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Introduction

In many di�erent areas, one may be interested in the time to some events: death
or cancer in medicine, wedding or divorce in sociology, etc. . . These data are called
survival data. Several events or multiple occurences of a single event lead to event
histories or recurrent event data respectively and appear just as often. Even if
those data appear so frequently and that they do not seem to be so di�erent from
any other classical data, they cannot be analysed using the usual statistical tools.
Indeed they have particularities that make their analysis special. First, the strong
time dependence requires the use of objects such as counting processes and other
stochastic processes that take time into account. Furthermore, partly also due to
the dependence in time, the data are often incompletely observed and we can be
in presence of censoring and truncation. Censoring occurs when the recorded time
does not correspond to an event. This can happen when an individual drops out
of the study before it ends or simply when the study ends itself. Truncation, on
the other hand, corresponds to when the starting time is not the same for all the
individuals involved in the study. Having a common starting point is impossible
in many studies: consider for example survival after a myocardial infarction; it
is impossible to have all patients having a myocardial infarction the same day
to enroll them in the study. All the particularities described above are evidence
for the fact that survival data cannot be dealt with using usual statistical tools.
In particular classical linear regression cannot be used. Nevertheless, it could be
of interest to study the e�ect of some covariates on the occurence of the event
of interest. In that case several models have been proposed but we will focus
on the additive regression model which was introduced by Aalen (1980). A full
theory about the construction of such models as well as inference, testing and
model checking will be presented in Chapter 1. We choose to consider this model
because it has really nice and useful properties among which is the easy and
straightforward interpretation of the e�ect of each single covariate on the event
of interest. The use of this model will be illustrated by an analysis of recurrent
event data: the Blue Bay data (Strina et al., 2005), concerning the occurence of
diarrhoea in young children in Salvador, Brazil. In 1997 in Salvador, a city-wide
sanitation programme was started in order to reduce the risk of morbidity due
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to diarrhoea in children aged less than three years old. Three studies were then
carried out in order to assess the e�ectiveness of such measures. The �rst one
was done in 1997-1998, just before the intervention, the second one was done in
2000-2002 and �nally the last one, which we will focus on, was done in 2003-2004.
In this last phase, a total number of 1127 children were enrolled and each day the
occurence of diarrhoea as well as other symptoms were recorded over 231 days. We
will be interested in prevalence and incidence of diarrhoea. Prevalence is de�ned
as the probability that a child has diarrhoea on a given day, whereas incidence
is the probability that a child starts a new episode of diarrhoea (an episode is a
sequence of days with diarrhoea until there have been at least three consecutive
clear days). A complete analysis of these data will be carried out in Chapter 2.
Then, as we are also interested in seeing if the measures taken against childhood
diarrhoea were e�ective, we will compare Phase II and Phase III of the Blue Bay
data in Chapter 3. Finally, we will study the e�ect of clustering in Chapter 4.

Throughout the report, all the computationnal results were obtained using the
R software and writting personal code instead of using the available packages for
survival analysis.



Chapter 1

Additive Regression Models

We want to study the situation where we have several individuals that may expe-
rience either a single event (such as death) or several events (such as seizures or
hospitalisations) and we are interested in the time to, or between, those events.
This situation arises in many �elds such as medicine, biology, demography . . .
In order to study this type of data, we need to introduce an object that can record
the number of events experienced by an individual. The use of counting processes
seems therefore to be appropriate as it gives at each time t the number of events
that an individual has experienced up to time t. We denote it N(t).
We �rst recall some basic de�nitions, which are generally taken from Dalang
(2008), see also Steele (2003) and Kuo (2006). For a complete theory about rele-
vant stochastic processes see Andersen et al. (1993).
We start by de�ning a �ltration (Ft), which is a family of sub-algebras of F , an
algebra, such that for all s ≤ t, Fs ⊆ Ft. We say that a family of random variables
(X(t)) is adapted to (Ft) if for all t, X(t) is Ft-measurable. A particularly inter-
esting class of processes are the predictable processes, H(t), which are adapted
to the �ltration Ft and whose sample paths (realisations of H as functions of t)
are left continuous. Finally, we de�ne a martingale M(t) as being a stochastic
process with the following properties:

• E (M(t)) <∞,

• (M(t)) is adapted to (Ft),

• E(M(t)|Fs) = M(s), ∀s < t.

Note that if in the last condition we replace the equality by an inequality, then
(M(t)) is called a super-martingale (for ≤) or a submartingale (for ≥).

Suppose now we have a counting process N(t) which is assumed to be adapted
to a �ltration (Ft). It is associated with the intensity λ(t), which is a predictable
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process de�ned by

λ(t) = lim
∆t→0

P (N(t+ ∆t)−N(t) = 1|Ft−)

∆t
.

Less formally, following the de�nition given by Aalen et al. (2008) we can write:

λ(t) = P (dN(t) = 1|Ft−),

where Ft− is the history up to a time just before t and dN(t) is the instanta-
neous change at t of N(t). Another way to de�ne it is to notice that N(t) is a
submartingale and use the Doob-Meyer decomposition (Martinussen and Scheike,
2006). Then we can write

N(t) =

∫ t

0

λ(s)ds+M(t), (1.1)

where M(t) is a martingale and λ(t) is the intensity.
We now consider n individuals, each having a counting process N?

i (t) which
we assume to be fully observed and adapted to the same �ltration (Ft). We also
have a predictable observation indicator Yi(t) for each individual, de�ned as:

Yi(t) =

{
1, if individual i is at risk at time t,
0, otherwise,

where an individual is said to be at risk on day t if they are not censored nor
have missing information on day t. We denote the observed counting process as
Ni(t) and its respective intensity process as λi(t) which is often assumed to have
the multiplicative form

λi(t) = Yi(t)α(t), (1.2)

where α(t) is the intensity associated with N?(t).
We want to model the e�ect of p covariates xi1(t), . . . , xip(t) on the intensity
process. In order to do this, under the additive model, one can write

α(t) = β0(t) + β1(t)xi1(t) + · · ·+ βp(t)xip(t). (1.3)

This model was �rst proposed by Aalen (1980). The functions βj(t) are called the
regression functions and are to be estimated. However, their estimation cannot
be obtained in a straightforward way. This motivates the introduction of the
cumulative regression functions

Bj(t) =

∫ t

0

βj(u)du,
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which can be estimated consistently, whereas βj(t) cannot.
We recall, from (1.1) and (1.2), that

N(t) =

∫ t

0

λ(s)ds+M(t) and λi(t) = α(t)Yi(t),

which means we can write

λi(t) = Yi(t) (β0(t) + β1(t)xi1(t) + · · ·+ βp(t)xip(t)) and, loosely,

dNi(t) = Yi(t)dB0(t) +

p∑
k=1

Yi(t)dBk(t)xik(t) + dMi(t).
(1.4)

It is convenient to rewrite all this using matrix and vector notation:

N(t) = (N1(t), . . . , Nn(t))T

M(t) = (M1(t), . . . ,Mn(t))T

B(t) = (B0(t), . . . , Bp(t))
T

X(t) =

 Y1(t) Y1(t)x11(t) · · · Y1(t)x1p(t)
...

... · · · ...
Yn(t) Yn(t)xn1(t) · · · Yn(t)xnp(t)

 .

With this notation, equations (1.4) become

λ(t) = X(t)dB(t)

dN(t) = X(t)dB(t)︸ ︷︷ ︸
Model

+ dM(t)︸ ︷︷ ︸
Noise

,

where the last equation has the form of the standard linear regression model. This
leads naturally to least squares estimation:

dB̂(t) =
(
X(t)TX(t)

)−1
X(t)TdN(t),

which is well de�ned if X(t) is full rank. We introduce J(t) as an indicator that
X(t) is full rank to obtain

dB̂(t) = J(t)
(
X(t)TX(t)

)−1
X(t)TdN(t).

The estimator of the cumulative regression functions is, using X−(t) = (X(t)TX(t))−1X(t)T ,

B̂(t) =

∫ t

0

J(u)(X(u)TX(u))−1X(u)TdN(u)

=
∑
Tj≤t

J(Tj)X
−(Tj)∆N(Tj),

(1.5)
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where the Tj are the distinct event times and ∆N(Tj) is a vector with zeros
except for the individuals who experienced the event at time Tj. An estimator of
the variance covariance matrix is

Σ̂(t) =

∫ t

0

J(u)X−(u)diag (dN(u)) X−(u)T

=
∑
Tj≤t

J(Tj)X
−(Tj)diag (∆N(Tj)) X−(Tj)

T .
(1.6)

An important result is
√
n
(
B̂(t)−B(t)

)
D→ U(t), (1.7)

where U(t) is a continuous mean zero p-dimensional Gaussian martingale, and
D→ means convergence in distribution. This result will be useful for constructing
con�dence intervals and con�dence bands as well as for testing. It will also play
an essential role in the assessment of the model for the construction of martingale
residuals. The proof of this theorem can be found in Andersen et al. (1993),
Chapter VII, Section 4.2, p.575.

1.1 Con�dence intervals and con�dence bands

1.1.1 Con�dence intervals

In order to construct con�dence intervals for Bj(t), we need to �nd the variance
covariance matrix of U(t), which is given in Aalen et al. (2008) as

A(t) = var(U(t)) =

∫ t

0

J(u)X−(u)diag(λ(u)du)X−(u)T ,

and can be estimated by

̂var(U(t)) = nΣ̂(t) = n
∑
Tj≤t

J(Tj)X
−(Tj)diag(∆N(Tj))X

−(Tj)
T .

We can show (Andersen et al., 1993, Section VII.4.2) that

nΣ̂(t)→ A(t). (1.8)

Indeed,

nΣ̂(t) = n

∫ t

0

J(u)
(
XTX

)−1
XTdiag(dN(u))X

(
XTX

)−1

=

∫ t

0

J(u)n
(
XTX

)−1 1

n
XTdiag(dN(u))Xn

(
XTX

)−1

P→ A(t),
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where
P→ means convergence in probability and for simplicity, we have written

X instead of X(t). Thus,
√
n(B̂(t) − B(t)) converges in distribution to a mean

zero p-dimentional Gaussian martingale whose covariance matrix converges in
probability to A(t). We can therefore construct a (1− α) con�dence interval for
Bi(t) as: [

B̂i(t)− z1−α/2

√
Σ̂ii(t); B̂i(t) + z1−α/2

√
Σ̂ii(t)

]
,

where z1−α/2 is the corresponding quantile of the standard normal law.

1.1.2 Con�dence bands

Con�dence intervals give for each value of t the region in which the true value is
susceptible to fall in. Con�dence bands, by contrast, give the region for the entire
function. Thus, a con�dence interval is pointwise whereas con�dence bands are
uniform. We will here construct con�dence bands for Bi(t) which will be used in
the plots in the next sections. They are non constant width con�dence bands, but
allow use of known quantiles by using tables in Hall and Wellner (1980).
We base our approach on the following fact: suppose that B0(t) is a Brownian
bridge (i.e. B0(t) = W (t)− tW (1), where W (t) is a standard Brownian motion),
then Doob's transformation (Hall and Wellner, 1980) gives that{

B0

(
t

1 + t

)
, t ∈ [0, 1]

}
D
=

{
1

1 + t
W (t), t ∈ [0, 1]

}
. (1.9)

We know (Aalen et al., 2008, Section 2.3.1) that for a mean zero Gaussian mar-
tingale U(t) with predictable variation process V (t), we have

U(t) = W (V (t)),

where W (t) is a standard Brownian motion.
Therefore, as A(t) is the predictable variation process of U(t),

√
n
(
B̂j(t)−Bj(t)

)
D→ Uj(t) = W (Ajj(t)), (1.10)

with W (t) a standard Brownian motion. Then, de�ning

G(t) =

(
B̂j(t)−Bj(t)

)
√

Σ̂jj(τ)

1

1 +
Σ̂jj(t)

Σ̂jj(τ)

,

where τ is the end of the time interval, and using (1.8) and (1.9), we obtain

G(t)
D→ B0

( A(t)
A(τ)

1 + A(t)
A(τ)

)
.
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Taking the supremum of the absolute value of G(t) leads to

lim
n→∞

P

(
sup
t∈[0,τ ]

|G(t)| > c1−α

)
= 1− α

= P

(
sup
t∈[0,τ ]

∣∣∣∣∣B0

( A(t)
A(τ)

1 + A(t)
A(τ)

)∣∣∣∣∣ > c1−α

)

= P

(
sup
t∈[0,1]

∣∣∣∣B0

(
t

1 + t

)∣∣∣∣ > c1−α

)

= P

(
sup

t∈[0,1/2]

|B0(t)| > c1−α

)
.

Tables of values of c1−α can be found in Hall and Wellner (1980), where also a
formula for the density function of supt∈[0, 1

2
] |B0(t)| is given:

P

(
sup
t∈[0, 1

2
]

|B0(t)| ≤ λ

)
=1− 2Φ

(
λ√

a(1− a)

)

+2
∞∑
k=1

(−1)ke−2k2λ2

(Φ(r(2k − d))− Φ(r(2k + d))) ,

where Φ is the standard normal distribution function, r = λ
√

1−a
a

and d = 1
1−a .

Thus, using

1− α = P

 sup
t∈[0,τ ]

∣∣∣∣∣∣
√
n(B̂i(t)−Bi(t))√

Σ̂ii(τ)

1

1 + Σ̂ii(t)

Σ̂ii(τ)

∣∣∣∣∣∣ > c1−α

 .

we obtain the con�dence bands:B̂i(t)− c1−α

√
Σ̂ii(τ)

n

(
1 +

Σ̂ii(t)

Σ̂ii(τ)

)
≤ Bi(t) ≤ B̂i(t) + c1−α

√
Σ̂ii(τ)

n

(
1 +

Σ̂ii(t)

Σ̂ii(τ)

) ,

with asymptotic coverage 1− α.

1.2 Martingale residuals and model checking

An important step after the construction of a model is to check whether it is
appropriate or not, i.e. whether it �ts the data well. A useful tool to look at,
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in that case, are the martingale residuals processes. They are de�ned for each
individual i in Aalen et al. (2008) as

M̂i(t) = Ni(t)− Λ̂i(t). (1.11)

By writing it a little di�erently, we can show it is a martingale:

M̂(t) =

∫ t

0

dN(s)−
∫ t

0

X(s)dB̂(s)

=

∫ t

0

dN(s)−
∫ t

0

X(s)X−(s)︸ ︷︷ ︸
H(s)

dN(s)

=

∫ t

0

(I−H(s))dN(s)

=

∫ t

0

(I−H(s))X(s)dB(s)︸ ︷︷ ︸
=0, by de�nition of H

+

∫ t

0

(I−H(s))dM(s)

=

∫ t

0

(I−H(s))dM(s).

Therefore, M̂(t) is a martingale since it is the integral of a predictable process
with respect to a martingale (Aalen et al., 2008, Section 2.2.2). We can also give

an estimator of the variance covariance matrix of M̂(t):

Ω̂(t) =
̂

var
(
M̂(t)

)
=

∫ t

0

(I−H(s))diag(λ(s)ds)(I−H(s))Tds. (1.12)

We can now construct the standardized residuals

M∗
i (t) =

M̂i(t)√
Ω̂ii(t)

, for i = 1, . . . p.

Then, if the model is correctly speci�ed, the variance of the above standardized
residuals should be close to one at all times t, i.e. var(M∗(t)) = 1. Therefore,
in order to check the �t of the model, one can plot the standard deviation of the
observed standardized residuals and see if it is close to one for all t.

1.3 Tests

Result (1.7) is not only useful for the construction of con�dence intervals and
con�dence bands as we saw in Section 1.1, but also for testing.
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Here we will focus on three tests. First in testing if a regression function is equal to
a given function and second to test for constancy, which aims to see if a regression
function has a constant e�ect over time. Finally, we will introduce a version of
the log-rank test for testing the equality of several functions. More formally, we
want to test either:

(1)H0 : Bj(t) = B0
j (t) ∀t ∈ [0, τ ] vs H1 : Bj(t) 6= B0

j (t), for signi�cance

(2)H0 : Bj(t) = γt ∀t ∈ [0, τ ] vs H1 : Bj(t) 6= γt, for constancy.

(3)H0 : α1(t) = · · · = αK(t) ∀t ∈ [0, τ ]

vs H1 : There is at least one di�erence for some t, for the log-rank test.

Here B0
j (t) is a given function and γ is a parameter to be estimated. We usually

test on [0, τ ], where τ is the end of the study, so we consider the functions on the
whole study interval, but any smaller time interval [0, t0], with t0 ∈ [0, τ ] can be
considered.

1.3.1 Signi�cance test

We focus on the �rst test

H0 : Bj(t) = B0
j (t) ∀t ∈ [0, τ ] vs H1 : Bj(t) 6= B0

j (t).

We recall from (1.10) that

√
n
(
B̂j(t)−Bj(t)

)
D→ W (Ajj(t)).

Then, by the continuous mapping theorem (Panaretos (2008) and Knight (2000)),

sup
t∈[0,τ ]

√
n
∣∣∣B̂i(t)−Bi(t)

∣∣∣ D→ sup
t∈[0,τ ]

Ui(t).

By Slutsky's theorem (Panaretos (2008) and Knight (2000)),

sup
t∈[0,τ ]

√
n
∣∣∣B̂i(t)−Bi(t)

∣∣∣√
nΣ̂ii(τ)

D→ sup
t∈[0,τ ]

|Ui(t)|
Aii(τ)

= sup
t∈[0,τ ]

∣∣∣∣W (Aii(t))

Aii(τ)

∣∣∣∣ .
By the scaling property of Brownian motion (Dalang, 2008),

= sup
t∈[0,τ ]

∣∣∣∣W (
Aii(t)

Aii(τ)

)∣∣∣∣
= sup

t∈[0,1]

|W (t)|,
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where the last equality is due to the fact that Aii(t) is a continuous nondecreasing
mapping of [0, τ ] on [0, Aii(τ)].

Thus, if we de�ne T as

T = sup
t∈[0,τ ]

√
n
∣∣∣B̂j(t)−Bj(t)

∣∣∣√
nΣ̂jj(τ)

,

then
T

D→ sup
t∈[0,1]

|W (t)| .

As supt∈[0,1] |W (t)| has a known distribution (Billingsley (1968)), given by

P

(
sup
t∈[0,1]

|W (t)| ≤ b

)
=

∞∑
k=−∞

(−1)kΦ((2k + 1)b)− Φ((2k − 1)b), (1.13)

where Φ is the standard normal distribution function, we can obtain the quantile
c1−α, where 1− α is the signi�cance level of the test.
Therefore, we will reject H0 if T > c1−α. The p-value of the test can also be
computed using the formula of the density function of supt∈[0,1] |W (t)|.
If we want to test that the regression function is null, we can simply takeB0

j (t) = 0.

Notice that the fact that
√
n
(
B̂j(t)−Bj(t)

)
is a martingale was essential in the

construction of this test and made it quite simple.
We can also apply another method for testing. We consider a nonnegative

predictable weight process Lj(t) which is supposed to be null whenever J(t) = 0.
A good statistic for testing

H0 : βj(t) = 0 ∀t ∈ [0, τ ]

is

Zj(τ) =

∫ τ

0

Lj(t)dB̂j(t) =
∑
Tj≤τ

Lj(Tj)∆B̂j(Tj).

This statistic is good for testing H0 against alternatives of the form βj(t) < 0 or
βj(t) > 0 for all t. It will be more di�cult to detect crossing e�ects using this
test statistic. In the particular case of crossing e�ect, it would be better to use
the �rst test. However, when working with real data later in this work, we will
use the second test for signi�cance.
Under the null hypothesis, Zj(τ) is asymptotically a mean zero Gaussian variable
with variance which can be estimated by

Vjj(τ) =

∫ τ

0

L2
j(t)dΣ̂jj(t) =

∑
Tj≤τ

L2
j(Tj)∆Σ̂jj(Tj).
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Therefore, by the central limit theorem, we obtain that, if H0 is true,

Zj(τ)√
Vjj(τ)

D→ N (0, 1).

Then, the null hypothesis is rejected for signi�cantly large values of this statistic.
This last signi�cance test will be applied when working with real data, later in
this report, using

Lj(t) =
1

(X(t)TX(t))−1
jj

,

as suggested by Aalen et al. (2008) (in Section 4.2.1) or by Elgmati (2009). This
choice of weight process is directly inspired by ordinary least squares regression
where the variances of the estimators are proportional to (XTX)−1, X being the
design matrix. Then the test statistics become simply a weighted sum of the
cumulative regression functions.

1.3.2 Constancy test

We now want to test

H0 : Bj(t) = γt ∀t ∈ [0, τ ] vs H1 : Bj(t) 6= γt.

Under the null hypothesis, we must estimate γ. We simply take

γ̂ =
B̂j(τ)

τ
.

The �rst method used in the previous section for testing for signi�cance is not

applicable here because H =
√
n
(
B̂j(t)− t

τ
B̂j(τ)

)
is not a martingale. Indeed,

B̂j(τ) depends on the future which is not compatible with the de�nition of a mar-
tingale.
One method, which was introduced by Martinussen and Scheike (2006), and which
is called a conditional multiplier procedure, can be used. It is based on a resam-
pling approach. It was also previously used in Borgan et al. (2007), Elgmati (2009)
and Elgmati et al. (2008).
First of all, we need to show that

√
n(B̂(t)−B(t)) =

∫ t

0

X−(s)dM(s).
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This follows from

√
n(B̂(t)−B(t)) =

√
n

(∫ t

0

X−(s)dN(s)−B(t)

)

=
√
n

∫ t

0

X−(s)dM(s) +

∫ t

0

X−(s)X(s)︸ ︷︷ ︸
=I

dB(s)−B(t)


=
√
n

∫ t

0

X−(s)dM(s).

Thus,

√
n
(
B̂(t)−B(t)

)
=
√
n

n∑
i=1

∫ t

0

(
X(s)TX(s)

)
Xi(s)

TdMi(s),

where Xi(s) is the vector of covariates for the individual i.
Now let

εi(t) =

∫ t

0

(
1

n
XT (s)X(s)

)−1

Xi(s)dMi(s).

Then,

√
n
(
B̂(t)−B(t)

)
=

1√
n

n∑
i=1

εi(t).

An estimator ε̂i(t) of εi(t) is

ε̂i(t) =

∫ t

0

(
1

n
XT (s)X(s)

)−1

Xi(s)dM̂i(s),

where M̂i(t) is de�ned by (1.11).

What we would like is writting
√
n
(
B̂(t)−B(t)

)
as a sum of iid terms, which

is not possible. However, because correlation between the dM̂i is of order 1/n,
√
n
(
B̂(t)−B(t)

)
behaves like a sum of iid terms.

The constancy test we are going to use is based on the following theorem:

Theorem 1.3.1. Let Z1, . . . , Zn
iid∼ N (0,1). Under some technical conditions, it

follows that
√
n
(
B̂(t)−B(t)

)
has the same limit distribution as

∆(t) =
1√
n

n∑
i=1

ε̂i(t)Zi.
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The proof of this theorem as well as the conditions under which the theorem is
valid can be found in Martinussen and Scheike (2006) (Section 5.2). As the mar-

tingale property cannot be used for H =
√
n
(
B̂j(t)− t

τ
B̂j(τ)

)
, it is not possible

to estimate its variance and therefore its distribution is hard to evaluate. Theo-
rem (1.3.1) gives us a simple way to estimate the distribution of H by simulating
Zi as we will see.

We must now construct test statistics for testing the null hypothesis. We
present two here:

T1,const =
√
n sup
t∈[0,τ ]

∣∣∣∣B̂j(t)−
t

τ
B̂j(τ)

∣∣∣∣ .
T2,const = n

∫ τ

0

(
B̂j(t)−

t

τ
B̂j(τ)

)2

.

(1.14)

The �rst looks at the largest di�erence between B̂j(t) and a straight line, whereas
the second accumulates the squared di�erences. Now, we can notice that under
the null hypothesis,

√
n

(
B̂j(t)−

t

τ
B̂(τ)

)
=
√
n

B̂j(t)−Bj(t)−
t

τ
B̂(τ) + Bj(t)︸ ︷︷ ︸

= t
τ
Bj(τ)


=
√
n
(
B̂j(t)−Bj(t)

)
−
√
n
t

τ

(
B̂j(τ)−Bj(τ)

)
.

Therefore, by Theorem (1.3.1),
√
n
(
B̂j(t)− t

τ
B̂j(τ)

)
has, under the null hypoth-

esis, the same asymptotic distribution as ∆j(t) − t
τ
∆j(τ), where ∆(t) is de�ned

in Theorem (1.3.1). Thus, when wanting to test our hypothesis H0 : Bj(t) = γt,
we will adopt the following algorithm:
For r = 1, . . . , R:

1. Compute ∆r(t) = n−1/2
∑n

i=1 ε̂i(t)Zi, where Zi
iid∼ N (0, 1).

2. Compute either T rsim = supt∈[0,τ ] |∆r(t)− (t/τ)∆r(τ)|
or T rsim =

∫ τ
0

(∆r(t)− (t/τ)∆r(τ))2 dt.

3. We now have R replications T 1
sim, . . . , T

R
sim.

4. Compute an estimate p̂ of the p-value as

p̂ =
]{T rsim ≥ Tobs}

R
, r = 1, . . . , R,
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where Tobs is de�ned by one of the two statistics in (1.14).

In the previous algorithm we used Zi
iid∼ N (0, 1) but notice that we can also use

Zi =

{
1 , with probability 1/2
−1 , with probability 1/2,

and obtain the same results.

1.3.3 Simulation study

In order to see if the previous test gives satisfactory results, i.e. if the test size
is correct and the power is high, we carry out a simulation study. We consider n
individuals followed to time τ . The additive model we consider is

α(t|x) = β0 + β1x(t) + ∆βx(t)It≥c,

where c is a changepoint and ∆β is the amplitude of the change in the slope.
We consider R = 100 replications for the conditional multipliers and we choose
the test statistic T1,const. Note that if we want a constant slope for the regression
function β1 we simply set ∆β = 0.
Several simulations were carried out in order to see the in�uence of c, ∆β and n
on the power of the test. We recall that the power of a test is the proportion of
rejected tests. In order for the test to be e�ective, we should obtain 5% rejections
when ∆β = 0 (constant slope) and we expect to have a high power when the slope
changes (∆β 6= 0).
We base the estimation of the power on a sample of 500 replications of the test
when n = 500 and 100 replications when n = 1000. This di�erence in the number
of replications used is due to the time taken by the simulations which is consid-
erably longer when we pass from 500 to 1000 individuals.
The results obtained are presented in Figures 1.1 and 1.2.

The test size is the proportion of rejection under the null ∆β = 0. We use a
nominal 5% test and found that for all combinations, the empirical rejection rates
are within simulation noise of the expected value. Turning to power, we notice
that it is improved when n or ∆β is larger as expected. Indeed, by increasing the
size of n or ∆β, the di�erence between the cumulative regression function and
the straight line becomes clearer and it is therefore more easily detectable using
T1,const. The test detects di�erences more easily if the change of the slope happens
near the center at τ/2 instead of near the extremes. This again is what we were
expecting as if the slope changes close to the extremes, the di�erence between
the cumulative regression function and the straight line will appear less neatly
compared to when the slope change in the middle, as illustrated in Figure 1.3.
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Figure 1.1: Estimated power of the constancy test for di�erent values of ∆β,
based on 500 simulations for n = 500 and 100 simulations when n = 1000.
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Figure 1.2: Estimated power of the constancy test for di�erent values of the
changepoint c, based on 500 simulations when n = 500 and 100 simulations when
n = 1000.
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Figure 1.3: Example of simulated cumulative functions for di�erent values of the
changepoint.
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When ∆β 6= 0, the power reaches 1 from ∆β = 0.03 for n = 500 and from
∆β = 0.02 when n = 1000, which means that the test can detect small changes
in the slope quite easily with a really good power.

1.3.4 Log-rank test

The previous tests applied to only one function. However, sometimes it can be
of interest to compare several functions. This situation can occur if we want
to compare the e�ect of a variable, or several, on the survival function between
di�erent groups of individuals, for example. In other words, we are interested in
testing if there is a di�erence in the intensity between groups. In order to do that,
we will introduce a test which is presented in Andersen et al. (1993) (Section
V.2.1) and in Martinussen and Scheike (2006) (Section 4.2.1) and is of log-rank
form.
Suppose we have K groups and denote by αk the intensity function for the kth
group of individuals, k = 1, . . . , K. We want to test

H0 : α1(t) = · · · = αK(t) for all t ∈ [0, τ ],

vs H1 : there is at least one di�erence for some t.

Suppose there are nk individuals in group k and we denote by Nik the counting
process of individual i in group k and by Yik the "at risk" indicator, i = 1, . . . , nk,
k = 1, . . . , K.
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A test statistic for each group k is

Zk(t) =

∫ t

0

w(s)

(
dNk(s)−

Yk(s)

Y•(s)
dN•(s)

)
,

where w(s) is a weight function taken as w(t) = IY•(t)>0 in the log-rank test,

Nk(t) =
∑nk

i=1Nik and N•(t) =
∑K

k=1 Nk(t). The test e�ectively contrasts the
number of events in group k at each time s with the expected number under the
null, conditional on the total number of events at s in the combined sample.
We can notice that

K∑
k=1

Zk(t) = 0.

By denoting Z(t) = (Z1(t), . . . , ZK−1(t)), it can be shown (Martinussen and
Scheike (2006)) that

√
nZ(t) is asymptotically normally distributed around zero

with variance covariance matrix Γ(t) which may be estimated by

Γ̂kl =

∫ t

0

w(s)2Yk(s)

Y•(s)

(
δkl −

Yl(s)

Y•(s)

)
dN•(s), k, l = 1, . . . , K − 1,

where, Y•(t) =
∑K

k=1 Yk(t) and δkl = 1 if k = l and zero otherwise.
Thus the test statistic we will be using is

Q(t) = Z(t)T Γ̂−1(t)Z(t),

which under the null hypothesis, follows a χ2
K−1 distribution.

1.3.5 Simulation study

In order to assess the quality of the test, we conduct a simulation study. We
consider 1006 individuals followed up to time τ = 200. Those numbers were
chosen based on the data to be studied in the next chapter. We choose an additive
model with constant intensity α = 0.02 and then we cluster the individuals in 24
di�erent groups. As the intensity is the same for all groups, the log-rank test
should not reject the null hypothesis. On 1000 simulations, the test rejected 32
times giving an approximate power of p̂ = 3.2% which is within simulation noise
of the expected value of 5%.

1.4 Dynamic models

In some situations, we may be interested in seeing how the past in�uences the
present and the future or simply to consider covariates that vary with time. For
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example, we may be interested in seeing the behaviour of a patient's illness as
he grows up (age varies with time). It is particularly of interest in the case of
recurrent event data to consider how the previous events can in�uence the upcom-
ing events. This must be dealt with using particular models. Two solutions are
usually proposed in the literature: frailty which introduces a random component
in the model di�erent for each individual and which often follows a gamma distri-
bution (Aalen et al., 2008) and dynamic models which introduce the number of
previous events for an individual as a covariate for predicting future events (Fosen
et al. (2006) and Aalen et al. (2008)). In this section we will focus on the second
solution constructing a dynamic additive regression model which is a simple ad-
ditive regression model but where we allow the covariates to be time varying and
depend upon the individual past (Aalen et al., 2008). We refer to functions of
the individual-speci�c histories as dynamic covariates (they are also often called
endogeneous or internal covariates) whereas the other covariates are called �xed
covariates. Later in this work, we will be considering variables that depend upon
the individual past events and that may therefore be de�ned as (Borgan et al.,
2007)

x(t) =
N(t−)

t
,

to include the previous events in the model.
However, the use of dynamic covariates brings several problems. First, as

dynamic covariates depend on the past, the model cannot be �tted from the
beginning, as we will not be able to construct them. The solution is therefore
to start the estimation after a few events happened. Another problem is that
the �xed covariates and the dynamic ones are not independent (Elgmati, 2009).
The in�uence of the �xed covariates on the event of interest may be hidden by
the dynamic ones as illustrated in Figure 1.4 (left). We say that the dynamic
covariates lie in the causal pathway between the �xed covariates and the response.
Therefore the estimates for the e�ects of the �xed covariates may be biased. This
will be illustrated in Section 2.3.1 when considering the Blue Bay data to be
described in Section 2.1. We will here illustrate a solution to this problem by
using path analysis which models the relations between the di�erent variables of
a model, as suggested in Fosen et al. (2006). Here, we will denote by Zi the �xed
covariates for individual i and by Di(t) the dynamic ones. In the simple additive
regression model, we have the following marginal model:

dNi(t) = Yi(t)

(
β0(t) + β1(t)Zi

)
+ dMi(t).

We can then simply introduce the dynamic covariates in a naive way

dNi(t) = Yi(t)

(
γ0(t) + γ1(t)Zi + γ2Di(t)

)
+ dMi(t).
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The problem with this naive model, as it was explained previously, is that the
estimate γ̂1(t) in the naive model will be underestimated compared to the value of

β̂1(t) in the marginal model because of the introduction of the dynamic covariates.
Indeed some of the e�ect of the �xed covariates will be accounted to the dynamic
covariates leading to an underestimation of γ̂1(t).

The solution to this problem is inspired by linear regression, where it is well
known that the estimated regression coe�cients remain unchanged when adding
an orthogonal covariate to the model. Therefore, when wanting to preserve the
e�ect of the �xed covariates when adding the dynamic covariates, one can simply
add an orthogonal covariate. Instead of using the dynamic covariates, one can
use the residuals of a linear model that regresses the dynamic covariates on the
other covariates (Fosen et al., 2006). In other words, we are trying to explain as
much as possible of the dynamic covariate by the past. The residual is what is left
over and we investigate how this a�ects the current events. The key is that the
residuals are orthogonal to covariates under least squares estimation of a linear
model. Therefore, when �tting the additive regression model, the e�ect of the
�xed covariates will not be a�ected by the e�ect of the residuals, as illustrated in
Figure 1.4 (right). In other words, we �t the linear model

D(t) = ψ(t)Z + ε(t),

obtain the residuals, R(t) which are orthogonal to Z,

R(t) = D(t)− ψ̂(t)Z.

The dynamic covariates can therefore be expressed as

D(t) = R(t) + ψ̂(t)Z.

To obtain the �nal model, we simply replace the dynamic covariates by the resid-
uals

dNi(t) = Yi(t)

(
β0(t) + β1(t)Zi + β2(t)Ri(t)

)
+ dMi(t).

We can also compute the quantity of which we underestimate the e�ect of the
�xed covariates in the naive model by noticing that

Di(t) = Ri(t) + ψ̂(t)Zi

and replacing Di(t) by the above formula in the naive model, we get

dNi(t) = Yi(t)

(
γ0(t) + γ1(t)Zi + γ2(t)

(
Ri(t) + ψ̂(t)Zi

))
+ dMi(t)

= Yi(t)

(
γ0(t) +

(
γ1(t) + γ2(t)ψ̂(t)︸ ︷︷ ︸

=β1(t)

)
Zi + γ2(t)Ri(t)

)
+ dMi(t).
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Figure 1.4: Path diagram of the dynamic model.

Thus in the naive model, the e�ect of the �xed covariates is underestimated by
γ2(t)ψ̂(t).

1.5 Discrete time

In the previous sections, the theory was presented for the continuous time case.
However, when working with real data in the remainder of this work, we will have
to consider discrete time. All the previous results still apply in the case of discrete
time and some formulas become even simpler. All the integrals over time can be
replaced by sums. Only the formulas for variance estimation need adjusting. For
example, we can write formula (1.12) as

Ω̂(t) =
t∑

s=0

(I−H(s))diag (λ(s)(1− λ(s))) (I−H(s))T .

Indeed, in discrete time, ∆N is a binomial and therefore its variance may be
estimated by λ(1−λ). This is properly taken into account in our code for analyses
to come.



Chapter 2

Data

2.1 Exploratory Analysis

According to the World Health Organization (WHO, 2009), diarrhoea occurs
world-wide and causes 4% of all deaths in the world. Mostly children in de-
veloping countries are concerned. It has been long known that adequate water
supplies, promotion of sanitation plus hygiene are important in prevention of di-
arrhoea and related problems. In this regard, a city-wide sanitation programme
was started in Salvador, Brazil, in 1997, in order to improve sewerage coverage
and thus, reduce diarrhoea morbidity in children less than 3 years old (Barreto
et al., 2007). The Institute of Public Health of the Federal University of Bahia
undertook three studies in 1997-1998, 2000-2002 and 2003-2004, together called
Blue Bay, which meant to evaluate the impact of the measures. The �rst phase
was done before the intervention and the second phase was studied by Borgan
et al. (2007). We will focus on the third study which started on the 13th October
2003 and ended on the 30th May 2004, for a maximum follow up of 231 days. A
total of 1127 children aged between 0 and 36 months were followed each day and
days with diarrhoea were registered. In this paper, we will concentrate on the 1006
children who had at least 90 days of follow up as in the previous study (Borgan
et al., 2007). The children came from 24 di�erent districts. The events of interest
will be prevalence and incidence of diarrhoea. Prevalence is the probability that
a child has diarrhoea on a given day whereas incidence is the probability that a
child starts a new episode of diarrhoea, where an episode is a sequence of days
with diarrhoea until there have been at least three consecutive clear days.

In Figure 2.1, we �rst show the number of children at risk for both incidence
and prevalence (upper plots) along with the daily prevalence and incidence rate
through the study period (lower plots). The rates are computed as the number of
children experiencing the event of interest divided by the total number of children
at risk that day. We can notice that prevalence starts around 4% at the beginning

24
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Figure 2.1: Empirical prevalence and incidence of diarrhoea. Top line: Number
of children at risk for prevalence (left) and incidence (right). Bottom line: daily
prevalence (left) and incidence (right).
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of the study and �nishes at approximatively 3% at the end, whereas the rate of
incidence is much lower (around 1%). We can also notice two periods were the
number of children at risk for prevalence and incidence is really low. We will see
in the next �gure that this is due to a large amount of missingness.

In Figure 2.2, we present the data for each child and for all the study period,
for both prevalence and incidence. Grey lines indicate that the child is at risk,
blank spaces correspond to missing information, crosses correspond to a day with
diarrhoea in the left plot and the beginning of a new period of diarrhoea in the
right one. Blue lines highlight periods when at least half of the children have
missing information.

The analysis of these data is complicated by the fact that we do not have
complete information for all children for all days. First of all, some of the children
entered late (4.1% of the children) and some of them dropped out of the study
before the �nal ending date (about 9.2%). Moreover, there are two periods when
data are missing for at least half of the children involved in the experiment. On
the one hand, data are missing for days 53 to 56. These correspond to dates
between the 4th and the 7th December, which was the Festa de Santa Barbara,
holidays in Salvador. On the other hand, there are missing data on days 128 to
134 which correspond to dates between 17th and 23rd February 2004, which was
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Figure 2.2: All data for prevalence (left) and incidence (right), the blue lines
highlight periods when more than half the children are missing and the crosses
represent events of interest.

the Carnival for the city. These two periods contain really few observations and
therefore we will not consider them in our analysis.

In Figure 2.3, we present two samples of 20 individuals. For each child, a gray
line represents the days when data were collected while blank spaces stand for
missing information. The red points show when the child entered the study and
the green points represent the leaving date. We represent a day with diarrhoea
and start of an episode by × and | respectively. The length of the follow up varies
considerably with children entering late in the study (individual 14 in the right
plot for instance) or on the contrary dropping out of the study (see for example
individual 19 on the left plot). Also, the number of events per child is very variable
with some children experiencing none or very few events and some having plenty.
This last fact can be observed in Table 2.1 and Figure 2.4, where summary and
plots of the number of events per child and per day are presented, an event being
a day with diarrhoea. In particular, child 748 experienced a particularly large
number of events (146 events in 231 days).

For each child in the study, information was collected concerning basic neigh-
bourhood and household sanitation conditions. These covariates are presented
below.

• MA : micro areas, 24 di�erent. They are the districts of the child's residence.
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Figure 2.3: Two examples of a sample of 20 individuals. The gray lines represents
the days where the children were at risk, red and green circles are for the beginning
and the end of the study respectively, crosses are days with diarrhoea and bars
are the start of an episode.
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Table 2.1: Summary of the number of events per child and per day.

(a) number of events per child

Min Median Mean Max
0 3 5.8 146

(b) number of events per day

Min Median Mean Max
0 22 22.12 50
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Figure 2.4: Plot of the number of events per child and per day respectively.
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• age : age of the child in months.

• num5y : number of children under 5 years old in the house (0: one child or
less, 1: at least 2 children).

• motherage : mother's age.

• mothercatage : mother's age categorized (0: 25 years old or more, 1: less
than 25 years old).

• streetqual : quality of street (0: good, 1: bad).

• habqual : habitation type (0: good, 1: bad).

• dens : number of people per bedroom (0: one person per bedroom, 1: two
people per bedroom, 2: more than 2 people per bedroom).

• water_origin : where water comes from (0: goverment link, 1: other).

• resagcat : type of drinking water reserve (0: good, 1: bad).

• waterqual : quality of drinking water (0: good, 1: bad).

• toilets : presence of toilet (0: inside the house, 1: not inside the house).

• exc_disp : excretal disposal (0: appropriate. 1: not appropriate).

• dirtrivers: presence of small rivers with dirty water (0: No, 1: yes).
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Table 2.2: Summary of the covariates.

covariate value percentage
age ≤ 12 37%

(months) > 12 and < 24 35%
≥ 24 28%

num5y 0 92%
1 8%

motherage 0 52%
1 48%

streetqual 0 61%
1 39%

habqual 0 98%
1 2%

water_origin 0 88%
1 12%

dirtrivers 0 79%
1 21%

exc_disp 0 91%
1 9%

covariate value percentage
toilets 0 87%

1 13%
dens 0 34%

1 44%
2 22%

garbage 0 97%
1 3%

�ooding 0 70%
1 30%

mother_education 0 25%
1 61%
2 14%

sex 0 48%
1 52%

waterqual 0 85%
1 15%

• garbage : destination of the garbage of the house (0: appropriate, 1: non
appropriate).

• flooding : �ooding in the house during rain (0: no, 1: yes).

• mother_education : mother's education categorized (from 0 to 2).

• sex : sex of the child (0: female, 1: male).

The Micro Areas will not be considered �rst. We will devote Chapter 4 to
the study of this variable. We found that 316 values of the variable resagcat

were missing which represents around 31% of missingness. Due to this, we choose
not to consider that variable. Moreover, the variables waterqual and exc_disp

present a particularity. These variables also have missing values but only rather
few (14 and 38 out of 1006 are missing respectively). Thus, we choose to impute
the value of the low risk category instead of missing value, which will make the
analysis conservative (i.e in these cases, we will replace the missing values by a
zero).
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Figure 2.5: Histogram and plot of the mother's age.
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In Table 2.2, a summary of the covariates is presented. All these covariates
are considered as binary or categorized. The variable age will be considered as a
time varying covariate whereas all the other covariates are considered �xed.
In Figure 2.5, plots of the age of the mother are presented. In the �rst plot, we
can see the mother's age of each child. The mothers are mainly aged between 15
and 40 years old. We can notice that child 65 has an 83 years old mother. This
suggests that either it is not his mother but the person who looks after him (such
as his grandmother) or that there is an error in the data collection. However, we
can also remark that some of the other mothers are aged between 50 and 70 years
old, which suggest we should prefer the �rst hypothesis. The second picture is an
histogram showing the frequency of the children given the age of their mother.
Notice that in the histogram, we deleted the mother of 83 years in order to make
it clearer.

2.2 Additive regression model without dynamic co-

variates

As described in Section 1, we will �t an additive regression model to the data
presented in the previous section using all the covariates introduced previously
except the micro areas, which will be studied later. First, we do not consider
dynamic covariates.
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Table 2.3: Signi�cance and constancy test for the prevalence model: all covariates.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 15.526 <0.001 10.536 0.530
num5y 0.689 0.490 38.580 <0.001

mothercatage 7.107 <0.001 7.763 0.440
streetqual -11.795 <0.001 11.164 0.210
habqual -1.476 0.140 22.996 0.890

dens 8.162 <0.001 6.159 0.520
water_origin -0.130 0.900 14.299 0.740

waterqual 4.253 <0.001 13.800 0.470
toilets -0.469 0.640 15.488 0.670

exc_disp 2.753 0.010 20.730 0.450
dirtrivers 2.436 0.010 22.524 0.060
garbage 9.567 <0.001 35.906 0.670
�ooding 5.454 <0.001 9.117 0.550

mother_education 4.758 <0.001 6.322 0.490
sex 2.060 0.040 5.017 0.850

young≤12 mths 6.629 <0.001 14.438 0.310
old >24 mths -9.888 <0.001 13.394 0.130

2.2.1 Study of prevalence

We start with the study of prevalence. The results for the �rst model are presented
in Table 2.3, where Tsig is the test statistic for testing Bj(t) = B0

j (t) = 0. Given
Table 2.3, we can see that some of the covariates are not signi�cant. This means
that they do not have any great e�ect on the prevalence of diarrhoea. Therefore,
we choose to remove them from the model. The �nal model is composed by the
covariates that were signi�cant in Table 2.3 and the obtained results are presented
in Table 2.4, for the signi�cance and constancy test, and in Figure 2.6 for the plots
of the cumulative regression functions of each of the covariates. In this �gure, we
can notice that con�dence bands (in green) are wider than con�dence intervals (in
blue), as expected, due to the fact that con�dence intervals are pointwise whereas
con�dence bands are uniform. However this di�erence is not great.

The advantage of the additive regression model, as it was outlined in Section 1,
is that the plots of the cumulative regression functions give a direct interpretation
of their e�ect on the event of interest. A decreasing cumulative regression func-
tion for instance implies that the covariate reduces the risk of the event happening
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Figure 2.6: Cumulative regression functions with con�dence intervals (blue) and
con�dence bands (green) for the �nal prevalence study without dynamic covari-
ates. The x-axis is in days.
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Table 2.4: Signi�cance and constancy test for the prevalence �nal model: reduced
covariate set.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 15.821 <0.001 10.204 0.480

mothercatage 7.015 <0.001 8.684 0.410
streetqual -11.809 <0.001 11.541 0.220

dens 8.550 <0.001 4.328 0.790
waterqual 4.238 <0.001 13.790 0.410
exc_disp 2.560 0.010 19.825 0.390
dirtrivers 2.176 0.030 23.802 <0.001
garbage 9.564 <0.001 33.001 0.880
�ooding 5.432 <0.001 9.171 0.520

mother_education 4.741 <0.001 6.045 0.700
sex 2.036 0.040 4.855 0.930

young≤12 mths 6.518 <0.001 14.007 0.280
old >24 mths -10.129 <0.001 12.323 0.170

and an increasing cumulative regression function implies the opposite. Take the
variable mothercatage for instance (second plot in the top row of Figure 2.6). Its
cumulative regression function is increasing with time, seems to be approximately
linear and reaches 1 at the end of the study. Moreover, recall that this variable
takes the value 1 if the mother is younger than 25 years old. Therefore, the inter-
pretation would be that children with younger mothers are more at risk to have
diarrhoea on a given day than those who have an older mother, with on average
one more day with diarrhoea per child. This e�ect is roughly constant with time,
as we cannot reject the null hypothesis in the constancy test (p-value>0.05). The
variable dirtrivers (plot 3, row 2) is quite interesting because it is the only one
with a de�nitely non constant e�ect over time. Indeed, we can notice that the null
hypothesis is rejected in Table 2.4 (p-value<0.05). The shape of the cumulative
regression function gives evidence in favor of this result: we can see that it is
increasing up to time 100 and then it is roughly �at up to the end. Therefore,
the presence of dirty rivers would increase the risk of having diarrhoea but only
during the �rst 100 days or so and then it seems to have no in�uence.
All the other variables can be interpreted in the same way. Notice that young chil-
dren are more susceptible to have diarrhoea than older ones as we would have ex-
pected. All the results seem to be close to what we could have expected, i.e. poor
life and hygiene conditions lead to a higher risk. This corresponds to increasing
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Table 2.5: Signi�cance and constancy test for the incidence model: all covariates.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 12.154 <0.001 5.159 0.060
num5y 1.296 0.190 5.231 0.540

mothercatage 2.877 <0.001 2.568 0.360
streetqual -4.539 <0.001 2.682 0.470
habqual 1.185 0.240 15.942 0.120

dens 3.476 <0.001 1.929 0.480
water_origin -0.160 0.870 5.439 0.470

waterqual 2.377 0.020 4.714 0.350
toilets 1.031 0.300 4.306 0.790

exc_disp -1.227 0.220 5.023 0.370
dirtrivers -0.818 0.410 5.475 0.080
garbage 4.036 <0.001 18.149 0.080
�ooding 1.726 0.080 2.330 0.700

mother_education 1.516 0.130 1.444 0.870
sex 0.298 0.770 2.141 0.510

young≤12 mths 1.233 0.220 4.927 0.220
old >24 mths -6.168 <0.001 4.684 0.060

cumulative regression functions over time as poor hygiene conditions were coded
as 1 when constructing the covariates. However the variable streetqual stands
out. Its cumulative regression function (third plot of the upper row of Figure 2.6)
is decreasing which means that a child who lives in a street of bad quality has
less chance to start an episode of diarrhoea, which is not intuitive. This same
contradiction will be observed when studying Phase II later on in this work.

2.2.2 Study of incidence

In this section we apply the same methods as in the previous section but this time,
our event of interest is incidence. Again, we do not consider dynamic covariates.
The �rst model was �tted by introducing all �xed covariates and results of both
signi�cance and constancy tests are presented in Table 2.5. All the non-signi�cant
variables were then removed to construct the �nal model. Results are in Table 2.6
and Figure 2.7.

In the �nal model, we only included signi�cant covariates. The only exception
is variable young that we have to include even though it is not signi�cant because
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Figure 2.7: Cumulative regression functions with con�dence intervals (blue) and
con�dence bands (green) for the incidence study without dynamic covariates. The
x axis is in days.
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Table 2.6: Signi�cance and constancy tests for the incidence model: reduced
covariate set.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 15.086 <0.001 5.734 0.010

mothercatage 2.805 0.010 2.464 0.450
streetqual -5.019 <0.001 2.861 0.350

dens 5.374 <0.001 2.238 0.260
waterqual 2.894 <0.001 5.172 0.170
garbage 4.610 <0.001 17.511 0.030

young≤12 mths 1.136 0.260 4.961 0.220
old >24 mths -6.314 <0.001 4.769 0.050

it is linked with the variable old which is signi�cant. All the results seems to
agree with what we would have expected, except for the variable streetqual as
it was already noticed when studying prevalence.

2.3 Additive regression model with dynamic co-

variates

As seen in Section 2.1, some children experienced many events whereas others
experienced hardly any. Therefore it seems not realistic to consider that all the
children have the same probability to have diarrhoea or to start an episode of di-
arrhoea on a given day, even given the same covariates. Some children are more at
risk than others and this is called frailty in the event history literature (Hougaard,
2000). If we are in the presence of frailty, the results of the previous section may
not be correct. To deal with that problem, we can construct dynamic models as
described in Section 1.4. We saw in this section that any function of the past Ft−
can be incorporated into a model for α(t) without changing the properties.
Thus, we are now going to look at a model where we will include some dynamic
covariates. In what follows, we will construct the dynamic covariate j for each
child i in the following way, according to Borgan et al. (2007):

xij(t) =

∑t
s=0w(s)Ri(s)Yi(s)∑t−1

s=0w(s)Ri(s)
,



2.3. ADDITIVE REGRESSION MODEL WITH DYNAMIC COVARIATES 37

where Yi(s) is the at risk indicator for child i, Ri(s) is the event process of interest
and

w(s) =

{
1 if t− s ≤ τ,
e−ρ(t−s−τ) if t− s > τ.

(2.1)

In what follows, we will take τ = 30 and ρ = 0.01 as in Borgan et al. (2007). We
will see in Section 2.5.2 that this arbitrary choice of the value of this two variables
does not a�ect the estimation to any extent.
We will consider the following dynamic covariates:

• days rate: previous days with diarrhoea scaled by days at risk.

• episodes rate: days with episodes of diarrhoea scaled by days at risk.

• fever rate: days with fever scaled by days at risk.

• sick rate: days when the child was sick scaled by days at risk.

• cough rate: days when the child had cough scaled by days at risk.

• can rate: days when the child had shortness of breath scaled by days at risk.

In the case where we want to study prevalence, we will also include the lags (from
1 to 4 days) which will be denoted by lag1, . . . , lag4 and which describe whether a
child had diarrhoea over the previous four days. By de�nition of incidence, these
dynamic covariates cannot be included in the analysis of incidence.

2.3.1 Study of prevalence

We then �rst �t an additive regression model for the prevalence analysis. The
results of the signi�cance test are presented in the left part of Table 2.7. We can
notice that once we introduce the dynamic covariates, none of the �xed covari-
ates, except streetqual, are signi�cant. This is evidence for the problem that
was introduced in Section 1.4, which was that the �xed covariates also in�uence
the dynamic covariates and therefore their e�ect is hidden when introducing the
dynamic covariates in the model. Thus, we �t a new dynamic model by replacing
the dynamic covariates by the residuals as described in Section 1.4. The results
obtained for the signi�cance test are presented in the right part of Table 2.7.

We can see that, by �tting the model using the residuals, there are now some
�xed signi�cant covariates. For the �nal dynamic model, we choose to keep in the
analysis only signi�cant covariates. The results of both signi�cant and constancy
tests are presented in Table 2.8 and the cumulative regression functions for each
of the covariates included in the �nal model are presented in Figures 2.8 and 2.9.
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Table 2.7: Signi�cance test for the study of prevalence with dynamic covariates:
original (left) and residuals (right).

(a) Dynamic covariates

Covariate value p-value
Baseline 0.14 0.89
num5y 0.554 0.58
mothercatage 1.982 0.05
streetqual -2.371 0.02
habqual -0.782 0.43
dens 0.731 0.46
water_origin -0.004 1
waterqual 0.425 0.67
toilets 0.314 0.75
exc_disp -0.582 0.56
dirtrivers -0.099 0.92
garbage 1.866 0.06
�ooding 0.715 0.47
mother_education 1.286 0.20
sex 1.179 0.24
young≤12 mths 2.28 0.02
old >24 mths -0.869 0.39
days_rate 3.017 <0.01
episodes_rate 1.273 0.2
sick_rate 0.642 0.52
fever_rate 1.266 0.21
cough_rate 2.264 0.02
can_rate -0.177 0.86
lag1 39.656 <0.01
lag2 4.404 <0.01
lag3 0.201 0.84
lag4 1.988 0.05

(b) Dynamic residuals

Covariate value p-value
Baseline 14.169 <0.001
num5y 1.035 0.300

mothercatage 6.486 <0.001
streetqual -10.981 <0.001
habqual -0.720 0.470

dens 6.999 <0.001
water_origin -0.409 0.680

waterqual 3.407 <0.001
toilets 0.149 0.880

exc_disp 1.795 0.070
dirtrivers 2.561 0.010
garbage 8.360 <0.001
�ooding 5.240 <0.001

mother_education 4.740 <0.001
sex 2.497 0.010

young≤12 mths 5.672 <0.001
old >24 mths -9.007 <0.001
days_rate 27.693 <0.001

episodes_rate 5.682 <0.001
sick_rate 3.103 <0.001
fever_rate 3.711 <0.001
cough_rate 2.455 0.010
can_rate -0.196 0.840

lag1 49.468 <0.001
lag2 5.292 <0.001
lag3 1.092 0.270
lag4 1.986 0.050
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Table 2.8: Signi�cance and constancy tests for the prevalence �nal model with
dynamic covariates.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 14.526 <0.001 8.360 0.010

mothercatage 6.387 <0.001 8.350 <0.001
streetqual -11.009 <0.001 11.065 <0.001

dens 8.006 <0.001 4.888 <0.001
waterqual 3.576 <0.001 11.314 <0.001
dirtrivers 2.584 0.010 23.786 <0.001
garbage 8.775 <0.001 29.722 0.060
�ooding 5.186 <0.001 8.304 <0.001

mother_education 4.565 <0.001 5.371 <0.001
sex 2.344 0.020 4.384 0.110

young≤12 mths 5.806 <0.001 11.432 <0.001
old >24 mths -9.228 <0.001 10.741 <0.001

days_rate 27.733 <0.001 4.352 <0.001
episodes_rate 5.622 <0.001 6.746 <0.001

sick_rate 2.555 0.010 1.157 <0.001
fever_rate 3.635 <0.001 0.827 0.020
cough_rate 2.471 0.010 0.224 0.010

lag1 49.886 <0.001 92.900 <0.001
lag2 5.204 <0.001 86.342 0.010
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Figure 2.8: Cumulative regression functions with con�dence intervals (blue) and
con�dence bands (green) for the prevalence study with dynamic covariates. The
x axis is in days.
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Figure 2.9: Cumulative regression functions (continued) with con�dence inter-
vals (blue) and con�dence bands (green) for the prevalence study with dynamic
covariates. The x axis is in days.
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By comparing Tables 2.3 and 2.7, we can notice that exc_disp and sex be-
come non-signi�cant when we add dynamic covariates. The other covariates are
still signi�cant. In Figures 2.8 and 2.9 cumulative regression functions for each
covariates are presented. We can remark that the plots for the �xed covariates in
this �gure are similar to those in Figure 2.6. When now looking at the dynamic
covariates, we see that they are highly signi�cant. We notice that days_rate and
lag1 have a really small variance and the cumulative regression function of lag1
reaches 120 at the end of the time study, which is huge compared to the value of
the other covariates. This means that a child who had diarrhoea the day before
has a really strong risk of having diarrhoea the next day. Looking carefully at
Table 2.8, we notice that the constancy test is rejected for every covariate included
in the model. However in Figures 2.8 and 2.9 there seem to be some empirically
constant covariates which contradicts the results obtained by computation. A
reason for this would be that introducing the lags explains a lot and there is not
much variability left. Therefore a really small variation in the slope of a covariate
is detected by the test as being highly signi�cant whereas it does not seem to be
when looking at the plots. Thus, this model with the lags in is maybe a little
over-�tted and may not give the correct results for the constancy test.

2.3.2 Study of incidence

We now study incidence and this time we include dynamic covariates as described
in the previous section. The only di�erence here is that we do not add the lags as
they are not appropriate when studying incidence. We carry out the model selec-
tion in the exact same way as we did in the previous sections: we remove all the
non-signi�cant covariates from the model to keep only the signi�cant covariates.
The results of both signi�cance and constancy tests for the �nal model are pre-
sented in Table 2.10 while the plots of the cumulative regression functions of the
covariates are in Figure 2.10.

Here again, we notice that there is almost no di�erence between the plots of the
cumulative regression functions of the �xed covariates in the model without dy-
namics (Figure 2.7) and in the model with dynamics (Figure 2.10). Only flooding
becomes not signi�cant between the two models. The variable days_rate also has
a small variance. However, contrary to the prevalence model with dynamic co-
variates, the dynamic covariates do not take huge values. Moreover, results of
the constancy test of Table 2.10 seem to conform to what we can observe in Fig-
ure 2.10, which is that the covariates almost all have a constant e�ect over time.
It seems therefore that we encounter less problems and obtain more appropri-
ate results when using the model for incidence with dynamic covariates. This
conclusion will later be reinforced by the study of the residuals in Section 2.5.
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Table 2.9: Signi�cance and constancy tests for the incidence �nal model with
dynamic covariates.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 12.006 <0.001 4.429 0.210
num5y 1.041 0.300 5.886 0.320

mothercatage 3.033 <0.001 2.810 0.380
streetqual -5.413 <0.001 2.431 0.630
habqual 1.386 0.170 16.768 0.110

dens 4.410 <0.001 2.214 0.510
water_origin -0.303 0.760 4.995 0.650

waterqual 2.480 0.010 4.690 0.420
toilets 0.863 0.390 4.640 0.740

exc_disp -0.677 0.500 5.061 0.730
dirtrivers 0.137 0.890 6.005 0.120
garbage 4.617 <0.001 19.772 0.040
�ooding 2.217 0.030 2.461 0.710

mother_education 1.725 0.080 1.539 0.770
sex 0.988 0.320 2.544 0.480

young<=12 mths 1.680 0.090 4.390 0.220
old >24mths -6.631 <0.001 4.271 0.030

days_rate 13.471 <0.001 0.596 0.590
episodes_rate 4.109 <0.001 3.110 0.590

sick_rate 3.864 <0.001 0.286 0.270
fever_rate 0.831 0.410 0.221 0.880
cough_rate 3.729 <0.001 0.070 0.640
can_rate 0.284 0.780 0.294 0.850
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Figure 2.10: Cumulative regression functions with con�dence intervals (blue) and
con�dence bands (green) for the incidence study with dynamic covariates. The x
axis is in days.
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Table 2.10: Signi�cance and constancy tests for the incidence �nal model with
dynamic covariates.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 14.791 <0.001 4.667 0.090

mothercatage 2.950 <0.001 2.789 0.400
streetqual -5.697 <0.001 2.487 0.540

dens 6.239 <0.001 2.517 0.200
waterqual 2.882 <0.001 5.111 0.290
garbage 5.237 <0.001 19.113 0.060
�ooding 2.582 0.010 3.499 0.430

young<=12 mths 1.617 0.110 4.178 0.410
old >24mths -6.714 <0.001 4.244 0.070

days_rate 13.388 <0.001 0.585 0.620
episodes_rate 4.062 <0.001 3.255 0.480

sick_rate 3.814 <0.001 0.286 0.270
cough_rate 3.744 <0.001 0.069 0.740

2.4 Dropout

As we saw in Section 2.1, the data we are studying present missingness. And more
particularly, we noticed that some children dropped out of the study. We cannot
test for missing not at random. However, we can suppose missing at random
(MAR) as we condition on the past. In that case,

P (dropout|past, future) = P (dropout|past).

One can be interested in seeing whether the dropout e�ect is dependent on the
covariates or if it depends on unknown factors. This means investigate MAR by
looking at covariate e�ects on dropout. Thus, we �tted an additive regression
model using all �xed and dynamic covariates with the dropout as the response
variable. We found that none of the covariates were signi�cant apart from num5y1,
which means that children with num5y=1 are more likely to drop out. Our analysis
of prevalence and incidence is valid under MAR dropout as by de�nition our
models condition on the past, and hence how that past a�ects dropout does not
bias our conclusions.

1The complete results of this analysis are available in Section A of the Appendix.
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2.5 Model checking and study of the martingale

residuals.

We have �tted several models to the data but we have not so far considered model
adequacy. For this, we need to develop a diagnostic procedure. First we will study
residuals with or without dynamic covariates. Then, we will study the in�uence
of the weight function, de�ned by equation (2.1), on our estimates.

2.5.1 Study of the residuals

Study of prevalence

In this section, we will study the goodness of �t of the two models we �tted for
the prevalence analysis. As suggested in Section 1.2, we will construct the mar-
tingale residuals and if the model is correctly speci�ed, the standard deviation of
the standardized martingale residuals should be close to one at all time.
In what follows, we use the �nal models described in the previous sections, where
we took τ = 30 and ρ = 0.01 for the weights of the dynamic covariates.
The standard deviations of the standardized martingale residuals for prevalence
for both the models with and without dynamic covariates are presented in Fig-
ure 2.11. We notice that including the dynamic covariates provides a huge im-
provement as the standard deviation is much closer to one. It seems therefore
more appropriate to use the model that includes dynamic covariates when want-
ing to study prevalence of diarrhoea. However, we can also notice that in the
case when we introduce the dynamic covariates, we obtain residuals with variance
below one which suggests that there may be some over-�tting. This is consistent
with our concerns over inclusion of the lags e�ect.

Study of incidence

For the two models �tted for the incidence analysis, we computed the martingale
residuals. The standard deviations obtained are plotted in Figure 2.12. This
time, opposite to the prevalence case, it seems that the model without dynamic
has residuals that are acceptable as their value at around 1.2, is reasonably close
to one. Of course, introducing the dynamic covariates leads to an improvement of
the model as the standard deviation of the residuals is closer to one, though there
is some indication of over�tting. However the di�erence between the models with
and without dynamic covariates is not as large as in the prevalence study.
We see that the standard deviation of the martingale residuals is closer to one
when we study incidence than when we study prevalence. Moreover, we saw there
was a problem with the constancy test when introducing the lags in the prevalence
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Figure 2.11: Standard deviation of the standardized martingale residuals for the
study of prevalence for models without dynamic covariates (blue) and with dy-
namic covariates (red).
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model (see Section 2.3.1). For these reasons, we choose to keep the dynamic model
for incidence as the best model for studying diarrhoea. However, we also keep in
mind that the model for incidence without dynamic covariates is also quite good.

2.5.2 Study of the weight function

So far, every time we �tted a model including dynamic covariates, we chose τ = 30
and ρ = 0.01. We are now interested in studying the role played by the weight
function on the �t of the model. This is to see if other values of τ and ρ could
produce better models, i.e. models with better residuals.
First, recall that the weights were de�ned in the following way

w(s) =

{
1 if t− s ≤ τ,
e−ρ(t−s−τ) if t− s > τ,

where τ and ρ must be chosen.
In Figure 2.13, we show the weight function w(t) for di�erent values of the

parameters τ and ρ. We can notice that the weights are equal for the events that
are in the most recent τ days and reduce the importance of the earlier events.

In Figure 2.13, we show the residuals obtained when �tting the model for
incidence with dynamic covariates using the four weight functions described pre-
viously. We can notice that changing the value of τ or ρ does not a�ect the results.
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Figure 2.12: Standard deviation of the martingale residuals for the study of inci-
dence for models without dynamic covariates (blue) and with dynamic covariates
(red).
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Figure 2.13: Weight function for di�erent values of τ and ρ (left) and the impact
of di�erent weight functions on the martingale residuals (right).
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It seems we have constant time frailty, so the dynamic covariates are fairly stable
over time. Therefore, if some reasonable history is included, changing the weights
will not a�ect the model.

2.6 Logistic regression

The additive regression model presented above has lots of advantages. Indeed, it
produces results that are directly interpretable and all the theory of martingales
can be applied for inference. However it presents also an important disadvantage
which is that the estimated intensity α̂(t) de�ned by (1.3) can be negative. This
happens when for example one of the covariates has a really strong negative e�ect.
The estimates are not constrained to be non-negative which leads to the possibility
of having a negative α̂(t).
In order to deal with that problem, one can consider a logistic regression approach.
For each time point t, we �t a logistic regression for all individuals at risk. We
replace our model (1.3) by:

α(t) = Y (t)
eX(t)β(t)

1 + eX(t)β(t)
.

However this method loses some of the advantages of the additive regression
model. First, the plot of the output, which is the estimates β̂(t) is not informa-
tive and does not give any direct information on its in�uence on α(t) (we cannot
obtain the same kind of plots as in the previous sections). Moreover, the cumu-

lative coe�cients B̂(t) do not have the martingale property needed for inference.
Further, the logistic approach needs su�cient events and su�cient variability in
the covariates for the iterative estimation routine to converge. For example, it
is not possible to �t the logistic regression model if all the individuals who ex-
perienced an event have a covariate equal to 0. This is illustrated in Table 2.11,
where we can see that on day 25, the individuals who experienced an event all
had habqual=0 and as we �t the model each day, we will not be able to estimate
the probability for day 25.

We �rst �tted the logistic model by omitting days when there was not enough
events (≤ 10) or when the covariates were not well distributed. When using all
�xed covariates for the prevalence analysis, we were only able to �t the model
for 14 of the 231 days. This is clearly not enough to do a meaningful analysis.
Therefore, even if we can have negative estimate of the intensity, we prefer the
additive regression model for rare recurrent events data. Moreover, provided we
do not over-interpret the intensity estimates at particular times, inferences from
the additive model based on cumulative coe�cients or intensities are usually valid.
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Table 2.11: Illustration of a covariate which is not well distributed. Each cell
contains the number of individuals in each category.

Event (day 25)
0 1

habqual 0 954 23
1 29 0



Chapter 3

Comparison of Phase II and Phase

III

Three longitudinal studies composed the investigation of the sanitation interven-
tion in Salvador, Brazil. The �rst was done in 1997-1998, before the intervention.
The second one, which we will call Phase II was conducted between October 2000
and January 2002. A complete analysis of these data can be found in Borgan
et al. (2007) and Elgmati (2009). The last study, Phase III, was the one studied
in the previous chapter and was conducted in 2003-2004 after the intervention.

In this chapter, we are interested in comparing Phase II and Phase III in order
to see whether a real improvement can be observed concerning the occurence of
childhood diarrhoea. We will �rst conduct an exploratory analysis of Phase II
and then we will construct two models in order to be able to compare the two
phases in the last section.

3.1 Study of Phase II

3.1.1 Exploratory analysis of Phase II

A total of 926 children were involved in the second phase of the Blue Bay project.
they were followed at home twice a week from October 2000 to January 2002 for
a maximum number of 455 days of follow-up (Borgan et al., 2007). However, as
only 231 days were considered in the next phase, we will only consider the �rst
230 days of the study. As well as recording each day if the child had diarrhoea,
fever or was sick, some information about the environnement in which the child
lived were collected. As our goal is to compare Phase II with Phase III, we will
only consider the covariates that are common to both studies. They are: num5y,
dens, streetqual, waterqual, dirtrivers, flooding, mothercatage, sex and
age: these variables were de�ned in Section 2.1. As we are trying to see if the

51



52 Chapter 3. Comparison of Phase II and Phase III

Table 3.1: Proportion of children for each common covariate in each phase.

Covariate value Phase II Phase III
Num5y 0 0.56 0.92

1 0.44 0.08
Dens 0 0.82 0.78

1 0.18 0.22
Streetqual 0 0.43 0.61

1 0.57 0.39
waterqual 0 0.78 0.85

1 0.22 0.15
dirtrivers 0 0.84 0.79

1 0.16 0.21
�ooding 0 0.71 0.70

1 0.29 0.30
mothercatage 0 0.54 0.52

1 0.46 0.48
sex 0 0.47 0.48

1 0.53 0.52
age ≤12 0.28 0.37

≥ 24 0.37 0.28

sanitation conditions were improved between both phases, we will not consider
any dynamic covariates as they depend mostly on the children involved in the
experiment rather than on the conditions in which they live. In the same way as
for the study of Phase III, the micro areas will be considered and studied later in
Chapter 4.

First, a table summarizing the proportion of individuals in each category of
the covariates for both phases is presented in Table 3.1. With one exception, the
distribution of covariates seems to be very similar in the two phases. The exception
is num5y, the indicator of there being at least two children under �ve years old in
the household. In Phase II about half the households had this property but by
Phase III the proportion dropped to 8%. It is possible that these was a change
in de�nition by Phase III but in the absence of other information we must accept
the data as provided.

Figure 3.1 presents the number of events per child and per day respectively.
As in Phase III, we can observe that some children experienced a lot more events
than others.
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Figure 3.1: Number of events per child (left) and per day (right) for Phase II.
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3.1.2 Additive regression model for phase II

In this section we will only present the �nal models, as the model selection was
done in a similar way as for Phase III. We include in the models only covariates
that are common to both phases in order to be able to make a comparison. Again,
in order to be consistent with Phase III, we only �t the models up to day 230. For
each model, we present a table summarizing the signi�cance and the constancy
tests and we show �gures of the cumulative regression functions for each covariate.
Recall that we do not consider the dynamic covariates in this section as they
depend on the children involved in the experiment and therefore are not suitable
for a comparison.

Study of Prevalence

We start the construction of models by considering prevalence.
From Table 3.2, we can notice that all the covariates involved in both phases

are signi�cant here. The only covariate that was not signi�cant in Phase III but
is in Phase II is num5y. This is consistent with what was observed in the previous
section where we noticed that the proportion of households with num5y taking
the value one had dropped between both phases. As in the study of Phase III,
the results we obtained in Figure 3.2 are consistent with what we would expect:
bad hygiene and environment tend to increase the risk of having diarrhoea on a
given day. However, note that again the same problem appears with the vari-
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Figure 3.2: Cumulative regression functions with con�dence intervals (blue) and
con�dence bands (green) for the study of prevalence for Phase II. The x axis is in
days.
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Table 3.2: Signi�cance and constancy tests for the �nal model for prevalence for
Phase II.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 15.461 <0.001 8.844 0.740
num5y 3.369 <0.001 9.845 0.410
dens2 9.515 <0.001 12.797 0.500

streetqual -3.091 <0.001 8.494 0.530
waterqual 5.873 <0.001 15.421 0.250
dirtrivers 12.542 <0.001 36.035 0.010
�ooding 7.124 <0.001 19.676 0.120

mothercatage 8.263 <0.001 6.924 0.740
sex 5.229 <0.001 6.269 0.740

young<=12 mths 10.339 <0.001 8.980 0.970
old >24mths -20.364 <0.001 17.374 0.020

able streetqual which has a cumulative regression function in a counterintuitive
direction.

Study of incidence

We now focus on the study of incidence. The results for signi�cance and constancy
tests are presented in Table 3.3 whereas the plots of the cumulative regression
functions are in Figure 3.3.

The results seem to correspond once again with what we expected. However,
this time it seems that the signi�cant covariates involved to explain the incidence
of diarrhoea are di�erent between Phase II and Phase III (compare Tables 2.6 and
3.3). Variable age is common but now dirtrivers, flooding and sex appear to
be important. In both cases the selected covariates can generally be considered
as proxies for "bad environment".

Martingale residuals

We can compare the standard deviation of the martingale residuals for both mod-
els. The result is presented in Figure 3.4. We notice that the model for incidence
is much better in term of the residuals. Recall that when studying Phase III, the
model for incidence without dynamics was also found to be quite good. Therefore,
in what follows, we will consider the model for incidence without dynamics for
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Table 3.3: Signi�cance and constancy tests for the incidence �nal model for
Phase II.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 17.848 <0.001 4.257 0.120
dirtrivers 4.373 <0.001 7.117 0.090
�ooding 2.849 <0.001 1.991 0.850

sex 3.491 <0.001 2.281 0.740
young<=12 mths 1.875 0.060 3.309 0.940

old >24mths -10.257 <0.001 3.914 0.300

Figure 3.3: Cumulative regression functions with con�dence intervals (blue) and
con�dence bands (green) for the incidence �nal model for Phase II.
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Figure 3.4: Standard deviation of the martingale residuals for prevalence (red)
and incidence (blue) for Phase II.
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comparison and will not pursue prevalence further.

3.2 Comparison Phase II and Phase III

Now that we studied Phase II and that we found a model that is acceptable to
explain incidence of diarrhoea, we aim to compare Phase II and Phase III. A
model for incidence was constructed for Phase III using only the covariates that
were in common and using only the 230 �rst days. As the results are similar to
those presented in Section 2.2.2, we choose not to show them here. We begin our
comparison with Figure 3.5, which shows for each covariate the �nal cumulative
regression e�ect Bj(τ) for each phase. The colours indicate whether the covariate
was signi�cant or constant in each phase. We learn from the �gure that few
covariates appear in both phases. It seems that incidence of diarrhoea is explained
by di�erent covariates depending on the phase under study.

We now want to see if there is a di�erence in the intensity processes of the two
phases. In Figure 3.6, we present the predicted intensity process for the incidence
model for Phase II and Phase III. In order to do a meaningful comparison we
consider two cases: �rst, children with "all the best", i.e. with all covariates equal
to zero, and then children with "all the worst", i.e. all covariates equal to one. We
also split into old and young children as we saw that age in�uences the incidence
of diarrhoea.

From Figure 3.6, we see that the intensity in Phase III is lower than in Phase
II, for young children at least. As expected young children are more at risk to
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Figure 3.5: Value of the cumulative regression coe�cients for incidence at time
τ = 230 for Phase II and Phase III.
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Figure 3.6: Predicted intensity process for incidence for children with all covari-
ates=0, young and old (left) and with all covariates=1, young and old (right) for
Phase II and Phase III.
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have an episode of diarrhoea than older ones and of course having all "the worst"
covariates increases considerably the intensity. Even if it seems that there is a
di�erence between Phase II and Phase III, we need to see if it is signi�cant. In
order to do that, one can compute the variance of the intensity process, which we
will denote Γ̂(t). The intensity process is

N̂(t) =

∫ t

0

β̂(s)x0ds,

where x0 is a vector of zeros and ones depending if the corresponding covariates
take the value zero or one respectively. The computation of the variance is then
inspired by the computation of the variance in simple linear regression.

Γ̂(t) =
̂

var(N̂(t)) =

∫ t

0

xT0 var(β̂(s))x0 ds

= xT0

∫ t

0

var(β̂(s))ds x0

= xT0 Σ̂(t)x0,

where Σ̂(t) is the variance of β̂(t) and was de�ned by Formula (1.6). Now that
we have the variance, we can construct a 95% con�dence interval for each of the
functions plotted in Figure 3.6. The results are presented in Figure 3.7. Note
that we change the scale and we separate each of the previous plots in two for
clarity. By looking at this �gure it is now easy to see if the di�erence observed
in Figure 3.6 is signi�cant or not. It su�ces to see if the two con�dence intervals
include both functions for the last time point τ = 230 in order for the di�erence
to be non signi�cant. This situation only happens once: for old children with
"all the best" meaning that there was no improvement between Phase II and
Phase III for this category of children. However for all other children, there is
a signi�cant di�erence between Phase II and Phase III and as the intensity for
Phase III is always lower than the one for Phase II, this means that there was a
real improvement in reducing the incidence of diarrhoea.

These results can be found again using a formal normal test. We denote by
ÂII(τ) and ÂIII(τ) the intensity at time τ in Phase II and Phase III respectively.

The variance of Âi, i ∈ {II, III} is denoted Vi. Under the null hypothesis that
the two intensities are equal, we have

Z =
ÂII(τ)− ÂIII(τ)√

VII + VIII
∼ N (0, 1)

We apply the test to the four categories of children described above and obtain
the following results:
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Figure 3.7: Intensity processes for children with all best covariates (left) and
all worst (right), young (upper) and old (lower), with 95% pointwise con�dence
intervals as dashed lines.
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• Young children with all the best: Z = 2.52, leading to a p-value of 0.012.

• Old children with all the best: Z = −0.47 leading to a p-value of 0.63.

• Young children with all the worst: Z = 3.73 leading to a p-value<0.001.

• Old children with all the worst: Z = 2.35, leading to a p-value of 0.018.

The results of the test give evidence to support what was concluded from Fig-
ure 3.7. It seems that there was a real improvement between both phases concern-
ing the incidence of diarrhoea, except for old children with good living condition.
However, in this category, the incidence was already very low in Phase II and
hence there is reduced scope for improvement by Phase III. As we saw earlier in
this section, the observed di�erence cannot be due to the covariates. Therefore,
it seems that the di�erence in the intensity that was observed may be due to the
actions on hygiene and behaviour that was part of the measures taken by the
government and not by an improvement of the living conditions of the children.



Chapter 4

Study of the micro areas

One of the covariates, the micro areas (MA), was left apart when constructing
models because it was not binary and needed a special study. Considering that
diarrhoea is maybe due to bacteria, it makes sense to suppose that children living
in the same area as a child who had an episode of diarrhoea have more risk to
have one themselves. In this chapter, we will �rst study the e�ect of the micro
areas on the incidence of diarrhoea in Phase III. Then we will compare the e�ects
of the micro areas in Phase II and Phase III.

4.1 Study of the micro areas in Phase III

In this section we will study if there is a signi�cant di�erence between the areas
by clustering the children depending on the area they live in and testing whether
we obtain signi�cant di�erences between the clusters. We have 24 di�erent micro
areas and the number of children in each varies from 22 to 61 (Figure 4.1). In all
this section we concentrate on incidence only.

We �rst �tted models for each cluster including only a baseline. Figure 4.2
shows the cumulative regression functions for the baseline in each cluster (gray
lines) and for all the children without clustering (black line). The big spread
between the functions indicates there may be some di�erences between the micro
areas. Three cumulative functions are highlighted in this plots. They are the fur-
thest (MA 1 and 20) and the closest (MA 10) cumulative baselines to the general
cumulative baseline.
The second plot of the same �gure presents the standard deviation of the martin-
gale residuals for each of the micro areas. The di�erences between the di�erent
clusters is not striking, and they all seem quite close to the standard deviation of
the martingale residuals of the general model without clusters.

A more formal way to see if there is a di�erence between the clusters is to
study the di�erence between their intensity. This means that if we denote αk the

62
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Figure 4.1: Number of children per micro area.
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Figure 4.2: Left: cumulative baseline functions for the 24 MA (gray lines) and for
all children (black line), for the study of incidence, with the furthest MA (blue)
and the closest (red) to the general baseline. Right: standard deviation of the
standardized martingale residuals for each cluster (gray lines) and for all children
(black line) for the study of incidence.
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Figure 4.3: Space time plot for incidence. Each cell represents the average number
of events in the MA for the given month. The darker the color, the higher the
incidence.
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intensity of cluster k, we want to test H0: α1(t) = · · · = α24(t), for all t ∈ [0, τ ].
For this, we use the log-rank test which was introduced in Section 1.3.4. We
obtained a value of the test statistic of 250.89, which under the null hypothesis,
should come from a χ2 distribution with 23 degrees of freedom. The corresponding
p-value was below 0.001 which is strong evidence against the null hypothesis that
all the clusters have the same intensity.

Another way to see the di�erence between clusters and if they are time varying,
is to produce a space time plot where we can observe month to month di�erences.
It is presented in Figure 4.3. In each cell, the average number of events per month,
computed as the number of events in the month divided by the number of children
at risk in the same month, is represented. The darker the colour of the cell, the
more events happened in that cluster, that month. Di�erences between clusters
are highlighted as some lines are darker than others (compare clusters 20 and 13
for instance). If we now look for di�erences between months for a given cluster,
we can see that some of them, like clusters 1 or 8, seem to vary with time whereas
cluster 9 is pretty much constant.

To see whether the di�erences between clusters, that we noticed previously,
were by chance, we permute all children and we distribute them in 24 clusters of
the same size as the original micro areas. Then, as before, the average number of
events per month is computed. We did those permutations 1000 times. A space
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Figure 4.4: Space time plots for 12 permutations.
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Figure 4.5: Cumulative variance of 1000 permutations (gray lines) and the cumu-
lative variance of the real clusters (black line) over 8 months.
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time plot for some permutations is presented in Figure 4.4. To see if the general
data are di�erent from the permutations, we compute for each the between cluster
variance each month. The plot of the cumulative between cluster variance is in
Figure 4.5. The variance of the original data is presented in black whereas the
variances for each of the 1000 permutations are plotted in gray. We can notice a
huge di�erence between the general variance and the variances of the permutations
giving strong evidence for the fact that there is signi�cant di�erences between the
micro areas.

Even if Figure 4.5 clearly shows that we have a di�erence between clusters, we
have to moderate this conclusion. Indeed, suppose there is a child in our sample
who has a really large number of events. Then when doing permutations, the
cluster containing that child will probably always be detected as di�erent than
the others. A solution to this would be to apply a permutation of the children
each month. Then we apply the exact same process we used before. The plot
of the cumulative variance for the 1000 temporal permutations is presented in
Figure 4.6. We can see that changing the kind of permutation does not a�ect the
results and the conclusion still apply: there is a big di�erence between clusters in
the real data.

We now want to see what is the e�ect of each cluster on the general intensity
and if this e�ect is constant or not. In order to analyze this, we have to �t
an additive regression model including the MA as factor covariates. However,



4.1. STUDY OF THE MICRO AREAS IN PHASE III 67

Figure 4.6: Cumulative variances of 1000 temporal permutations (gray lines) and
the cumulative variance of the real clusters (black line) over 8 months.
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we cannot introduce all the MA, as the design matrix will not have full rank in
that case and we will not be able to estimate the regression functions. Then,
the estimates we will obtain from �tting the model will be the e�ect of a given
MA compared to the one we removed. As we want to be able to compare the
e�ect of each micro area with the general e�ect, it seems therefore appropriate to
remove the MA that has the closest cumulative baseline to the general baseline.
By doing this, we will approximately compare the e�ect of each MA with the
general baseline. We recall from Figure 4.2 that MA10 was detected as being the
closest to the general baseline. Thus, we �tted an additive regression model for
the study of incidence, including all the MA but one (MA 10) in the same model.
The results of the signi�cance and the constancy tests are presented in Table 4.1
and Figures 4.7 and 4.8 present the plots of the cumulative regression functions
of each micro area.

We can notice from Table 4.1 that micro areas 1, 4, 21, 22 and 23 are signi�cant
whereas the others are not and they have a constant e�ect. However, we have to
remember that the e�ect of the micro areas that is shown by this model corre-
sponds to the e�ect of the MA compared to the general e�ect without clustering
(i.e. the baseline). Therefore, when we see a signi�cant e�ect of one of the MA
it means that this MA is signi�cantly di�erent from the baseline. On the other
hand, when a micro area is detected as being constant it means that it varies in
the same way as the cumulative baseline (�rst plot top row in Figure 4.7). The
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Table 4.1: Signi�cance and constancy tests for the study of incidence with all the
micro areas but one included.

Signi�cance test Constancy test
Covariate value of Tsig p-value value of T1,const p-value
Baseline 6.245 <0.001 7.305 0.110

MA1 3.537 <0.001 9.797 0.390
MA2 -1.052 0.290 6.540 0.500
MA3 0.137 0.890 10.475 0.100
MA4 2.508 0.010 7.224 0.660
MA5 1.508 0.130 5.935 0.760
MA6 0.138 0.890 10.282 0.200
MA7 -0.264 0.790 9.619 0.250
MA8 1.953 0.050 14.641 0.060
MA9 -0.477 0.630 5.343 0.700
MA11 1.187 0.240 9.567 0.240
MA12 -0.234 0.820 8.336 0.290
MA13 1.873 0.060 9.389 0.390
MA14 1.475 0.140 7.386 0.860
MA15 -1.516 0.130 7.613 0.320
MA16 -1.502 0.130 7.414 0.440
MA17 -0.847 0.400 6.059 0.660
MA18 0.393 0.690 9.608 0.150
MA19 -1.200 0.230 9.027 0.160
MA20 -4.786 <0.001 5.998 0.410
MA21 -1.886 0.060 3.997 0.910
MA22 2.251 0.020 11.674 0.210
MA23 -3.282 <0.001 7.078 0.340
MA24 0.336 0.740 7.720 0.480
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Figure 4.7: Cumulative regression functions for incidence, showing the e�ect of
each cluster compared with the general e�ect. The x axis is in days.
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Figure 4.8: Cumulative regression functions (continued) for incidence, showing
the e�ect of each cluster compared with the general e�ect. The x axis is in days.
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cumulative regression functions of MAs 1, 4 and 22 are increasing as can be seen in
Figures 4.7 and 4.8. This means that children living in those areas tend to have
more risk to have an episode of diarrhoea on a given day than other children.
On the contrary, MA 20 and 23 have decreasing cumulative regression functions
indicating that children in those areas are less at risk than other children.

In this section we applied di�erent methods in order to see if there was a signif-
icant di�erence between the micro areas and if it was the case, identify the e�ect
of the clusters. We �rst looked at the di�erences in the cumulative baselines when
�tting a model for each cluster. We could assess graphically and using a log-rank
test that the di�erence was signi�cant. Then, we constructed a space time plot
and noticed again that it seemed there was an important di�erence between the
Micro Areas. The permutation study gave evidence for this conclusion no matter
if time constant or temporal permutations were applied. Finally the additive re-
gression model that considered only the micro areas as covariates showed that in
some of them the risk of having an episode of diarrhoea was increased whereas it
was decreased in others. Therefore, the micro areas are an important factor for
the risk of having diarrhoea. It seems that depending on where they live, children
have not equal risk of having an episode of diarrhoea.

4.1.1 Comparison with Phase II

We will now focus on a comparison of the micro areas between Phase II and
Phase III. It could be interesting to see if there is a di�erence between the micro
areas, i.e. if the improvement that was observed in Chapter 3 was general or if
some areas are more a�ected than others. Recall that in the previous section, we
considered 24 di�erent micro areas. However only 21 of them are present in both
studies. In Figure 4.9, a plot of the number of children in each MA is presented
for Phase II. It seems that children were taken approximately equally in all areas.

In Table 4.2, the proportion of children for each covariate and each MA in
both phases is presented. The idea behind this table is to see if there is an
area where living conditions were signi�cantly improved or made worse between
phases. It seems that the proportion is nearly the same between the phases for
all the covariates and the MA. Again, as it was noticed in Table 3.1, the variable
num5y stands out due to the big di�erence in the proportion of children for this
variable between both phases. Nevertheless, this variable is the only one with
such a characteristic and this di�erence applies to all MA.

For each micro area we construct a residual between observed and expected
counts as follows: for each phase,

• �t a model with baseline and covariates but no area e�ect.
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Table 4.2: Percentage of children for each covariate (the percentage is given for
the value 1 of the covariate) in each micro area for Phase II (left in each column)
and Phase III (right in each column).
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Figure 4.9: Number of children per micro area.
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• Calculate the expected number of events for each MA for each phase:

Ek =
∑
i∈MAk

∫ τ

0

Yi(t)
(
β̂0(t) + β1(t)x1i(t) + · · ·+ βp(t)xpi(t)

)
dt

=
∑
i∈MAk

∫ τ

0

α̂i(t)dt

=
∑
i∈MAk

Âi(τ)

• Calculate the observed number of events for each MA

Ok =
∑
i∈MAk

Ni(τ)

• Construct Rk the relative residuals for each MA

Rk =
Ok − Ek
Ek

The obtained residuals are then plotted for both phases in Figure 4.10. We can
see that no systematic pattern appear. There is no area which stands out in both
phases. Hence we have little evidence of residual area e�ects being related to
Phase II to Phase III di�erences and no area stands out as being convincingly
consistently good or consistently bad in terms of incidence.
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Figure 4.10: Relative residuals R for Phase II and Phase III.
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Conclusion

In this report, we focused on additive regression models to analyse survival data
and more speci�cally recurrent events data. This method presents lots of advan-
tages when dealing with those kind of data. First, the model is very simple as
it is of linear form and therefore the computations are simpli�ed, as we can use
least squares estimation. Moreover, when wanting to assess the e�ect of covariates
on the event of interest, the additive regression model produces results that give
direct interpretation even for complex time varying e�ects of time varying covari-
ates. Indeed it su�ces to look at the plot of the cumulative regression function
for each covariate to give a straightforward interpretation of its e�ect on the event
of interest. Moreover, the martingale property gives very useful results regarding
inference testing and model checking.

One problem is that the conditional probabilities can take negative values
as there is no constraint to lie between zero and one. This situation occurs for
example when a covariate has a strong negative e�ect. Due to the linear form of
the model, it can happen that the resulting intensity is negative. In order to get
round this problem, one can try to adopt a logistic regression approach which,
due to the exponential form of the model, constrains the estimated intensity to
lie between zero and one. This method was tried in Section 2.6, where we saw
that unfortunately, due to the very few number of events, it was impossible to �t
such a model for a su�ciently large amount of time points. Indeed the method
used in the logistic modelling approach failed to converge for time points with low
numbers of events.

After introducing the Blue Bay data, we applied several additive regression
models. We applied each time the same model selection procedure, which con-
sists in constructing a model with all covariates included and then removing the
covariates that are not signi�cant. First, models without dynamic covariates were
�tted for both incidence and prevalence. Then after noticing that there was prob-
ably a frailty e�ect in our data, given the large di�erence in the number of events
experienced by each child, we introduced the dynamic covariates in the model.
All models were then compared using martingale residuals and it appears that the
model for the study of incidence with dynamic covariates was the most appropri-
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ate. We learned from the models that bad hygiene and living conditions lead to
a higher risk in having an episode of diarrhoea, as expected.

In the previous models, we always supposed that all the children were inde-
pendent. However, given the fact that diarrhoea is maybe due to a bacteria, it
seems to be sensible to think that children that live close to a child which is having
an episode will tend to have one themselves too. We were therefore interested in
seeing if there was some area e�ect. By applying various methods, such as testing
(log-rank test), using permutation methods or even through additive regression
models, the study of the clustering e�ect leads to the conclusion that there exists
an area e�ect. Thus depending on where a child lives, he can be more at risk to
have an episode of diarrhoea on a given day.

Finally, a comparison between the two last phases of the Blue Bay project
was conducted. It revealed that there was a signi�cant improvement between
both phases, especially for young children. However, this improvement cannot
be attributed to an improvement in the sanitation conditions as they were sim-
ilar between both phases. We think that the improvement is therefore mainly
due to prevention which was part of the measures taken by the Salvador governe-
ment. Moreover, this measure seems to have been applied uniformly over all areas
as no di�erence was detected between the areas concerning the improvement in
childhood diarrhoea.

As further work, one could consider doing a deeper analysis of the conditional
multipliers that was studied when introducing the constancy test in Section 1.3.2.
A comparison of the two terms that are often used in the literature: "conditional
multipliers" and "wild bootstrap" and which seem to be similar could also be
conducted. Some power analysis could be done in the log-rank test in order to
assess which of the simulation or the permutation study gives the best power.
Concerning the data and more speci�cally clustering, one information was not
used when analyzing them. It is the geographics areas. There are eight of them
and each is composed of three micro areas. An interesting question would be to
assess if there is still a di�erence between them and if this time we can see some
geographic di�erence between the improvements. Again concerning the data, we
saw that problems occurred with the constancy test when introducing the lags
in the model for prevalence. We could also notice that we were probably in the
presence of over-�tting. It may therefore be interesting to investigate why the
constancy test failed or construct an additive regression model with dynamics but
without the lags and assess the goodness of �t of this model.

Finally, in this report, we focused on the additive regression models but there
exist other models such as the well known Cox model. It could be of interest to
�t such a model to the data and see if we obtain similar results.
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Appendix A

Results of the dropout study

Table A.1: Results of the signi�cance test for the study of the dropout.

Covariates Value of Tsig p-value
Baseline 1.318 0.190
num5y -2.375 0.020

mothercatage 1.386 0.170
streetqual -0.388 0.700
habqual 1.290 0.200

dens 1.957 0.050
water_origin 0.134 0.890

waterqual -0.851 0.390
toilets -0.119 0.910

exc_disp -0.330 0.740
dirtrivers -1.943 0.050
garbage -1.871 0.060
�ooding 0.993 0.320

mother_education 1.491 0.140

Covariates Value of Tsig p-value
sex 1.536 0.120

young<=12 mths -0.713 0.480
old >24mths 0.256 0.800

days_rate -0.150 0.880
episodes_rate 2.015 0.040

sick_rate 1.449 0.150
fever_rate 0.228 0.820
caugh_rate -0.819 0.410
can_rate 0.612 0.540

lag1 -0.086 0.930
lag2 -1.673 0.090
lag3 -0.248 0.800
lag4 1.402 0.160

78



79

Figure A.1: Cumulative regression functions with con�dence intervals (blue) and
con�dence bands (green) for the dropout study. The x axis is in days.
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Figure A.2: Cumulative regression functions for the dropout study (continued).
The x axis is in days.
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