scalar. We do it for the specific example discussed in subsection 4.6.2 of the two-field

model with logarithmic Kähler potential and gauged shift symmetry. The procedure

must be implemented numerically, since neither the maximization equation for m2
−

nor the equations defining the optimal tuning of the superpotential parameters can be

solved analytically. Following the approach presented in Chapter 4, we assume that

the scalar manifold geometry and the gauged isometry are fixed, whereas the superpo-

tential and the vacuum point can be freely chosen to saturate the bound, compatibly

with gauge invariance and the stationarity conditions. To be concrete, we arbitrarily

assign to the dimensionless parameters controlling the Kähler potential and the Killing

vectors the following values:

λ1 = 1 , λ2 = 6 , a1 = 1 , a2 = 1 . (A.1)

The ratio λ1/λ2 has been chosen to be the same as in the plot of Fig. 4.6.2 whereas

the values of a1 and a2 do not play any relevant role.

As we previously discussed we can tune the gauge coupling g in order to have the

freedom to freely assign arbitrary values to the supersymmetry-breaking scale
√
|F |

and the vector mass M ; in our case we chose the values:

M = 1,
√
|F | = 2 . (A.2)

We then consider a superpotential which is a polynomial function of the gauge invariant

combination of Φ1 and Φ2, which we call S:

W =
∑
n

cnS
n, with S = A2Φ1 − A1Φ2 . (A.3)

For simplicity we assume the coefficients cn to be real; the minimal number of pa-

rameters necessary for the optimization of the superpotential will be discussed in a

moment.
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We parametrize the vacuum point using expression (4.83), which ensures that it is

varied over a surface of constant vector mass M. The angular variable θ parametrizing

the vacuum point controls also the directions f i and xi, which turn out to be rigidly

tied in this simple example with two fields. We have seen that in this simple model,

the value of θ that maximizes m2
ff̄

is θ = π/4. In our case however we are interested

in calculating the value of θ that maximizes m2
−; as discussed this value depends only

on M and on the ratio λ1/λ2 and it is numerically found to be:

θ = 0.877765 , (A.4)

to which corresponds the maximal value m2
− = 2.06559. The tuning of the gauge cou-

pling can be done by imposing the stationarity condition along the Goldstone direction

which give g2 = 1
4
M4/|F |2 λ1λ2 csc θ sec θ (see eq.(4.85)). One finds:

g = 0.4367442 . (A.5)

We finally need to tune three parameters an in the superpotential to satisfy the

three equations we are left with, namely: the stationarity condition along a direction

orthogonal to xi (we can chose f i), the equation fixing the norm of the vector F i

and the equation (4.40) associated to the tuning of ∆. The numerical solution of this

system of equations is found to be:

c1 = 0.1578073 , c2 = 0.0165247 , c3 = −7.43647 · 10−7 , (A.6)

and we can finally set to zero the remaining coefficients: cn>3 = 0.

By tuning the parameters of the superpotential to these values, one can reconstruct

a scalar potential that admits a metastable stationary point at the selected vacuum

(corresponding to the preferred value of θ in eq. (A.4) and the fixed values (A.1) and

(A.2) ):

Φ1 = Φ̄1 = 2.53422 , Φ2 = Φ̄2 = 12.6272 . (A.7)

The scalar mass matrix has the expected form (4.37) with the following numerical

values:

m2
αβ =


2.36 0.29 −1.27

0.29 2.36 −1.27

−1.27 −1.27 7.57

 . (A.8)

By computing the spectrum of this matrix, one can verify that the lightest eigenvalues

are degenerate and correspond to the optimal value:

m2
− = 2.06559 . (A.9)



Bibliography

[1] L. Brizi, M. Gomez-Reino, and C. A. Scrucca, Globally and locally

supersymmetric effective theories for light fields, Nucl.Phys. B820 (2009)

193–212, [arXiv:0904.0370].

[2] L. Brizi and C. A. Scrucca, The lightest scalar in theories with broken

supersymmetry, arXiv:1107.1596. JHEP (2011) to appear.

[3] L. Brizi and C. A. Scrucca, Effects of heavy modes on vacuum stability in

supersymmetric theories, JHEP 1011 (2010) 134, [arXiv:1009.0668].

[4] Y. Golfand and E. Likhtman, Extension of the Algebra of Poincare Group

Generators and Violation of p Invariance, JETP Lett. 13 (1971) 323–326.

[5] D. Volkov and V. Akulov, Is the Neutrino a Goldstone Particle?, Phys.Lett.

B46 (1973) 109–110.

[6] J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions,

Nucl.Phys. B70 (1974) 39–50.

[7] S. Glashow, Partial Symmetries of Weak Interactions, Nucl.Phys. 22 (1961)

579–588.

[8] S. Weinberg, A Model of Leptons, Phys.Rev.Lett. 19 (1967) 1264–1266.

[9] A. Salam, Elementary Particle Physics. N. Svartholm (ed. Nobel Symposium

No. 8, N. Svartholm), Almqvist and Wiksell, Stockholm, 1968.

[10] Particle Data Group Collaboration, K. Nakamura et. al., Review of particle

physics, J.Phys.G G37 (2010) 075021.

[11] L. Susskind, quoting K. Wilson Phys.Rev. D20 (1979).

[12] G. ’t Hooft, Recent Developments in Gauge Theories. Plenum Press, 1980.

[13] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry

breaking, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 135.

[14] S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys.Rev. D13

(1976) 974–996.

131

http://xxx.lanl.gov/abs/0904.0370
http://xxx.lanl.gov/abs/1107.1596
http://xxx.lanl.gov/abs/1009.0668


132 Bibliography

[15] L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the

Weinberg-Salam Theory, Phys.Rev. D20 (1979) 2619–2625.

[16] G. F. Giudice, Beyond the standard model, (published in proceedings of

European School of High Energy Physics, Dubna, Russia, 1996) 183–200,

[hep-ph/9605390].

[17] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, The Hierarchy problem and

new dimensions at a millimeter, Phys.Lett. B429 (1998) 263–272,

[hep-ph/9803315].

[18] H. Georgi and S. Glashow, Unity of All Elementary Particle Forces,

Phys.Rev.Lett. 32 (1974) 438–441.

[19] U. Amaldi, W. de Boer, and H. Furstenau, Comparison of grand unified

theories with electroweak and strong coupling constants measured at LEP,

Phys.Lett. B260 (1991) 447–455.

[20] S. Raby, SUSY GUT model building, AIP Conf.Proc. 1078 (2009) 128–137.

[21] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string.

Cambridge University Press, 1998.

[22] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. Cambridge

University Press, 1998.

[23] M. Sohnius, Introducing Supersymmetry, Phys.Rept. 128 (1985) 39–204.

[24] J.-P. Derendinger, Lecture notes on globally supersymmetric theories in

four-dimensions and two-dimensions. (published in proceedings of Hellenic

School on Elementary Particle Physics, Corfu), 1990.

[25] J. Wess and J. Bagger, Supersymmetry and Supergravity. Lecture Notes in

Physics, Monographs. Princeton Series in Physics, 1992.

[26] S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry. Cambridge

University Press, 2000.

[27] B. Zumino, Supersymmetry and Kahler Manifolds, Phys.Lett. B87 (1979) 203.

[28] L. Alvarez-Gaume and D. Z. Freedman, Geometrical Structure and Ultraviolet

Finiteness in the Supersymmetric Sigma Model, Commun.Math.Phys. 80 (1981)

443.

[29] M. T. Grisaru, M. Rocek, and A. Karlhede, The Superhiggs Effect in

Superspace, Phys.Lett. B120 (1983) 110.

http://xxx.lanl.gov/abs/hep-ph/9605390
http://xxx.lanl.gov/abs/hep-ph/9803315


Bibliography 133

[30] S. Ferrara, L. Girardello, and F. Palumbo, A General Mass Formula in Broken

Supersymmetry, Phys.Rev. D20 (1979) 403.

[31] J. Bagger and E. Witten, The Gauge Invariant Supersymmetric Nonlinear

Sigma Model, Phys.Lett. B118 (1982) 103–106.

[32] C. Hull, A. Karlhede, U. Lindstrom, and M. Roček, Nonlinear σ-Models and
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