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“Popper’s exile, in the late 1930s, in

Christchurch, New Zealand, provided

him with a nice personal experience of

the power of falsification. While in Eu-

rope, he had taken it for granted that all

swans were white, but in Christchurch

he found to his surprise, as everyone

who has visited Christchurch knows,

that some swans were black! Against

his own philosophical insight, he had

fallen into the trap of inductive rea-

soning and had wrongly generalized

his previous experience of white swans.”

W. Ulricha

aRethinking Critically Reflective Research

Practice: Beyond Popper’s Critical Rational-

ism, Journal of Research Practice, Volume 2,
Issue 2, Article P1, 2006
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Abstract

Recent results showed that taking into account attention to attributes in
random utility models leads to better fitting models. In this paper, we study a
proposition to model attention to attributes instead of monitoring it. We test
this model considering attention as a choice. The results show that these factors
have a low power of prediction of stated attention to single attributes.
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Introduction

“On the one hand there is your local English professor; your great-
aunt Irma, who never married and liberally delivers sermons; your
how-to-reach-happiness-in-twenty-steps and how-to-become-a-better-
person-in-a-week book writer. It is called the Utopian Vision, asso-
ciated with Rousseau, Godwin, Condorcet, Thomas Paine, and con-
ventional normative economists (of the kind who ask you to make
rational choices because that is what is deemed good for you), etc.
They believe in reason and rationality – that we should overcome
cultural impediments on our way to becoming a better human race –
thinking we can control our nature at will and transform it by mere
edict in order to attain, among other things, happiness and rational-
ity. Basically this category would include those who think that the
cure for obesity is to inform people that they should be healthy.

On the other hand there is the Tragic Vision of humankind that be-
lieves in the existence of inherent limitations and flaws in the way
we think and act and requires an acknowledgment of this fact as a
basis for any individual and collective action. This category of peo-
ple include Karl Popper (...), Friedrich Hayek and Milton Friedman
(...), Herbert Simon (bounded rationality), Amos Tversky and Daniel
Kahneman (...), the speculator George Soros, etc.”

This quote is from Fooled by Randomness by Nassim Nicholas Taleb [29]
that I read towards the beginning of my writing of this Master Thesis. Although
I have a better opinion about the Utopioan Vision of humankind than Taleb –
thinking we sometimes need Utopia for creativity, emotions and dreams – the
analysis provided in by the paper is definitively tragic.

In 1955, Herbert Simon wrote in his foundation paper about bounded ratio-
nality [25]: “Recent developments in economics, and particularly in the theory
of the business firm, have raised great doubts as to whether this schematized
model of economic man [i.e., rational] provides a suitable foundation on which
to erect a theory". Nowadays, recent developments tend to continue to raise
great doubts about the rationality of the economic man.

Trying to avoid the obvious example of the current economic crisis, here is
a quick example read in the Science magazine during the preparation for this
Master Thesis. Antonakis [1] showed that people looking at pictures of unknown
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individuals choose the winner of a real election with a success rate of 70%. The
importance of “looking good” is not a complete surprise since it was already a
subject of discussion in Antic Greece, but it poses the question of the cost of
processing information about different alternatives in a context of choice. The
information about facial expression is much easier to gather than the political
program or the different positions of candidates available in newspapers.

Choice making is one of the fundamental actions of human being and is
important in politics, management, economics, or love. Most classical economics
models consider that the economic man is rational and information is free. Lack
of information for a decision maker has long been studied in game theory. For
example with Aumann’s theory of correlated equilibrium, in the framework of
discrete choice models most analysts still live in a perfect world with rational
choice-maker who have a perfect knowledge of their environment.

This paper tries to focus on theory of discrete choice models with some
digressions about bounded rationality. The focus is on attention to attributes
and the ability to model it in order to improve models of discrete choice.

The first chapter introduces bounded rationality and some recent applica-
tions of this concept. Then a number of articles on attention to attributes in
random utility models are reviewed. In chapter two, I present a theoretical
model developed by Cameron in a recent working paper. Then, in chapter three
I describe a methodology where we consider attendance as a choice. Finally,
in the two last chapters I present the different data sets I worked with and the
results before concluding.
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Chapter 1

Literature

It is impossible to begin this review of the literature with anybody else than
Herbert Simon, whose name was in Taleb’s quote in the introduction, and his
“tragic vision of humankind”, bounded rationality1.

The seminal article about bounded rationality, even if the expression was
not used in this paper, was published in 1955 by Simon, “A behavioral Model
of Rational Choice”. In this article Simon proposed some limits to the classical
models of choice. He presented the “economic man” who is known to be rational
and defined rationality as a “clear and voluminous” knowledge of the environment
by this man, a stable system of preferences and the skill to reach the highest point
in his preference scale, i.e., a capacity to maximize his utility. Simon showed
doubts about this man and proposed to replace him with “a kind of rational
behavior” taking into account access to information and computation capabilities
in reality. He underlined the lack of empirical knowledge about this behavior and
assumed a common experience to be able to discuss the subject. The goal of his
paper is partially to “take into account the simplification the choosing organism
may deliberately introduce into its model of the situation in order to bring the
model within the range of its computing capacity”. Simon presented common
elements of his model with the more global models, the classical concepts of
rationality: a set of alternatives A, a subset of perceived alternatives Ȧ ⊂ A, the
set of outcomes of choice S, a pay-off function representing the value or utility
of each outcome of choice V (s) ∀s ∈ S, and information about which outcome
would occur if a particular alternative a ∈ A is chosen. Then he introduced
simplifications, approximating procedures. These simplifications apply to pay-
off functions, information gathering and ordering of pay-offs, assumed here to be

1Note however that concepts of limited cognition were available before 1955, with “limited
intelligence” in 1840, “finite intelligence” in 1880, “incomplete rationality” in 1922, “limited
rationality” in 1945, “administrative rationality” in 1945 or “approximate rationality” in 1948.
For history of the emergence of bounded rationality, see [17]. In [9] the focus is on the period
1981-1996 but we can though read: “It is evident that the rational thing to do is to be irrational,

where deliberation and estimation cost more than they are worth. Frank Knight (1921, p. 67,
footnote)”
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partial2.
Simon dismissed neoclassical theory and proposed a behavioral approach.

He used the name “bounded rationality” for the first time in 1957 in Models of
Man [26] and used it to “designate rational choice that takes into account the
cognitive limitations of the decision-maker-limitations of both knowledge and
computational capacity” [27], p. 291. In other words, this theory basically ad-
mits suboptimal decisions that are indeed rational in a limited decision making
environment. Simon defined two “kinds” of rationality. Substantive rationality
means that the choice maker is never satisfied with anything less than the op-
timum, the best possible choice. It also means this economic man has a clear
notion of success in a choice and knows when he has done the best choice. It
is a result-oriented rationality. Conversely procedural rationality assumes that
the choice maker use a process to deliberate and make a decision but with time
and computation constraints that could vary. It is a form of process-oriented
rationality.

Nowadays bounded rationality is broadly cited – and so is the term “satisfic-
ing”, also one of Simon’s neologisms. The concept is well known and recognized,
and D. Kahneman when he received his Nobel prize in 2003 said a speech whose
name was “Maps of Bounded Rationality” [15]3. There have since been numerous
attempts to create applications of bounded rationality in different fields. Most of
them begin with classical models of optimal behavior and create new constraints
on the choice maker in this framework. For a review about bounded rational-
ity, see John Conlisk, ‘Why Bounded Rationality?’ [9]. It shows that models
including bounded rationality have excellent results and endorse the notion that
human cognition is a scarce resource. In 1998 Ariel Rubinstein published a book,
Modeling Bounded Rationality [23], where he discussed models of bounded ratio-
nality, in particular modeling of choice, and their fundamental difficulties. The
book includes a critique by Simon and an answer by Rubinstein. Rubinstein
proposed to explicitly define decision procedures and model them.

After this brief introduction to bounded rationality, with the idea of resource
constraints in our toolbox for decision making, we present now two particular
and recent applications of this strategy by Xavier Gabaix more in details.

In 2000, Gabaix and Laibson [10] “extends the satisficing literature, which
was pioneered by Herbert Simon” and develops an algorithm that simplifies deci-
sion trees by removing low probabilities branches. According to the authors, this
algorithm is broadly applicable, allows to make behavioral predictions, is psy-
chologically plausible and, last but not least, is empirically testable and actually
tested in their article. This algorithm is inspired by Simon’s bounded rationality
and is parameterized in order to include as a special case perfect rationality and
costless information gathering.

A decision tree is composed of (i) vertices that represent flow payoffs and of

2i.e., not only one scalar utility function but different utilities.
3And I secretly tried to put the words “bounded rationality” in my title, think that this

would look “smart”...
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(ii) edges, each representing the probabilities to choose a vertex starting from
another one. The decision path always goes from the left to the right, and it
is not a tree in the mathematical sense since there are cycles. In other words,
each decision process is represented by choosing a vertex in the first column and
then by following an edge going to the next column, until the last column is
reached. Edges going in a vertex and edges going out both sum to one, since
edges represent probabilities of following an edge from one vertex to another.

The number of possible paths is growing quickly in the number of columns.
Thus, the expected value of a starting vertex is difficult to compute, since the
decision maker should integrate over all possible paths. In practice, the most
chosen starting vertex does not have the highest expectation in Gabaix’s exper-
iment.

In order to model the observed behavior, the authors proposed a “follow the
leader” heuristic inspired by their intuition about how people analyze trees. A
parameter p defines the cutoff probability. When p = 0, the heuristic is per-
fect rationality, not removing any edge. In this experiment, they exogenously
set p = 0.25, intuitively. A p-constrained path (V0, p1, V1, p2, V2, ..., pN , VN ) is a
path starting in a vertex V0 of the first column and with edges of probability
p1, ..., pN−1 > p, except possibly the last one, pN . For any path, we define a cu-
mulative probability π =

∏N
i=1 pi and cumulative payoff U =

∑N
i=0 Vi. Assuming

there are K p-constrained path from a starting vertex with the associated set
of cumulative probabilities {πk}

K
k=1 and cumulative payoffs {Uk}

K
k=1, the con-

strained expected value is V =
∑K

k=1 πkUk. It is an approximation of the true
expectated value, with fewer paths to take into account.

This “follow the leader” heuristic (FTL) is the model preferred by the authors
and is compared with three other models. The first one is a column-cutoff model,
where the choice maker is perfectly rational but pays attention only to the Q

first columns. The second one is a discounting model, where the choice maker
follows all paths but exponentially discounts payoffs with a discount factor δ.
Finally, the third model is the rational one, the particular case of FTL without
cutoff probability, i.e., with p = 0, used in all economic models. It assumes
rationality and zero cognition cost.

The payoff evaluations V1, V2, ..., VC of these models (with C possible choices)
are translated in choice using the probability of choosing c:

Pc =
eµVc

∑C
c′=1 eµVc′

.

with µ estimated in order to minimize the Euclidean distance between the
empirical distribution and the distribution predicted by the model.

About the experimental design, 259 Harvard undergraduates were asked to
choose a starting vertex on 12 decision trees in 40 minutes. All the trees were
randomly generated and had 10 rows. Half of them had 5 columns and the other
half had 10 columns. The author decided to use large trees to force students to
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use heuristics. The students were paid the expected value of one of the 12 trees
picked randomly. A debriefing eliminated the students who did not understand
the concept of expected value (8%).

If students behave randomly, they would gain an average amount of $1.30.
If they behave perfectly rationally, they would gain an average amount of $9.74.
In fact, they received $6.72. Comparing rational, FTL, Q-column-cutoff and
δ-discounting models with the full range of Q and δ values and with cutoff prob-
ability set to 0.25, FTL fits the data best. Other models outperform rationality
in a statistically significant manner, FTL with the biggest margin using the
squared Euclidian distance between the predictions of the model and the empir-
ical data. All models are rejected compared to FTL, the closer with a t statistic
of 6.06. However, the authors warn about the wrong prediction of FTL in special
examples with outliers.

In a second article in 2006, Gabaix [11] proposed a directed cognition model
that approximates option-value calculations. Decision makers select their next
cognitive operation with partial myopia and act as if their next operation was the
last opportunity, so they put the focus of their (direct) cognition on attributes
with high value.

This strategy of modeling with an iterative structure breaks the infinite
regress problem with costly cognition. Indeed, generally, in model of optimal
cognition, if cognition is costly, the model needs to optimize cognition. And
doing so is costly, so the model needs to optimize the optimization of cognition
use, etc., thereby creating an infinite regress problem ([11], p. 1043)

Gabaix used this model to study information acquisition and to empirically
evaluate it in two different experiments. One with financial cost and the other
one with scarce time. In the first experiment, defined as “simple”, an agent
needs to choose one of three goods. These goods can be seen as projects that
can either succeed or not. They have stochastic payoffs X1,X2,X3: the projects
could either give a payoff with probability p and Xi = Vi, or give nothing with
probability (1 − p) and Xi = 0. With a cost c the agent could “investigate”
a project, i.e., know the payoff with certainty. There is an optimal sequence
acquisition, using a Gittins-Weitzman index, but the directed cognition model,
considering each acquisition as the last one, better describes the actual behavior
of agents.

In the second experiment, the choice is more complex. There are N goods
represented by rows with attributes in the columns. Each attribute is a payoff
and the good is the sum of the payoffs of the chosen row. The payoffs are
randomly drawn from a normal distribution with mean 0. The information about
these payoffs are hidden by boxes and the choice maker has to use the mouse
to open them. Only one box could be open at a time and order and duration
are recorded using Mouselab4. Moreover, time is scarce (endo- and exogenous
time pressure are tested). Variability of payoffs goes down from left to right. It

4http://www.mouselabweb.org/
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is a abstraction of choice problems. Gabaix defines importance and variability
of attribute straight in the experimental design. Here, attributes are directly
commensurable. In reality, in a choice process, we need to evaluate importance of
attributes as noted by Cameron [6], p. 6. In this second experiment, the directed
cognition model evaluate each incremental search option as if it was the last. It
computes the expected benefits and costs with a myopic horizon and chooses
the search operation with highest benefit-cost ratio. It stops either when the
time limit is reached or when the expected ratio falls below a threshold. There
is no computationally rational solution and no cost (but still time constraints).
Directed cognition successfully describes experimental information acquisition.

It seems very difficult to apply this kind of theory to random utility models.
Basically, random utility models is a neoclassical economic theory assuming that
the decision maker has a perfect discrimination capability. The random part of
the model comes from the analyst, whose information is incomplete, but not
from the choice maker. Sources of uncertainty are unobserved attributes, unob-
served taste variation, measurements errors or instrumental variables [5]. Thus,
the utility function is defined with a deterministic part and an error term, the
stochastic part that models uncertainty of the analyst. The neoclassical theory
says that the alternative with highest utility will be chosen. We generally define
the deterministic part using attributes of alternatives with parameters and make
some assumptions about the error terms. Then, using this utility to compute
the probability of each chosen alternative, we can estimate the parameters of the
deterministic part of the utility with highest likelihood.

This process does not mimic real choice processes. It focuses on most likely
utility functions and not on the cognition processes. Gabaix’s directed cognition
and Simon’s bounded rationality try to understand how decision makers think
about real problems. It is a descriptive goal and this is not the case with random
utility models. Moreover, when Gabaix compared his different models with the
rational one, he used likelihood. Here we use likelihood to define our models.
In the context of random utility function it is difficult to correct a potentially
perfect rational behavior and it is difficult to compare them with each other.

There are mainly two strategies in the literature to mix information process-
ing strategies with random utility models. In one hand, some authors do not
modify the conceptual framework of random utility models but add information
about cognition limitations in this framework. In particular, they focus on in-
formation acquisition and gather information about attention to attributes. On
the other hand, Cameron and DeShazo [6] propose not to add information about
attention to attributes in the model but to model directly the effect of attention
allocation to attributes.

Previous results suggest that attention to attributes is of importance. In
2005, Hensher [14] modeled information processing strategies using a model with
all attributes and a model without a few attributes and showed that this modi-
fies estimates. In 2006, Hensher [13] also showed that the number of considered
attributes goes down when the values of the attributes have a smaller variability
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(among other influences). Note that it is a global consideration and not a model
based on attention allocation to each attribute. It shows that information about
the choice set modifies individuals’ strategy about attributes. In 2007 Camp-
bell et al. [7] asked respondents if they attended all attributes when answering
surveys about rural landscape. After the whole sequence of choice respondents
were 64% to say they attend all attributes. The 36% of respondents who didn’t
attend all attributes had to declare which ones the didn’t attend. Note that
cost was the least attended attribute. Using this information in the model im-
proves fit, and error variance was clearly higher for respondents who didn’t pay
attention to all attributes. Similarly, Gilbride and Allenby (2004, [12]), Rigby
and Burton in 2006 [22] and Carlsson [8] in 2008 monitored attendance after
the whole sequence of questions (what we will call “serial attendance”). In this
last study, as an exception in the list, there is no significant difference between
models with all attributes and models taking serial attendance into account.

In 2009, Puckett and Henscher [21] suggested that attention to attributes
may vary between choice task for a same respondent. Scarpa et al. [24] asked
respondents which attributes they did not attend (without an intermediate ques-
tion asking if they attended all attributes) after each choice task. They built
serial attendance from this information considering that an attribute was seri-
ally ignored when it was ignored in each choice task. Their results show that
attendance substantially varies between choice tasks, i.e., a respondent does not
systematically ignore the same attributes in all choice tasks s/he performs. As
expected from this observation, models using serial attendance perform better
than models assuming complete attention and models using choice-task atten-
dance perform better than model using serial attendance. Meyerhoff [19] shows
that a minority of respondents behave as if they ignored serially attributes.
50% of them attend all attributes while 42% ignore different attributes through
different choice tasks and only 8% ignore always the same attributes (serial at-
tendance). In this survey, price was the most attended attribute.

Kaye-Blake [16] used a different strategy to monitor respondents’ attention
to attributes. Respondents were not explicitly asked to declare which attributes
they did or did not attended but attendance was directly implied by monitoring
information access with a computerized survey. This is the same approach that
Mouselab used in Gabaix [10] with an information display board on a web page.
Here the authors developed their own software. The columns are the alternatives
and the rows are the attributes. Each couple in the table has a value, like in
all stated preference surveys, but this value is hidden behind a box that the
user has to click to access the information. Here, once a box is opened, it stays
opened until the end of the choice task (remember that in Gabaix [10] the box
closed once the mouse moved out of the box). Another difference with Gabaix
[10] is the absence of time limit or of cost to access information. The only cost
involved is pointing the mouse and clicking. Even in this context, respondents
didn’t access all the information: only 78% of all the boxes were opened. In
terms of a classical economic theory it would mean that the cost of moving
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the mouse and clicking is reputed higher than the benefits of the information
accessible. This information display board has the great advantage of avoiding
to ask respondents to consciously choose which attribute they attended in their
choice task. In this way, the choice of attendance to attributes is more natural.
Moreover, information was captured for each attribute and each alternative.
In all other experiments, respondents could either attend or not an attribute.
Here, they are able to gather information about an attribute only for one or two
alternatives and not to gather attributes’ values for all alternatives. Results show
that a large number of respondents attend attributes only partially, accessing
information about an attribute not for all alternatives. 55.6% of alternatives
had all their boxes (i.e., attributes) opened (i.e., attended). But for 44.4%
respondents left at least one card unopened. For the chosen alternatives, these
proportions are significantly larger, as it may be expected. Three models were
estimated, one with complete information, one without ignored attributes and
one with the ignored attribute replaced by their average value since respondents
were informed of the different levels of each attribute. The log-likelihood, the
AIC and the BIC improve for each of these models compared to the previous
one in the list. Another result of this experiment is that “use of information is
highly correlated with the importance of attributes, given by the willingness to
pay, and with the error associated with ignoring information use” (p. 17).

Finally, all these different studies concord on the fact that attention to at-
tributes is incomplete and it differs from attribute to attribute, between respon-
dents, and between choice-tasks performed by the same respondent. Kaye-Blake
[16] even show that attendance to a given attribute may be incomplete because
some of its levels may remain unknown event when the cost of access is very low.
These studies suggest that accounting for attention to attributes improves model
performance and quality of estimates. This effect is enforced if we use choice-task
specific attention and not serial attention. It could be interesting to compare
choice-task attention with attention to each attribute and each alternative (that
we could name “box attention”).

Assuming that attention is of importance in choice-modeling, it could be in-
teresting to know if it is possible to predict attention by identifying its specific
determinants. In this way we could use these results with data where the in-
formation about attention to attributes is not available. It would also allows us
to understand how respondents pay attention and maybe modify policies about
surveys and choice experiments to make them more effective and help their be-
havioral interpretation.

In a recent paper, Cameron and DeShazo [6] proposed a theoretic model for
attention allocation. When ignoring an attribute, the choice maker does a sub-
optimal decision. The expected value of the lost utility in this case is related to
attention to attributes and depends of two components. The first one represent
the distance of the top ranking alternatives when ignoring an attribute. The
second one represents the relative importance of the attribute on the overall
utility function. We develop this model in the next chapter in details.
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Cameron and DeShazo [6] develop a methodology to implement this propen-
sity to attend. They introduce a multiplicative parameter for the kth attribute
that represents propensity to attend. Thus each attribute is represented in the
utility function as βkakxk, where βk is the parameter for attribute xk and ak

is the “propensity to attend” parameter. This parameter depends of different
factors yi, i = 1, ..., n, and could be incorporated with different strategies pro-
posed by the authors: ak = 1 +

∑

i γiyi, ak = F (
∑

i γiyi) or exp(
∑

i γiyi).
Thus we need to estimate a model that is non-linear in the parameters. Finally,
they present an empirical example of their “attention-corrected model” with data
about mortality risk reduction programs.
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Chapter 2

A Theory about Differential

Attention to Attributes

In a choice experiment, assuming that acquiring information is costly and not
complete, an attribute important to subjects could be ignored in the context of
alternative evaluation and its marginal utility would hence be null in that choice-
task. More generally, attention to attributes could be incomplete rather than
completely ignored. For example, attention might not be paid to attributes when
their value is satisfactory. This incomplete attention leads to underestimating its
effect on choice compared to the real importance of this attribute to the choice
maker. This is different from the case of a null marginal utility of an attribute
as implied in the case of complete non-attendance.

If inattention to attributes is uniformly distributed across all attributes, util-
ity parameters may be shifted in such a way that the overall effect does not create
a bias in estimation from observed choice. However, it is likely that inattention
will differ across attributes.

In order to model attention to attributes, the basic assumption proposed
by Cameron and DeShazo is that the choice maker’s attention to an additional
attribute depends on both (i) the expected loss of utility of a suboptimal choice
resulting from ignoring this attribute and (ii) the marginal cost of considering
the attribute.

2.1 Marginal Cost of Considering the Attribute

This marginal cost depends on (i) the amount of cognitive resources available to
the individual at a given time period and on (ii) the forgone benefits from using
this capacity elsewhere. Attention to the first attribute is likely to be relatively
cheap. But the marginal opportunity cost of attention to an additional attribute
will probably increase with the number of attributes. To be able to estimate
the effect of the number of attributes, we need choice sets with different num-
ber of attributes. Cameron and DeShazo also propose to consider other factors
which could affect the marginal cost of attention to different attributes, such as
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information accessibility (“fine prints” or missing price attribute in advertising
with contact to obtain it), order of a particular attribute in a long list or pre-
occupation of the choice maker by other cognitive challenges (hours of work in
a week, activities in the considered day). In their empirical example, they do
not estimate any of these factors and thus the marginal cost of considering the
attribute by lack of data.

2.2 Expected Loss of Utility of a Suboptimal Choice

About utility loss of a suboptimal choice resulting from ignoring the attribute,
the authors propose two components to explain it : the “other-attribute utility
dissimilarity” and the “own-attribute utility dissimilarity”. For each of them,
they first define it in a two-alternative case and then in a generalized form.

In a binary choice model, each alternative has an indirect utility function
assumed to be linear: U =

∑

k βkXk + ε with K different attributes Xk, each
with their coefficient βk and the random error ε representing unobserved utility
by the researcher. Choice between alternatives A and B deals with the difference
of utility of each alternative:

UA − UB =
∑

k

βk(X
A
k − XB

k ) + (εA − εB)

=
∑

k

βkxk + ε

Let’s call XA
k −XB

k by xk, the difference between alternative A and B and ε

the difference of the error terms.
In the two-alternative case called A and B, a suboptimal choice means choos-

ing alternative A when the optimal solution using all attributes is alternative B.
Or conversely, choosing B when choice A is optimal. The expected utility loss
of a suboptimal choice resulting of ignoring an attribute is thus:

E(U Loss) = Pr(A chosen|B optimal) · (UB − UA)

+ Pr(B chosen|A optimal) · (UA − UB)

with

UA − UB =
∑

k

βkxk + ε

= x′β + ε

= x′
−kβ−k + x′

kβk + ε

where βk is the indirect utility-difference coefficient of the k-th attribute xk

in the first line. The third line of the equation is the decomposition of the
inner product between two components: x′

−kβ−k represents all attributes in the
utility-difference function but the k-th one, and x′

kβk the k-th one only.
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Probability for an alternative to be optimal is equal to the probability for
its utility to be higher than the utility of the other alternative, and thus for
the difference of utilities to have the right sign. In this case, we consider all
attributes:

Pr(A optimal) = Pr(x′β + ε > 0) = Pr(ε < x′β)

Pr(B optimal) = Pr(ε > x′β)

When ignoring an attribute, we consider only all other attributes and the
difference between the utility functions without this attribute. By the same
reasoning, it gives:

Pr(A chosen) = Pr(x′
−kβ−k + ε > 0) = Pr(ε < x′

−kβ−k)

Pr(B chosen) = Pr(ε > x′
−kβ−k)

Probability of making a mistake is then linked to either choosing alternative
A when alternative B is optimal or conversely choosing B when A is optimal:

Pr(A chosen ∩ B optimal) = Pr
(

(ε < x′
−kβ−k) ∩ (ε > x′β)

)

Pr(B chosen ∩ A optimal) = Pr
(

(ε > x′
−kβ−k) ∩ (ε < x′β)

)

Since x′β = x′
−kβ−k +x′

kβk, the event (ε < x′
−kβ−k)∩ (ε > x′β) is nonempty

when xkβk is positive, and thus x′β < x′
−kβ−k. Conversely, for the second event

“B chosen and A optimal” to have a nonzero probability, xkβk is negative and
x′
−kβ−k < x′β.

Now we can write the expected utility loss as:

E(U Loss) =
Pr(A chosen ∩ B optimal)

Pr(B optimal)
· (UB − UA)

+
Pr(B chosen ∩ A optimal)

Pr(A optimal)
· (UA − UB)

=
Pr(x′β < ε < x′

−kβ−k)

Pr(x′β < ε)
· (UB − UA)

+
Pr(x′

−kβ−k < ε < x′β)

Pr(ε < x′β)
· (UA − UB)

=







F (x′

−kβ−k)−F (x′β)

1−F (x′β) · (UB − UA) if x′
−kβ−k > x′β

F (x′β)−F (x′

−kβ−k)

F (x′β) · (UA − UB) otherwise

=







F (x′

−k
β−k)−F (x′

−k
β−k+x′

k
βk)

1−F (x′

−k
β−k+x′

k
βk) · (UB − UA) if x′

kβk < 0

F (x′

−kβ−k+x′

kβk)−F (x′

−kβ−k)

F (x′

−k
β−k+x′

k
βk) · (UA − UB) otherwise
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with F the cumulative distribution function of the difference of error term,
usually a logistic distribution in logit models.

From this result, the authors call x′
−kβ−k the “other-attribute utility dif-

ference” and xkβk the “own-attribute utility difference”. The link between the
expression of expected utility loss, intuitively an explanatory variable of atten-
tion, and own- and other-attribute utility differences is not clear to me, even if
the use of these two differences is attractive when reading the article.

2.2.1 Other-Attribute Utility Dissimilarity

In the case when there are three or more alternatives, Cameron and DeShazo
present a few statistics by analogy with the two-alternative case.

First of all, the difference of utility between the two leading alternatives
when ignoring the k-th attribute. They call this statistic lead(x′

−kβ−k). It
means to calculate each of utility differences based on all attributes but the k-
th one. It is also proposed to use the standard deviation in utility difference,
called sd(x′

−kβ−k). The skewness could also be computed, skew(x′
−kβ−k). The

authors present a fourth measure of dissimilarity, an entropy measure, employed
by Swait and Adamowicz, for example.

All these measures of the dissimilarity based on other attributes are referred
to using dissim(x′

−kβ−k) and represent a way to evaluate if there is a clear winner
in the alternatives when not considering the k-th attribute. If there is a constant
in the expression of the utility, it would be considered in the computation of
lead(x′

−kβ−k).

2.2.2 Own-Attribute Utility Dissimilarity

In the general case, “own-attribute utility dissimilarity” is a measure of the po-
tential for the k-th attribute to change the identity of the chosen alternative.
By analogy to xkβk in the two-alternative case, it depends of the importance
of this attribute in the utility function, i.e., the marginal utility associated with
the attribute, and of the level of this attribute.

As for the other-attribute utility differences, the authors propose a statistic
of the difference of utility between the two leading alternatives for the k-th
attribute, lead(xkβk), skewness for this attribute, skew(xkβk), and standard
deviation, sd(xkβk). Let’s call them dissim(xkβk).

Other-attribute dissimilarities could be tricky to represent in our minds. How
is it possible to know before evaluating attributes what are their effect on the
choice? If these factors allow to predict attention, it means that there is a
necessity to evaluate all attributes before knowing which ones the respondent
is going to attend. In a descriptive point of view, it is a loophole. We can
consider this first estimation with all attributes as an a priori knowledge of the
respondent but it is likely that this knowledge stems from a background of the
choice maker and not from this particular choice process.
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Chapter 3

Data Sets and Models

To implement Cameron’s model, we use three different data sets. In the first one,
different waves of surveys contain different numbers of attributes and respondents
were asked to choose the attributes they had not attended to in their decision
process at the end of each choice-task. In the second one, respondents had to first
answer if they attended all attributes, and then – if their answer was “no” – they
were asked to list the ones they did not attend. In the third one, respondents did
not declare their attention to attributes. But a computerized system allowed the
modeler to know when each respondent had accessed hidden information about
attributes. For each of these data sets, we estimate different choice models that
exclude information about attendance. Thus we always estimate models with
full information.

3.1 Cortina d’Ampezzo and attendance by respondents

The first dataset was collected in a survey by Riccardo Scarpa and Mara Thiene
[24]. The study concerns visitor services in the Alpine Park of Cortina d’Ampezzo
in North of Italy, in the Dolomites. This data set is of particular interest to test
Cameron’s model, since choice makers had to identify the attributes they did
not attend in their choice, for each single choice-task they undertook. This data
set is a multi-attribute stated preferences survey reporting the choice of visitors
of the park. Choices are about outdoor recreation activities.

3.1.1 Data collection

The visitors were divided in strata, depending on the main purpose of their visit
to the park:

1. hikers,

2. climbers,

3. mountain bikers,
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4. visitors using via-ferratas,

5. and visitors enjoying a short walk or picnicking

For each strata, 96 respondents were interviewed face-to-face and thus the data
contains 480 surveys.

Some of the attributes are of particular interest to some strata of visitors
and less relevant to others. There are ten attributes, and each one except cost
has three levels:

1. building of additional thematic itineraries, focusing on flora, fauna and
historical aspects,

2. increasing the network of trails and hiking paths within the Park,

3. improving the system of trail signs,

4. adding new itineraries, new trails with different technical challenge, length
and effort,

5. adding climbing routes

6. improving quality and security of via-ferratas,

7. adding new shelters,

8. different levels of congestion describing the number of people met along
the trails,

9. different levels of information material about the park,

10. and finally an entrance fee, with four levels

Obviously, the fifth attribute, about climbing routes, is of high interest for people
whose main purpose of the visit in the park is climbing. People engaged in
mountain-biking or other activities could of course also be interested, since these
activities are not mutually exclusive. However, there may be some people not
at all interested by new climbing routes who are likely to ignore this attribute.

3.1.2 Survey design

The survey contains four waves. In all waves, the price attribute is present.
In the first wave, all nine non-monetary attributes are available. Then, in the
following waves, there are seven, five and finally three non-monetary attributes.
The attributes are discarded either because they are significant enough after
estimating a basic multinomial logit or because they are of minor interest for the
specific visitor being considered. This way, each two levels of each attribute were
significantly estimated. Dropping the two attributes with highest significance
in the multinomial logit allows choice-makers to give more attention to other
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attributes since there are fewer of them. A complete table of the discarded
attributes depending of waves and groups is available in Scarpa [24].

Each respondent performed 12 choice-tasks. There are 24 visitors surveyed
in each wave-group. The design was balanced and thus we have 120 surveys for
each wave, i.e., 480 completed surveys. Choice tasks were in blocks to insure
orthogonality and balancing of levels. The design at each stage after the first
was a WTP-efficient Bayesian design and the priors were at each stage built on
the previous pooled sample.

For each choice task, there are two experimental designed alternatives and
a statu quo alternative with no cost. After each choice task, respondents have
to report the attribute they feel they ignored in their decision process. It is a
binary choice, either they pay attention to an attribute or not.

3.1.3 Models

We use four different models to estimate the parameters of each attribute. For
each of them, we remove the factors that are not available to the respondent
depending of the waves, but we don’t consider the information about attendance.
The first one is a classical multinomial logit, with linear utility functions and
taking into account the availability of attributes since attributes are not always
available depending of the wave. In the second one, we scale error terms by wave.
In the third one, we scale error terms by wave and category of respondents.
Scarpa [24] showed that the more precisely you scale the error term (no scaling,
by wave, by wave and category) the better the model fits the data.

Finally, in the fourth model, we estimate a mixed logit allowing to have
specific respondent betas. We used a error component mixed logit, i.e., we add a
random error term to the two alternatives that are not status quo. It models the
fact that it is easier for the respondent to experience the status quo alternative,
so this alternative is not sharing this extra error term. It is normally distributed
with mean zero and standard deviation one. An estimation of the model is given
with a simulation using 100 halton draws and 10 iterations. The coefficients are
assumed to be normally distributed.

3.2 Wind Power and attendance by respondents

This choice experiment tried to estimate the effect of different factors of onshore
wind power generation in Westsachsen in the eastern part of Germany. Respon-
dents had to choose between three alternatives about wind power generation in
their area in 2020. Each alternative was described with four non-monetary at-
tributes: the size of wind farms, the maximum height of the turbines, the effect
on a population of birds, and the minimum distance to settlements. Each of
them has 3 levels, presented in Table 3.1. All respondents were given a small
description of each attribute and its effects. In addition, there is a price attribute
with 5 levels.
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Table 3.1: Attributes and levels for data about Wind Power, with levels of the
first alternative in bold.

Attributes Levels

large (16 to 18 mills)
Size of Wind Farms medium (10 to 12 mills)

small (4 to 6 mills)

200 meters
Maximum Height of Turbines 150 meters

110 meters

750 meters
Minimum distance to settlements 1.100 meters

1.500 meters

-5%
Effect on red kite population -10%

-15%

€ 0
€ 1

Monthly surcharge to power bill € 2.5
€ 4
€ 6

In the three alternatives, the first one has always the same levels for each
attributes (in bold in Table 3.1). It is not exactly a status quo but a future
situation. It is a benchmark level for 2020. Respondents were informed that
for each restriction in the first four attributes, the cost would increase, since
the attributes of the first alternative are the less strict (but for the effect on
red kite population). The carbon dioxide emissions are assumed to be constant
independently of the different attributes to put the focus on the effect of wind
farms on landscape.

The survey was conducted by telephone on 708 respondents, each of one had
to answer 5 choice tasks (and so 3540 observations). 40 choice sets were designed
using a D-optimal fractional factorial design.

Attention to attributes was recorded after each choice-task, like in the data
about Cortina, but with a slightly different strategy. While in the Cortina’s
survey [24] respondent were asked directly which attributes respondents had not
considered – directly assuming that incomplete attribute attendance is likely. In
the wind power survey by Meyerhoff – instead – respondents were first asked:
“Did all attributes of wind power generation matter when you were choosing
among the alternatives on the previous choice card?”. Then, if the answer was a
“no” they were also asked to describe which one they had not attended, as they
were in the Cortina’s survey.
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3.2.1 Models

As previously mentioned, the first alternative is fixed and does not really rep-
resent a status quo, but the future situation depending of the existing decisions
about regulation for 2020, a kind of “future status quo”, with no additional cost.
The two other alternatives propose tighter regulation with additional costs. In
order to model this, the author uses an error component logit (like the one used
in the mixed logit model with the data about Cortina) estimated with Biogeme
[4]. This extra error term for the two “non future status quo” alternatives is nor-
mally distributed with mean zero and standard deviation one. In this model, two
groups are created: respondents who answered a complete attention to attributes
and respondents attending only partially to attributes. These two groups have
different scale parameters. One of these two parameters is fixed to one, while
the other is estimated. Only the first alternative has a specific constant.

The authors estimated a second model using panel specifications allowing in-
dividuals to have specific error parameters. The extra error component of the two
“non future status quo” alternatives does not thus vary across observations but
across respondents and takes into account the information that every respondent
answered five questions.

This forest wind power data were used to estimate a mixed logit model, in
order to have individual specific estimates/betas. In this model, we also use an
extra error component and do the same process than for the mixed logit model
used with data about Cortina.

3.3 Potatoes and information display board

This data set was designed and conducted by Bill Kaye-Blake, Senior Research
Officer in the Agribusiness and Economics Research Unit of Lincoln University
in Christchurch, New Zealand, to test respondents’ attention to attributes with
data about potatoes.

3.3.1 Survey Instrument

Unlike in the survey used in Cortina, respondents were not asked to state whether
or not they attended each attribute, but they were expected to actively gather
the information to make their choice. What they searched for provided a clear
indication of what they knew and could consider in the context of process eval-
uation. The attribute information search was monitored via a computer based
survey conducted using a purpose-built software. It software creates information
display boards for each choice-task, with columns for each alternatives (potatoes)
and rows for each attributes but with hidden attribute information in the inter-
section of the rows and the columns. To access this information, the respondents
had to click on the box to reveal the hidden value. Then the box would open
and stay so until the end of the choice-task. There were no time limit and no
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cost (apart of time and the effort to move the mouse) in opening the boxes
and accessing information. We know when respondents opened the boxes and
started paying attention to the value of the attribute. Thus we are also able to
determine the order in which respondents accessed the information. Finally, the
order of presentation of the attributes was randomized for each respondent. So
each respondent received question in the same order, but different respondents
had attributes presented in different orders.

This strategy of information display board is similar to MouseLab Web. Both
use the same technology. Note, however, that the default display settings in
MouseLab let the respondent access the information only when the mouse is on
the top of the box. As soon as the respondent moves his attention to another
box (with the mouse), the previous box is closed again. The duration of the
exposure to the information by the modeler is thus different. In the potatoes’
data, a respondent’s accessing attribute information is no guarantee that this
attribute is paid attention to in the evaluation of the alternatives.

3.3.2 Survey Design

Six attributes are available, as described in table 3.2 with their levels. The
experimental design was optimized by using the D-efficiency criterion, using the
chosen levels and a set of priors. For more information about the survey design
and the creation of D-efficient choice sets using prior estimates of betas into the
design, see Kaye-Blakes [16].

The survey was administered to 92 campus members of Lincoln University,
resulting in 87 valid responses. They were asked to answer four different sur-
vey sections. First, respondents had to rank the six attributes in order of im-
portance. Then, they made ten choice-tasks using information display boards
described before. For each choice-task, they had the choice between three al-
ternatives/potatoes. The two last sections of the survey were questions about
their beliefs, attitudes and socioeconomic information. During the experiment
respondents could refer to a reference sheet with the list of attributes and their
levels. The order of presentation of attributes in the survey was randomly se-
lected for each different respondent. It allows us to investigate whether the
order of attributes presentation had an effect on whether attention was paid to
them. The order of presentation differed across respondents but not within each
respondent.

This data were used to estimate two models: (i) a basic multinomial logit and
(ii) a panel mixed logit so as to derive individual-specific distribution parameter
estimates (the same as the two mixed logit estimated with the two previous
data).

21



Table 3.2: Attributes and levels for data about potatoes.

Attributes Levels

Texture waxy
floury

$1.00
Price $1.50

$2.00
$2.50

pink
Color yellow

white

conventional
Production GM

organic

ordinary
Nutrition low-GI

high omega3

Australia
Country of origin China

New Zealand
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Chapter 4

Attendance as a Choice

In stated preference survey we always consider the main choice as being the
only choice. However, if we consider that the attention to attributes might be
incomplete, then there is another level of choice concerning which attributes are
attended to. We can model this as a binomial choice for each attribute: either
the respondent attends the attribute k or not. And this process is repeated
for each attribute k and at each choice-task. From this perspective one can
explain the data about attendance and test whether some factors considered
to be meaningful to explain attendance really are so. We focus on choice-task
attribute non-attendance since different studies show that serial attribute non
attendance, even if it is present for some respondents, is not a valid assumption
(Meyerhoff [19] - in which only 8% of respondents serially attend attributes1

against 42% for choice-task attendance and 50% of complete attendance, Scarpa
[24]). In reality, non attended attributes vary across choice-tasks.

4.1 Dependent variables

Before describing the explanatory variables, a better definition of what we are
trying to explain is needed. With Cortina Park management data, attendance
is recorded after each choice task. The respondent, after choosing his favorite
alternative, was asked to answer which attribute he did not attend to. So we
have a binary variable, with value 1 denoting attribute attendance and 0 non-
attendance.

The data about wind power were collected using the same strategy used in
the Cortina Park management survey data. After each choice task, respondents
were asked to list the attributes they had not attended. Thus, the dependent
variable is exactly the same as described just before. However, in this exper-
iment, respondents were first asked if they attended all attributes or not, and
if not, were asked which ones they didn’t attend. This difference could modify
the answers of respondents. For example, some respondent might have grown

1i.e., respondents don’t attend some attributes in their choice-tasks and these non-attended
attributes are always the same across all the choice-tasks
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reluctant – perhaps due to tiredness – to state any degree of attribute neglect
towards the last part of the choice-task sequence.

In the potatoes data, respondents were not asked to answer the question,
but their access to the level of each attribute was monitored. As in the Cortina
survey, we have the information about attribute attendance: does the respondent
access any value for any alternative for a given attribute? If yes, the variable is
1, otherwise it is 0. Note that sometimes respondents accessed information for
a particular attribute only for a few alternatives and not for all of them. We
consider here if they accessed any information about the attribute. Respondents
could access the information about a particular attribute for all alternatives or
only for a particular alternative. In both case, the dependent variable would be
1.

With these data, it could also be possible to try to explain not only if respon-
dents access or not the information but also when they accessed the information.
This information is not exactly the time respondents paid attention to an at-
tribute, since they could open a box and then open another one and disregard
the information from the first box in their choice. Instead, it gives us the in-
formation on when they first attend a particular value of an attribute. Since
we have the information for each alternative and each attribute and we try here
to explain only attendance to attributes in general, we could summarize the in-
formation for each attribute, taking into account all the alternatives. In other
words, let’s consider one specific attribute from the list of all attributes. Assume
this attribute has 3 different values for each possible alternative. We know that
the respondent accessed these information after respectively 2.3, 3.8 seconds and
never for the third value. We could proxy these values to be able to use them
as a dependent variable and we could consider the sum (or the mean, as it is
equivalent). It would represent a summary of when the respondent accessed the
information. We could also imagine to consider the minimum value different
from zero, in order to model the order of attendance to attributes instead of the
mean.

We won’t do this analysis about the mean of the time respondents opened
the boxes or the order of access to the boxes in this report. Here we just try first
to explain attendance or not, and nothing more, since the first step is clearly to
be able to predict attendance or not, and only then to predict the “amount of
attention” in time or the order of attention to attributes.

4.2 Explanatory variables

Different authors have suggested different factors to explain attendance. Here we
try to test the effect of some of these. For some of them, proposed by Cameron
and DeShazo, there are two ways to compute them, either using the utility
without a particular attribute or using the utility with only the linear factor of
this utility, i.e., either x′

−kβ−k :=
∑

k′ 6=k x′
k′βk′ or x′

kβk. It is the case for the
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leadership (lead), standard deviation, skewness and entropy.
A example of computation for the values is available in the annex.

Leadership As described previously, leadership is the difference between the
utilities of the leading alternative and the second leading alternative:

lead(xkβk) := (x′
kβk)1 − (x′

kβk)2

lead(x′
−kβ−k) := (x′

−kβ−k)1 − (x′
−kβ−k)2

We can use either the differences or their absolute values.

It is important also to specify which utility is used to define which alter-
native is the leading one, since it could be different if we compute utilities
using only the k-th attribute, all attributes except the k-th or all of the
attributes including the k-th attribute.

In the lead(x′
1β1) example, we need to compute the difference of the util-

ities using only the first attribute of the two leading alternatives, i.e.,
(x′

1β1)1 − (x′
1β1)2.

However, there are two different ways to compute lead. The leading alter-
natives could be defined on the complete utility function or on the bounded
utility function considered in the particular case. In our example – and
assuming there are three alternatives – it means that we can consider the
leading alternatives of the set:

{

(x′
1β1)

A, (x′
1β1)

B , (x′
1β1)

C
}

of the bounded utilities or the set:

{

(x′β)A, (x′β)B , (x′β)C
}

of the complete utilities. In the first case, we use the notation leadlocal for
the lead computed with the leading alternatives using only the bounded
utility. Thus we have:

(x′
1β1)1 =

{

(x′
1β1)

j
∣

∣

∣
(x′

1β1)
j = max

j′=1,...,J

(

(x′
1β1)

j′
)

}

with J the number of alternatives. (x′
1β1)2 is computed in the same way,

using the second largest value instead of the maximum. Thus, we have
leadlocal(x

′
1β1) = (x′

1β1)1 − (x′
1β1)2.

In the other case, we have:

(x′
1β1)1 =

{

(x′
1β1)

j
∣

∣

∣
(x′β)j = max

j′=1,...,J

(

(x′β)j
′)

}

and here lead(x′
1β1) = (x′

1β1)1−(x′
1β1)2 using these values for (x′

1β1)1 and
(x′

1β1)2.
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The leadership computed with only the bounded number of attributes
will be called “local” and we thus have four different values: lead(xkβk),
lead(x′

−kβ−k), leadlocal(x
′
kβk) and leadlocal(x

′
−kβ−k).

Standard deviation If we have three alternatives A, B and C, and considering
only the k-th attribute, we have three utility functions: (x′

kβk)
A, (x′

kβk)
B

and (x′
kβk)

C . Then:

SD(x′
kβk) := sd

(

(x′
kβk)

A, (x′
kβk)

B , (x′
kβk)C

)

And identically for the utility without the k-th attribute:

SD(x′
−kβ−k) := sd

(

(x′
−kβ−k)

A, (x′
−kβ−k)

B , (x′
−kβ−k)

C
)

Choice-tasks with small standard deviations are obviously made up of simi-
lar alternatives, and hence the relative advantage of each is hard to evaluate
well because none alternative is a clear winner over the other.

Skewness The skewness of the utility function for each alternatives is:

Skew(x′
kβk) := skewness

(

(x′
kβk)

A, (x′
kβk)

B , (x′
kβk)

C
)

Skew(x′
−kβ−k) := skewness

(

(x′
−kβ−k)

A, (x′
−kβ−k)

B , (x′
−kβ−k)

C
)

Entropy measure Cameron and DeShazo also propose to use an entropy mea-
sure and give as an example Swait and Adamowicz [28]. In their article,
Swait and Adamowicz present a measure of complexity of the decision pro-
cess in order to study choice behavior. The number of alternatives and
the number of attributes are part of the complexity of the choice-task.
The closeness of alternatives could also increase the complexity since a
clear dominant alternative would be easier to choose. A good measure of
complexity should take these elements into account and should allow com-
mensurability of these values between themselves and with each other. The
metric proposed by Swait and Adamowicz is based on entropy. Entropy is
a theoretic measure of information. Information has a very broad mathe-
matical meaning. In the context of choice modeling, the outcomes are the
alternatives, {aj , j = 1, ..., J}, with distribution π(aj) and the entropy of
the choice-task is defined as

H = −

J
∑

j=1

π(aj) log π(aj)

Entropy is a measure of certainty. It is greater than or equal to zero. It
reaches its maximum when all the alternatives are equally likely. Con-
versely, it is small when a choice is dominant. In particular, it is equal to
zero when one choice is sure. When the number of alternatives increases,
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the maximum entropy increases and more generally entropy is larger. For
Swait and Adamovicz [28], p.138, “[t]he number of attributes and the de-
gree of attribute correlation also impact entropy since these elements will
affect the probabilities π(x)”. It seems possible to use this measure in a
global way, using the probability distribution as π(a) to compute the en-
tropy of the general choice experiment, or in a choice-task level, using the
probability to choose each alternative as π(a). Moreover, in this last case,
it is possible to consider either the specific-attribute utility function (using
Cameron’s notation “own-attribute entropy”), or even - “other-attribute
entropy”. It would represent complexity of the choice task globally when
using the complete utility function, complexity of the particular attribute
for “own-attribute entropy” and finally complexity of the choice using all
other attributes but the one considered. In order to compute entropy,
we need a measure of the probability and we will use the classical logit
probability using the utilities with only the k-th attribute :

π(aj
k) :=

e(xkβk)j)

∑J
j′=1 e(xkβk)j′

And identically with the utility with all the attributes but the k-th:

π(aj
−k) :=

e(x′

−kβ−k)j)

∑J
j′=1 e(x′

−k
β−k)j′

And finally we get the own- and other-attribute entropy:

Hk := −

J
∑

j=1

π(aj
k) log π(aj

k)

H−k := −
J

∑

j=1

π(aj
−k) log π(aj

−k)

Pivotality An attribute is pivotal when considering it or not is going to change
the prediction of the model about the preferred choice, i.e., when the al-
ternative with maximum utility is not the same. Using x′β to describe
the full utility with all attributes, we define being pivotal as a binomial
variable:

Pivotalk =

{

1 if
{

j|(x′β)j = maxj′(x
′β)j

′
}

6=
{

i|(x′
−kβ−k)

i = maxi′(x
′
−kβ−k)

i′
}

0 otherwise

Number of attributes For Swait and Adamovicz, the number of attributes
is correlated with entropy. For the Cortina data we are able to estimate
the effect of the number of attributes on attention since the number of
attribute varies in the different waves (10, 8, 6 and finally 4 attributes).
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Order of attributes In the potatoes data, the order of the attributes is differ-
ent and randomly defined for each respondent. It is thus possible to test
if the order of the attributes affects the way respondents are attending at-
tributes. We usually read from top to bottom and left to right, and maybe
we give more attention to the attributes described on top or towards the
left.

The effect of the number of alternatives cannot be tested, since all the data
sets have the same number of alternatives. It is impossible to take into account
time pressure since we have no data on it. Moreover there is no explicit time
pressure in the three choice experiments we consider in this paper.

Since there are two different random utility models, one to estimate the
different β’s and one to explain attendance, and it could be confusing, we define
here clearly the terminology we will use in the following part of this report. In
the case of binomial models explaining attendance to attributes as a choice using
the variables we have just defined, we will call these the “attribute attendance
probability models”. The dependent variables of these models were defined in
Section 4.1; they are either 1 if attribute is attended, or 0 otherwise. We have
just defined the explanatory variables of these models in Section 4.2.

We use other models in this study to estimate utility parameters β’s, in
order to compute the explanatory variables of the “attribute attendance proba-
bility models”. These models explain the choice of the respondent considering
a complete attention to attributes. They are the classic random utility models.
We will refer to these models by “choice probability models”.
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Chapter 5

Results

5.1 Absolute value for lead

As explained before, lead is the difference of utilities using the two leading alter-
natives. To determine what are the two leading alternatives, we use the complete
utility function of the choice probability model. It is, however, possible for this
difference to be negative. Indeed the utility of the leading alternative is larger
than the utility of the second leading alternative by definition. However, when we
consider only a part of the utility function, as for lead(xkβk) and lead(x′

−kβ−k),
this need not be the case any more. So this difference lead(xkβk) (respectively
lead(x′

−kβ−k)) could be negative in the case of a leading alternative having a
smaller utility for a particular attribute (respectively for a particular subgroup
of attributes).

Since lead could be negative and as it could be considered as a distance be-
tween the two leading alternatives, we could consider that it is more meaningful
to consider its absolute value.

To test these two different specifications, we estimate two different attribute
attendance probability models using only lead(xkβk) and lead(x′

−kβ−k) as ex-
planatory variables, once with absolute value and once without absolute value.
The first attribute attendance probability model, without absolute value, is:

y = ASC + βother ∗ lead(x′
−kβ−k) + βown ∗ lead(xkβk)

And the second attribute attendance probability model, with absolute value,
is:

y = ASC + βother ∗ |lead(x′
−kβ−k)| + βown ∗ |lead(xkβk)|

for each attribute k and where y is the dependent variable with value 1 if
attribute is attended and 0 otherwise and ASC is an constant.

Attribute attendance probability model results are reported in tables 5.1,
5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 using estimates of each different choice
probability models for different data sets. We test the null hypotheses that
these values explain attendance for each attribute. We also consider the overall
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attention to attributes; the “Global” row is a model with all attributes. We
estimate this model with all the dependent variables together for all attributes. It
gives a general meaning of the explanatory variables for attention to attributes in
the whole. Results for the first attribute attendance probability model, without
absolute value, are in the left half of the tables and results for the second attribute
attendance probability model, with absolute value, are in the right half of the
tables. For each of the two models and for each attribute, we present (i) the sign
of the estimates for other- and own-attribute utility lead, βother and βown, (ii)
their p-values, (iii) the log-likelihood of the sample for the models (“Final log-
L”), (iv) the likelihood ratio tests (“L ratio test”) and (v) the adjusted likelihood
ratio index ρ2, a goodness-of-fit measure. The largest value between the two
attribute attendance probability models is in bold. For the different values of
β’s we use red color for p-values higher than 0.05. The “Composite” column gives
the value of the log-likelihood of a composite attribute attendance probability
model using both absolute values and signed values for lead, for comparison.

We use four different choice probability models for Cortina data, a basic
MNL (Table 5.1), scaling by category (Table 5.2), scaling by category and wave
(Table 5.3) and finally estimating a mixed logit with individual specific betas
(Table 5.4). Each of these choice probability models fits the data better than the
previous one, with the mixed logit giving the best fit of all. From this last model
we compute the means of the individual specific distributions of βn. We use
these to compute utilities for alternatives of each respondent set of choice-tasks
as well as all the various factors determining attendance. Indeed we observe
different behaviours about attendance and using the means of individual specific
distributions of βn should improve the quality of the variables we use to predict
attendance. Using a classical MNL (see Table 5.1) we have obtain disappointing
results results. The coefficient for lead (without absolute value) is not significant.
The majority of the coefficient estimates are not significantly different from zero.
Moreover when it is globally significant, the sign of βown has not got the expect
sign. It should be positive since a large difference of the own-attribute utility of
the two leading alternatives should give a higher probability to pay attention to
the attribute. Looking at the values for ρ2 |lead| clearly provides a better factor
in the explanation of attribute attendance.

Using the choice probability model with scaling by category to estimate β’s
does not really change the results, as we can see in Table 5.2. It is globally in-
significant for lead and again, the sign is wrong for βown. However, this attribute
attendance probability model is the best at explaining attribute attendance for
the Cortina data. ρ2 is the highest amongst the various attribute attendance
probability model specifications tried. Note that, if these estimates for β are the
best ones to explain attendance, they are not the best ones to explain choices
of respondents in the choice probability model. Scaling by category and wave is
better to explain choices. We could expect a better explanation of attention to
attributes in our attribute attendance probability models when estimates come
from a better choice probability model; it is not the case here.
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Table 5.1: Comparison of lead and |lead| for Cortina data using basic MNL.

Using lead Using |lead|
βother βown βother βown Composite

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2 Final logL
Attribute 1 + 0.42 + 0.41 -1208.665 2772.957 0.533 − 0.14 + 0.01 -1204.862 2780.562 0.535 -2784.188
Attribute 2 + 0.12 + 0.36 -815.089 2362.350 0.590 + 0.41 − 0.02 -813.302 2365.924 0.591 -2119.245
Attribute 3 − 0.22 + 0.04 -1391.325 4004.648 0.589 − 0.07 + 0.64 -1393.056 4001.186 0.589 -1746.295
Attribute 4 − 0.02 − 0.21 -1396.227 1998.580 0.416 − 0.02 + 0.00 -1390.632 2009.769 0.418 -2049.751
Attribute 5 + 0.03 − 0.85 -662.188 1071.141 0.445 − 0.04 + 0.38 -662.138 1071.240 0.445 -1556.871

(Attribute 6) − 0.03 + 0.00 -847.785 1498.452 0.467 − 0.04 − 1.00 -852.210 1489.602 0.464 -1863.139
Attribute 7 − 0.54 + 0.21 -1742.196 2903.652 0.454 − 0.16 − 0.00 -1715.249 2957.547 0.462 -2073.125
Attribute 8 + 0.00 + 0.00 -2779.654 2026.495 0.266 + 0.30 − 0.00 -2705.536 2174.730 0.286 -2082.043

(Attribute 9) − 0.00 + 0.10 -2285.866 3014.070 0.397 − 0.00 + 0.70 -2287.231 3011.340 0.396 -1676.401
Attribute P + 0.00 + 0.00 -3881.827 221.401 0.027 − 0.96 − 0.43 -3895.521 194.014 0.024 -2294.072

Global + 0.12 + 0.11 -18,418.623 19,058.142 0.341 − 0.00 − 0.00 -17,683.355 20,528.679 0.367 -17645.384

Note that each model for each attribute has different number of observations since they are available depending of the waves. Thus they all have different initial
log-likelihood and we omit to write it for clarity.
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Table 5.2: Comparison of lead and |lead| for Cortina data using MNL Scaled by Category.

Using lead Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Attribute 1 + 0.57 + 0.77 -1209.310 2771.666 0.533 − 0.15 + 0.00 -1202.266 2785.755 0.536

Attribute 2 + 0.10 + 0.48 -814.903 2362.721 0.590 + 0.59 − 0.01 -812.916 2366.695 0.591

Attribute 3 − 0.37 + 0.03 -1391.447 4004.403 0.589 − 0.06 + 0.29 -1392.543 4002.212 0.589
Attribute 4 − 0.03 − 0.17 -1396.558 1997.917 0.416 − 0.04 + 0.00 -1389.177 2012.678 0.419

Attribute 5 − 0.01 + 0.62 -660.998 1073.521 0.446 − 0.01 + 0.23 -660.696 1074.124 0.446
(Attribute 6) − 0.02 + 0.00 -847.765 1498.493 0.467 − 0.03 + 0.77 -851.977 1490.068 0.465

Attribute 7 − 0.60 + 0.33 -1742.888 2902.268 0.453 − 0.22 − 0.00 -1719.153 2949.738 0.461

Attribute 8 + 0.00 + 0.00 -2781.754 2022.294 0.266 + 0.79 − 0.00 -2685.580 2214.643 0.291

(Attribute 9) − 0.00 + 0.10 -2287.704 3010.394 0.396 − 0.00 + 0.10 -2287.736 3010.330 0.396
Attribute P + 0.00 + 0.00 -3883.659 217.737 0.027 − 0.40 − 0.34 -3894.463 196.130 0.024

Global + 0.11 + 0.24 -18,418.992 19,057.405 0.341 − 0.00 − 0.00 -17,625.123 20,645.144 0.369
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Table 5.3: Comparison of lead and |lead| for Cortina data using MNL Scaled by Category and Wave.

Using lead Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Attribute 1 − 0.70 + 0.40 -1209.041 2772.204 0.533 − 0.32 + 0.00 -1204.709 2780.868 0.535

Attribute 2 + 0.25 − 0.77 -814.187 2364.154 0.591 + 0.78 − 0.00 -811.976 2368.575 0.592

Attribute 3 − 0.16 + 0.07 -1391.479 4004.339 0.589 − 0.03 + 0.98 -1392.483 4002.332 0.589
Attribute 4 − 0.02 − 0.25 -1396.770 1997.494 0.416 − 0.03 + 0.02 -1394.940 2001.154 0.416
Attribute 5 − 0.06 − 0.59 -662.725 1070.066 0.444 − 0.03 + 0.28 -661.483 1072.550 0.445

Attribute 6 − 0.12 − 0.56 -853.140 1487.742 0.464 − 0.07 − 0.65 -852.529 1488.964 0.464
Attribute 7 + 0.73 + 0.84 -1743.862 2900.320 0.453 − 0.12 − 0.00 -1708.634 2970.776 0.464

Attribute 8 + 0.00 + 0.00 -2782.523 2020.758 0.266 + 0.74 − 0.00 -2681.980 2221.843 0.292

(Attribute 9) − 0.00 + 0.69 -2289.341 3007.121 0.396 − 0.00 − 0.34 -2288.800 3008.202 0.396
Attribute P + 0.00 + 0.00 -3869.078 246.901 0.030 − 0.22 − 0.03 -3891.572 201.912 0.025

Global + 0.00 + 0.00 -18,408.504 19,078.381 0.341 − 0.00 − 0.00 -17,713.444 20,468.500 0.366
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Table 5.4: Comparison of lead and |lead| for Cortina data using mixed logit estimates.

Using lead Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Attribute 1 − 0.38 + 0.00 -1198.187 2793.911 0.537 − 0.03 + 0.00 -1197.576 2795.133 0.537
Attribute 2 + 0.02 + 0.14 -813.492 2365.544 0.591 + 0.86 − 0.55 -816.263 2360.003 0.590
Attribute 3 + 0.49 + 0.00 -1387.876 4011.546 0.590 − 0.52 + 0.00 -1381.109 4025.080 0.592

Attribute 4 − 0.07 + 0.00 -1387.804 2015.425 0.419 − 0.02 + 0.00 -1382.396 2026.241 0.422

Attribute 5 − 0.59 + 0.00 -657.057 1081.403 0.449 − 0.07 + 0.00 -657.514 1080.489 0.449
Attribute 6 − 0.81 + 0.01 -851.045 1491.932 0.465 − 0.20 + 0.00 -846.745 1500.533 0.470

Attribute 7 − 0.89 + 0.00 -1733.594 2920.856 0.456 − 0.01 − 0.00 -1721.260 2945.1525 0.460

Attribute 8 + 0.00 + 0.00 -2749.349 2087.104 0.274 − 0.00 − 0.00 -2727.931 2129.941 0.280

Attribute 9 − 0.91 + 0.00 -2294.929 2995.945 0.394 − 0.45 + 0.10 -2297.834 2990.134 0.393
Attribute P + 0.50 + 0.00 -3795.847 393.362 0.049 − 0.00 + 0.09 -3805.257 374.542 0.046

Global + 0.50 + 0.00 -18,109.689 19,676.010 0.352 − 0.00 − 0.00 -17,954.487 19,986.414 0.357
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Table 5.5: Comparison of lead and |lead| for Wind Power data without Panel Specification.

Using lead Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

(Size of farms) − 0.37 − 0.42 -1205.712 2487.740 0.507 − 0.57 + 0.95 -1206.046 2487.073 0.506
(Maximum height) − 0.09 + 0.68 -1432.023 2035.118 0.414 − 0.10 − 0.36 -1431.684 2035.796 0.414

Red kite − 0.49 − 0.70 -1368.248 2162.668 0.440 − 0.63 − 0.54 -1368.105 2162.955 0.440
Minimum distance − 0.04 − 0.04 -1206.131 2486.903 0.506 − 0.05 + 0.01 -1203.404 2492.357 0.508

Price − 0.72 − 0.23 -1221.994 2455.176 0.500 + 0.16 − 0.06 -1220.474 2458.216 0.501

Init. log-likelihood: -2449.582 Init. log-likelihood: -2449.582

Global − 0.01 − 0.01 -6451.054 11,593.713 0.473 − 0.21 + 0.08 -6452.652 11,590.517 0.473
Init. log-likelihood: -12,247.911 Init. log-likelihood: -12,247.911
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Table 5.6: Comparison of lead and |lead| for Wind Power data with Panel Specification.

Using lead Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

(Size of farms) − 0.41 + 0.48 -1205.485 2488.193 0.507 − 0.32 + 0.66 -1205.687 2487.790 0.507
(Maximum height) − 0.17 + 0.04 -1430.186 2038.791 0.415 − 0.17 − 0.50 -1432.237 2034.691 0.414

Red kite − 0.68 − 0.15 -1367.045 2165.074 0.441 + 0.28 − 0.26 -1367.424 2164.317 0.441
Minimum distance − 0.34 − 0.78 -1207.488 2484.189 0.506 − 0.55 + 0.03 -1205.896 2487.372 0.506

Price + 0.84 − 0.86 -1222.755 2453.654 0.500 + 0.25 − 0.00 -1220.474 2458.216 0.501

Init. log-likelihood: -2449.582 Init. log-likelihood: -2449.582

Global − 0.08 − 0.13 -6453.311 11,589.199 0.473 − 0.85 + 0.31 -6454.279 11,587.264 0.473
Init. log-likelihood: -12,247.911 Init. log-likelihood: -12,247.911
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Table 5.7: Comparison of lead and |lead| for Wind Power data with individual betas.

Using lead Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

(Size of farms) − 0.10 + 0.01 -1196.799 2500.021 0.510 − 0.01 + 0.00 -1197.072 2499.475 0.510
(Maximum height) − 0.01 + 0.81 -1421.116 2051.386 0.418 − 0.01 + 0.39 -1421.763 2050.092 0.418

Red kite − 0.12 + 0.16 -1362.509 2168.601 0.442 − 0.02 + 0.00 -1361.725 2170.168 0.442
Minimum distance − 0.77 + 0.06 -1203.888 2485.842 0.507 − 0.23 + 0.00 -1200.982 2491.654 0.508

Price − 0.55 + 0.02 -1214.146 2465.328 0.503 − 0.00 − 0.05 -1210.588 2472.443 0.504

Init. log-likelihood: -2446.810 Init. log-likelihood: -2446.810

Global − 0.00 + 0.00 -6412.965 11,642.165 0.476 − 0.00 + 0.00 -6413.512 11,641.071 0.476
Init. log-likelihood: -12,234.048 Init. log-likelihood: -12,234.048

The initial log-likelihood is slightly different in this model compared to the two previous ones (without and with panel specification) because we removed the
observation of one respondents who answered only four questions instead of five for technical reasons.
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Table 5.8: Comparison of lead and |lead| for Potatoes data using MNL.

Using lead Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Texture − 0.17 − 0.00 -444.108 317.861 0.259 − 0.32 + 0.54 -450.605 304.866 0.248
Price − 0.35 − 0.85 -254.888 696.300 0.572 − 0.05 − 0.39 -252.604 700.868 0.576

(Colour of flesh) − 0.10 − 0.85 -480.607 244.862 0.198 − 0.12 − 0.67 -480.491 245.094 0.198
Production + 0.46 + 0.92 -280.174 645.728 0.530 − 0.77 − 0.56 -280.330 645.416 0.530

Nutrition − 0.04 − 0.17 -255.885 694.305 0.571 − 0.07 − 0.30 -255.802 694.473 0.571
Country − 0.14 − 0.94 -395.262 415.552 0.340 − 0.03 − 0.77 -394.515 417.046 0.341

Init. log-likelihood: -603.038 Init. log-likelihood: -603.038

Global − 0.00 − 0.44 -2197.836 2840.785 0.392 − 0.00 + 0.00 -2193.651 2849.155 0.393

Init. log-likelihood: -3618.228 Init. log-likelihood: -3618.228
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Table 5.9: Comparison of lead and |lead| for Potatoes data using Mixed Logit.

Using lead Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Texture − 0.22 − 0.84 -450.729 304.618 0.248 − 0.32 + 0.12 -449.782 306.512 0.249

Price − 0.11 + 0.05 -252.368 701.340 0.577 − 0.29 − 0.91 -254.891 696.294 0.572
(Color of flesh) − 0.02 + 0.02 -475.679 254.719 0.206 − 0.01 + 0.01 -475.827 254.423 0.206

Production + 0.49 + 0.00 -272.968 660.141 0.542 − 0.15 + 0.00 -273.211 659.653 0.542
Nutrition − 0.03 + 0.97 -254.469 697.137 0.573 − 0.06 + 0.16 -255.195 695.687 0.572
Country − 0.08 + 0.30 -392.717 420.642 0.344 − 0.03 − 0.04 -391.502 423.072 0.346

Init. log-likelihood: -603.038 Init. log-likelihood: -603.038

Global − 0.00 + 0.00 -2176.584 2883.289 0.398 − 0.00 + 0.00 -2183.769 2868.918 0.396
Init. log-likelihood: -3618.228 Init. log-likelihood: -3618.228
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In the attribute attendance probability model using estimates from the choice
probability model scaled by category and wave (Table 5.3) lead is significant, but
with opposite signs to those for |lead|. Moreover, fewer attributes are significant
in this attribute attendance probability models. This could be explained by the
weight of the price attribute in the global evaluation. Indeed the price attribute
is always available to respondents so it is has much more observations than other
attributes.

The panel mixed model (Table 5.4) gives different values and level of signif-
icance for the attributes compared to previous attribute attendance probability
models. However, even if the results are different, |lead| is still more significant
globally. Thus the results for Cortina data suggests the use of |lead| rather than
lead.

For the wind power datas the two first attribute attendance probability mod-
els, without and with panel specification, respectively Tables 5.5 and 5.6, provide
disappointing results. For most of the attributes, lead and |lead| are not signifi-
cantly different from zero. It is thus difficult to derive an indication as to one is
to be prefered to the other. When using the utilities computed at the individual
specific means for the distributions of βn’s, the results are clearly better with
more significant factors. In this case, we have a very slight preference for the
attribute attendance probability model with |lead| since ρ2 for two attributes
are a bit higher in this case. Note that in this model, we also have the predicted
signs by Cameron’s theory.

With the potatoes data, using a classic MNL choice probability model, we
have poor results at the attribute level. So it is difficult to draw a conclusion
about the use of lead or its absolute value. In a global analysis we note the
expected signs and again a slightly better fit for |lead|. The regressions on the
utilities computed on individual specific estimates from the panel mixed logit
give expected signs for |lead| and also for lead. At the attribute level, two
attributes have better fit in each different specification of lead. Globally, lead

fits the data slightly better.
Why is this comparison between lead and |lead| a preliminary condition to

their use of a more general model of attendance? First, because we obviously
cannot use both of them at the same time. They are highly correlated and
it has no sense to use both of them. But mostly because using lead or |lead|
has different interpretations about the behaviour of choice makers if we follow
Cameron’s theory. Note that lead is supposed to have a positive β, i.e. to be
an important determinant in attendance to attribute. In the own-attribute case,
considering a bounded utility function made of one attribute, if the difference
in utility between the two leading alternatives is small, there is little reason for
attendance to this attribute. If the value of lead is close to zero attendance is in
theory going to be less likely since this attribute does not help the choice maker
to identify the best alternatives. If this difference, lead, is positive, i.e., if the
attribute confirm the a priori knowledge of the choice maker about his choice,
going in the same direction, using |lead| or lead does not change anything. But,

40



and this is the interesting case, if this difference, lead, is negative, it means
that the choice maker is facing an attribute that supports the second leading
alternative, an attribute that is perhaps going to create a doubt in the mind of the
choice maker. In this particular case, using the absolute value |lead| to explain
attendance means that the choice maker is going to attend all attributes that
could give him more information for his choice assuming his a priori knowledge
represented by the full-information choice probability model. He is going to
attend an attribute even if this attribute is giving him a preference for the
second leading alternative and not the first one. In the contrary, using lead

without absolute value means in the case of a negative difference that the larger
this difference is the less likely it is to attend attribute. The interpretation would
be that choice makers do not attend attributes going to make them change their
decision or going in the opposite direction than their decision before considering
the attribute.

On the other hand, in the case of other-attribute dissimilarities, using a
utility function with all attributes except the one we consider, the theory suggests
that if this difference is null or small, the attribute not considered is deserving
attention because considering it may help decide between the two alternatives.
And if this difference is – instead – large and positive, the attribute is unlikely to
be attended because the choice maker knows that it is unlikely that attending to
the missing attribute can change the preferred alternative. In the particular case
of a negative difference, it means that the missing attribute is pivotal and hence
we expect the attention to this attribute to be more likely when this attribute
is pivotal.

In our different tests, we observe that the absolute value |lead| is fitting the
observed attendance slightly better. Thus we are going to use this specification
with absolute value in our next attribute attendance probability models instead
of lead without absolute value.

5.2 Bounded leading alternatives

Now we know that |lead| is a better explanatory variable than lead for attention
to attributes.

We still need to know if it is better to use a local specification of lead,
leadlocal, based on the bounded utility, as described in Section 4.2 about explana-
tory variables, or a specification using the complete utility function in the choice
probability models. Remember here that in the local specification, leadlocal is
always positive, so we don’t need to make the previous analysis of the better
specification, like in Section 5.1.

To test these two different specifications, we estimate again two different
attribute attendance probability models using only lead(xkβk) and lead(x′

−kβ−k)
as explanatory variables, once using bounded utility function and once with the
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complete utility function. The first attribute attendance probability model is:

y = ASC + βother ∗ leadlocal(x
′
−kβ−k) + βown ∗ leadlocal(xkβk)

And the second attribute attendance probability model, with absolute value,
is:

y = ASC + βother ∗ |lead(x′
−kβ−k)| + βown ∗ |lead(xkβk)|

for each attribute k and where y is the dependent variable with value 1 if
attribute is attended and 0 otherwise and ASC is an constant.

Attribute attendance probability model results can be seen in tables 5.10,
5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18 using estimates of each different
choice probability models for different data sets. Results for the first attribute
attendance probability model, with local specification, are in the left half of the
tables and results for the second attribute attendance probability model, using
a complete utility function to define leading alternatives, are in the right half of
the tables.

For the Cortina data, all attribute attendance probability models fit the data
better when using leadlocal.

In the wind power case all attribute attendance probability models fit the
data similarly well. In the attribute level, there is a slight preference for |lead|
but we can observe that neither leadlocal and |lead| are significant in most cases.
In the last model, with individual specific means for the distributions of βn there
is a clear improvement but both specifications are still globally equivalent.

With the potatoes data, as for the Cortina data, the specification with
leadlocal is better for both attribute attendance probability models globally and
for the attribute level we also have better ρ2.

Remember that we use the choice probability models, about potatoes or
wind power policy in our examples, to have a linear utility function giving the
importance weights of each attribute on the probability of choice. We use this
weights as an a priori knowledge by the choice maker about the importance of
each attribute in his choice. In particular, lead is the utility difference between
leading alternatives and is assumed to motivate, at least in part, the attention
to attributes. Comparing these two different specifications of lead, leadlocal and
|lead| casts some light on the use by choice makers of this a priori knowledge.
In the local specification, the choice maker is considering the utility difference
between the two locally leading alternatives. It suggests that he has an a priori

knowledge of the effect of this attribute in the utility function on its own but
maybe not much knowledge of the overall utility function and consequently of his
general choice. Using the general specification |lead| we assume that the choice
maker has some knowledge not only of the effect of the attribute on its own but
also of the complete utility function before attending to all attributes.

The results of Tables 5.10 to 5.18 seem to give a preference for the local
specification leadlocal. Thus we are going to use it in place of the previously
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Table 5.10: Comparison of leadlocal and |lead| for Cortina data using basic MNL.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Attribute 1 − 0.12 + 0.21 -1207.692 2774.901 0.533 − 0.14 + 0.01 -1204.862 2780.562 0.535

Attribute 2 + 0.90 − 0.59 -816.272 2359.983 0.590 + 0.41 − 0.02 -813.302 2365.924 0.591

Attribute 3 − 0.08 + 0.00 -1387.896 4011.505 0.591 − 0.07 + 0.64 -1393.056 4001.186 0.589
Attribute 4 − 0.03 + 0.91 -1396.926 1997.180 0.416 − 0.02 + 0.00 -1390.632 2009.769 0.418

Attribute 5 − 0.02 + 0.14 -660.971 1073.575 0.446 − 0.04 + 0.38 -662.138 1071.240 0.445
(Attribute 6) − 0.03 + 0.47 -851.934 1490.155 0.465 − 0.04 − 1.00 -852.210 1489.602 0.464

Attribute 7 − 0.09 − 0.00 -1717.303 2953.438 0.461 − 0.16 − 0.00 -1715.249 2957.547 0.462

Attribute 8 − 0.16 − 0.00 -2582.106 2421.590 0.318 + 0.30 − 0.00 -2705.536 2174.730 0.286

(Attribute 9) − 0.00 − 0.05 -2285.259 3015.285 0.397 − 0.00 + 0.70 -2287.231 3011.340 0.396
Attribute P + 0.00 − 0.01 -3865.432 254.192 0.031 − 0.96 − 0.43 -3895.521 194.014 0.024

Global − 0.08 + 0.00 -17471.433 20952.522 0.375 − 0.00 − 0.00 -17,683.355 20,528.679 0.367
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Table 5.11: Comparison of leadlocal and |lead| for Cortina data using MNL Scaled by Category.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Attribute 1 − 0.08 + 0.34 -1207.719 2774.848 0.533 − 0.15 + 0.00 -1202.266 2785.755 0.536

Attribute 2 + 0.84 − 0.52 -816.180 2360.167 0.590 + 0.59 − 0.01 -812.916 2366.695 0.591

Attribute 3 − 0.11 + 0.00 -1387.206 4012.886 0.590 − 0.06 + 0.29 -1392.543 4002.212 0.589
Attribute 4 − 0.05 + 0.57 -1397.317 1996.399 0.415 − 0.04 + 0.00 -1389.177 2012.678 0.419

Attribute 5 − 0.01 + 0.15 -660.310 1074.896 0.446 − 0.01 + 0.23 -660.696 1074.124 0.446
(Attribute 6) − 0.03 − 0.17 -851.070 1491.882 0.465 − 0.03 + 0.77 -851.977 1490.068 0.465

Attribute 7 − 0.13 − 0.00 -1722.074 2943.897 0.460 − 0.22 − 0.00 -1719.153 2949.738 0.461

Attribute 8 − 0.08 − 0.00 -2580.790 2424.223 0.319 + 0.79 − 0.00 -2685.580 2214.643 0.291
(Attribute 9) − 0.00 − 0.11 -2287.774 3010.255 0.396 − 0.00 + 0.10 -2287.736 3010.330 0.396
Attribute P − 0.14 − 0.00 -3868.684 247.687 0.030 − 0.40 − 0.34 -3894.463 196.130 0.024

Global + 0.11 + 0.24 -17443.279 21008.831 0.376 − 0.00 − 0.00 -17,625.123 20,645.144 0.369
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Table 5.12: Comparison of leadlocal and |lead| for Cortina data using MNL Scaled by Category and Wave.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Attribute 1 − 0.33 + 0.33 -1208.645 2772.996 0.533 − 0.32 + 0.00 -1204.709 2780.868 0.535

Attribute 2 + 0.83 − 0.16 -815.349 2361.829 0.590 + 0.78 − 0.00 -811.976 2368.575 0.592

Attribute 3 − 0.06 + 0.00 -1382.500 4022.297 0.592 − 0.03 + 0.98 -1392.483 4002.332 0.589
Attribute 4 − 0.07 − 0.15 -1396.774 1997.486 0.416 − 0.03 + 0.02 -1394.940 2001.154 0.416
Attribute 5 − 0.02 + 0.22 -661.109 1073.298 0.446 − 0.03 + 0.28 -661.483 1072.550 0.445
Attribute 6 − 0.11 + 0.67 -853.032 1487.959 0.464 − 0.07 − 0.65 -852.529 1488.964 0.464
Attribute 7 − 0.02 − 0.00 -1716.230 2955.585 0.462 − 0.12 − 0.00 -1708.634 2970.776 0.464

Attribute 8 − 0.17 − 0.00 -2583.600 2418.602 0.318 + 0.74 − 0.00 -2681.980 2221.843 0.292
(Attribute 9) − 0.00 − 0.00 -2283.227 3019.348 0.397 − 0.00 − 0.34 -2288.800 3008.202 0.396
Attribute P + 0.00 − 0.00 -3875.762 233.532 0.028 − 0.22 − 0.03 -3891.572 201.912 0.025

Global − 0.00 − 0.00 -17572.097 20751.194 0.371 − 0.00 − 0.00 -17,713.444 20,468.500 0.366
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Table 5.13: Comparison of leadlocal and |lead| for Cortina data using mixed logit estimates.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Attribute 1 − 0.03 + 0.00 -1197.948 2794.390 0.537 − 0.03 + 0.00 -1197.576 2795.133 0.537
Attribute 2 − 0.88 + 0.90 -816.439 2359.649 0.590 + 0.86 − 0.55 -816.263 2360.003 0.590
Attribute 3 − 0.91 + 0.00 -1364.161 4058.975 0.597 − 0.52 + 0.00 -1381.109 4025.080 0.592
Attribute 4 − 0.02 + 0.00 -1391.652 2007.729 0.418 − 0.02 + 0.00 -1382.396 2026.241 0.422

Attribute 5 − 0.09 + 0.00 -655.915 1083.686 0.450 − 0.07 + 0.00 -657.514 1080.489 0.449
Attribute 6 − 0.28 + 0.00 -844.559 1504.905 0.469 − 0.20 + 0.00 -846.745 1500.533 0.470

Attribute 7 − 0.01 − 0.00 -1731.419 2925.206 0.457 − 0.01 − 0.00 -1721.260 2945.1525 0.460

Attribute 8 − 0.00 − 0.00 -2658.086 2269.632 0.298 − 0.00 − 0.00 -2727.931 2129.941 0.280
Attribute 9 − 0.50 − 0.07 -2297.615 2990.574 0.393 − 0.45 + 0.10 -2297.834 2990.134 0.393
Attribute P − 0.00 − 0.00 -3833.919 317.217 0.039 − 0.00 + 0.09 -3805.257 374.542 0.046

Global − 0.00 − 0.00 -17927.998 20039.392 0.358 − 0.00 − 0.00 -17,954.487 19,986.414 0.357

46



Table 5.14: Comparison of leadlocal and |lead| for Wind Power data without Panel Specification.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

(Size of farms) − 0.59 + 0.52 -1205.829 2487.506 0.507 − 0.57 + 0.95 -1206.046 2487.073 0.506
(Maximum height) − 0.09 + 0.59 -1431.957 2035.251 0.414 − 0.10 − 0.36 -1431.684 2035.796 0.414

Red kite − 0.46 − 0.45 -1367.919 2163.326 0.440 − 0.63 − 0.54 -1368.105 2162.955 0.440
Minimum distance − 0.15 − 0.70 -1207.319 2484.526 0.506 − 0.05 + 0.01 -1203.404 2492.357 0.508

Price + 0.65 − 0.04 -1220.977 2457.211 0.500 + 0.16 − 0.06 -1220.474 2458.216 0.501

Init. log-likelihood: -2449.582 Init. log-likelihood: -2449.582

Global − 0.15 + 0.78 -6453.758 11588.306 0.473 − 0.21 + 0.08 -6452.652 11,590.517 0.473
Init. log-likelihood: -12,247.911 Init. log-likelihood: -12,247.911
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Table 5.15: Comparison of leadlocal and |lead| for Wind Power data with Panel Specification.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

(Size of farms) − 0.28 + 0.36 -1205.416 2488.333 0.507 − 0.32 + 0.66 -1205.687 2487.790 0.507
(Maximum height) − 0.16 − 0.23 -1431.745 2035.674 0.414 − 0.17 − 0.50 -1432.237 2034.691 0.414

Red kite + 0.38 − 0.34 -1367.787 2163.591 0.440 + 0.28 − 0.26 -1367.424 2164.317 0.441
Minimum distance − 0.77 − 0.74 -1208.225 2482.715 0.506 − 0.55 + 0.03 -1205.896 2487.372 0.506

Price + 0.45 − 0.05 -1220.788 2457.589 0.500 + 0.25 − 0.00 -1220.474 2458.216 0.501

Init. log-likelihood: -2449.582 Init. log-likelihood: -2449.582

Global − 1.00 + 0.77 -6454.774 11,586.273 0.473 − 0.85 + 0.31 -6454.279 11,587.264 0.473
Init. log-likelihood: -12,247.911 Init. log-likelihood: -12,247.911
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Table 5.16: Comparison of leadlocal and |lead| for Wind Power data with individual betas.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

(Size of farms) − 0.01 + 0.06 -1198.903 2495.813 0.509 − 0.01 + 0.00 -1197.072 2499.475 0.510

(Maximum height) − 0.01 + 0.25 -1421.459 2050.701 0.418 − 0.01 + 0.39 -1421.763 2050.092 0.418
Red kite − 0.01 + 0.03 -1362.098 2169.424 0.442 − 0.02 + 0.00 -1361.725 2170.168 0.442

Minimum distance − 0.25 + 0.01 -1202.620 2488.379 0.507 − 0.23 + 0.00 -1200.982 2491.654 0.508

Price − 0.00 − 0.03 -1208.183 2477.253 0.505 − 0.00 − 0.05 -1210.588 2472.443 0.504
Init. log-likelihood: -2446.810 Init. log-likelihood: -2446.810

Global − 0.00 + 0.00 -6412.857 11,642.382 0.476 − 0.00 + 0.00 -6413.512 11,641.071 0.476
Init. log-likelihood: -12,234.048 Init. log-likelihood: -12,234.048
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Table 5.17: Comparison of leadlocal and |lead| for Potatoes data using MNL.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Texture − 0.15 − 0.10 -449.523 307.030 0.250 − 0.32 + 0.54 -450.605 304.866 0.248
Price − 0.01 − 0.87 -251.218 703.640 0.578 − 0.05 − 0.39 -252.604 700.868 0.576

(Colour of flesh) − 0.12 − 0.14 -479.570 246.937 0.200 − 0.12 − 0.67 -480.491 245.094 0.198
Production + 0.89 − 0.71 -280.549 644.978 0.530 − 0.77 − 0.56 -280.330 645.416 0.530

Nutrition − 0.04 − 0.53 -255.728 694.620 0.571 − 0.07 − 0.30 -255.802 694.473 0.571
Country − 0.02 − 0.42 -394.461 417.155 0.341 − 0.03 − 0.77 -394.515 417.046 0.341

Init. log-likelihood: -603.038 Init. log-likelihood: -603.038

Global − 0.00 + 0.00 -2189.997 2856.462 0.394 − 0.00 + 0.00 -2193.651 2849.155 0.393
Init. log-likelihood: -3618.228 Init. log-likelihood: -3618.228
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Table 5.18: Comparison of leadlocal and |lead| for Potatoes data using Mixed Logit.

Using leadlocal Using |lead|
βother βown βother βown

Value p-value Value p-value Final logL L ratio test ρ2 Value p-value Value p-value Final logL L ratio test ρ2

Texture − 0.24 + 0.01 -448.144 309.789 0.252 − 0.32 + 0.12 -449.782 306.512 0.249
Price − 0.01 − 0.84 -251.252 703.572 0.578 − 0.29 − 0.91 -254.891 696.294 0.572

(Colour of flesh) − 0.01 + 0.02 -475.127 255.821 0.207 − 0.01 + 0.01 -475.827 254.423 0.206
Production − 0.04 + 0.00 -273.171 659.734 0.542 − 0.15 + 0.00 -273.211 659.653 0.542

Nutrition − 0.02 + 0.15 -254.396 697.285 0.573 − 0.06 + 0.16 -255.195 695.687 0.572
Country − 0.03 + 0.96 -394.125 417.826 0.341 − 0.03 − 0.04 -391.502 423.072 0.346

Init. log-likelihood: -603.038 Init. log-likelihood: -603.038

Global − 0.00 + 0.00 -2161.079 2914.298 0.402 − 0.00 + 0.00 -2183.769 2868.918 0.396
Init. log-likelihood: -3618.228 Init. log-likelihood: -3618.228
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defined lead and |lead|. It means that the assumption of an a priori knowledge
using the results of the complete information models is maybe valid but only, in
the case of lead, from a “local” point of view.

5.3 Complete utility function for attendance

Similarly to the two previous sections, we estimate attribute attendance prob-
ability models. We now use all the available factors described in Section 4.2:
(i) the own- and other-attribute utility dissimilarities for lead (and we use, as
explained in Section 5.2, leadlocal specification), (ii) entropy, (iii) standard de-
viation, (iv) skewness, (vi) the effect of being pivotal, (vii) the effect of the
number of attributes and – when possible – (viii) that of their order.

We estimate an attribute attendance probability model with all of these
factors and an intercept:

y = ASC +βlead
own · leadlocal(xkβk) + βlead

other · leadlocal(x
′
−kβ−k)

+βentropy
own · Hk + β

entropy
other · H−k

+βpivotal · Pivotal + β# · #

+βsd
own · SD(xkβk) + βsd

other · SD(x′
−kβ−k)

+βskew
own · Skew(xkβk) + βskew

other · Skew(x′
−kβ−k)

for each attribute k, with # the number of attributes. An example based on
Cortina data using the basic MNL model estimates for β’s can be seen in Table
5.19 with for each factors the sign of the estimates and their p-values.

Most of the factors are not significant and we have significant correlations
between some of them1. To avoid as much as possible side effects of these correla-
tions on our attribute attendance probability models, we systematically remove
from each model the factor with highest ρ2 value until having only significant
factors. The final results for Cortina data using basic MNL estimates for β’s
can be seen in Table 5.20 for comparison with Table 5.19. For all other differ-
ent attribute attendance probability models and data we present only this final
version, in Tables 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27 and 5.28.

We first describe the expectation we have about the different factors, and
then will describe the results.

We expect a positive sign for own-attribute leadlocal since if the own-attribute
utility difference between the two leading alternatives is large it means that this
attribute has a large potential to change the choice of the decision maker. On
the contrary, little attention stems from a small difference across alternatives.

For other-attribute leadlocal a negative sign is expected. Indeed, when it is
small it means that without the attribute the utility functions of the different

1As an example, in this particular case, 47 of the 55 possible couples of parameters have
correlation significantly different from 0.



Table 5.19: Full model of attention to attributes for Cortina data using basic MNL

leadlocal Entropy Standard deviation Skewness
ASC own other own other Pivotal # attributes own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

Attribute 1 − 0.07 − 0.39 + 0.10 + 0.08 + 0.10 − 0.11 − 0.68 + 0.03 + 0.51 + 0.00 − 0.04 -1195.830 2798.626 0.535
Attribute 2 + 0.39 − 0.72 − 0.44 + 0.49 − 0.25 − 0.00 − 0.27 + 0.22 − 0.18 + 0.95 + 0.36 -807.842 2376.843 0.590
Attribute 3 − 0.65 + 0.00 − 0.01 + 0.62 − 0.07 − 0.14 + 0.00 − 0.03 − 0.43 − 0.00 + 0.07 -1358.194 4070.909 0.597
Attribute 4 + 0.14 − 0.00 + 0.57 − 0.12 + 0.01 + 0.09 + 0.54 + 0.25 + 0.01 + 0.00 + 0.52 -1381.599 2027.835 0.419
Attribute 5 − 0.46 + 0.30 − 0.74 + 0.42 − 0.83 − 1.00 − 0.00 − 0.36 − 0.56 − 0.31 − 0.86 -652.794 1089.928 0.446
Attribute 6 + 1.00 − 0.29 − 0.25 + 1.00 − 0.66 + 0.11 − 0.11 + 0.93 + 0.97 + 0.10 + 0.40 -847.209 1499.604 0.463
Attribute 7 − 0.32 − 0.00 − 0.20 + 0.32 + 0.52 + 0.29 + 0.00 + 0.47 + 0.12 + 0.02 + 0.03 -1688.401 3011.243 0.468
Attribute 8 − 0.00 + 0.16 − 0.36 + 0.00 + 0.20 + 0.76 + 0.00 + 0.03 + 0.08 − 0.00 + 0.10 -2469.264 2647.274 0.346
Attribute 9 − 1.00 − 0.36 − 0.14 + 1.00 − 0.31 − 0.92 + 0.01 + 0.90 − 0.09 + 0.48 + 0.31 -2275.850 3034.103 0.397
Attribute P + 0.05 − 0.00 − 0.32 − 0.00 + 0.27 + 0.94 + 0.00 − 0.00 + 0.02 − 0.76 + 0.04 -3542.889 899.278 0.110

Global + 0.00 − 0.00 + 0.41 − 0.00 + 0.00 + 0.72 + 0.00 − 0.00 + 0.23 + 0.01 + 0.01 -16,936.906 22,021.576 0.394



Table 5.20: Model of attention to attributes without non-significant factors for Cortina data using basic MNL

leadlocal Entropy Standard deviation Skewness
ASC own other own other Pivotal # attributes own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

Attribute 1 − 0.01 + 0.01 + 0.01 + 0.00 -1202.124 2786.038 0.535
Attribute 2 + 0.00 − 0.01 − 0.05 -811.912 2368.704 0.592
Attribute 3 + 0.00 + 0.00 + 0.00 − 0.00 − 0.00 -1362.653 4061.991 0.597
Attribute 4 + 0.00 − 0.00 − 0.00 + 0.01 + 0.00 -1388.257 2014.520 0.418
Attribute 5 − 0.03 + 0.00 − 0.00 -654.810 1085.896 0.451
Attribute 6 − 0.04 + 0.00 -852.201 1489.621 0.465
Attribute 7 − 0.00 − 0.00 + 0.00 + 0.00 + 0.00 + 0.01 -1691.162 3005.720 0.469
Attribute 8 − 0.00 + 0.00 + 0.00 + 0.00 + 0.01 − 0.00 -2472.380 2641.043 0.347
Attribute 9 + 0.00 − 0.01 + 0.00 − 0.00 -2278.401 3029.002 0.398
Attribute P − 0.00 − 0.00 + 0.00 + 0.00 − 0.00 + 0.00 + 0.00 -3544.965 895.125 0.110

Global + 0.00 − 0.00 − 0.00 + 0.00 + 0.00 − 0.00 + 0.01 + 0.00 -16,937.682 22,020.024 0.394

Table 5.21: Model of attention to attributes without non-significant factors for Cortina data using MNL Scaled by Category

leadlocal Entropy Standard deviation Skewness
ASC own other own other Pivotal # attributes own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

Attribute 1 − 0.01 + 0.01 + 0.01 + 0.00 -1201.900 2786.485 0.535
Attribute 2 + 0.00 − 0.00 + 0.1 − 0.03 -809.574 2373.379 0.592
Attribute 3 + 0.00 − 0.0 + 0.00 − 0.03 + 0.00 − 0.00 − 0.00 -1339.135 4109.027 0.603
Attribute 4 − 0.00 + 0.00 + 0.00 + 0.00 -1386.484 2018.065 0.420
Attribute 5 + 0.00 − 0.00 -657.074 1081.368 0.450
Attribute 6 + 0.00 − 0.03 -852.019 1489.984 0.465
Attribute 7 − 0.00 − 0.01 + 0.00 + 0.00 + 0.00 + 0.00 + 0.01 -1693.138 3001.768 0.468
Attribute 8 − 0.00 + 0.00 + 0.00 + 0.00 + 0.02 − 0.00 -2472.281 2641.240 0.347
Attribute 9 + 0.00 − 0.00 + 0.01 + 0.00 -2281.479 3022.845 0.397
Attribute P − 0.00 − 0.00 + 0.00 + 0.00 − 0.00 + 0.00 + 0.00 -3544.086 896.883 0.111

Global + 0.00 − 0.00 − 0.00 + 0.00 + 0.00 − 0.00 + 0.00 -16,907.111 22,081.167 0.395



Table 5.22: Model of attention to attributes without non-significant factors for Cortina data using MNL Scaled by Category and Wave

leadlocal Entropy Standard deviation Skewness
ASC own other own other Pivotal # attributes own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

Attribute 1 + 0.00 − 0.01 + 0.00 -1202.812 2784.663 0.535
Attribute 2 + 0.00 + 0.00 -815.882 2360.763 0.590
Attribute 3 + 0.00 − 0.00 + 0.00 + 0.00 − 0.00 − 0.00 -1343.428 4100.442 0.602
Attribute 4 − 0.00 + 0.02 + 0.00 + 0.00 + 0.00 + 0.00 -1380.893 2029.248 0.421
Attribute 5 − 0.04 + 0.00 − 0.00 -654.961 1085.594 0.451
Attribute 6 + 0.00 -854.359 1485.304 0.464
Attribute 7 − 0.00 − 0.02 + 0.00 + 0.00 + 0.00 -1693.202 3001.641 0.468
Attribute 8 − 0.00 − 0.01 + 0.00 + 0.00 + 0.00 − 0.00 -2472.496 2640.812 0.347
Attribute 9 − 0.02 + 0.00 + 0.00 − 0.00 -2278.043 3029.717 0.398
Attribute P + 0.02 − 0.00 − 0.00 + 0.00 + 0.00 − 0.00 + 0.00 -3546.271 892.513 0.110

Global + 0.00 − 0.00 − 0.00 − 0.00 − 0.01 + 0.00 − 0.00 + 0.00 + 0.00 -17,074.522 21,746.346 0.389

Table 5.23: Model of attention to attributes without non-significant factors for Cortina data using mixed logit estimates

leadlocal Entropy Standard deviation Skewness
ASC own other own other Pivotal # attributes own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

Attribute 1 + 0.00 − 0.00 + 0.00 + 0.02 -1193.639 2803.009 0.539
Attribute 2 + 0.00 − 0.00 + 0.00 − 0.01 − 0.00 -805.990 2380.547 0.594
Attribute 3 + 0.00 − 0.00 + 0.00 + 0.00 -1335.428 4116.150 0.605
Attribute 4 + 0.00 − 0.00 + 0.01 + 0.00 − 0.04 -1382.318 2026.397 0.421
Attribute 5 + 0.00 − 0.00 − 0.00 -651.838 1091.841 0.453
Attribute 6 + 0.00 − 0.00 − 0.00 -834.900 1524.221 0.475
Attribute 7 + 0.00 − 0.00 + 0.00 − 0.00 + 0.00 + 0.00 − 0.00 − 0.00 -1697.003 2994.038 0.466
Attribute 8 + 0.00 − 0.00 − 0.00 + 0.00 + 0.00 − 0.00 + 0.00 − 0.00 -2527.748 2530.306 0.331
Attribute 9 + 0.00 + 0.00 + 0.02 − 0.00 -2295.783 2994.237 0.394
Attribute P + 0.01 − 0.00 + 0.00 − 0.00 + 0.00 + 0.00 − 0.00 − 0.00 -3303.338 1378.380 0.171

Global − 0.00 + 0.00 − 0.00 + 0.00 + 0.00 + 0.00 − 0.00 + 0.00 − 0.00 -17,259.746 21,375.896 0.382



Table 5.24: Model of attention to attributes without non-significant factors for Wind Power data without Panel Specification

leadlocal Entropy Standard deviation Skewness
ASC own other own other Pivotal own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

(Size of farms) + 0.00 − 0.02 − 0.02 − 0.04 -1203.428 2492.308 0.507
(Maximum height) + 0.00 − 0.00 − 0.00 − 0.00 -1426.223 2046.719 0.416

Red kite + 0.00 − 0.01 − 0.01 − 0.01 -1364.740 2169.685 0.441
Minimum distance + 0.00 -1208.316 2482.533 0.506

Price − 0.02 + 0.00 + 0.00 -1213.982 2471.200 0.503

Global − 0.00 + 0.00 − 0.00 + 0.00 -6445.981 11,603.860 0.473

Table 5.25: Model of attention to attributes without non-significant factors for Wind Power data with Panel Specification

leadlocal Entropy Standard deviation Skewness
ASC own other own other Pivotal own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

(Size of farms) + 0.00 + 0.00 -1205.834 2487.496 0.507
(Maximum height) + 0.00 + 0.00 − 0.03 -1429.973 2039.219 0.415

Red kite + 0.00 -1368.998 2161.168 0.441
Minimum distance + 0.00 + 0.00 -1207.284 2484.595 0.506

Price + 0.00 − 0.04 -1221.082 2457.001 0.501

Global + 0.00 + 0.00 -6451.132 11,593.558 0.473

Table 5.26: Model of attention to attributes without non-significant factors for Wind Power data with individual betas

leadlocal Entropy Standard deviation Skewness
ASC own other own other Pivotal own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

(Size of farms) + 0.00 + 0.00 + 0.00 -1188.251 2517.117 0.513
(Maximum height) + 0.00 + 0.00 − 0.01 + 0.00 − 0.00 -1412.748 2068.122 0.421

Red kite + 0.00 − 0.02 − 0.01 − 0.00 -1352.582 2188.455 0.446
Minimum distance + 0.00 + 0.00 -1201.115 2491.389 0.508

Price − 0.04 + 0.00 + 0.00 − 0.03 -1203.816 2485.987 0.506

Global + 0.00 + 0.00 + 0.00 − 0.02 -6394.000 11,680.095 0.477



Table 5.27: Model of attention to attributes without non-significant factors for Potatoes data using MNL

leadlocal Entropy Standard deviation Skewness
ASC own other own other Order Pivotal own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

Texture + 0.00 − 0.00 + 0.00 -445.646 314.784 0.256
Price + 0.00 + 0.00 -243.465 719.145 0.293

(Color of flesh) + 0.00 -479.441 247.194 0.203
Production + 0.00 -281.785 642.505 0.531

Nutrition + 0.00 + 0.00 -251.231 703.614 0.280
Country + 0.00 -395.227 415.622 0.343

Global − 0.00 + 0.00 + 0.02 + 0.00 + 0.00 -2169.894 2896.669 0.399

Table 5.28: Model of attention to attributes without non-significant factors for Potatoes data using Mixed Logit

leadlocal Entropy Standard deviation Skewness
ASC own other own other Order Pivotal own other own other

Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Val p-val Final logL L ratio test ρ2

Texture + 0.00 − 0.01 − 0.00 + 0.05 + 0.02 -425.498 355.081 0.286
Price + 0.00 + 0.00 + 0.00 -239.480 727.116 0.598

(Color of flesh) + 0.00 − 0.04 + 0.00 + 0.04 -465.090 275.896 0.222
Production + 0.01 + 0.00 + 0.00 − 0.00 -260.393 685.291 0.562

Nutrition + 0.00 − 0.01 − 0.01 + 0.01 + 0.02 -243.565 718.946 0.588
Country + 0.00 − 0.00 − 0.00 − 0.00 − 0.01 − 0.02 + 0.03 -369.626 466.825 0.375

Global + 0.00 − 0.03 − 0.00 + 0.00 + 0.00 + 0.00 -2099.218 3038.021 0.418



alternatives are close and the attribute could make a difference. When this dis-
tance is large, it is less likely that attendance to the attribute would change the
decision. The alternative specific constant should be positive since by default
when the choice maker as no information about the potential effect of an at-
tribute there is a greater likelihood that he is going to attend it. For standard
deviation and skewness the sign should be positive for the own-attribute specifi-
cation and negative for the other-attribute specification since they measure the
closeness of the utility function (using a similar reasoning than with leadlocal

about the sign). The sign of entropy for own- and other-attribute utility func-
tions should be conversed compared to other factors since entropy is large when
utilities are similar, i.e., close from each other. So the sign of entropy should be
negative for the own-attribute specification and positive for the other-attribute
specification. Being pivotal should have a positive sign on the probability of
attendance, since considering the attribute would change the decision compared
to the suboptimal choice made when it is ignored.

Finally, we use two factors that are not available for all choice sets. The
order of attributes in the list presented to choice maker in the survey is partially
available for Potatoes data. The data of the first day of surveying are not avail-
able so we introduced in our attribute attendance probability model only the
data collected in the following days. We assume that this factor should have a
negative sign since when the order is small, the attribute is at the beginning of
the sequence of choices and the choice maker could pay more attention on these
attributes. Conversely, when the order is high, the value of the factor is high
and the attention is low. About the number of attributes (“# attributes” in the
tables), we expect a negative sign since the more attributes the choice maker has
to consider, the less he is going to attend each one.

We know describe the results of the attribute attendance probability models
and compare them with our expectation.

It is difficult to provide an overall interpretation of all these results since they
vary substantially. We can first observe that using individual specific means for
the distribution of βn’s from panel mixed choice probability models produces
more significant factors in the attribute attendance probability models. In par-
ticular with the Cortina data, the use of individual means improves even the
goodness of fit of the global attribute attendance probability model, as mea-
sured by ρ2. However, this is not the case for the other data sets, Wind and
Potatoes.

About the different signs, we observe that for the alternative specific con-
stant, it is clearly correct. It is always positive or non significant considering
all attributes together (“global” row), with just a few negative signs considering
each attribute individually. The entropy of the own-attribute utility function is
mostly correct in the global analysis but the results are not so clear and in par-
ticular at the attribute level. The results for other-attribute entropy are clearer.
The sign is globally positive (or non-significant) in all cases but one. At the



attribute level the results are good.
The own-attribute leadlocal is slightly more often significant than non signifi-

cant in the global results. However, it has the wrong sign. It suggests that choice
makers are less likely to attend an attribute when this one is a clear support for
the leading alternative. This analysis is not intuitive and not coherent with the
theoretic model.

Another unexpected sign is found on the number of attributes, which is
found to be positive implying that choice makers are more likely to attend each
attribute when there are many than when there are few. Since these results come
from the Cortina data, we have to think about how attendance was reported by
choice makers. They had to write the attributes they did not attend. So when
the list was long we could imagine they put just a few names and were lazy
to declare more attributes. From another viewpoint, when the list was small,
the choice of declaring which attributes were ignored was easier. Finally, the
last unexpected sign is found for the order of attributes, which is found mostly
positive. It means that choice makers would pay more attention to the last
attributes in the list than to those at the beginning, in contrast with the left-to-
right and the top-to-bottom expected effect.

All other attributes expected to explain attendance are either mostly non
significant (own- and other-attribute standard deviation and skewness) or rarely
significant, with both negative and positive signs, without any clear tendency.

When observing the predicted results of our different attribute attendance
probability models and comparing them with observed attendance to attributes,
we see that these factors predict attendance quite poorly. With all different
data sets and all different estimates of β’s, our attribute attendance probability
models always predict attendance. The only exceptions are found in Cortina data
attribute 8 (i.e., congestion) and price attribute. For attribute 8 the attribute
attendance probability model correctly predicts 81% of observations 2. But an
attribute attendance probability model predicting always attendance would be
correct for 79% of observations since 79% of choice makers have attended this
attribute.

Concerning the price attribute, it was attended in 59% of the choice processes.
The attribute attendance probability model correctly predicts between 65% to
70% of observations3.

For all other attributes with Cortina data and for all attributes of the other
two data sets, the all different attribute attendance probability models always
predict attendance. The observed attendance to attributes varies between 76%
and 92%, so the model doesn’t predict attendance at all.

With the results based on our data sets and different choice probability mod-

2The basic MNL model and the two scaled ones predict 81% of observations correctly while
the mixed logit with individual specific β’s predict only 80% of observations correctly.

365% of observations are correctly predicted using β’s from the basic MNL model, 66% for
the scaled by category model, 65% for the scaled by category and wave model and 70% for the
mixed model with individual β’s.



els used to derive the β̂ necessary to compute the different factors expected to
be determining attention, little evidence was found of any general effect on at-
tendance when compared with stated and observed attention to attributes. It
seems thus difficult to use them to improve choice models to that correct for
degrees of attention to attributes, as suggested by Cameron [6]. Our results
tend to confirm the strategy of using observed data about attention to correct
the conventional assumption of generalized attention. It also cast some doubts
on the possibility of predicting attention to attributes using the estimates of a
complete information model and the factors used here.



Conclusion

This Master Thesis was mainly about testing an assumption of Cameron’s article
[6]: attention to attributes stems from the expected value of the avoided lost
utility of a suboptimal choice resulting of ignoring attributes. This assumption
brings us to use other- and own-dissimilarities to predict attention to attributes.
In general, when estimating a full-information model, we get a parameter for
each attribute. Using a mixed logit model, we can get a parameter for each
attribute and each respondent. Whatever, then we multiplied this parameter
with the value of the attribute to obtain the part of utility due to this attribute.
We can use it directly or use complete utility without it to define factors of
attendance.

Using different data sets and different models to estimate parameters, no
evidence is found of any prediction power for the different factors we used. It
suggests that using these dissimilarities to correct for the conventional assump-
tion of complete attention is not very efficient.

Before using any factor to correct for complete attribute attendance, it seems
necessary to test it empirically. We know that attention is not likely to be
complete, we know that choice-task attendance is probably better than only
considering serial attendance. We still need to test if “box attendance” is signifi-
cantly better than choice-task attendance. It could be done using an information
display board and defining two groups, opening in one group all boxes for an
attribute and in the other group each single box independently. It would be also
interesting to test if – ceteris paribus – information display board and statements
of attendance by respondents are equivalent, i.e., if respondents are truly able
to report the way they attended to attributes.

These reflections lead me to a broader thinking about interfaces. I discovered
that a stated preference survey with a sheet of paper and a pen is sometimes
not enough, in particular when you study attention to attributes. If you think
about it, choosing between two apples as described by written attributes on a
sheet of paper is definitively not a similar experience compared to apple choice
in a grocery shop, with all the different aromas of fruits and with different
ways of labeling price on the shelves. And we know the potential effects of
these attributes and environment characteristics on choice from market research
studies. Different authors also emphasize about the role of emotions in behavior,
and emotions you feel in front of your sheet of paper is probably close to zero.
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As soon as we try to go beyond the outcome of models and to describe cog-
nition processes, we need more extensive data. Information display board is a
promising evolution, but we can even imagine to use eye-tracking or even virtual
reality, like in Bateman [2]. Serious gaming is probably a very interesting oppor-
tunity. It uses the concepts of video games and allows to control the environment
and test only what the analyst needs to test, with different scenarios. At the
same time, it gives to the agent a broad experience and makes it easier for him
to imagine the different alternatives.

I began this thesis with Simon and Popper and their tragic vision of hu-
mankind. I will finish it with a remark about these ideas. In my opinion,
Simon’s bounded rationality is not only a toolbox to sub-optimize decisions but
it was also a criticism of neoclassical economic theory and a call to empirically
test our knowledge, to challenge it with observed and real world, to “falsify” it
as Popper said.
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Appendix

Example of computation of measures

Let’s consider a choice-task in the context of Cortina data. The respondent
had to choose between three alternatives and we observed he choosed the first
one. We also have the information about the different levels of each attribute.
Considering only the first attribute in the data set about Cortina, we know that
for this first attribute, the level was 2 for alternative A, 1 for alternative B and
0 for alternative C, i.e., statu quo.

We estimated a model and so we have the corresponding estimates. With
the levels and the estimates, we can compute x′

kβk for each attribute k. With
all these x′

kβk, we can sum them to have the complete utility function and we
can remove the first one, x′

1β1, in order to have the “other-attribute utility",
x′
−1β−1 =

∑K
k=2 x′

kβk, with K the number of attributes. We can do this devel-
opment for each alternative. In our particular example, showing the information
only for the first attribute without lost of generality, we have:

A (x1β1)
A (x1β1)

B (x1β1)
C (x′

−1β−1)
A (x′

−1β−1)
B (x′

−1β−1)
C

0 0.04 0.38 0 -3.37 -4.52 -3.11

where A represent attendance to the first attribute, and 1 meaning the re-
spondent said he attended this attribute.

Leadership

In order to compute own- and other-attribute utility lead we first need to have
the complete utility of each alternative to know what are the two globally leading
alternatives. In our example, with Cortina data, we have 9 attributes. Thus we
need to sum for alternative A all (xβi)

A for i = 1, ...9 and doing similarly for
alternative B and C we get the three complete utilities:

UA UB UC

-3.33 -4.15 -3.11

We see that alternative C is the leading one and alternative A is the second
leading one. Thus lead(x1β1) = (x1β1)

C − (x1β1)
A = 0 − 0.04 = −0.04 and

lead(x′
−1β−1) = (x′

−1β−1)
C − (x′

−1β−1)
A = −3.11 − (−3.37) = 0.26.
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|lead| is of course the absolute values of these results.
The local version consider only the own- and other-attribute utility functions

to define which alternatives are the two leading ones. For the own-attribute
utility function, considering only attribute 1, we have utility functions (x1β1)

A,
(x1β1)

B and (x1β1)
C . The two leading alternatives are clearly B and A with 0.38

and 0.04 respectively. Thus leadlocal(x1β1) = (x1β1)
B − (x1β1)

A = 0.38−0.04 =
0.33. In the case of other-attribute utility, the utility functions without the
first attribute but with all other ones are (x′

−1β−1)
A, (x′

−1β−1)
B and (x′

−1β−1)
C

and the two leading alternatives are C and then A. Thus leadlocal(x
′
−1β−1) =

(x′
−1β−1)

C − (x′
−1β−1)

A = −3.11 − (−3.37) = 0.26. Note that in this case
leadlocal(x

′
−1β−1) and lead(x′

−1β−1) are similar.

Standard deviation

Standard deviations used in the models in this report is defined with the own-
and other-attribute utility functions and we have:

Sd(x1β1) = σ
(

(x1β1)
A, (x1β1)

B , (x1β1)
C
)

= σ(0.04, 0.38, 0) = 0.21

Sd(x′
−1β−1) = σ

(

(x′
−1β−1)

A, (x′
−1β−1)

B , (x′
−1β−1)

C
)

= σ(−3.37,−4.52,−3.11) = 0.75

Skewness

The skewness variables are simply the skewnesses of in one hand the skewness
of x′

kβk and in the other hand of x′
−kβ−k. In our example, considering attribute

1, the skewness variables of attribute 1 are:

Skew1 = skewness
(

(x′
1β1)

A, (x′
1β1)

B , (x′
1β1)

C
)

= skewness(0.04, 0.38, 0) = 1.65

Skew−1 = skewness
(

(x′
−1β−1)

A, (x′
−1β−1)

B , (x′
−1β−1)

C
)

= skewness(−3.37,−4.52,−3.11) = −1.5

Entropy measure

Before computing any entropy measure we need the probability estimated by
the model for a choice maker to choose the considered alternative. As explained
in section 4.2 we get for own-attribute utility the following probabilities using
attribute 1 as an example:

π1(A) =
e(x1β1)A)

∑

j′∈{A,B,C} e(x1β1)j′
= 0.3



And π1(B) = 0.42 and π1(C) = 0.29 (whose sum should be 1 but it is not
the case because of rounding). And identically for other-attribute utility:

π−1(A) =
e(x′

−1β−1)A)

∑

j′∈{A,B,C} e(x′

−1
β−1)j′

= 0.38

And π−1(B) = 0.12 and π−1(C) = 0.5.
And finally we get the own- and other-attribute entropy:

H1 = −
∑

j∈{A,B,C}

π1(j) log π1(j) = 1.08

H−1 = −
∑

j∈{A,B,C}

π−1(j) log π−1(j) = 0.97

Pivotality

The pivotal factor is 1 if the attribute is pivotal and 0 otherwise. By def-
inition the attribute is pivotal if when we consider it, it changes the choice
predicted by the model. Thus we need to consider the utility of the complete
model and the other-attribute utility, ignoring one particular attribute. We have
seen just before that using other-attribute utility, the leading alternative is C
(max

(

(x′
−1β−1)

A, (x′
−1β−1)

B , (x′
−1β−1)

C
)

= (x′
−1β−1)

C) and using the complete
utility we have the same result (max(UA, UB , UC) = UC). So in this case the
first attribute doesn’t change the choice in the decision process as we model it.
The pivotal factor is 0.

Number of attributes

In this case there are 10 attributes available to the choice maker. It is here
possible, with Cortina data, to estimate this factor since some other choice tasks
had 8, 6 or 4 attributes.

Order of attributes

In the data about Cortina the order of the attributes is always the same. Thus
it is impossible to estimate its effect. In data about Potatoes we just add the
number representing the order of the attribute.
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