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Abstract—Continuous transistor scaling due to improve-
ments in CMOS devices and manufacturing technologies is
increasing processor power densities and temperatures; thus,
creating challenges when trying to maintain manufacturing
yield rates and devices which will be reliable throughout
their lifetime. New microarchitectures require new reliability-
aware design methods that can face these challenges without
significantly increasing cost and performance. In this paper we
present a complete analysis of reliability for the register file
architecture of the Leon 3 processor. The analysis conducted
is supported by the use of an accurate HW/SW FPGA-
based emulation platform that enables a complete design
space exploration of thermal and reliability metrics during the
execution of an extended set of benchmarks, in a very limited
amount of time. The effect of various compiler optimizations
and register assignments on the reliability of the register file
is then analyzed. Our results quantify the respective effects
of these different factors and enable us to design a reliability-
aware register file assignment policy that consistently improves
the Mean-Time-To-Failure figure (20% on average) for the
various types of applications.

I. INTRODUCTION

The relentless scaling of technology and increase in
transistor densities are a primary reason for Multi-Processor
System-on-Chips (MPSoCs) to have become possible [1].
However, power requirements have not scaled accordingly,
causing power densities to skyrocket and on-chip tem-
peratures to increase at alarming rates [2]. As a result,
the International Technology Roadmap for Semiconductors
(ITRS) [3] has predicted that traditional design constraints
centered around product cost and performance requirements
will soon be overtaken by processor wear-out and lifetime
reliability issues [4].

While traditionally such issues have been left up to device
and process engineers, the ability to model and evaluate
reliability effects such as electromigration, stress migration,
time-dependent dielectric breakdown, and thermal cycling at
the microarchitectural level has been shown to be critical
to improving processor lifetime [4]. However, acquiring
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realistic temperature and reliability estimations at the mi-
croarchitectural level has proven to be very complex because
cycle-accurate MPSoC simulators [5], [6] need to run for
millions of cycles to accurately characterize the systems
switching activity and behavior. Because of these reasons,
thermal and reliability analysis at a high level of accuracy
has typically been extremely time consuming and inefficient
in the past.

One of the key structures to model in the reliability
analysis of MPSoCs is the register file of processing cores.
The multiported SRAMs used to implement it are prone to
shorter lifetimes and failures due to two primary reasons.
First, the register file consumes a substantial amount of
power within modern microprocessors [7], which produces
a very high power density due to its relatively small size and
makes it an important hotspot within the chip [8]. Second,
the large amount of read/write accesses produces a higher
amount of switching activity than other components. Since a
large number of reliability effects are induced by switching
activity and temperature the register file becomes a critical
component for improving the lifetime of a microprocessor
[4].

In this work we present complete reliability analysis for
the register file found in the Leon 3 processing core using an
accurate HW/SW FPGA-based microarchitectural emulator.
Our emulation provides fast and accurate reliability analysis
of the relation between register file organization, workload
behavior, compiler optimizations, and steps that can be taken
to improve upon the register file’s lifetime for four of the
main factors of influence in reliability (i.e., EM, SM, TDDB
and TC). Moreover, using this reliability analysis of the
register file, we propose in this paper a reliability-aware
register assignment policy that can be statically applied
by the compiler to significantly improve the mean-time-to-
failure (MTTF) of the register file for several different types
of applications (approximately 20% more expected lifetime
on average).

This paper is organized as follows. In Section II, we
review related work on reliability and thermal management.
In section III we present the reliability models used in this
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work and in Section IV we discuss the reliability emulation
platform. Then, in Section V we discuss our experimental
setup and provide our results. Finally, in Section VI we
summarize the paper and provide our conclusions.

II. RELATED WORK

Power density improvements and thermal management
techniques have become two key factors for extending
the reliability of multi-core and MPSoCs [4]. Morever, it
has been shown that large temperature variations causing
increased leakage current will consequently cause reliability
to suffer in future technologies [2], [9]. Therefore, the need
for improved power and thermal management techniques
still exist, however, now expanding those techniques to
incorporate reliability metrics is crucial as we head into the
future.

In the past there has been attempts to improve upon energy
and performance at the microarchitectural level and above.
In [10], the authors try to dynamically minimize energy
and improve system performance by exploiting architectural
and application-level adaptability. Also, fault-tolerant mi-
croarchitectures have been proposed to improve reliability
and hard failures [11]. In [12], the authors propose the use
of redundancy at the architecture level to improve system
reliability and processor lifetime. Additionally, several works
analyze how to handle soft errors [13]. Finally, the work
presented in [14] introduces dynamic fault-tolerance man-
agement as a method to enhance system reliability, taking
into account energy efficiency, computation performance,
and battery lifetime. However, all these previous methods
imply performance or area overheads to enhance MPSoC
and microarchitectural reliability against soft- and hard-
errors, and can only be included according to the particular
reliability requirements of each final system. Thus, frame-
works that use effective modeling to help analyze the links
between power, thermal behavior, and reliability in MPSoCs
and multi-core systems are still required.

Several groups have addressed the problem of thermal
and reliability modelling at different levels of abstrac-
tion. [15] presents a thermal model for embedded architec-
tures, while [2] presents a thermal/power model for super-
scalar architectures. It predicts temperature variations in pro-
cessor components and shows effects in leakage power and
performance, but no link to reliability is given. Then, [16]
outlines a simulation model and its validation on embedded
cores, but no reliability figures are given. On the reliability
side, RAMP [17] models chip wide MTTF as a function
of the failure rates of individual structures on chip due to
different failure mechanisms. Thus, RAMP can be combined
with architecture-level MPSoC and microprocessor simula-
tors that give power and temperature estimates needed by its
reliability models [5], [6]. However, these complex cycle-
accurate simulators are very limited in performance (circa
100-200 Khz) due to signal management overhead. Thus,

they are not suitable to analyze, in detail, the reliability
issues in MPSoC architectures running real-life applications.
In contrast to previous work, we use in this paper a complete
micro-architectural emulation framework that combines ther-
mal and reliability models to target a detailed reliability
analysis of the register file while executing different types
of applications.

III. RELIABILITY MODELS

The analysis of the temperature on the reliability of
CMOS systems is investigated through the use of sev-
eral mathematical models that include this dependency.
The effects that will be included in our experimen-
tal work have been selected by their strong impact on
the MTTF [4]: electromigration (EM), time-dependent-
dielectric-breakdown (TDDB), stress migration (SM), and
temperature cycling (TC).

em appears due to the momenta exchange between the
electrons and the aluminum ions found in long metal lines.
The induced mechanical stress may eventually cause frac-
tures and shorts. The model generally accepted to describe
the MTTF due to this effect takes the form:

MTTF = A0 · (J − Jcrit)
−N · exp(Ea/kT )

where A0 is the scale factor, Jcrit is the critical current
density and N is assumed to be 2 in metal-layered sys-
tems [4]. Our reliability model considers that the em is a
non-reversible process and the actual value depends on the
instantaneous temperature.

TDDB is an important failure mechanism that models
how the dielectric fails when a conductive path forms in
the dielectric, shorting the anode and cathode. This effect is
modeled as:

MTTF = A0 · exp(−γEox) · exp(Ea/kT )

where γ is a field acceleration parameter, which is temper-
ature dependent. In this case, our reliability model considers
that this effect is a recovery process non-dependent on the
instantaneous temperature, but a wider simulation window
in the order of few seconds.

SM describes the movement of metal atoms under the
influence of mechanical-stress gradients. The resistance rise
associated with the void formation may cause electrical
failures. The thermomechanical stress model can be written:

MTTF = A0 · (T0 − T )−n · exp(Ea/kT )

where n ranges between 2-3, depending the manufacturing
sizes [4].

Finally, TC produces a permanent damage that accumu-
lates each time the device undergoes a normal power-up and
power-down cycle. This effect is modeled as:
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Figure 1. Overview of reliability emulation framework of the Leon 3
register file

MTTF = log

(
1

T − Tambient

)q

where q is 2.35 for the considered technology [4].

IV. RELIABILITY EMULATION FRAMEWORK

To enable a meaningful evaluation of register files found
in modern day processors, the hardware emulation platform
must have the ability to investigate a variety of real-world
processors. As a result, we have implemented an emula-
tion system built around the IEEE-1754 Leon 3 Sparc v8
Processor core [18]. The Leon 3 core is a fully customiz-
able microprocessor containing multiple features common
to those found commercially. The main features include
separate instruction and data caches, a hardware multiplier
and divider, a memory management unit (MMU), separate
(or combined) instruction and data translation lookaside
buffers (TLBs), and has the potential to be extended to a
multi-core configuration. The Leon 3 is designed primarily
for embedded systems applications and allows for a large
range of customizations. In particular, components such
as the register file, caches, and TLBs are customizable in
terms of size and replacement policy in our Leon 3-based
framework. Thus, the designer has the flexibility to configure
the system architecture that needs to be tested from the
viewpoint of reliability.

Our Leon 3 emulation framework (see Figure 1) is made
up of three primary components, namely, the emulated
system, the statistics gathering engine, and the host PC. In
this case, the emulated system contains the Leon 3 system
that is under investigation. The statistics gathering engine
includes components that can monitor evens that occur in the

Leon 3 register file and the host PC is running applications
that directly interact with the statistics gathering engine to
calculate the thermal behavior and reliability effects.

The emulated Leon 3 core architecture is shown on the
left side of Figure 1. This architecture contains a 3-port
register file of 256 registers (with 8 register windows), has
a SDRAM memory controller, 16Kb 4-way set associative
instruction and data caches, and separate instruction and
data TLB’s, each containing 32 entries. Furthermore, the
Leon 3 system includes 64KB of on-chip ROM and RAM
(not shown), 512MB DDR Memory, AMBA buses (both
the AHB and APB), a serial I/O controller, timers, and
interrupt controllers. Finally, the communication interface to
load applications is provided through a serial UART (RS232)
port.

A. Register file modeling

The register file found within the Leon 3 system is
composed of two read ports and one write port with each
port having separate address and data buses. The register file
is actually composed of 8 global registers and a configurable
number of register windows. The structure of the register
windows is specified by the Sparc v8 standards and contains
8 local registers, 8 in registers, and 8 out registers.

To provide communication between the register windows
the in and out registers are shared between the previous and
next register windows respectively, with the local registers
being exclusive to the currently selected register window.
The specific layout of the register file considered in this
work is depicted in Figure 2.

As this figure shows, the layout of the register file is
divided in 32 rows and 8 columns, configuring a device with
256 registers. As was previously said, this number can be
configured on user demand.

B. Statistics gathering engine

The statistics gathering engine, shown on the right side of
Figure 1, was modeled based on the framework described
in [19]. In this work the statistics engine was extended with
the necessary components used to control and monitor the
emulated Leon 3 system. The first main component was the
hardware sniffers used to snoop signals within the Leon 3,
with each sniffer capable of monitoring a single or multiple
system components. We have included separate monitors for
each register of the register file, as shown in Figure 1, which
sample the monitored signals every 10 ms and calculate the
consumed energy in each register. Then, in addition to the
shared buffer where the sniffers write the statistics of each
interval, a Microblaze was used to provide synchronization
for statistics extraction between the sniffers and the host PC.
Finally, the communication between the statistics extraction
engine and the host PC executing the thermal and reliability
models was done through an standard Ethernet connection
available on the FPGA where the emulation was performed.
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Figure 2. Layout considered for the register file of the Leon 3

The host PC contains software to provide thermal esti-
mation and reliability characterization of the register file
based on switching activity of its individual registers. More
specifically, the host PC uses the gathered statistical data
with the energy consumed in each register, coming from
the statistics extraction engine, and incorporates it into the
thermal models to determine the run-time thermal behavior
of each register. Then, the temperature, power and energy re-
sults are included in the reliability models to calculate MTTF
for each register of the emulated Leon 3 microarchitecture.
From these results the MTTF estimate can be given for the
entire register file.

V. EXPERIMENTAL PROFILING AND RELIABILITY

ENHANCEMENT OF THE REGISTER FILE

The emulation platform described in the previous section
has been used to perform complete reliability analysis for
the register file of Leon 3 processing core. In this analysis,
the effect of the application domain, as well as the code
transformations regulated by the compiler, have been ana-
lyzed. Moreover, using the outcome from this analysis, we
have defined a reliability-aware register assignment policy
to enhance the MTTF of the register file.

A. Experimental setup

To analyze the effects that the application domain has on
the reliability of the register file a set of common embed-
ded applications from MiBench [20] and CommBech [21]
suites have been selected. Among these applications, data-
processing (FFT, reed), mathematical and graph theory (ba-
sicmath, dijkstra) and ordering/searching (bitcount, qsort,
stringsearch, etc.) algorithms can be found.

These applications have been compiled with a cross-
generated version of gcc 3.2.3 for the Sparc architecture.
Also, four different versions of the compiled benchmark
have been generated attending to the four optimization levels
found in gcc (-O0, -O1, -O2 and -O3). The following section
details the collected results for the described setup.

B. Reliability profiling

The first set of experiments studies the effect of the target
application on the MTTF of the register file. Figure 3 shows
the evolution of the MTTF (in percentage with respect to the
nominal 20 years), where the X-axis represents the nominal

Figure 3. MTTF evolution for various benchmarks.

Figure 4. MTTF evolution for the FFT benchmark under different compiler
optimizations.

MTFF in months. As can be seen, independently from
the application domain, the key differentiator to identify
the worst benchmarks from the reliability viewpoint is the
analysis of which ones make intensive use of a reduced
number of registers, namely, FFT and bitcount in our results.
Thus, they are the benchmarks that experience a most
severe MTTF reduction (nearly 35% in 10 years) due to the
hotspots found in the highly-accessed registers. On the other
hand, those data-processing benchmarks with an extended
number of assigned registers (i.e., qsort and reed) experience
a lower impact on the MTTF evolution (14% in 10 years).

The second set of experiments evaluates the effect of the
different compiler optimizations (-O0, -O1, -O2) and the
modified register assignment policy on the MTTF for the
FFT benchmark, which is one of the applications that uses
a larger number of registers. As can be seen in Figure 4, the
less optimized policy (-O0 option) regarding the number of
used registers is the one that provides a lower impact on the
MTTF reduction (2% on average), while the register reuse
conducted by the more extensive compiler optimization
options impact negatively the MTTF (6% and 9% for the
-O2 and -O3 options, respectively) in the sampled interval.

In the next set of experiments, the effect of every relia-
bility factor on the final MTTF is evaluated. Figure 5 shows
the evolution of the four main reliability factors for the FFT
benchmark, compiled under the -O3 optimization. As seen,
SM is the dominant factor in the reduction of the MTTF. The
faster slope of SM is due to the fast thermal dynamism of
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Figure 5. MTTF model evolution for the FFT benchmark compiled with
-O3.

Figure 6. Number of damaged registers under different compiler opti-
mizations and our reliability-aware algorithm (MODIFIED).

the system in different execution phases (i.e., approximately
12°C of differences can occur in few seconds), as predicted
by different thermal models in the literature [2], [5], [19].

Finally, the number of damaged registers has also been
estimated in order to quantify the degree of device failure.
A register is considered to be damaged if its MTTF is
below 2% of the nominal value. This information is very
useful for the microarchitecture designer to understand the
consequences of the optimization policies applied by the
compiler in the register file lifetime. The number of damaged
registers at the end of a sample interval of 3 years is depicted
in Figure 6. As this figure shows, the amount of damaged
registers on average for the bitcount benchmark, one case
study with high pressure in the register file, varies between
1 and 4 for the studied interval, and between 15 and 40 in
20 years, depending on the optimization level used by the
compiler. Moreover, the maximum optimization level (-O3)
is the one with worse reliability, showing in our results that
the probability of having at least 4 registers damaged in the
first 2 years in the worst case reaches a probability of 99.5%,
making critical the development of reliability-aware register
assignment policies by microprocessor designers to increase
processors lifetime.

C. Reliability enhancement policy

Using the aforementioned information from our reliability
emulation framework about the register file, we have defined

Figure 7. MTTF model evolution for the FFT benchmark compiled with
our reliability-aware register assignment algorithm.

a new register assignment policy, implemented in the com-
piler, which tackles the strong impact of the compilation
phase of the different benchmarks and related optimizations
on the register file. We have modified the common assign-
ment algorithm performed by gcc, which selects registers
for instructions from a pool of unordered registers trying
to minimize the number of them according to the level of
optimization (-O0 to -O3). In this new proposed algorithm,
the selection of registers in the modified gcc is performed by
remembering the latest registers accessed in the respective
window such that following register assignments follow a
chess board fashion. Thus, a better diffusion of heat is
performed within the different register windows and the risk
of hotspots is minimized, trying to improve the reliability
figures of the device.

The results of this new register assignment policy regard-
ing the reduction of the number of damaged registers are
shown in Figure 6. As can be seen, the spread of the register
assignment per window performed by our MODIFIED policy
included in the gcc compiler eliminates any damaged register
in the sampled interval (3 years) for the FFT benchmark.

In a final set of experiments, the effectiveness of our
register assigment policy has been evaluated on decreasing
the MTTF degradation. Figure 7 shows the evolution in time
of the MTFF for the FFT benchmark when this compila-
tion policy is used. As can be seen, when compared with
Figure 5, the performed assignment efficiently reduces the
MTTF degradation (1% in 10 years).

VI. CONCLUSIONS

The alarming rise of power densities and temperatures in
the die can seriously affect the reliability of MPSoC pro-
cessing cores. Therefore, mechanisms to accurately evaluate
the reliability features at the microarchitectural level are in
great demand nowadays. In this paper we have presented a
detailed reliability analysis of the register file architecture
of the Leon 3 processor. This analysis was possible due
to the use of an accurate HW/SW FPGA-based emulation
platform that enables a complete design space exploration of
thermal and reliability metrics altogether, in a short amount
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of time, during the execution of a complete range of different
benchmarks. Our results with the Leon 3 processing core
have shown that the target application domain used has a
large impact on the reliability of the register file, as well
as the use of different compiler optimizations and register
assignment policies. Moreover, using our reliability analysis
we have proposed a reliability-aware register assignment
algorithm, which significantly improves the MTTF of the
register file.
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