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ABSTRACT 
We report on the micro-fa

characterization of a chip-scale plasm
based on a Rubidium (Rb) vapor cell. 
light source is intended for use as an in
pump-light source in miniature doubl
atomic clocks [1, 5]. The RF plasma
coupled using external electrodes, and th
impedance matched to the source 
between 1 and 36 MHz. Rb vapor c
previously developed as reference cells f
but not as light sources. This is the fi
plasma emitted from a chip-scale devi
emission is observed for over 18 days. 
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1. INTRODUCTION 

Miniaturizing atomic clocks to 
volumes for applications including GP
communication systems is a very a
Compact (~10 cm3) commercial Rubidiu
rely on Rb plasma discharge lamps as 
due to the lamp’s intrinsically correct
lines), technical simplicity, very slow 
(aging), and long lifetime.  

Microfabricating hermetically sealed
has been a challenge, with several g
different bonding techniques compatible
for instance anodic bonding [2] or sold
cells have been used as the reference cel
atomic frequency standards (atomic clo
light sources – in part due to the addition
igniting a stable plasma. While first studi
plasma light sources reported on low
discharges, no Rb light was reported [10,

Current state-of-the-art miniature atom
laser diode (VCSEL) as the light sou
resonance [4] because of their easy in
power efficiency, planarity and comp
(~mm2). However, the VCSEL app
sophisticated control electronics for 
stabilization [5], critical temper
requirements and complicated setup pro
goal of our work is to develop a microf
Rb plasma light source (as shown in ope
1) as an alternative and innovative de
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Figure 1: Rb plasma cell with t
The light emitted from the c
ignited plasma  
 

Figure 2: Schematic design of
atomic clock into which the R
integrated 

 
Double-resonance Rb atom

The fundamental conce
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reference for stabilizing t
oscillator. In a Rb atomic cl
“clock” transition betwe
hyperfine levels of 87Rb, at 
6.83 GHz (52S1/2 state, ⎜F=
detected on atoms maintain
cell. In a double-resonance 
lamp or laser resonant with 
nm or 780.2 nm, respectiv
creates a ground-state pola
clock transition is then 
microwave field to the ato
placed around the cell, and t
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mic clock 
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as a narrow dip in pump-light power tran
the cell. The frequency of a voltage-c
oscillator is locked to this dip using 
detection. 

Our envisaged double-resonance R
consists of a micro-fabricated Rb (natur
source, a micro-fabricated Rb referenc
enclosed by a microwave cavity, and 
(see Figure 2). The Rb plasma light sou
emits at the correct wavelengths, Rb D1 
required in a Rb clock. 

 
Rb Plasma Glow Discharge 

Igniting the plasma in a Rb cell requ
Rb atoms which are in the vapor p
sufficiently strong electric field is applie
ionizes the gas and accelerates the positi
electrons towards the opposite electrod
process, if the electric field is strong e
and electrons collide with the neutra
generating free electrons and positive
impact ionization. This becomes an av
eventually initiating an electrical breakd
several possible types of gas discharge [6

The discharge of interest to us is the 
discharge which includes the Rb lines –
are used to maintain optical resonanc
clock. This light source is aimed to be
portable chip-scale atomic clocks, so i
very little electrical power. Because the R
is very low at room temperature (~10-6 
an extremely high field strength woul
initiate electrical breakdown (Paschen cu
Rb light intensity would be low.  

Two steps are carried out to add
problems: (1) Increasing the temperat
increases the Rb vapor density and (2
pressure starter gas to the Rb cell to incr
of gas atoms in the cell. The gas need
ionization potential but higher than th
Ionization energy, IE1: 4.17 eV), in ord
easier than the buffer gas after plasma
highly reactive with several gases, esp
Argon, an inert gas, which is monoatom
relatively smaller diameter and higher 
among noble gases), having an ionizat
15.75 eV [8] is a good choice for this pur

 
 

2. DEVICE DEVELOPMENT 
Design and fabrication 

The design approach chosen for the 
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Figure 3: Microfabrication pro
source 
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Impedance Matching and R
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ight allow for lower power 
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RF Electronics 
reakdown voltage across the 
ectrical power, the cell needs 

with the source at 50 Ω. The 
or cell has an intrinsic 
low frequencies (<10 MHz) 
her frequencies (<36 MHz), 
6.5 kΩ at 4.6 MHz. It is 
pecific LCR components to 

0 Ω resistive load - (50 + j(0) 
wer transfer from the input to 
he overall power consumption 
hows schematically the RF 
onnected to the impedance 
he light source. 
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Figure 4: Plasma ignition schematic cir
sectional views of the cell 

 
3. RESULTS 

The plasma light source was impedan
tested at several frequency points over
range and results obtained when tested
reported in this article. 

The light source was characterized 
following: (1) total output optical powe
light source, (2) total electrical power co
the stability of the Rb lines with time. 

The output optical spectrum of th
discharge was measured using a spec
strong Rb lines – D1 (794.8 nm) and D
temperatures above 90 ºC, the work
range, was observed. Figure 5 sho
spectrum of the light source at differe
from 35 ºC to 151 ºC. A rapid rise in int
lines with increase in cell temperature
expected as the Rb vapor pressure in
inside the cell with temperature.  
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Figure 6:  Both Rb D1 and D2
power over time (measured at 1
 

The stability of the outp
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4. CONCLUSIONS 

A stable and low-power
with potential for wafer-
demonstrated for MEMS ato
µW of optical power at the 
from a 0.3 cm3 chip stack
sealing technique through
processes has been demonst
the longevity is the external
eroded by the plasma. The
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