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Abstract

State-of-the-art approaches to detecting ridge-like structures in images rely on filters designed to respond to
locally linear intensity features. While these approaches may be optimal for ridges whose appearance is close to
being ideal, their performance degrades quickly in the presence of structured noise that corrupts the image signal,
potentially to the point where it truly does not conform to the ideal model anymore.

In this paper, we address this issue by introducing a learning framework that relies on rich, local, rotationally
invariant image descriptors and demonstrate that we can outperform state-of-the-art ridge detectors in many different
kinds of imagery. More specifically, our framework yields superior performance for the detection of blood vessel in
retinal scans, dendrites in bright-field and confocal microscopy image-stacks, and streets in satellite imagery.
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1 INTRODUCTION

L INEAR structures of significant width, such as roads in aerial images, blood vessels in retinal scans, or
dendrites in 3D-microscopy image stacks, are pervasive. State-of-the-art approaches to detecting them

rely on ideal models of their appearance and of the noise. They are usually optimized to find ideal ribbon or
tubular structures. However, ridge-like linear structures such as those of Fig. 1 often do not conform to these
models, which can drastically impact performance.

In this paper, we use the rotational properties of Gaussian derivatives to achieve rotational invariance as
in [2], [18], [23]. However, instead of steering the filters, we rotate the image features to a common reference and
replace the optimality criteria by an algorithm that learns from training data. Because this data encompasses
deviations from the ideal model, the resulting algorithm is more robust than traditional ones and can be
trained to detect not only simple linear structures, but also junctions and crossings. As a result, we obtain
better performance than [10], [20] for the detection of blood vessels in retinal scans, neurons in bright-field
and confocal microscopy image stacks, and streets in satellite imagery. We chose these two methods as our
baseline because they are widely acknowledged as being among the best.

Furthermore, all our computations are based on the output of separable Gaussian filters, which can be
implemented very efficiently. This is important for 2D and even more so for 3D image volumes due to the
potentially very large size of the datasets involved. The corresponding code is publicly available [15] and is
compatible with the ITK open-source, object-oriented software system for image processing, segmentation,
and registration [17].

This paper expands on our earlier ones [14], [16] on the same topic. We first discuss related work on linear
structure detection. Then, we briefly review the concept of steerable filters, which underpins our rotational
features, and introduce our methodology for both 2D and 3D image data. Finally, we present comparative
results obtained on different datasets.
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Fig. 1: Ridge-like linear structures come in many flavors. This figure depicts the datasets we have experimented
with, sorted in order of increasing difficulty. (a,b,c) Confocal microscopy image-stack showing axons of the
olfactory bulb of the drosophila fly labeled with green fluorescence protein [5]. The first image is a maximum
intensity projection while the other two are XY and XZ slices respectively. Note the clutter in some portions
of the image. (d) Retinal scan [29]. (e,f,g,h) Neuron imaged using bright-field microscopy. The first image
is a minimum intensity projection of the image-stack. The next two are XY and XZ slices respectively. The
fourth one is Z-projection. Note the cone-shaped blur in the XZ projection. (i,j) Aerial Image of a suburban
neighborhood and zoomed-in window showing the small contrast between roads and grassy areas. For the
purpose of linear structure detection, the house and trees can be considered as structured noise.
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2 RELATED WORK

Current approaches to finding linear structures that are not simple edges, such as those of Fig. 1, fall into
three main categories. Some rely on models of an ideal ridge-like structure to derive optimal filters, while
others involve computing the Hessian matrix centered on individual pixels and depending on its eigenvalues
to classify the pixel on the basis of how cylinder-like the local intensities are. Probabilistic approaches to
detect non-ideal linear structures exist, but they usually rely on low-dimensional image descriptors, therefore
constraining their performance. We briefly discuss these techniques below. For a more extensive review of
vessel extraction techniques, we refer the interested reader to [19], [21].

2.1 Hessian-Based Approaches
Hessian-based approaches to filament detection model linear structures as elongated ellipses or ellipsoids.
This involves computing the eigen-decomposition of the Hessian matrix at individual pixels and using its
eigenvalues to classify pixels as filament-like or not [10], [26], [30]. The Hessian matrix for a given pixel is
constructed by convolving the local image patch with the set of second order Gaussian derivative filters. To
find filaments of various widths, a range of variances for the Gaussian is used and the most discriminant one
is selected. This results in a smoothly decreasing response in the perpendicular direction of the ridge, since
wide detectors respond to thin ridges in an unlocalized manner.

2.2 Optimal Filtering
Optimal filters attempt to find linear image structures by following the criteria for optimal edge detection
outlined in [7]. Methods following this approach include the Canny detector itself [7] and optimal convolution
filters [24].

An elegant and computationally efficient approach to detecting edges and ridges at arbitrary orientations is
to use steerable filters [11]. The underlying principle is that the response of the filter at any orientation can be
calculated as a linear combination of those of a set of basis filters, thus avoiding the expensive convolutions
with orientation-specific 2D kernels. A special case of steerable filters is the linear combination of Gaussian
derivatives up to a given order [2], [18], [23].

Along similar lines, the Oriented Flux Filter [20], obtained by convolving the second derivatives of the
image with the indicator of a sphere, is a steerable filter designed for detecting ideal sharp ridges. Compared
to Hessian-based detectors, the Oriented Flux Filter is simpler to normalize over scales and is less sensitive
to the presence of adjacent features.

However, the criteria used to derive the steerable filters for ridge detection assumes ideal models of the
ridges and noise. In theory, more realistic models could be used without changing the overall approach, but
no generic strategy has been offered as to how this could be done.

2.3 Detection Techniques for Ridge Tracking
Ridge tracking and active testing techniques follow the ridges from seed points that can be provided manually
or automatically detected [3], [12]. Such techniques can use complex models to detect ridges, since the function
is not evaluated densely over the whole image. The fact that intensity changes inside and outside the filaments
has been explicitly exploited in such a context by explicitely testing for them [12], locally convolving the image
with differential kernels [4], finding parallel edges [3] and fitting generalized cylinders [27] or superellipsoids [32]
to the vessel based on its contour integral. All these methods, however, assume image regularities that are
present in well-behaved images but not necessarily in noisier ones. Furthermore, they often require careful
parameter tuning, which may change from one dataset to the next. Due to the cost of optimizing the meta-
parameters of the methods to each pixel under consideration, these techniques are not suitable for vessel
detection and segmentation.

2.4 Probabilistic Approaches
Probabilistic approaches able to learn whether a pixel belongs to a filament or not have been recently applied to
the problem. Instead of assuming the filaments to have a regular shape, they aim at learning their appearance
from the data. In [1], the eigenvalues of the structure tensor are represented by a mixture model whose
parameters are estimated via Expectation Maximization. Support Vector Machines operating on the Hessian’s
eigenvalues have also been used to discriminate between filament and non-filament pixels [25]. Similarly,
Probabilistic Boosting Trees on rotational features have been demonstrated for vessel segmentation [28].
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The two latter approaches, [25], [28] are the closest to ours because they also rely on a learning paradigm.
However, the generalization ability of [25] is limited by the fact that it still relies on the eigenvalues of the
Hessian, a low-dimensional descriptor. By contrast, we train our classifier directly on the space of higher
order Gaussian derivatives, thereby allowing it to handle structures whose shape is more variable. The main
difference between our rotational features and those of [28] is that ours are estimated densely around the pixel
under analysis, while theirs only are evaluated at sparsely sampled points and used to verify hypotheses made
by another algorithm.

3 METHODOLOGY

Our goal is to devise an algorithm that detects filament-like structures of interest at any orientation or scale
while rejecting the noise present in the images. Our algorithm goes through the following steps. For each
pixel we compute multi-scale rotational features using Gaussian derivatives of various widths. Then, we train
an SVM classifier on those feature vectors rotated to a reference orientation. This classifier is used to classify
filament-like structures at any orientation. With no loss of generality, we will derive the formulae in the 3D
case, letting the 2D case be a subset of it.

3.1 Steerable Filters
Steerable filters were introduced as an efficient means to compute filters that can be rotated to any orientation
for a small computational cost [11]. We describe them briefly below and refer the interested reader to [18] for
more details.

A steerable filter based detection of a feature g in an image I at a given orientation Θ and position u, is
formulated as

r(u,Θ) = (I(u) ∗ g(RΘ.))(u), g(RΘu) =

K∑
k=1

βk(Θ)fk(u) , (1)

r(u,Θ) = 〈β(Θ), (I ∗ f)(u)〉 , (2)

where Θ parametrizes the orientation of the feature template g, RΘ is a rotation matrix, r is the response
and 〈., .〉 denotes the dot product between vectors. The functions βk(Θ) are trigonometric polynomials that
interpolate the templates fk(u), and f(u) = (f1(u), . . . , fK(u)). This decomposition decouples the rotation of
the filters from the convolution and lets us write the filtering at any orientation as the dot product of the
rotated coefficients β(Θ) with the convolution of the image with the templates f , as in Eq. 2. This makes
estimating the responses at arbitrary orientations computationally efficient.

3.2 Steerablility of Gaussian Derivatives
The best known class of steerable filters, and the ones used in this paper, are Gaussian derivatives and their
linear combinations [18]. We constrain the Gaussian function to have a diagonal covariance matrix so that the
Gaussian function and its derivatives are separable in all dimensions. This limits the computational cost of
the convolutions to Nd instead of Nd, where N is the size of the kernel and d the image dimensionality.

As shown in [11], any polynomial multiplied by a radially symmetric function is steerable. Any derivative
of a radially symmetric Gaussian function is a polynomial that multiplies the original Gaussian function:

∂m

∂xm
∂n

∂yn
∂q−m−n

∂zq−m−n
Gσ(u) = pm(x)pn(y)pq−m−n(z)Gσ(u) , (3)

where pi(u) is the Hermite polynomial of order i over the variable u. Since polynomials are steerable and
Gσ(u) is radially symmetric, the Gaussian derivatives are steerable.

3.3 Rotational Features
The feature vector we use in the algorithm is the value at u of the convolution of the image by the Gaussian
derivatives up to order M at a given scale σ

vσ(I,u) =
(
I ∗
[
Gσ0,0,1, G

σ
0,1,1, G

σ
1,0,1, G

σ
0,0,2 · · ·GσM,0,M

])
(u) , (4)

where Gσm,n,p denotes the Gaussian derivative m times over x, n times over y and p −m − n times over z.
This vector has a dimension of K = (M +1)(M +2)/2. To achieve scale independence, we extend the feature
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vector of each point by adding features to it at s different scales. The full feature vector can then be written
as v(I,u) = [vσ1(I,u), · · · ,vσs(I,u)] and its dimension is D = sK.

Following [18], any vector in the space defined by the Gaussian derivatives can be rotated or steered. By
rotation, we mean that the shape of the function at any orientation can be defined as a linear combination of
the Gaussian derivatives. The coefficients of that linear combination depend on the desired orientation. More
precisely, if for an image I , angle Θ, and location u in the image frame, IΘ denotes the image after rotation
and uΘ the location in the rotated image frame, we have

∀σ, ∀Θ, ∃RΘ,σ ∈ Rd×d, such that, ∀I, ∀u, vσ(IΘ,uΘ) = RΘ,σvσ(I,u), (5)

where RΘ,σ is a suitable steering matrix. Hence, extracting the feature vector at any random orientation does
not require the evaluation of new linear filter responses, but simply multiplying the vector vσ(I,u) by a matrix
parametrized by the RΘ,σ matrix, which is parameterized by both Θ and σ. Its coefficients are derived in the
Appendix. Since this rotation of the feature vector is performed at all scales, let RΘ denote the block matrix
that rotates the multi-scale feature vector.

3.4 Learning the Shape of the Filaments
Since we can rotate all feature vectors to a canonical orientation, we can train a single generic classifier as
follows. We randomly select N triplets (image, location, orientation) corresponding to filament structures

{(I1,u1,Θ1), . . . , (IN ,uN ,ΘN )}, (6)

and N triplets corresponding to non-filaments

{(IN+1,uN+1,ΘN+1), . . . , (I2N ,u2N ,Θ2N )}. (7)

Then, from the D-dimension feature vectors extracted at these points

∀n, vn = (RΘn)−1 v(In,un) (8)

we define a training set, the first N samples of which are of class 1 and the last N of class 0

{(v1, 1) , . . . , (vN , 1) , (vN+1, 0) , . . . (v2N , 0)} . (9)

From that labeled sample set, we train an Support Vector Machine (SVM) [8] of the form

h : RD → R; (v) =

N∑
n=0

an κ (vn,v) + b , (10)

where κ is the standard Gaussian kernel with variance ν, which is obtained using n-fold cross validation while
training.

This strategy of training a classifier common to all orientations is a direct application of the idea of
data aggregation through stationary features [9]. We parametrize the features with a complex pose instead
of training several classifiers dedicated to constrained subsets of samples. Doing so, we avoid both the
computational overhead of training several classifiers and the over-fitting due to the fragmentation of the
sample set.

3.5 Detecting Filaments
The image features we use are the same as those proposed in [18] but, because the SVM is nonlinear, there
is no analytical criterion to decide at which orientation we will get the maximum response of the classifier of
Eq. 10. For an image I and location u, the orientation Θ at which the filament appears is a hidden variable
that needs to be estimated. As a result, we have to sample the space of possible orientations and find the one
that produces the greatest SVM response

ψ(I,u) = max
Θ

h
(
(RΘ)−1 v(I,u)

)
. (11)

For 2D images, we explicitly perform this maximization over the orientation space as in earlier work [16].
However, when dealing with 3D image stacks, sampling the whole 3D orientation space becomes prohibitively
expensive. Instead, we estimate the orientation at each pixel using a standard method. We then evaluate the
SVM response for that orientation only
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ψ̂(I,u) = h
(
(RΘ̂)−1 v(I,u)

)
, (12)

where Θ̂ is taken to be the direction of the eigen-vectors of the modified Hessian matrix [2] at the location u.
We found empirically that orientations computed in this way yield better results than those obtained using
other methods.

4 RESULTS

In this section we compare the performance of our approach to detection of ridge-like linear structures against
that of [10] and [20], two of the best known algorithms in the field. To this end, we use the five kinds of images
depicted by Fig. 1. They are 2D images of retinal scans and roads in satellite imagery, 2D images and 3D image
stacks of dendritic networks in bright-field microscopy, and 3D image-stacks of axons in confocal microscopy.
Fig. 2 and Table 1 summarize our quantitative evaluation and support the two following conclusions:
• For the purpose of extracting the centerlines of the linear structures, whether thick or thin, our algorithm

outperforms the other two.
• For the purpose of finding the width of the linear structures, the other two algorithms do slightly better

than ours on clean data but noticeably worse on noisier data.
This makes sense since both the methods of [10] and [20] are optimized to find ideal structures whereas our
algorithm learns the irregularities of the data. When operating at low recall rates, when only thick filaments
are detected, this entails a small penalty because our classifier has expanded some of its descriptive power to
be as good at finding the thin than the thick ones.

In the remainder of this section we first describe our approach to training our classifier and discuss our
evaluation methodology. We then analyze our results on the five images types of Fig. 1.

4.1 Training the Classifier
Each dataset includes of at least two fully annotated images. The ground truth data was produced by experts
in one of two ways:

1) They traced the relevant structures as generalized cylinders by specifying centerlines and corresponding
widths or radii. Note that even experienced operators often make mistakes estimating these and that the
values they provide cannot be considered as perfectly reliable.

2) They provided segmentation masks corresponding to pixels deemed to be within the ridges. We then
skeletonized them to obtain the centerlines.

From the ground truth data of the different datasets we harvested positive and negative samples as follows:
positive samples were collected from the centerline of the ground truth and their orientation estimated from
it. Negative samples were chosen randomly from the outside of the ridges, half of them close to the filaments
and the rest from random locations elsewhere in the image. We assigned to negative samples the orientation
corresponding to the principal eigenvalue of the Hessian matrix at that location. For each sample ground truth
location un we computed a feature vector vn and rotated it inversely to its corresponding orientation Θn. The
annotated data was divided into disjoint training, and test sets, leaving at least one whole image for testing.

The training set for each image type contains 5000 positive and 5000 negative samples. It was used to train
the SVM and the meta-parameters, namely the kernel variance ν and the regularization parameter C were
found by doing n-fold cross validation. We use derivatives up to order M = 4, which we had shown to yield
better results than stopping at order M = 2 in earlier work [14].

4.2 Evaluation Methodology
Ridge detection usually is the first step in either a segmentation or a reconstruction pipeline, such as those
of [31], [33]. Depending on the final application there are different requirements on the ridge detection
algorithm. For instance, if the goal is to measure the area of blood vessels in retinal scans, the algorithm should
produce a perfect image segmentation. By contrast, if it is to recover the network topology, the algorithm should
enhance both thin and thick vessels alike, since missing a thin vessel is worse than incorrectly estimating the
width of a thick one.

To asses the performance of the algorithms in both scenarios, we analyzed them using two different metrics
that we describe below. The first one is designed to measure performance when centerlines are what matters
and the second when correct segmentations are required.
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Fig. 2: Quantitatively comparing our algorithm against those of [10], [20] on the five different datasets depicted
by Fig. 1. Top row: 2D datasets. Bottom row: 3D datasets. For each dataset, we plot at the top the precision-
recall curves of Section 4.2.1 and below the ROC curves of Section 4.2.2. The cyan curves are those produced
by our Rotational Features, the dark blue ones by the Hessian-based algorithm [10], and the black ones by
the Oriented Flux Filter [20]. We denote them as RTF, MVEF, and OOF in the following figures.

4.2.1 Centerline Detection Metric
To evaluate the fraction of ridges that our method correctly detects, we use the metric of [22], which was
initially proposed to assess boundary detection techniques. It is also appropriate for ridge detection because
ridges are one-dimensional elongated objects embedded in a higher-dimensional image.

The original article [22] introduced a well-defined criterion to compare two different delineations, which
we adapt for our purposes as follows. We first perform non-maximum suppression on the image produced
by the detector. After thresholding, we match the resulting image against the ground-truth centerline using
a bipartite graph and a perfect graph matching algorithm. Given that match, we can identify true positives
as matches in the bipartite graph between ridge pixels in the test image against ridge pixels in the ground
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truth. False positives are matches of the bipartite graph against extra nodes in the ground truth and false
negatives are matches of the ground truth against extra nodes in the test image. This matching is repeated
for different thresholds to plot precision-recall curves such as those at the top of each column in Fig. 2. Note
that the non-maxima suppression step ensures that this evaluation method gives mistakes on thin or thick
filaments equal importance.

To condense each one of these curves to a single number, we proceed as in [22] and simply compute the
maximum F-Measure for the different detectors. The F-Measure is the harmonic mean of the precision and recall
for a given point of the detector performance. That is

F = 2× p× r
p+ r

, (13)

where p stands for the precision of the classifier at a given recall r. The maximum F-Measure for the different
classifiers is shown in Table 1. This provides an overall estimate of the algorithm’s performance. Since a perfect
algorithm would consistently yield recall and precision values of 1.0, the best F-Measure that can be obtained
also is 1.0. For any other algorithm, the closer the F-Measure is to 1.0, the better.

All these precision-recall values depend on one parameter, the maximum distance allowed between one
pixel in the ground truth and a pixel in the test image to be considered a match candidate. In the plots of
Fig. 2, this parameter is taken to be 3 pixels and we checked that increasing its value to 7 pixels does not
change the ordering of the curves.

Dataset MVEF OOF RTF
Brightfield 3D 0.5234 0.6169 0.6814
OPF 3D 0.5780 0.6090 0.6683
DRIVE 0.7049 0.7101 0.7449
Brightfield 2D 0.8010 0.7970 0.8389
Road 0.2997 0.1627 0.4591

TABLE 1: F-Measure obtained by computing the area under the three precision-recall curves that appear
at the top for each one of the five datasets in Fig. 2. A perfect score would be 1.0. Overall, our method
outperforms [10], [20] in all five cases.

4.2.2 Segmentation Metric
As in [29], we use this method to compare the segmentation produced by our algorithms against the ground
truth segmentation. When the ground truth consists of a set of traces with widths, we render such traces on
the image to obtain a segmentation mask. The Receiver Operating Characteristic curve (ROC) is computed by
thresholding the detection and finding true positives (points over the threshold that belong to the segmentation
mask), false positives (points over the threshold that do not belong to the segmentation mask), true negatives
(points under the threshold that do not belong to the mask), and false negatives (points under the threshold
that belong to the mask). The threshold is increased from the minimum value in the detection image to the
maximum value.

At the bottom of each column in Fig. 2, we plot the true positive rate as a function of the false positive rate
for each one of the three algorithms we tested.

4.3 Performance Comparison
We now turn to comparing our algorithm’s performance, denoted by the RTF acronym in the figures, against a
Hessian-based one designed for Multiscale Vessel Enhancement Filtering [10] and the Oriented Flux Filter [20],
that we denote as MVEF and OOF respectively, on each one of our five datasets.

4.3.1 Blood Vessels (DRIVE)
The DRIVE dataset [29] consists of 40 retinal scans. In each one, the background is mostly uniform and the
vessels appear as dark structures. However, a clear circular structure, close to the root of the tree is a localized
source of noise, as can be seen in Fig. 1(d). The edges of this structure cause problems to all three algorithms
we have tested. The scans are split into two sets, one for training and the other for testing. The training set was
segmented by one expert, while the test set was segmented by two experts to allow for inter-expert variability
analysis.

The resulting precision-recall and ROC curves are shown in the first column of Fig. 2. The corresponding
F-Measures on the third line of Table 1 indicate that our method outperforms the other two in terms of the
centerline detection metric. More specifically, the precision-recall curves of Fig. 2(DRIVE) show our method
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performing best for recall values greater than 0.6, which are the relevant ones in practice. For smaller recall
values, our method performs as well as MVEF [10] but worse than OOF [20]. In terms of the segmentation
metric, our algorithm performs better than MVEF and similarly to OOF for high true positive rates. This
dataset is the cleanest 2D dataset in which we evaluated our algorithm, and the ridges often conform to the
ideal models for which MVEF and OOF were designed for. When the false positive rates fall below 1%, both
competing methods outperform ours. However, at that rate, less than 40% of true positives are detected, which
renders the results almost useless for all three methods.

Figure 3 shows the filter responses and segmentation results on a small window of a test image. The
segmentations are obtained by thresholding the detections to obtain a false positive rate of 3%. OOF and our
RTF algorithm produce virtually indistinguishable results, while MVEF clearly yields fewer true positives. An
interesting artifact of MVEF is the high response on the sides of the thick vessels. This is caused by the non-
convex M-shape profile of such vessels. MVEF detects two small ridges instead of a bigger one. OOF suffers
from the same problem but to a lesser extent, while RTF responds much more homogeneously.

The fact that both competing methods outperform ours at low false positive and low recall rates derives
from our training scheme being biased towards thin filaments. Since the ground truth data contains more thin
vessels than thick ones and our selection mechanism for positive training examples does not take this into
account, more thin than thick vessels end up being considered. As a result, the classifier learns to distinguish
them better. This shows up at low recall rates, which is precisely when only the thick filaments are detected.
In theory this could be fixed using a more sophisticated sampling scheme but, since the problem shows up
only outside of the reasonable operating range, we do not consider this as crucial.

Original & GT MVEF [10] OOF [20] RTF

Fig. 3: Close-up of a small-window of an image of the DRIVE dataset. Top row: original image and output of the
filters. Bottom row: Ground truth and segmentations obtained for a False Positive Rate of 3%. True positives
are displayed in red, false positives in green and false negatives in blue. In this dataset the segmentation
produced by OOF and RTF are virtually indistinguishable and better than the one produced by MVEF. This
is consistent with the ROC curves at the bottom of Fig. 2(DRIVE).

4.3.2 Neurons in Brightfield Microscopy (BF3D and BF2D)
The neuron images of Fig. 1(e-h) were obtained from rat brains at EPFL’s Neural Microcircuitry Laboratory.
The neuron was dyed with byocitin and then imaged with a bright-field microscope at different tissue depths,
creating a 3D image stack. Several artifacts appear in these images due to the irregularities of the staining
process, and the large non-Gaussian blur produced by the image acquisition technique. As a result, many
interesting filaments appear as faint structures, filaments with abrupt changes in width are severely blurred,
and the out-of-plane information heavily corrupts the image, as shown in Fig. 4 in an XY cut of the 3D image
and on Fig. 1(g) in an XZ plane. In this paper, we use the original 3D data to evaluate the performance of the
3D rotational features and also use the 2D minimum intensity projection of the 3D image to evaluate their
2D counterparts.
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3D Image Stacks The artifacts discussed above make MVEF [10] and OOF [20] fire at out-of-focus locations
where there is no dendrite in the ground truth data. Our algorithm learns to reject such non-homogeneous
blur and thus produces a response that is more constrained to the plane in focus. This effect can be seen
in the comparative detections of Fig. 4. Our algorithm also learns that structures of irregular width can still
be dendrites and, thus, recovers them better than MVEF or OOF. As was the case for blood vessels and can
be seen from the curves at the top of Fig. 2(BF3D), our algorithm outperforms them in terms of centerline
detection for true positive rates greater than 0.6, resulting in the improved F-measure of the second line of
Table 1. The ROC curves at the bottom of Fig. 2(BF3D) also indicate better performance than MVEF and similar
performance to OOF at high true positive rates.

Original & GT MVEF [10] OOF [20] RTF

Fig. 4: Close-up on a detail of the dendritic tree from a slice in the bright-field microscopy dataset. Top row:
Original image and filter responses. Bottom row: ground truth and segmentation for an FPR of 1%. As in
Fig. 3, we display true positives in red, false positives in green and false negatives in blue. Note the lower
response of RTF to out-of-focus dendrites. Also, thanks to its training, RTF can adapt and detect the irregular
shape of the vertical ridge better than the competing algorithms.

2D Minimum Intensity Projections As can be seen in Fig. 5, these projections exhibit the same global
appearance as individual slices, but with the added complexity that filaments that were separated in 3D now
appear to be crossing each others. Nevertheless, the rotational features are versatile enough for our classifier
to learn the appearance of such crossings, something the closed-form MVEF and OOF detectors cannot do.
Therefore, our method not only outperforms them in terms of the centerline detection metric, as can be seen
from the curves at the top of Fig. 2(BF2D) and corresponding F-measures of Table 1, but also in terms of the
ROC curves at the bottom of Fig. 2(BF2D).
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Original & GT MVEF [10] OOF [20] RTF

Fig. 5: Close-up on a window from the 2D version of the bright-field dataset. Top row: Original image and
filter responses. Bottom row: ground truth and segmentation for an FPR of 3%. Please note that RTF produces
more true positives than the others, especially on challenging parts of the image such as the parallel ridges
or the bifurcations and crossings.

4.3.3 Confocal Microscopy (OPF3D)
This is a dataset that was provided by the DIADEM challenge [5]. It consists of axons of the olfactory bulb
of the drosophila fly labeled with green fluorescence protein (GFP). The database consists of six 3D image
stacks, each of them containing one axon. The images were obtained with a two channel confocal microscope,
resulting in low noise levels with little blur, as shown in Fig. 1 (a-c). The main challenge of this dataset is
that some regions can be cluttered. The neurons are traced using Neurolucida [6] and Amira [13], which often
results in an over-estimation of axonal width, as shown in Fig. 6. Since our detector responds negatively
to the edges of the filaments and the ground truth data over-estimates their width, our performance in the
segmentation ROC curve is worse than that of the other two methods. However, as can be seen at the top
of Fig. 2(OPF3D), when we perform the centerline-based evaluation, our performance is better at high false
positive rates.

4.3.4 Streets in Aerial Images (STREETS)
Detecting streets in aerial images was the most challenging task for all three algorithms we tested. We detected
filaments in the street images in the same manner as the vessel and neuron images. As one might expect,
the results are worse in this dataset, as shown in Fig. 2(STREETS). Nevertheless, our algorithm outperforms
MVEF and OOF even more convincingly than before. This is because it is much less sensitive to the structured
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Original & GT MVEF [10] OOF [20] RTF

Fig. 6: Olfactory Projection Fibers dataset. Top row: full image. Middle row: detection in an XY layer. Bottom
row: segmentation for a false positive rate of 1%. The three algorithms perform really well on this clean image.
Note that the RTF response is tighter to the axon and the ground truth sometimes over-segments the image.
This causes our score to decrease in the ROC curve of Fig. 2(d).

noise produced by man-made structures such as houses or parking lots, which RTF has learned to reject. This
robustness to structured noise is demonstrated by results on the close-up of Fig. 7, which contains several
white houses. While MVEF and OOF react strongly to them, RTF rejects them almost completely.

4.4 Computational Cost
The ability of our algorithm to learn the irregularities of the data and to handle noise comes at a computational
cost. In the 2D case, it is approximately 10 times slower than MVEF [10] and OOF [20] when estimating the
orientation at each pixel as in Eq. 12 and 100 times slower when testing for all possible orientation. In the
3D case, the slowdown factor is closer to 60 when estimating the orientation at each pixel due to the many
more convolutions required, the higher complexity of the rotation matrices of Eq. 8, and the larger number
of support vectors retained after training the SVM of Eq. 10.

In practice, this means that processing each image of the DRIVE dataset takes approximately 1.5 minutes as
opposed to 1 second using OOF on a modern 16-core 2.4 Ghz workstation using parallelized code. Similarly,
processing a bright-field image stack of size 384× 896× 37 takes about 170 minutes as opposed to only 3.

While the increased computation time is clearly undesirable, our method therefore remains practical because
ridge detection is usually performed as a pre-processing step, which can run overnight. Furthermore, the bulk
of the computation goes into convolutions with separable filters and the SVM computation, which could be
greatly sped up by being reimplemented on a GPU as opposed to a CPU.
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Original & GT MVEF [10] OOF [20] RTF

Fig. 7: Detail of the detection on a layer of the STREETS dataset for an FPR of 3%. For such FPR, our algorithm
recovers the whole street, while MVEF and OOF recover a much smaller portion. This is due to their high
response to the structured noise produced by the nearby houses and parking lots.

5 CONCLUSIONS

We have presented an algorithm for detecting ridge-like structures in complicated imagery. Instead of explicitly
modeling the filaments and the noise present in the image, we learn a ridge model from the data itself. By so
doing, we were able not only to detect filaments, but also to reject structured noise. Our approach was also
able to detect non-ideal filament structures, which cannot be easily explicitly modeled, such as junctions or
filaments of non-uniform width.

Our main contribution was to combine a machine learning approach with the decomposition of the image
into a multi-scale rotational basis to achieve rotational invariance. This allowed us to train a single classifier that
learns on data rotated to a canonical orientation. Our classifier was able to detect filaments at any orientation by
applying a simple rotation transformation to the extracted feature vector of the pixel under analysis, therefore
avoiding expensive orientation dependent convolutions.

We have shown the versatility of our approach by evaluating it on five different types of data: blood vessels
in retinal images, neurons in 2D and 3D bright-field and confocal microscopy and streets in satellite imagery.
Our results demonstrate that our approach outperforms state-of-the-art methods in all scenarios, and that the
margin of improvement increases with the complexity of the image. The proposed approach is very generic
because, instead of postulating a priori models for the filaments we are looking for, our algorithm can learn
specific appearance models for each new situation.

The code is publicly available [15] and relies on the ITK [17] generic classes. The most computationally
demanding part of our processing pipeline is the computation of the filter responses. However, since they are
Gaussian and separable, this can be done effectively on a CPU and even more effectively on a GPU. Future
work will therefore focus on developing a GPU implementation that can handle the very large amounts of
3D data that modern microscopes now routinely produce.
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APPENDIX: ROTATION EQUATIONS

For completeness sake, we re-derive here the coefficients of the rotation matrices we use to steer the filters
using the same formalism as in [18]. We do this first in 2D and then in 3D.

A 2D STEERING EQUATIONS

A 2D steerable filter based on Gaussian derivatives can be written as

h(u) = 〈α, f〉 =
M∑
q=1

q∑
m=0

αm,qfm,q, fm,q =
∂m

∂xm
∂q−m

∂yq−m
g(u) , (14)

where the α vector controls the shape of the filter. Computing spatial derivatives is equivalent to multiplying
by the frequency in the Fourier domain. The Fourier transform of Eq. 14 is

ĥ(w) =

M∑
q=1

q∑
m=0

αm,q(jwx)
m(jwy)

q−mĝ(w) , (15)

which is a polynomial that multiplies a radially symmetric function. Since polynomials are steerable and a
rotation in the Fourier domain corresponds to a rotation in the space domain, by Theorem 3 of [11], we know
that the filter is steerable.

Making the change of variable w′ = (Rθ)Tw and expanding yields

ĥ(Rθw) =

M∑
q=1

q∑
m=0

αm,q(jwx cos(θ) + jwy sin(θ))
m

(−jwx sin(θ) + jwy cos(θ))
q−mĝ(w) ,

=

M∑
q=1

q∑
m=0

αm,q

m∑
i=0

q−m∑
k=0

m!(q −m)!

i!(m− i)!k!(q −m− k)!

(−1)k(jwx)k+i(jwy)q−k−i cos(θ)q−m−k+i sin(θ)k+m−iĝ(w) ,

Computing the inverse Fourier transform yields

h(Rθu) =

M∑
q=1

q∑
m=0

αm,q , (16)

m∑
i=0

q−m∑
k=0

m!(q −m)!

i!(m− i)!k!(q −m− k)!
(−1)k cos(θ)q−m−k+i sin(θ)k+m−ifk+i,q .

Let S(q,m, j) be the set {i, k|0 ≤ i ≤ m; 0 ≤ k ≤ q −m; i+ k = j}. We can rewrite 16 as

h(Rθu) =

M∑
q=1

q∑
m=0

αm,q (17)

q∑
j=0

∑
i,k∈S(q,m,j)

m!(q −m)!

i!(m− i)!k!(q −m− k)!
(−1)k cos(θ)q−m−k+i sin(θ)k+m−ifk,j .

Interchanging the summation in m with the summation over j yields

h(Rθu) =

M∑
q=1

q∑
j=0

fj,q (18)

q∑
m=0

αm,q
∑

i,k∈S(q,m,j)

m!(q −m)!

i!(m− i)!k!(q −m− k)!
(−1)k cos(θ)q−m−k+i sin(θ)k+m−i

︸ ︷︷ ︸
βj,q(θ)
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This equation can be interpreted as a sparse rotation matrix. To compute βj,q(θ), only the coefficients αm,q are
taken into account. Therefore the rotation properties hold for each order independently. It can be rewritten as

aqj,m =
∑

i,k∈S(q,m,j)

(−1)k cos(θ)q−m−k+i sin(θ)k+m−i, (19)

or more compactly as
β(θ) = Rθα . (20)

Finally, the rotated steerable filter is re-written as

h(Rθu) = 〈Rθα, f〉 . (21)

B 3D STEERING EQUATIONS

Following the same approach as in the 2D case, a 3D rotational filter based on Gaussian derivatives can be
written as

h(u) = 〈α, f〉 =

M∑
q=1

q∑
m=0

q−m∑
n=0

αm,n,qfm,n,q , (22)

fm,n,q =
∂m

∂xm
∂n

∂yn
∂q−m−n

∂yq−m−n
g(u) , (23)

and its Fourier transform is

ĥ(w) =

M∑
q=1

q∑
m=0

q−m∑
n=0

αm,n,q(jwx)
m(jwy)

n(jwz)
q−m−nĝ(w) . (24)

b.1 3D Rotation
Using Euler angles, a rotation in the 3D space can be written as

R = RθXR
ψ
YR

φ
Z , (25)

where RθA is the rotation of angle θ around axis A, where A stands for either X , Y , or Z. Therefore, computing
the steering equations for a generic rotation, amounts to computing those around each individual axis. We
show below that, as in the case of the 2D steering equations of Eq. 21, we can write

∀u, h(RθXu) = 〈α, f(RθXu)〉 = 〈RθXα, f(u)〉 . (26)

Since RψY and RφZ can be computed similarly, we have

h(Ru) = 〈Rα, f(u)〉, (27)

where
R = RθXR

ψ
YR

φ
Z . (28)

b.2 3D Rotation around the X axis
We now turn to proving Eq. 26 and compute the steering equation for RθX , the rotation of angle θ around
the X axis. The steering equation for RψY and RφZ , the rotations around the other two axes, can be computed
similarly.

Making the change of variable w′ = (RθX)−1w and using the rotational properties of the Fourier transform
yields

jw′x = jwx ,

jw′y = cos(θ)jwy + sin(θ)jwz ,

jw′z = − sin(θ)jwy + cos(θ)jwz .

Substituting in Eq. 24 and performing some algebraic manipulations yields
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ĥ(RθXw) =

M∑
q=1

q∑
m=0

q−m∑
n=0

αm,n,q

n∑
i=0

q−m−n∑
k=0

(q − n−m)!n!(−1)k

k!(q −m− n− k)!i!(n− i)!
(29)

cos(θ)q+i−m−n−k sin(θ)k+n−i(jwx)
m(jwy)

k+i(jwz)
q−m−k−iĝ(w) .

The inverse Fourier transform is

h(RθXu) =

M∑
q=1

q∑
m=0

q−m∑
n=0

αm,n,q

n∑
i=0

q−m−n∑
k=0

(q − n−m)!n!(−1)k

k!(q −m− n− k)!i!(n− i)!
(30)

cos(θ)q+i−m−n−k sin(θ)k+n−ifm,k+i,q .

Let SX(r, s,m, n) be the set {i, k|0 ≤ i ≤ n; 0 ≤ k ≤ q −m− n;m = r; k + i = s}. Eq. 30 can be rewritten as

h(RθXu) =

M∑
q=1

q∑
m=0

q−m∑
n=0

αm,n,q

q∑
r=0

q−r∑
s=0

∑
i,k∈SX(r,s,m,n)

(q − n−m)!n!(−1)k

k!(q −m− n− k)!i!(n− i)!
cos(θ)q+i−m−n−k sin(θ)k+n−ifr,s,q .

Changing the summation order yields

h(RθXu) =

M∑
q=1

q∑
r=0

q−r∑
s=0

fr,s,q (31)

q∑
m=0

q−m∑
n=0

αm,n,q
∑

i,k∈SX(r,s,m,n)

(q − n−m)!n!(−1)k

k!(q −m− n− k)!i!(n− i)!
cos(θ)q+i−m−n−k sin(θ)k+n−i

︸ ︷︷ ︸
βr,s,q(θ)

.

As in the 2D case, Eq. 31 can be written in matrix form as

ar,s,qm,n =
∑

i,k∈SX(r,s,m,n)

(q − n−m)!n!(−1)k

k!(q −m− n− k)!i!(n− i)!
cos(θ)q+i−m−n−k sin(θ)k+n−i , (32)

or, more compactly, as

βX(θ) = RθXα . (33)


