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Chapter 1

Introduction

Gene-disease associations studies are performed in an increasing number since
the creation of the HapMap Project. These studies are used to investigate
regions or genes in the genome for which one has an indication or a belief that
they can be associated with a particular disease. The aim is to identify the genes
that cause the disease. The approach that is commonly used in such studies is
the two-stage design method. Mainly, the report is divided in three parts.

In the �rst part we do the simulation of the two-stage design in the case of
continuous measures in order to see if we can detect a surplus of mutations in the
sick people. We then try to �nd the optimal parameters for the study (number
of hypotheses to test, signi�cance levels, sample size) for di�erent values of the
e�ect. A positive e�ect means in our case the detection of a marker (gene)
that is associated with a disease. Since we are doing multiple testing we will
also test which of the False Discovery Rate method or the Bonferroni correction
are better from the point of view of the cost of the study, the proportion of
false positives and of the power. Here the power is de�ned as the probability of
identifying at least one true gene that causes a disease. We then do the same
simulation in the case where we observe a discrete endpoint. We show that
in both case we arrive at the same conclusions regarding the optimality of the
parameters and the best correction method for the multiple comparison.

In the second part we simulate the evolution of mutations in the human
population. The aim of this simulation is to construct the mutational spectrum
for di�erent values of the mutation rate. In order to do so, we will consider
several models for the evolution of the population and also for the evolution
of alleles. We start by supposing that we are in the in�nite alleles model and
then we add the possibility that an allele might disappear from a generation to
another one.

In the third and last part we use two methods to estimate the e�ect with the
help of the mutational spectrum. We then combine the obtained information
with the results from the �rst part in order to see if the e�ect has a non-zero
probability of being detected.
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Chapter 2

Model

A variety of methods for population-based gene-disease association studies have
been proposed in the literature. The aim of such studies is to identify genes, or
genetic regions in the human genome that favor the development of particular
diseases.

A popular approach is to use the two-stage design method. This method can
be described as follows (we will also give the notation that we use in our study).
We assume that we have a number H of hypotheses that we want to test. An
example of such a hypothesis could be: a certain gene or marker has no e�ect on
a particular disease. A number F of these H hypotheses are the false hypotheses
and usually F is much smaller than H (F<<H). In a biomedical language, H
would be the total number of markers and F would be the true markers of risk.
We also assume that we have a number n of subjects on which we evaluate
the markers. We investigate a simple situation in which evaluation of a marker
results in a normally distributed observation with variance 1. We will summarize
the measurements from di�erent subjects by computing averages.

In the �rst stage we evaluate all H hypotheses on a number n1 of individuals
(n1 < n). We select all the rejected hypotheses R1. Thus, R1 is the number
of hypotheses that were selected for the second-stage. At stage 2 we evaluate
these R1 hypotheses on a number n2 = n − n1 of individuals. At the end we
select the number of hypotheses that were truly rejected, number that will be
denoted by R2 (rejected at stage 2).

Several studies were done using the two-stage design and it has been shown
that, when the total cost of the study is the main constraint, the two-stage
method is better than the one-stage method (see the reference [1]). The cost is
de�ned by the total number of marker (gene) evaluations that are done during
the study. If the total number of subjects is �xed, the two-stage design is still
a better method than the one-stage design (see the reference [2]). However, if
no constraints are imposed, the one-stage design has a bigger power than the
two-stage design.

We are interested in evaluating the power for this design. The power is equal
to the probability of detecting one of the hypotheses from F. So, in this case,
the power is given by P [at least one among F is in R2]. The bigger the power,
the bigger is the probability of detecting an e�ect, i.e., of detecting a marker
that is associated with a disease. Moreover, we are also interested in calculating
the cost of the test. The cost is given by H·n1+R1·n2.

We evaluate our design using simulations (for results, see next section). In
the �rst stage we simulate H normal test statistics, where the �rst H−F are
Ti ∼ N (0, 1/n1) and the remaining F are Tj ∼ N (∆, 1/n1), where ∆ > 0 is
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the e�ect. We want to test the hypothesis that the e�ect is null against the
alternative that the e�ect is positive. This is done by calculating the p-value
for each hypothesis in order to determine the signi�cance of the test. The p-
values are computed as pi = 1 − Φ(

√
n1Ti), for i = 1, . . . ,H. If the p-value is

smaller than a certain signi�cance level, we reject the hypothesis H0: ∆ = 0.
In this case we can say that there is an association between the marker and the
disease. For the stage 1, the signi�cance level of the individual tests, which is
the probability of �nding a false positive, is chosen as α1. It follows that R1
contains all the hypotheses i for which

Ti >
z1−α1√
n1

.

All the hypotheses that were rejected in the �rst stage are kept for further
analysis in the second stage. Let us denote by F2 the number of truly false
hypotheses that were rejected in the �rst stage.

In the second stage, we introduce, as before, R1 test statistics Si, where the
�rst R1−F2 are random normal variables with mean 0 and variance 1/n2 and
the remaining F2 are random normal variables with mean ∆ and variance 1/n2.
For the markers, which make it to the second stage, we combine the �rst stage
Ti and the second stage Si as follows:

Ti
n1

n1 + n2
+ Si

n2
n1 + n2

= Ui.

We can now compute the p-values and compare them to the signi�cance level
for the second stage. An illustration of the two-stage design is presented in
Figure 2.1.

Figure 2.1: Two-stage design

H markers

T1
·
·
·
TH

H tests

sample size n1

R1 < H markers

U1
·
·
·

UR1

R1 tests

sample size n2
Final result

We remark that in the �rst stage we take a signi�cance level that is bigger
(less restrictive) than in the second stage because we do not want too many of
the false hypotheses to escape rejection. Finally, the two-stage model can be
seen as a model where in the �rst stage we select the hypotheses that could
indicate an e�ect and in the second stage we validate the hypotheses that really
have an e�ect.
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2.1 Correction of p-values in the case of multiple

testing

In genome-wide studies, H is very big (multiple testing) and some restriction in
order to avoid excessive number of false rejections are necessary. For example,
if we take a signi�cance level α of 0.05 and we have 30 hypotheses, then we will
reject at least one true hypothesis with probability

P (rejecting at least one true hypothesis) = 1− P (rejecting no true hypothesis)

≥ 1− (1− 0.05)30 = 0.79.

On average, (H-F)×0.05 of the true hypotheses will be rejected. This number
increases with the number of hypotheses that we want to test and it is much
too large. We thus have to adjust the p-values to correct for occurrence of false
positives. Two methods that are widely used to correct this problem are the
False Discovery Rate (FDR) method and the Bonferroni correction.

The Bonferroni correction is used to control the Familywise Error Rate
(FWER). The FWER is de�ned as the probability of detecting at least one
false positive among all true hypotheses. This is equivalent to saying that it is
the probability of making at least one type I error. The Bonferroni correction
tests each individual hypothesis at a signi�cance level of α/H. It is easy to show
that if we do so, then the FWER is bounded above by α. More precisely, if we
have

P (i-th hypothesis is rejected|i-th hypothesis is true) =
α

H
, for i = 1, . . . ,H,

it follows that

P (at least one hypothesis is rejected|all hypotheses are true) ≤ α,

because the probability on the left can by bounded by the sum over all hypothe-
ses of the above probabilities.

The False Discovery Rate is de�ned as the expected proportion of erroneously
rejected null hypotheses. More precisely, if we denote by R all the rejected null
hypotheses and by FP the number of incorrectly rejected null hypotheses or also
known as the number of false positives, then the FDR is de�ned as

FDR = E

(
FP

R
R > 0

)
P (R > 0).

We now describe the controlling procedure for the False Discovery Rate. Let
us consider H independent tests. We denote by H1, . . . ,HH the null hypotheses
and by P1,. . .,PH the corresponding p-values for each test. Let P(1),. . .,P(H) be
the ordered p-values and denote by H(i) the null hypothesis that corresponds to
P(i). Find the largest k such that, for a given signi�cance level α,

P(k) ≤
k

H
α

5



and reject all the null hypotheses H(i) for i = 1, . . . , k. It then follows that
FDR≤ α. For more details on how to control the FDR in the case of a two-
stage design see Yoav Benjamini et al. (1995) ([3]).

In the simulation study we will try to �nd which of these two methods is
better with regard to the power, the proportion of false positives and the cost
of the study in the case of a two-stage design.
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Chapter 3

Simulation of the two-stage de-
sign

In this section we do a simulation study for the two-stage design described
in section 2. The parameters used in the simulation are the total number of
hypotheses H, the number of false hypotheses F, the sample size for the �rst
stage n1, the sample size for the second stage n2, the signi�cance level for the
�rst stage α1, the signi�cance level for the second stage α2 and the e�ect ∆.
When not speci�ed, we take H= 1000, F= 50, n1 = 5, n2 = 30, α1 = 0.1 and
α2 = 0.01. We repeat each test 200 times so the values that we will present are
in fact averages over 200 replications.

As we said in the previous section, we are interested in analyzing the power,
the proportion of false positives and the cost for di�erent values of the param-
eters used in the study. We will also try to �nd out, which of the Bonferroni
correction or the FDR method is better for the two-stage design.

In the �rst part of this section we will run the simulation in the case where
the test statistics are supposed to have an approximately Normal distribution.
In the second part of this section we will complicate the design and suppose
that the test statistics have a contaminated normal distribution.

3.1 Test statistics with a Normal distribution

We start by doing a simulation in order to see which of the Bonferroni correc-
tion or the FDR method gives a bigger power when the e�ect is changing. In
Figure 3.1 we plotted the power and the proportion of false positives for the
Bonferroni method and for the FDR method for di�erent values of the e�ect.
We can see that the power when using FDR is bigger than the power when using
the Bonferroni correction. We also notice that the Bonferroni method leads to
a bigger proportion of false positives than the FDR method.

In the previous �gure the same method was used for both stages in the
design. We would be interested in studying the design when we use the FDR
method in the �rst stage and the Bonferroni or the FDR method in the second
stage. This might be suggested by the fact that we are more interested in the
correction method in the second stage and not in the �rst. Since FDR is less
restrictive than Bonferroni, more hypotheses will go on to the second stage. We
would like to see how the power is a�ected when we have more hypotheses to
evaluate in stage 2 of the test.

7



Figure 3.1: Power and proportion of false positives using Bonferroni correction
and FDR method. The signi�cance levels are α1 = 0.1 and α2 = 0.01.

In Figure 3.2 we plotted the power and the proportion of false positives for
di�erent values of the e�ect when using FDR in the �rst stage and FDR or
Bonferroni correction in the second stage. We notice that we obtain almost the
same power when doing FDR in stage 1 and Bonferroni in stage 2 as when doing
FDR in both stages. Moreover, for e�ects smaller than 1.5, using Bonferroni
in the second stage gives a bigger proportion of false positives than using FDR
in the second stage. For e�ects larger than 1.5, both methods give almost the
same proportion of false positives. Since we are also interested in detecting
smaller e�ects, in the following we will consider only the tests made with the
FDR method in both stages.

We have previously shown which of the two methods is better in detecting
an e�ect. We now try to �nd the best parameters in order to have an optimal
power and a small number of false positives. We begin with choosing optimal
signi�cance levels for both stages.
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Figure 3.2: Power and proportion of false positives using Bonferroni correction
and FDR method in the second stage while using FDR in the �rst stage

Figure 3.3: Power using di�erent values of α1 (left panel) and α2 (right panel)
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Figure 3.4: Proportion of false positives using di�erent values for α1 in the �rst
stage (left panel) and in the second stage (right panel)

In Figure 3.3 we plotted the power for di�erent values of α1 and α2. We
observe that when the signi�cance level for the �rst stage increases, the power
also increases. For α2 we have almost the same power for both values, so we will
take the most restrictive one, which is α2 = 0.01. Since α1 = 0.1 and α1 = 0.5
have bigger power than α1 = 0.05, we will take a look at the proportion of false
positives to determine which value is better for our test.

In Figure 3.4 we plotted the proportion of false positives in the �rst stage and
in the second stage for di�erent values of α1. We observe that, when α1 = 0.5,
the proportion of false positives is augmented a lot in the �rst stage and remains
bigger in the second stage compared with α1 = 0.1.

Since we want to have a number of false positive that tends to zero, we prefer
taking α1 = 0.1 even if its power is smaller than the power when α1 = 0.5 for
small e�ects.

Now we will take a look at the power when the sample sizes are changing.
The results are shown in Figure 3.5. We notice that when n1 increases the power
also increases, while when n2 increases signi�cantly, the power rests almost the
same. This is linked to the cost of the process, which is equal to H· n1+R1·
n2. Since H>R1, n1 has more in�uence than n2. Thus, taking n2 = 30 will
give almost the same power as taking n2 = 200. Since it is not always easy to
�nd 200 individuals for a test, n2 = 30 is an optimal sample size for the second
stage.
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Figure 3.5: Power using di�erent values of n1, n2

One can ask what happens when the number of hypotheses that we want
to test is changing. In this purpose, in Figure 3.6 we plotted the power and
the proportion of false positives for di�erent number of hypotheses. We remark
that when the number of hypotheses increases, the power decreases. In the right
panel we see that for a small e�ect, the proportion of false positives is increasing
when H increases. We have the same observation for a bigger e�ect, but this
time the increase in the proportion of false positives is smaller. Thus, since we
want a small number of false positives, we conclude that using H=1000 is a
better value than the two others.

Figure 3.6: Power and proportion of false positives using di�erent values of H
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Figure 3.7: Cost for di�erent values of n1, n2, α1 and α2

We looked at the behavior of the power when the model's parameters are
changing and found that the values with which we started the simulation are
in fact good values for our design. We now analyze the cost of the test when
some of the parameters are changing. In Figure 3.7 we computed the cost for
di�erent values of n1, n2, α1 and α2.

We observe an increase in the cost whenever n1, n2 and α1 are increasing.
Thus, from the point of view of the cost, α1 = 0.1 is better than α1 = 0.5. This
is the same conclusion that we made from the point of view of the power. From
the last panel in Figure 3.7 we see that α2 has almost the same cost when it is
increasing. Thus we can say that the signi�cance level for the second stage has
a small impact on the value of the total cost of the test. We conclude, as we
did from the perspective of the power, that α2 = 0.01 is the optimal value for
this parameter.

In order to see if the conclusions made before are correct, we plot the cost
of the two-stage design for �xed values of n1, n2, H and e�ect = 2 as function
of α1 and α2. The results are shown in Figure 3.8. We notice that there is an
important di�erence in the cost when α1 = 0.1 and when α1 = 0.5. We thus
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Figure 3.8: Cost for di�erent values of n1, n2, α1 and α2

obtain the same results as in the previous �gure. Thus a smaller α1 will result
in a smaller cost and in a more selective method. For α2, the cost is slightly
diminishing when the value of the signi�cance level is increasing. Since the
variations are small, we will take the more restrictive α2, which is 0.01. These
are the same conclusions as before.

3.2 Contaminated Normal Distribution

Until now we considered that the test statistic used in the simulation were
approximately Normal distributed. We now complicate the study and suppose
that the distribution is not approximately normal and it is of the form

(1− ε)N (µ, σ2
1) + εN (µ, λσ2

1),

where λ > 1 and 0 < ε < 1. This is called the contaminated normal distribution
(CND) and it has heavier tails than the Normal distribution. An example
of the use of the CND is when blood pressure is calculated in a population.
The males could have a normal distribution, the females could also have a
normal distribution, but the two distributions don't have the same variance.
The mixture of these two distributions is not a normal distribution.

In Figure 3.9, we simulated a two-stage experimental design with CND for
di�erent values of λ and ε.
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Figure 3.9: Power when CND for di�erent values of λ, ε

We notice that when λ increases, up to an e�ect of 1.5 the power also in-
creases, but for e�ects bigger than 1.5 we have the opposite result. The same
remark can be made for the probability parameter ε. In the following compu-
tations, we took λ = 2 and ε = 0.05.

In Figure 3.10 we plotted the power and the proportion of false positives for
di�erent number of hypotheses. We observe that the power decreases when the
number of hypotheses increases. This is the same conclusion that we made when
the test statistics were following apporximately a Normal distribution. However,
when passing from H=10000 to H=1000000, the decrease in the power is less
signi�cant compared with a Normal distribution (see Figure 3.5). We also notice
that the proportion of false positives increases when the number of hypotheses
that we want to test is increasing. Thus, as in the Normal case, H=1000 is a
reasonable choice.

We remark that in Figure 3.10 we used the same proportion, ε = 0.05, for
each number of hypotheses. This means that we had 50 for H=1000, 500 for
H=10000 and 5000 for H=100000 distributions that contaminated our original
Normal distribution. We are interested in observing the behavior of the power
and of the proportion of false positives when we have the same number, 50,
of distributions that contaminates the original one. We present the results in
Figure 3.11.
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Figure 3.10: Power and proportion of false positives using CND for di�erent
values of H

Figure 3.11: Power and proportion of false positives using CND with 50 con-
taminated distributions for di�erent values of H

We notice that in this case, the power has a behavior similar with that of a
Normal distribution. There is a bigger di�erence in power when the number of
hypotheses is increasing. Moreover we see that for H=10000 and H=100000, we
have almost the same values for the power as in the case of a Normal distribution.
This might be due to the fact that in these cases the proportion of contaminating
distributions is of 0.005 and 0.0005 respectively, which is quite small. From the
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right panel we observe that the proportion of false positives decreased for e�ects
larger than 0.5 comparing with the same plot from Figure 3.10.

In Figure 3.12 we do a comparison between the Normal distribution and the
Contaminated Normal distribution from the point of view of the cost (left panel)
and of the power (right panel). In the left panel, we see that the cost is slightly
bigger when using the CND than when using the Normal distribution. This is
due to the fact that when using the CND, the number of rejected hypotheses is
bigger than the number of rejected hypotheses while using the Normal distribu-
tion. For the power, we notice that, for a small e�ect (up to 1.7 approximately),
the power is bigger for the CND than for the Normal distribution. However, for
a bigger e�ect we have the opposite result, but the di�erence between the two
is small.

Figure 3.12: Comparison between the Normal distribution and the CND
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Chapter 4

Simulation when observing a
discrete endpoint

4.1 Theoretical design

In the previous section we did a simulation study for the two-stage design using
continuous measures. However, sometimes the measures that are taken, for
example from a clinical trial, are discrete.

Table 4.1: Example of contingency table

Number of mutations
H-F F

1 0 1 · · · 1 1 1
1 1 0 · · · 1 1 1 M
0 0 1 · · · 1 0 1
. . . · · · . . .
. . . · · · . . .
. . . · · · . . . S
0 0 1 · · · 0 1 0
1 0 0 · · · 0 0 1
0 1 1 · · · 1 0 0

The aim of this section is to simulate a two-stage design in the discrete case.
Imagine that we have a contingency table �lled with 0 and 1, where 1 means
that the mutation is present and 0 means that the mutation is absent. The
number of lines in the table represent the number of patients. The �rst M lines
are the sick patients and the rest of the lines, in number of S, are the healthy
patients. The columns represent the mutations. We have H−F mutations where
there is no e�ect present and F mutations where we have a positive e�ect ∆ on
the sick people. The e�ect will increase the number of mutations. An example
of such a contingency table is presented in table 4.1.

We are interested in seeing if we can associate mutations with the disease. In
order to do this we compute the mean for the sick patients and for the healthy
patients. Mathematically we write this like

p̂j1 =

∑
i∈M xij

M
and p̂j2 =

∑
i∈S xij

S
,
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for j= 1, . . . ,H, where xij is the element in the contingency table corresponding
to the ith line and jth column.

We want to test the Null hypotheses Hj0 : p̂j1 = p̂j2 against the Alternative:
p̂j1 = p̂j2 + ∆. In order to do these tests we compute the Chi-squared test
statistic

Tj =
(p̂j1 − p̂j2)2

p̂j1(1−p̂j1)
M +

p̂j2(1−p̂j2)
S

,

for j= 1, . . . ,H.
With these test statistics we can now compute p-values as

1− χ2
1(Tj)

and compare them with some signi�cance level. If the p-value is smaller than
the signi�cance level we reject the null hypothesis in favor of the alternative.

4.2 Results

As we did in the continuous mode, since we have multiple tests we correct
the signi�cance level using the Bonferroni correction of the FDR method. In
this simulation we used, when not speci�ed, H=2000, F=50, S=900, M=100,
ε = 0.05, α1 = 0.1 and α2 = 0.01, where ε is the probability of having a
mutation and α1 and α2 are the signi�cance levels for the �rst stage and the
second stage respectively. We repeated the simulation 100 times and took the
mean of these results.

In Figure 4.1 we plotted the power and the proportion of false positives when
using the Bonferroni correction and the FDR method in both stages.

We observe that for an e�ect up to 0.3, FDR has a bigger power than Bonfer-
roni. For an e�ect bigger than 0.3, both methods have a power of approximately
1. Thus we see that we should be more interested in small e�ects than in big-
ger ones. For an e�ect between 0.1 and and approximately 0.2, FDR has a
smaller proportion of false positives than the Bonferroni correction. For an ef-
fect larger than 0.2 we have that the FDR method has more false positives than
the Bonferroni correction.
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Figure 4.1: Power (left panel) and proportion of false positives (right panel) for
the Bonferroni correction and the FDR method

Figure 4.2: Power (left panel) and proportion of false positives (right panel)
for the FDR method in stage 1 and FDR method and Bonferroni correction in
stage 2
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Figure 4.3: Power (left panel) and proportion of false positives (right panel) for
di�erent values of α1

In Figure 4.2 we plotted the power and the proportion of false positives
when using the FDR method in the �rst stage and the Bonferroni correction
and the FDR method in the second stage. We notice that for the proportion of
false positives we have almost the same results as before. However, we see that
there is an increase in the power when using FDR-Bonferroni than when using
Bonferroni in both stages. This power is still smaller than the power obtained
using FDR in both stages.

In the following we will use the FDR method in both stages since for a very
small e�ect the proportion of false positives is smaller and the power is bigger.

In Figure 4.3 we show the behavior of the power and of the proportion of
false positives when α1 is changing. We notice that when α1 is increasing the
power also increases. Moreover, we see that there is a di�erence in the power
only up to an e�ect of 0.25 and that this di�erence is not so big when passing
from α1 = 0.1 to α1 = 0.5. From the right panel we observe that for an e�ect
between 0.1 and 0.15, α1 = 0.1 has the smallest proportion of false positives.
For an e�ect bigger than 0.15 this proportion is quasi the same for α1 = 0.1
and α1 = 0.05. Furthermore we notice that the proportion of false positives is
always bigger when α1 = 0.5 than for the other values of this signi�cance level.
Since there is not a big di�erence in power for α1 = 0.1 and α1 = 0.5 but there
is a bigger di�erence in the proportion of false positives for the same values of
α1, we could say that the best value between these two is 0.1. Finally, since the
power is slightly bigger for α1 = 0.1 than for α1 = 0.05 and the proportion of
false positives is almost the same, we could say that the optimal value for α1 is
0.1.
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Figure 4.4: Power (left panel) and proportion of false positives (right panel) for
di�erent values of α2

Figure 4.5: Power for di�erent values of ε

In Figure 4.4 we show the behavior of the power and of the proportion of
false positives when α2 is changing. We see that up to an e�ect of 0.2, the power
is bigger when α2 increases. For an e�ect larger than 0.2 the power is the same
for both values of α2. The proportion of false positives is bigger when α2 = 0.05
than when α2 = 0.01 except for an e�ect between 0.1 and 0.15. In the second
stage of the design we want to be as restrictive as possible in order to have a
small number (or zero) of false positives. Since the di�erence in power is not so
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big between the two values and since α2 = 0.01 has a smaller proportion of false
positives, we conclude that 0.01 is the optimal value for the signi�cance level in
stage 2.

We now want to see how the power �uctuates when the probability of having
a mutation changes while the other parameters are �xed. The result is shown
in Figure 4.5. We notice that up to an e�ect of 0.3, when ε increases, the power
decreases. This might be explained by the di�culty of detecting a small e�ect
when ε is big.

In Figure 4.6 we show the power as a function of the e�ect when the number
of mutations H and the number of sick patients M is changing. We remark from
the left panel that when H increases, the power decreases. From the right panel
we see that when the number of sick patients is increasing (while the number of
healthy patients is the same), the power also increases. When we have 500 sick
patients and 900 healthy ones, the probability of incorrectly rejecting a true null
hypothesis is 1. But if we want to be realistic, for example if we are testing a
very rare disease, it is di�cult to �nd 500 patients that have that disease, this
is why we did all the above tests with 100 sick patients. For a very small e�ect,
as 0.1, there is a big di�erence in the power between M= 100 and M= 500.
When the e�ect increases, the di�erence becomes smaller and from an e�ect of
2.5 there is no more di�erence in the power. Furthermore, for an e�ect bigger
than 0.15, the power, when using M= 100 is bigger than 0.7. In conclusion, the
use of M= 100 is justi�ed.

Figure 4.6: Power for di�erent values of H( left panel) and M (right panel)
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Chapter 5

Simulation of the evolution of
mutations

5.1 Neutral mutations

Until now we made simulations for the two-stage design in the cases where we
had continuous and discrete measurements. In this section we will concentrate
on a di�erent model that we want to simulate, which is the accumulation of
mutations in the DNA of the human population. The purpose is to see how the
number of alleles change between generations and how many new alleles were
created by mutations, where mutations are de�ned as a permanent change in
the DNA sequence of a gene. For this, we suppose that we are in the case of the
in�nite alleles model. Furthermore, we suppose that we are in the theory called
the Garden of Eden for the evolution of the population. This theory states that
humans evolved from Africa about 200.000 years ago. If we consider a generation
time of 20 years, we obtain around 10000 generation. For more information see
[7]. Thus we do the simulation for a number of G= 10000 generations.

In this model we start by simulating the evolution of the population from
generation 0 up to generation G. We start from an initial population number of
N0. Furthermore we suppose that the population is constant up to generation
T and then it has an exponential growth. Mathematically this can be written
as

N(t) =

{
N0, if t < T

N0 exp(ρ(t− T )), if t ≥ T
(5.1)

where ρ is the growth factor (< 1).
Once we have the population's number in each generation we can introduce

the in�nite alleles model. We start from 2N0 alleles. At the beginning all the
alleles are identical. At each new generation t, we will have 2N(t) alleles. In
order to obtain the alleles at generation t+1, we select randomly with replace-
ment 2N(t) alleles from the previous generation. In the in�nite alleles model,
when we select an allele from the current generation to the next one, a muta-
tion might occur. Mutations are supposed to follow a Poisson distribution with
rate µ. Each time a mutation takes place, a new allele, never seen before, is
created. In this case, every time we randomly choose an allele from the previous
generation, the allele remains the same with probability 1 − µ, or a new allele
is created with probability µ.

Remark 1. Since the rate of mutation µ is very small (�1), the generation of
Poisson random variables is not so obvious. As the rate is small, one expects to
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have 0, 1 or 2 mutations per allele when going from one generation to another.

We know that the density function of a Poisson is given by fµ(k) = µk

k! e
−µ. By

doing a Taylor expansion of order 2 we obtain, by selecting only the terms of at
most power 2 

1− µ+ µ2

2 , for k = 0,

µ− µ2, for k = 1,
µ2

2 , for k = 2

It is easily veri�ed that this de�nes a probability distribution. With this distri-
bution we can generate the Poisson random variables as follows. We generate
a uniform random variable U on the interval [0, 1]. Then, if U is smaller than

1 − µ + µ2

2 we obtain k = 0, if U is between 1 − µ + µ2

2 and 1 − µ2

2 we obtain
k = 1 and else k = 2.

In our simulation we are interested in the number of alleles that did not
mutate, the number of alleles that have one mutations, the number of alleles
that have two mutations and so on. We denote by ai the number of alleles that
have mutated i times. For the simulation we took the following values for the
parameters: N0 = 10000, T= 8000 and ρ = 0.001. In Table 5.1 we present the
results that we obtained for di�erent values of µ after one simulation.

Table 5.1: Number of mutated alleles for di�erent values of the mutation rate µ

µ a0 a1 a2 a3 a4 a5 a6 a0/2N0

10−9 20000 0 0 0 0 0 0 1
10−8 19998 2 0 0 0 0 0 0.999
10−7 19983 17 0 0 0 0 0 0.992
10−6 19794 205 1 0 0 0 0 0.989
10−5 18092 1805 102 1 0 0 0 0.905
10−4 7344 7429 3656 1187 303 66 14 0.367
10−3 1 4 44 154 379 742 1269... 5 · 10−5

We notice that for µ = 10−9, which is very small mutation rate, no mutated
allele appears. If µ = 10−8 there are two mutated alleles and this number
increases for µ = 10−7. The �rst time when a double mutation appears is when
µ = 10−6. Furthermore we observe that, as µ is getting bigger, alleles with
multiple mutations exist. Finally, we observe that the proportion of the initial
alleles (the non mutated ones) is decreasing as µ is increasing. For µ = 10−3 we
have that only one allele remains non mutated. The suspension points in the
case of a6 mean that there are a lot more alleles with more than 6 mutations.

Remark 2. One could ask if the results of our simulation are realistic. In
order to verify this we compute the integral of the population size over all the
generations and we multiply it by the constant rate of mutation. Since we have

24



a big number of generations we can approximate the integral by a sum. Finally,
we compute

T = µ ·
G∑
t=0

N(t)

and we want to see if this number is close to the total number of mutated alleles
that we obtain from the simulation. With the values used for the simulation
we obtain that T = 14392.25 for µ = 10−4, T = 1439.225 for µ = 10−5 and
T = 143.9225 for µ = 10−6. We compare these values with those obtained
in Table 5.1, which are 12655 for µ = 10−4, 1908 for µ = 10−5 and 206 for
µ = 10−6. We notice that these values are not very far from the theoretical
ones. We also remark that these values can change and be more or less close to
the theoretical values since the results are based on a simulation study.

Figure 5.1: Spectra of mutations for di�erent values of µ
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At this moment, one could ask about the frequency of a particular allele in
this model. The frequency will certainly depend on the time. One expects to
have a larger number of this allele in the population if the allele appeared in an
earlier generation than if the same allele was created in a later generation. Thus,
the frequency, when the allele is created, would be of 1/N(t), where N(t) is the
number of individuals in the generation t. In our simulation, with a mutation
rate of 10−6 and an initial number of individuals at generation 0 of 10000, we
obtain that a �rst mutated allele is created at generation 186, which gives a
frequency of 10−4. At the �nal generation, we obtain that the frequency of this
allele is of 0.0007 for a number of individuals of 73891. We �nally obtain that
52 persons will carry the particular allele in the �nal generation. As explained
before, we supposed that the population's number is constant up to generation
T= 8000 from an overall of G= 10000 generations. This suggests that if an allele
is created before generation T, its frequency at generation G will be the same
as any other allele created before generation T. After generation T we obtain
a di�erent frequency, a smaller one, since the size of the population increases.
For example, if an allele is created at generation 9426, its frequency will be of
0.0002 and we obtain that at generation G, 13 persons will have this particular
allele.

We now compute the spectrum of mutations for di�erent values of the muta-
tion rate. For the spectrum of mutations, we take a sample of 20000 individuals.
We then select a gene and calculate the frequency of the bases that mutated.
From the human genome project we know that the average number of bases in a
gene is of 3000. Thus we will take 3000 bases for the spectrum of mutations. An
important remark about how this spectrum is built is that we do not simulate
the place on the gene where the mutation occurred, we attribute each mutation
randomly without replacement to a location. The results for the values obtained
from the simulation in Table 5.1 are presented in Figure 5.1.

We observe that when the rate of mutation is µ = 10−7 we have that approx-
imately 0.001 of the population have a base that is di�erent from the majority
(20000). For µ = 10−6, we notice that two bases have mutated, one has fre-
quency close to 0.02 and the other has frequency close to 0. When µ = 10−5,
with low frequency, a third base is di�erent from the majority. Finally, for
µ = 10−4 we have that several bases have mutated. In this case the frequency
of the mutated bases is bigger than the frequency of the bases that mutated with
a smaller µ. One base has a frequency close to 0.4, another has a frequency of
approximately 0.2 and the other bases have frequencies smaller than 0.1. This
might suggest that a good value for the mutation rate would be µ = 10−4.

Since the simulation is based on random computations, we now present sev-
eral mutation spectra for di�erent values of µ in order to observe the variability
of the process. The results are presented in Figure 5.2. We notice that, for
µ = 10−4 we can obtain spectra that have 7 or 8 bases that have mutated and
not always 6 as we obtained in Figure 5.1. We also see that the new bases that
have mutated have a small frequency. For µ = 10−6 we observe that sometimes
we can also obtain only one mutated base instead of two as we obtained before.
For the other mutations rates we have almost the same spectrum after each
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simulation.

Figure 5.2: Spectra of mutations for di�erent values of µ

5.2 Hot spot mutations

The simulation study that we did before was conducted with only one type of
mutation. We now introduce multiple types of mutations, 3 types to be more
speci�c. We denote by µi the rate of the type i mutation.

The type 1 would be the neutral mutation or the silent mutation, as we used
in the previous subsection. An example of neutral mutation is the replacement
of a base with another base in a gene that does not a�ect the protein encoded
by the gene.

The type 2 would be mutations that are created by a bad copy of a base or
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of a piece of DNA. If such a mutation occurs, it will always be the same. An
example of this kind of mutation is the duplication. This takes place when a
piece of DNA in a gene is abnormally copied several times, a process that might
have a negative e�ect on the resulting protein of that gene. An illustration of a
duplication is presented in Figure 5.3.

Figure 5.3: Duplication of a piece of DNA

The type 3 would be all the mutations that inactivate a gene. For the type 3
mutation, there are many examples of genes that are inactivated by mutations,
an interesting one is the p53 tumor-suppressor gene. As its name says it, the
main role of this gene is tumor suppression by preventing genome mutation.
However, if this gene is inactivated, it will no longer protect against tumors but
it will create them. This is an important gene since it is mutated in over 50 %
of all human cancer ([5])

With these three type of mutations, we suppose that the mutation rates
satisfy the relation µ3 < µ1 ≤ µ2. For our simulation we suppose that, on a
DNA strand, the mutations are such that a very small proportion of the genes
could have the type 3 mutation, a slightly bigger proportion could have the type
2 mutation and the rest could have the type 1 mutation. We took 20000 genes,
and supposed that a very small number (between 20 and 50) could have the type
3 mutations, between 60 and 100 genes are plausible to have the type 2 mutation
and the rest of the genes might be a�ected only by the type 1 mutation.

We want to see how the spectrum of mutations changes when the new types
of mutations are introduced. In Figure 5.4 we present several spectra for the
mutation rates µ1 = 10−4, µ2 = 10−4 and µ3 = 10−5.

28



Figure 5.4: Spectra of mutations for µ1 = 10−4, µ2 = 10−4 and µ3 = 10−5

We observe that, compared to the model with one mutation, for µ1 = 10−4,
we have more bases that have mutated (between 10 and 11 bases). Furthermore,
we notice that the proportion of the bases that have mutated the most is almost
the same in all the simulations. The new mutated bases have a frequency close
to zero. Thus, the new mutations that are created in the hot spot model are
presented only in a few number of individuals.

We now present several spectra for the mutations rates µ1 = 10−5, µ2 = 10−4

and µ3 = 10−6. The results are shown in Figure 5.5. We notice that, for the
same neutral mutation rate, we have more bases that have mutated in the hot
spot model than in the one mutation model. We also notice that the number of
mutated bases varies from 6 to 8, but the highest frequency is almost the same
in each case.
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Figure 5.5: Spectra of mutations for µ1 = 10−5, µ2 = 10−4 and µ3 = 10−6

Finally, in Figure 5.6 we show several mutational spectra for the mutations
rates µ1 = 10−6, µ2 = 10−6, µ3 = 10−7 and µ1 = 10−7, µ2 = 10−6, µ3 = 10−8.
We remark that, for these mutations rates, we obtain almost the same number
of mutated bases as in the one mutation model. Moreover, we notice that the
frequencies of the mutated bases are very small.
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Figure 5.6: Spectra of mutations

5.3 Other models for the population's evolution

We are now interested in observing the behavior of alleles if we use di�erent
models for the growth of the population. We only consider the case of neutral
mutations and want to see how the spectrum of mutations changes. In this
purpose we introduce two other evolution models. The �rst model would be
an exponential model. The second one would be linear up to a point and then
it will grow exponentially. The exponential model is mathematically expressed
like

N(t) = N0 exp(ρt)

for t = 0, . . . , G. In our simulation we used as before N0 = 10000, but this time
we took ρ = 0.0007. With this parameters we obtain that the population at
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generation G is 10966332. With this model, we obtain a bigger population at
the end, which is more realistic, but the computational time is heavily increased.
Some spectra of mutation are shown in Figure 5.7. We observe that we obtain
spectra similar to those of the model with a constant population up to generation
T and an exponential growth afterwards.

Figure 5.7: Spectra of mutations for the exponential model for di�erent values
of µ

The second model resembles with the model that we used in the beginning
of this section. The only di�erence is that the original model had a constant
population up to generation T, while this model has a linear growth up to
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generation T. Mathematically, this can be expressed as

N(t) =

{
N0 + δt, if t < T

(N0 + δT ) exp(ρ(t− T )), if t ≥ T

where δ is the slope of the linear growth. For the simulation we took δ = 0.5,
ρ = 0.0005 and N0 = 10000. With these values for the parameters, we obtain a
�nal population of 65298566, which is bigger than the population that we had
for the exponential model. However, the spectrum of mutations is the same as
for the other models. For example, in Figure 5.8 we plotted the spectrum for
µ = 10−5. We remark that, as for the exponential model, the computational
time is signi�cantly increased.

Figure 5.8: Spectrum of mutations for the linear + exponential model for µ =
10−5

We conclude that the model that we initially used in the beginning of this
section is the best model to use for the evolution of the population in the case
of the in�nite alleles model.

5.4 A more realistic model

In the in�nite alleles model presented in the beginning of this section we have
supposed that the number of alleles is constant between generations and that
only the types of alleles change. We now present a more realistic model in
which we suppose that the number of alleles changes with the number of the
population from a generation to another. In this model, the new generation
t+1 of alleles is created as follows: before entering the alleles in the mutational
process, we choose 2N(t) alleles from generation t by selecting with probability
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ai/2N(t) the alleles of type i. We expect to obtain, in proportion, a smaller
number of mutated alleles since the probability of selecting a mutated alleles is
lower than the probability of selecting a non-mutated one.

As before, we are interested in the spectrum of mutations that results from
this new model. For the simulations, we use the model with constant and then
exponential growth for the evolution of the population. Furthermore, the values
of the parameters are N0= 10000, T= 8000 and ρ = 0.001. In Figure 5.9 we
show spectra that we obtain when the mutations rate is µ = 10−4.

Figure 5.9: Spectra of mutations for µ = 10−4

We observe that the number of mutated bases varies from 3 to 6. In our
simulations, the most frequent results had 4 or 5 frequent bases and in some
cases we obtained a spectrum with 3 or 6 bases that di�er from the majority. We
also notice that the highest frequency observed is when we only have 3 SNPs.
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This frequency is approximatively 0.4 for the other cases.
We remark that, in this case, the highest peak does not necessary represent

the alleles that have mutated only one time. It could represent the alleles that
have mutated two or more times since the probability of selection can increase
near the end of the evolution.

For a smaller mutation rate like µ = 10−5 the results of di�erent spectra are
presented in Figure 5.10. We see that we obtain a number of mutated bases
that oscillates from 1 to 3. When we obtain 3 SNPs, the highest frequencies are
greater than 0.1, one being even greater than 0.2. However, as expected, these
frequencies are smaller than those when µ = 10−4.

Figure 5.10: Spectra of mutations for µ = 10−5

Finally, in Figure 5.11 we present spectra of mutation when µ = 10−6. In
most cases we obtain spectra that resemble the one in the left panel, i.e., with
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only one mutated base. We can also obtain spectra that have a quite important
frequency (of almost 0.1) for this mutation rate as we can observe in the right
panel. Compared to all the other spectra that we presented for µ = 10−6, this
is the highest frequency that we have obtained. We remark that in this case we
can also obtain a spectrum with no SNPs.

Figure 5.11: Spectra of mutations for µ = 10−6

5.4.1 Adding hot spot mutations

In this section we want to see how this model behaves in the case where hot
spot mutations are present. We proceed as we did in the subsection 5.2 and
suppose that there are three type of mutations. We obtained di�erent spectra
for di�erent values of the mutation rates. In Figure 5.12 we present some spectra
for µ1 = 10−4, µ2 = 10−4 and µ3 = 10−5.

We remark that, compared to the spectra obtained in Figure 5.4, we have
fewer bases that have mutated. This number is between 5 and 8. We also see
that the highest frequency varies between 0.2 and about 0.5. Furthermore, for
the same rate of mutation for the neutral mutation type (10−4), we now obtain
a slightly bigger number of mutated bases (see Figure 5.9). These new mutated
bases are created by the type 2 or type 3 mutations that we introduced.
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Figure 5.12: Spectra of mutations for µ1 = 10−4, µ2 = 10−4 and µ3 = 10−5

We now take smaller mutations rates for the type 1 and 3 mutations like
µ1 = 10−5 and µ3 = 10−6. The results are presented in Figure 5.13. If we
compare these spectra with those obtained in Figure 5.5 we notice that the
number of mutated bases has signi�cantly decreased. However, we now obtain
highest frequencies which are not always close to 0.1 as we obtained before. In
the bottom panel the highest frequency is of almost 0.15. Finally, we remark
that for the same neutral mutation rate (10−5), we obtain spectra that are
similar with those from the one mutation scenario (see Figure 5.10).
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Figure 5.13: Spectra of mutations for µ1 = 10−5, µ2 = 10−4 and µ3 = 10−6

Finally, we consider the case when the mutation rates are µ1 = 10−6, µ2 =
10−6 and µ3 = 10−7. The possible spectra that we can obtain with this rates
resembles those presented in Figure 5.14. As before, if we compare the results
with those obtained in Figure 5.6 (the two above panels) we notice that we
obtain at most 2 mutated bases instead of 3. This might be explained by the
fact that in this new model, we introduced the possibility that an allele might
disappear over generations. We remark that in this case, as in the case where
we considered only one mutation with rate 10−6, we can also obtain spectra
with no mutated bases.
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Figure 5.14: Spectra of mutations for µ1 = 10−6, µ2 = 10−6 and µ3 = 10−7

5.4.2 From Adam and Eve

Up to this point, in all the simulation that we used we supposed that the initial
population was of 10000 individuals. However, as the Bible says, initially there
were only two people that started populating the Earth. We thus do a simulation
in which we suppose that the initial population size was of two individuals (a
male and a female) and up to a certain generation the population grew linearly.
Afterwards the population was constant up to another time point and �nally it
grew exponentially. Mathematically this can be expressed as

N(t) =


N0 + δt, if t < T1

N0 + δT1, if T1 ≤ t < T2

(N0 + δT1) exp(ρ(t− T2)), if t ≥ T2
In the simulation we took T1 = 1000, T2 = 8000, ρ = 0.001 and δ = 10.

With these parameters we obtain a �nal population of 73905, which is almost
the same as in the previous model. We run the simulation for the mutation rates
µ = 10−4, µ = 10−5 and µ = 10−6. The spectra that we obtained are presented
in Figure 5.15. We notice that we obtain spectra that are similar with those
obtained in Figures 5.9, 5.10 and 5.11. We also observe that for the mutation
rate µ = 10−6 we might obtain a mutated base with a frequency higher than
0.2, which was not the case in the constant + exponential model used in the
beginning of this section.

In conclusion, the initial population size has not an important e�ect on
the mutational spectrum if the �nal population size is almost the same. One
could think at an even more realistic model in which he could add the e�ect of
bottleneck that has occurred in the human history, but goes beyond the purpose
of this report.
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Figure 5.15: Spectra of mutations for µ = 10−4, µ = 105 and µ = 10−6
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Chapter 6

Estimating the e�ect

In this chapter we want to estimate the e�ect in the model with discrete mea-
sures. We will use the model in which the number of alleles changes with the
number of the population from a generation to another (model presented in
section 5.4)

We present a couple of scenarios for the causality of the disease:

1) In the �rst scenario, we suppose that, in a particular gene, there are several
SNPs that are at risk. More precisely, we suppose that an individual that
has a disease has one of the SNPs of the gene but the healthy individuals
don't have any SNPs from that gene. We thus have that the e�ect is equal
to

∆ = P (Ai|M) =
P (Ai ∩M)

P (M)
=

P (Ai ∩M)∑
k P (Ak ∩M)

(6.1)

where the event Ai represents the presence of the i
th SNP and the event M

stands for the sick people.

We compute the e�ect from the spectra obtained in the previous section. For
a mutation rate of 10−4, we obtain for the spectrum presented in the upper
left panel of Figure 5.9, e�ects for each SNP equal to 0.403, 0.361, 0.209,
0.026, 0.002 and 0.008 ·10−3. We now want to see if these e�ects have a high
probability of being detected. For this we take a look at the power of the
test in the two-stage design with discrete measures. We have seen that for
this design, the optimal signi�cance parameters are α1 = 0.1 and α2 = 0.05.
From Figure 4.4 we observe that the �rst three e�ects obtained have a power
of 1, while the other e�ects, which are very small, have a power close to 0 of
being detected. We notice that these last three e�ects correspond to SNPs
that have a very small frequency (close to 0).

For µ = 10−5 we obtain, from the upper left panel of Figure 5.10, that the
e�ect is of 0.999 for the SNP with the highest frequency and of 0.001 for
the other SNP. From Figure 4.4 we remark that the SNP with the highest
frequency has a power 1 of being detected while the other SNP has a power
close to 0 of being detected.

We now consider the case where hot spot mutations are present. For the
spectrum in the lower left panel of Figure 5.12 we obtain e�ects of 0.249,
0.553, 0.169, 0.018, 0.001, 0.009 and 0.001. The �rst two SNPs (those with
the highest frequencies) have power 1 of being detected. The e�ect of the
third SNP has power close to 0.9. We notice that in the upper left panel
of Figure 5.9 we also had a mutated base with a frequency close to 0.3 (as
our third SNP) and in that case we had a power of 1 of detecting its e�ect.
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By adding hot spot mutations we increase the number of mutated bases and
in consequence the probability of detecting an e�ect is slightly diminished.
Finally, for the other SNPs we have power close to 0.

For mutation rates of µ1 = 10−5, µ2 = 10−4 and µ3 = 10−6, we obtain from
the spectrum in the upper right panel of Figure 5.13 e�ect equal to 0.788,
0.124, 0.086 and 0.002. We notice that the SNP with the highest frequency
has power 1 of detecting its e�ect. For the e�ect of 0.124 we have a power
of approximately 0.4 of observing it. For the other e�ects we obtain a power
close to 0.

2) The second scenario implies that a particular SNP in a particular gene is
causing the disease. This means that only one mutation from the spectrum
of mutations is causing the disease. The di�culty comes here from the fact
that we have to know which SNP is responsible for the disease.

We suppose that the mutation that causes the disease is a type 2 mutation
(a recurrent mutation). Moreover, we suppose that we have the spectrum of
a normal mutational process. Let us call this process the background noise.
The process of the type 2 mutation will be added on the spectrum of the
background noise. The SNP that will di�er from the background noise will
be the one that it is associated with the disease. The e�ect can now be
computed as we did in 6.1. We simulated a background noise process with
µ = 10−4 and a process for the type 2 mutation with µ = 10−5. The result
is presented in Figure 6.1.

Figure 6.1: Spectrum of mutations for the second scenario with µ = 10−4 for
the background noise process and µ = 10−5 for the type 2 mutational process
(in red)
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Figure 6.2: Spectrum of mutations for the second scenario with µ = 10−4 for
the background noise process and µ = 10−6 for the type 2 mutational process
(in red)

If we assume that the SNP that causes the disease is the one corresponding
to the mutated base (in red) with the highest frequency, we �nd an e�ect
of 0.189. This e�ect has a power of approximately 0.9 of being detected. If
we consider that the second mutation of type 2 is the one that causes the
disease, we �nd that the e�ect is 0.005 · 10−1. This time, the e�ect has a
power close to 0 of being observed. We notice that in this scenario, the e�ect
has smaller values than in the �rst scenario.

If we suppose that the mutation rate for the type 2 mutation is µ = 10−6 we
obtain the spectrum presented in Figure 6.2. In this case we obtain an e�ect
of 0.003, which has power close to 0 of being detected.
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Chapter 7

Conclusion

We begun this report by doing a simulation of the two-stage design for the
situation of continuous measures. Since we were in the case of multiple testing
we had to adjust the p-values to correct for occurrence of false positives. To
do so, we used the False Discovery Rate (FDR) method and the Bonferroni
correction. We wanted to see which one of these two methods was the better to
use from the point of view of the power, the cost, and the proportion of false
positives. We found that the better method was the FDR method. Furthermore,
we tried to �nd the optimal values for the parameters used in the study, i.e., for
the number of hypotheses H, the sample sizes n1 and n2 for the �rst and second
stage and the signi�cance levels α1 and α2 for stage 1 and stage 2. We found that
the optimal values are H= 1000, n1 = 5, n2 = 30, α1 = 0.1 and α2 = 0.01. For
this simulation we used test statistics that followed a Normal distribution. We
then complicated the study and supposed that the test statistics were following a
Contaminated Normal distribution (CND). We compared the results with those
obtained with the Normal distribution and observed that the cost of the study
is increasing when using CND. For the power we noticed that for smaller e�ects
(up to approximately 1.7) we have a bigger power for the CND than for the
Normal distribution. For bigger e�ects we had the opposite result.

Since the evaluation of biomarkers does not always result in continuous ob-
servations, we also did a simulation of the two-stage design when observing a
discrete endpoint. As we did in the continuous case, we wanted to see which of
the FDR or the Bonferroni method was better. We have seen that for smaller
e�ects the FDR method was better from the point of view of the power and the
proportion of false positives. We then tried to found the optimal parameters for
the study and found the same values as before for the signi�cance levels. We
thus arrived at the same conclusions as in the continuous case.

Next, we concentrated on something di�erent, which was the simulation of
the evolution of mutations in the human population. First, we supposed that
we were in the in�nite alleles model and that the number of alleles is constant
over time. We used a model for the evolution of the population in which we
supposed that the population is constant up to generation 8000 and then it has
an exponential growth with parameter ρ = 0.001. We considered that we had
a number of 10000 generation and an initial population of 10000, which gave
a �nal population of 73891. We then constructed the spectrum of mutations
for mutation rates of 10−4, 10−5, 10−6 and 10−7 and we saw that we obtain
a plausible spectrum for 10−4. Up to here we only considered one type of
mutation, the neutral one. We thus introduced other two type of mutations.
These types were mutations that are created by a bad copy of a base or of a
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piece of DNA and mutations that inactivate a gene. As before we computed the
spectrum of mutations and observed that in this case we had more SNPs than
in the one-mutation case. We then tried di�erent models for the evolution of
the population, models that would give a �nal population that is closer to the
actual population. We saw that we obtained the same spectrum as in the initial
model and that the computational time was heavily increased. We concluded
that the model that we initially used was the best model for the evolution of
the population in the case of in�nite alleles model.

Afterwards, we simulated a more realistic model, in which alleles can dis-
appear from a generation to another one. We obtained, when adding hot spot
mutations, spectra with fewer SNPs than in the initial model with hot spot
mutations. We then considered a model in which the initial population was of
2 individuals. With this model, that has almost the same �nal population as
before, we obtained results that did not di�er from those with model 5.1.

In the �nal chapter we presented two methods of estimating the e�ect from
the spectrum of mutations. We observed that the SNPs with high frequency
had also a big power of detecting their e�ects. We have also seen that when we
introduce hot spot mutations we diminish the probability of detecting an e�ect.

In conclusion we have seen that we can estimate the e�ect of detecting a
marker that is associated with a disease. We saw from the second method
of estimating the e�ect that, when the mutation rate is of 10−4 or 10−5, the
e�ect has non-zero power of being detected. We have also seen that the spectra
obtained with these two values were closer to what we expected than with the
other values. Finally, we can conclude that these two values might be the
plausible values for the mutation rate.
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