

Real-Time GNSS Software Receiver:

Challenges, Status, and Perspectives

Marcel Baracchi-Frei, University of Neuchâtel, Switzerland

Grégoire Waelchli, Cyril Botteron, Pierre-André Farine, Ecole Polytechnique Fédérale de

Lausanne (EPFL), Electronic and Signal Processing Laboratory, Neuchâtel, Switzerland

BIOGRAPHY

Marcel Baracchi-Frei received his degree of

Physics-Electronics at the University of Neuchâtel

in March 2003. In July 2003 he joined the group

„Electronics and Signal Processing Laboratory‟

(ESPLAB) of the University of Neuchâtel where he

is currently working as PhD student. From July

2003 to December 2004 he was involved in a

project in the wireless sensor network domain. He

focused on microcontroller programming and

designing, testing, and characterizing small,

printable antennas. Since December 2004 he is

working in the domain of GNSS receivers. He has

over 3 years of research experience in embedded

systems, where he implemented the software part of

a GPS L2 receiver on an embedded microprocessor

and focalized on the navigation part of a Galileo

receiver. Currently he is working on a software GPS

receiver project.

INTRODUCTION

 The idea of a software receiver is to replace the

data processing implemented in hardware with

software and to sample the analog input signal as

close to the antenna as possible. Thus, the hardware

is reduced to the minimum (antenna and analog to

digital converters) while all the signal processing is

done in software. As current mobile devices (such

as personal digital assistants and smartphones)

include more and more computing power and

system features it becomes possible to integrate a

complete GNSS receiver with very few external

components.

 One advantage of a software receiver lies clearly in

the low cost opportunity as the system resources

such as the calculation power and system memory

can be shared. Another advantage resides in the

flexibility for adapting to new signals and

frequencies. Indeed, an update can easily be

performed by changing some parameters and

algorithms in software while it would require a new

re-development for a standard hardware receiver.

 Updating capabilities may become even more

important in the future as the world of satellite

navigation is in complete effervescence: Europe is

developing its own solution (named Galileo) that is

foreseen to be operational in 2013; China is about to

undertake a fundamental re-development of its

current navigation system (named Compass); Russia

is investing a huge amount of money in its

GLONASS system to bring it back to full operation;

and the U.S. GPS system will see some fundamental

improvements during the next few years with new

frequencies and new modulation techniques. At the

same time, augmentation systems (either space

based or land based) will be developed all over the

world.

 These future developments will increase the

number of accessible satellites available to every

user – with the advantage of better coverage and

higher accuracy. However, to take full advantage of

the new satellite constellations and signals, new

GNSS receivers and algorithms must be developed.

 In this paper, we will first give a short overview of

the history of software receivers. Then, the term

„software receiver‟ will be explained and the

different classes of software receivers presented.

The third section is dedicated to the challenges that

the development of software receivers is confronted

with. This includes the high data rate and the

demanding computational power. The next section

provides an overview and a short description of the

current status related to the algorithms of code and

carrier generation, acquisition, tracking and

baseband processing for software receivers. This

also includes a discussion about Single Instruction

Multiple Data (SIMD) operations and bit-wise (or

vector) processing. Finally, the last section provides

some concluding remarks and a research outlook.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147973659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

HISTORY

 During the 1990‟s, a U.S. Department of Defense

(DoD) project named Speakeasy was undertaken

with the objective of showing and proving the

concept of a programmable waveform, multiband,

multimode radio [1]. The Speakeasy project

demonstrated the approach that underlies most

software receivers: the analog to digital converter

(ADC) is placed as near as possible to the antenna

front-end, and all baseband functions that receive

digitized intermediate frequency (IF) data input are

processed in a programmable microprocessor using

software techniques rather than hardware elements,

such as correlators. The programmable

implementation of all baseband functions offers a

great flexibility that allows rapid changes and

modifications. This property is an advantage in the

fast changing environment of GNSS receivers as

new radio frequency (RF) bands, modulation types,

bandwidths, and spreading/dispreading and

baseband algorithms are regularly introduced.

SOFTWARE REVEIVER:

DEFINITION AND TYPES

 The definition of a software receiver (SR) always

brings some confusion among researchers and

engineers in the field of communications and GNSS.

For example, a receiver containing multiple

hardware parts which can be reconfigured by setting

a software flag or hardware pins of a chipset are

regarded by some communication engineers to be a

SR. In this paper, however, we will consider the

widely accepted SR definition in the field of GNSS,

that is, a receiver in which all the base-band signal

processing is performed in software by a

programmable microprocessor.

 Nowadays, software receivers can be grouped in

three main categories as shown in Figure 1.

Figure 1 : Software receiver types

The first category regroups the receivers that are

based on Field Programmable Gate Arrays

(FPGAs), which are sometimes also referred to the

domain of SR. These receivers can be reconfigured

in the field by software.

The second category, post-processing receivers,

includes, among others, the countless software tools

or lines of code for testing new algorithms and for

analyzing the GNSS signal, for example, to

investigate GPS satellite failure or to decrypt

unpublished codes.

 Finally, the third category is the real-time capable

software receivers group that will be further

considered in this paper.

 A modern GNSS receiver contains normally a RF

front-end, a signal acquisition, a tracking, and a

navigation block. A hardware-based receiver

accomplishes the residual carrier removal, PRN

code dispreading, and integration at the system

sampling rate. Until the late 1990s, due to the

limited processing power of microprocessors, these

signal functions could only be practically

implemented in hardware.

 In 1990, researchers at the NASA/Caltech Jet

Propulsion Laboratory introduced a signal

acquisition technique for code division multiple

access (CDMA) systems that was based on the Fast

Fourier Transform (FFT) [2]. Since then, this

method has been widely adopted in GNSS SR

because of its simplicity and efficiency of

processing load.

 In 1996, researchers at Ohio University provided a

direct digitization technique – called the bandpass

sampling technique – that allowed the placing of

ADCs closer to the RF portions of GNSS SRs. Until

this time, the implemented SRs in university

laboratories post-processed the data due to the lack

of processing power mentioned earlier.

 Finally, in 2001, researchers at Stanford University

implemented a real-time processing-capable SR for

the GPS L1 C/A signal [3].

 However, the GNSS SR boom really started with

the development of real-time processing capability.

This was first accomplished on a digital signal

processor (DSP) and later on a commercial

conventional personal computer (PC). Today, the

DSPs are more and more replaced by specialized

processors for embedded applications.

Software
Receiver

Post-
Processing

Real-Time
capable

FPGA
based

3

CHALLENGES

The following chapter highlights some of the main

challenges related to software receivers. This

includes the problem of the high data rate when

working with a nearly ideal implementation and also

talks about the high processing power requirements

for the base-band processing of the incoming GNSS

signal.

Data rate

 The ideal software receiver would place the ADC

as close as possible to the antenna in order to reduce

the hardware parts to the minimum (see Figure 2).

In that sense, the most straightforward approach

consists in digitizing the data directly at the antenna,

without pre-filtering or pre-processing. But as the

Nyquist theorem must be fulfilled (i.e. sampling

with at least twice the highest signal frequency), this

translates into a data rate that is, for the time being,

too high to be processed by a microcontroller.

Figure 2 : Ideal software receiver

 Considering the GPS L1 signal and assuming 1

quantization bit per sample, this leads to the

following values:

FGPSL1 = 1.575 GHz

FSampling ≥ 2 * FGPSL1 = 3.15 GHz

Data rate ≥ 3.15 GBit/s = 393 MB/s

 In order to reduce the data throughput, a solution

such as a low intermediate frequency (low IF) or a

sub-sampling analog front-end must be chosen. In a

low IF front-end, the incoming signal is down-

converted to a lower intermediate frequency of

several megahertz. This allows working with a

sampling (and data) rate that can be more easily

handled by a microcontroller.

 The sub-sampling technique exploits the fact that

the effective signal bandwidth in a GNSS signal is

much lower than the carrier frequency. Therefore,

not the carrier frequency but the signal bandwidth

must be respected by the Nyquist theorem

(assuming appropriate band-pass filtering). In this

case, the modulated signal is under-sampled to

achieve frequency translation via intentional

aliasing. Again, if the GPS L1 signal is taken as an

example with assuming 1 quantization bit per

sample, this leads to the following values:

Bandwidth GPS L1 = 2 MHz

FSampling ≥ 2 * Bandwidth = 4 MHz

Data rate ≥ 4 MBit/s = 500 kB/s

 However as the sub-sampling approach is still

difficult to implement due to current hardware and

resources limitations, a more classical solution

based on an analog IF down-conversion is often

chosen. That means that the signal is first down-

converted to an intermediate frequency and

afterwards digitized.

Base-band processing

 Considering an IF based architecture, the ADC

provides a data stream (real or complex) which is

first shifted into base-band by at least one complex

mixer. The signal is then multiplied with several

code replicas (generally Early, Prompt, and Late)

and finally accumulated. An example of a real data

IF architecture is shown in Figure 3.

Figure 3 : Real IF architecture

 In hardware receivers, the local code and carrier

are generally generated in real-time by the means of

a Numerically Controlled Oscillator (NCO) which

performs the role of a digital waveform generator by

incrementing an accumulator by a per-sample phase

increment. The resulting value is then converted to

the corresponding amplitude value in order to

recreate the waveform at any desired phase offset.

The frequency resolution is typically in the range of

a few millihertz with a 32-bit accumulator and a

sampling frequency in the range of a few megahertz.

 Assuming that a look-up table (LUT) address can

be obtained with 2 logical operations (one shift and

one mask) and the corresponding LUT value read

with 1 memory access - which is quite optimist - the

amount of needed operations to generate the

complex waveforms per channel becomes (see

Table 1).

IQ

I
II

s
in

c
o

s

L P E

Prompt_Q

Early_Q

Late_Q

Prompt_I

Early_I

Late_I

∑

∑

∑

∑

∑

∑Carrier

PRN

ADC

Software

Antenna

4

integer additions 3 * NCh * FS * TInt

interer multiplications 4 * NCh * FS * TInt

logical operations 3 * NCh * FS * TInt

Table 1: Operations for code and carrier generation

 The real-time carrier generation is computationally

expensive and is consequently not suitable for a one

to one software implementation. Former studies [4]

demonstrated that, assuming that an integer

operation and a multiplication take 1 and 14 CPU

cycles, respectively (for an Intel Pentium 4

processor), the base-band operations (without carrier

and code generation or navigation solution) would

require at least a 3 GHz Intel Pentium 4 processor

with 100% CPU load. Therefore, under these

conditions, real-time operations are not suitable for

embedded processors. Therefore standard hardware

receiver architectures cannot be translated directly

into software and consequently, new strategies must

be developed to lower the processing load.

STATUS

 A major problem with the software architecture is

the important computing resources required for the

base-band processing, especially for the

accumulation process. As a straightforward

transposition of traditional hardware based

architectures into software would lead to an amount

of operations which is not suitable for today‟s

fastest computers, two main alternate strategies have

been proposed in the literature: the first one relies

on the utilization of Single Instruction Multiple Data

(SIMD) operations which provide the capability of

processing vectors of data. Since they operate on

multiple integer values at the same time, SIMD

could result in significant gains in execution speed

for repetitive tasks such as base-band processing.

However, SIMD operations are tied to specific

processors and therefore severely limit the

portability of the code. The second alternative

consists in the bitwise parallel operations

(sometimes also referred as vector processing in the

literature), which exploit the native bitwise

representation of the signal. The data bits are stored

in separate vectors, one sign and one or several

magnitude vectors, on which bitwise parallel

operations can be performed. The objective is to

take advantage of the universality, high parallelism,

and speed of the bitwise operations for which a

single integer operation is translated into a few

simple parallel logical relations. While SIMD

operations use advanced and specific optimization

schemes, the latter methodology exploits universal

CPU instructions set.

Single Instruction Multiple Data

 In 1995, Intel introduced the first instance of

Single Instruction Multiple Data (SIMD) under the

name of Multi Media Extension (MMX). The SIMD

are mathematical instructions that operate on vectors

of data and perform integer arithmetic on eight 8-bit,

four 16-bit, or two 32-bit integers packed into a

MMX register (see Figure 4). On average, the SIMD

operations take more clock cycles to execute than a

traditional x86 operation. Anyhow, since they

operate on multiple integers at the same time, MMX

code can result in significant gains in execution

speed for appropriately structured algorithms. Later

SIMD extensions, SSE, SSE2, and SSE3, added

eight 128-bit registers to the x86 instruction set.

Additionally, SSE operations include SIMD floating

point operations, and expand the type of integer

operations available to the programmer.

Figure 4 : Single Instruction Single Data vs.

Single Instruction Multiple Data

SIMD operations are well fitted to parallelize the

operations of the baseband processing (BBP) stage.

In particular, they can be used to allow the PRN

code mixing and the accumulation to be performed

concurrently for all the code replicas. With the help

of further optimizations such as instruction

pipelining, more than 600% performance

improvement with the SIMD operations compared

to the standard integer operations can be observed

[5]. For this reason, most of the software receivers

with real-time processing capabilities use SIMD

operations [4], [5], [6], [7].

Bitwise Operations (Vector Processing)

 Bitwise operation (or vector processing) was first

introduced in [8]. The method exploits the bit

representation of the incoming signal where the data

bits are stored in separate vectors on which bitwise

parallel operations can be performed. Figure 5

shows a typical data storage scheme for vector

processing.

5

1 Sign word0 0 1 0 1 0 1

1 Magn 1 word1 1 0 1 0 1 1

1 Magn 2 word0 1 1 0 1 1 1

Time

1 Code1 1 1 1 1 0 0

Input sample #5

Value 2d

Figure 5 : Bitwise representation

 The sign information is stored in the sign word

while the remaining bit(s) representing the

magnitude is (are) stored in the magn word(s). The

objective is to take advantage of the high parallelism

and speed of the bitwise operations for which a

single integer addition or multiplication is translated

into simple parallel logical operations. The carrier

mixing stage is reduced to one or a few simple

logical operations which can be performed

concurrently on several bits. In the same way, the

PRN code removal only affects the sign word.

 In [9] the complete code and carrier removal

process requires two operations for each code

replica (Early, Prompt, and Late). The complexity

can be even further reduced by more than 30% by

considering one single combination of early and late

code replicas (typically early-minus-late). This way,

the author claims an improvement of a factor 2 for

the bitwise method compared to the standard integer

operations.

 The inherent drawback of this approach is the lack

of flexibility: the complexity of the process becomes

bit-depth dependent and the signal quantification

cannot be easily changed (while performing BBP

with integers allows the signal structure to change

significantly without code modification).

 To overcome this limitation, a combination of

bitwise processing and distributed arithmetic can be

used. This method was described in details in [10].

The power consuming operations are performed

with bitwise operations and to be able to keep the

flexibility of the calculations standard integer

operations are used after the code and carrier

removal. The passage between the two methods is

done with the distributed arithmetic.

Code and carrier generation

 Another important aspect in a software receiver is

the code and carrier generation. As these tasks

represent a huge processing load, new solutions

have to be developed in this domain.

Code generation

 The pseudorandom noise (PRN) codes transmitted

by the satellites are deterministic sequences with

noise-like properties that are typically generated

with tapped linear feedback shift registers. But in

order to save processing power, it is preferable for

software applications to compute off-line the 32

codes and store them in memory.

 A method that stores the different PRN codes in

their oversampled representation (the code are pre-

generated) was proposed in [8]. As the incoming

signal code phase is random, the beginning of the

first code chip is in general not aligned with the

beginning of a word and may occur anywhere

within it. To overcome this issue, either all the

possible phases can be stored in memory or the code

can be shifted appropriately during the tracking.

While the first approach increases the memory

requirements, the second requires further data

processing in function of the phase mismatch.

Regarding the Doppler compensation, all the PRN

codes in the table are assumed to have zero Doppler

shifts. The code phase errors due to this hypothesis

are eliminated by choosing a replica code from the

table whose midpoint occurs at the desired midpoint

time. The only other effect of the zero Doppler shift

assumption is a small correlation power loss which

is not more than 0.014 dB if the magnitude of the

true Doppler shift is less than 10 kHz [9]. This

approach is very popular in the domain of software

receiver and can be found in several solutions [4],

[11], [12], [13], [14].

Carrier generation

 The generation of a local carrier frequency is

necessary to perform the Doppler removal. The

standard trigonometric functions or the Taylor

decompositions for the sinus and cosines

computation are too heavy for a software

implementation and are seldom considered.

 However, several other techniques exist to reduce

the computational load for the carrier generation: the

values for the carrier can be pre-generated and then

stored in lookup tables. This method was first

introduced into a software receiver by [8]. As it

would require several gigabytes of memory to store

all the possible frequencies, the values are recorded

on a coarse frequency grid with zero phases and at

the RF front-end (over-)sampling frequency. The

carrier will thus be available in an (over-)sampled

version. The limited number of available carrier

frequencies introduces a supplementary mismatch in

the Doppler removal process. This error can be

compensated with a simple phase rotation of the

accumulation results. This method is very popular in

the domain of software receivers and many

6

solutions take advantage of it to avoid the power

hungry real-time carrier generation [6], [7], [12].

 Based on the same principle as above, [15]

proposed a method that pre-computes a set of carrier

frequency candidates to be stored in memory. The

grid spacing is selected such as to minimize the loss

due to Doppler frequency offset. Furthermore, in

order to provide phase alignement capabilities of the

carriers, a set of initial phases is also provided for

each possible Doppler frequency, as illustrated in

Figure 6.

Figure 6 : Set of carrier frequency candidates

Contrarily to the approach in [8] and thanks to the

phase alignement capabilities, the number of

sampling points must not obligatorily correspond to

an entire acquisition period. Therefore, the length of

the frequency candidate vectors can be chosen with

respect to the available memory space and becomes

quasi independent of the sampling frequency.

 Another approach consists in removing

concurrently the Doppler from all received satellite

signals [16]. The algorithm is implemented as a

look-up table containing one single frequency and

the carrier removal is performed for all channels

with the same frequency, but the frequency error

results normally in an unacceptable loss. To

overcome this problem, the integration interval is

split into sub-intervals for which a partial

accumulation is computed. The result is rotated

proportionally to the frequency mismatch in the

same way as in the method described above. The

algorithm can be applied recursively and with an

appropriate selection of the sub-intervals, the total

attenuation factor can be limited to a reasonable

value. The author claims an improvement of up to

30% compared to the standard look-up table method

with respect to the total complexity for both Doppler

removal and correlation stages. Regarding the

computational complexity, the Doppler removal

stage remains unchanged with the difference that it

is only performed once for all satellites. But the

rotation needs to be done for each of the sub-

intervals. However, this algorithm remains difficult

to implement (number of samples varies in one or

more full C/A code chip and the alignement of the

data is different than the sub-interval boundaries).

Acquisition

 During acquisition, the BBP unit shifts locally the

code replica until it correlates with the incoming

code. The receiver must also detect the satellites or

space vehicles (SVs) present in the incoming signal

by searching the possible Doppler frequencies. The

acquisition thus consists in a two dimensional

search process. Different acquisition techniques can

be envisaged.

Serial Search

 The serial search represents the classical approach

and consists in sweeping the two dimensional code

phase/Doppler spaces in a sequential manner. Every

incoming sample is multiplied with the local carrier

replica and a correlation peak is searched

sequentially, as illustrated in Figure 7.

Local
oscillator

I

Code
generator

Q
∫

()
2

()
2

∑

∫

In Out

Figure 7 : Serial search architecture

Parallel code search

 The parallel code search tests all the code phases in

parallel for a given Doppler frequency. The input

signal is transformed into the frequency domain via

a Discrete Fourier Transform (DFT). The DFT of

the locally generated PRN code is also computed.

After multiplication of these two sets of coefficients,

the inverse DFT is performed to determine if a

correlation peak is present. If not, the operation is

repeated for the next Doppler frequency. The

process is illustrated in Figure 8. As compared to the

previous method, the parallel code phase search

method reduces the search space to the different

carrier frequencies. As the Fourier Transform of the

replica PRN code can be pre-computed and stored,

each of the bin searching consists in performing one

Fourier Transform and one Inverse Fourier

Transform.

7

Local
oscillator

I

Q

FFT IFFT ||
2

Code
generator

FFT

In Out

Conj

Figure 8 : Parallel code search architecture

Parallel frequency search

 The parallel frequency search looks for the peak in

the frequency domain by testing all Doppler bins at

once and all code phases individually. The baseband

signal is multiplied with the locally generated PRN

code in order to form P consecutive partial

correlations with a pre-detection time TC which is P

times smaller than the integration time. The P

results are regrouped into a vector on which a N-

point FFT is computed. If no correlation peak is

detected, the operation is repeated with the next

code phase, as shown in Figure 9.

Local
oscillator

I

Code
generator

Q

In

∫

∫

FFT

1

P

1

P

Signal
select

Out

Figure 9 : Parallel frequency search architecture

AVAILABLE SOFTWARE RECEIVERS

 Today, software receivers can be found at either

university or commercial level. The development

not only includes programming solution but also the

realization of dedicated RF front-ends. As these RF

front-ends are able to capture more and more

frequencies with increasing bit-rates, the PC-based

software receivers require a comparably complex

interface to transfer the digitized IF samples into the

computer‟s memory.

 Two classes of PC-based GNSS SR front-end

solutions can be found. The first one uses

commercially available ADCs that are either

connected directly to the PC (for example, via the

PCI bus) or that are working as stand-alone devices.

The ADC directly digitizes the received IF signal,

which is taken from a pure analog front-end. This

solution is often found at the university and research

institute levels where a high amount of flexibility is

required. As an example the Department of

Geomatics Engineering of the University of Calgary

[17], the Cornell University [18], and the University

FAF Munich‟s Institute of Geodesy and Navigation

[19] shall be mentioned here.

 The second solution is based on front-ends that

integrate an ADC plus an USB 2.0 interface.

Currently, a quite impressive number of commercial

and R&D front-ends are available for the GNSS

market. NordNav (bought by CSR) [20] and Accord

[21] were among the first to provide USB-based

solutions. Another interesting development comes

from the University of Colorado, which in an

OpenGPS forum published all details on the RF and

USB section. More and more companies announced

and still announce front-ends that are not only

capable of capturing a single frequency, but several

different bands. To be able to deal with this

increasing bandwidth, the USB port is very well

suited for SR development and its maximum

theoretical transfer rate of 480 MBit/s allows

realizing GPS/Galileo multi-frequency high

bandwidth frontends. The USB approach is one of

the most important cornerstones of SR development.

Software receivers for the embedded market

As mentioned in the introduction, the embedded

market will become important during the next years.

A growing number of receivers are developed for

this market, supporting different embedded

platforms (e.g. Intel XScale, ARM based, and DSP-

based). Several companies offer already commercial

software receivers for the embedded market, among

others NordNav (bought by CSR) [20], SiRF [22],

ALK Technologies Inc. [23], and CellGuide [24].

Commercial PC-based receivers

The first commercial GPS/Galileo receiver for a PC

platform was presented in 2001 by NordNav

(bought by CSR) [20]. This SR can be compared to

a normal GPS receiver, although the CPU load of

this solution is still quite impressive.

Several other solutions are presented lately. One of

the first (car) navigation solution was presented by

ALK Technologies [23] under the name CoPilot.

The CPU load was drastically reduced and this

solution works on a standard commercial personal

computer. The client does not really see a difference

compared to a solution that is based on a hardware

receiver.

Software receivers for research activities

The use in teaching and for training is one of the

most valuable and obvious application for software

GNSS receivers. Receivers, for which the source

code is available, allow the observation and

8

inspection of almost every signal data by the

researcher.

Several textbooks have been published related to

software GNSS receivers. The pioneer in this area is

James Bao-yen Tsui who wrote the first book on

software receivers in 2000 with the title

Fundamentals of Global Positioning System

Receivers: A Software Approach (Wiley-

Interscience, updated in 2004). Kai Borre et al.

published in 2006 a book that comes with a

complete (post-processing) software receiver written

in Matlab: A Software-Defined GPS and Galileo

Receiver: A Single-Frequency Approach

(Birkhäuser Boston, 1
st
 edition).

 The European Union is financing the development

of receivers for the upcoming Galileo system. One

of the projects was the Galileo Receiver Analysis

and Design Application (GRANADA) simulation

tool. Running under Matlab, GRANADA is realized

as a modular and configurable tool with a dual role:

test-bench for integration and evaluation of receiver

technologies, and SR as asset for GNSS application

developers.

 Other companies provide toolboxes (in Matlab or

C) that allow testing of new algorithms in a working

environment and inspecting almost all data signals.

The solutions from Data Fusion Corporation (DFC)

[25] and NAVSYS [26] shall be mentioned here.

OUTLOOK

Software receivers have found their place in the

field of algorithm prototyping and testing for a long

time. Nowadays they also play a key role for certain

special applications. What remains unclear today is

if they will enter and change drastically the

embedded market or succeed as generic high-end

receivers.

 A software GNSS receiver offers different

advantages including design flexibility, faster

adaptability, faster time-to-market, higher

portability and easy optimization at any algorithm

stage. However, a major drawback persists in the

slow throughput and the high CPU load.

 Many different companies and universities have

projects running that aim at optimizing and

developing new algorithms and methods for a

software implementation. The development not only

includes the software level, but also enlarges in the

direction of using additional hardware that is

already available on a standard PC (for example,

using the high performance graphic processing unit

(GPU) for calculating the local carrier [27]).

 On the opposite end of the spectrum from the mass

market, the following factors seem to ensure that,

sooner or later, high-end software receivers will be

available:

- High bandwidth signals (GPS and Galileo)

can already be transferred into the PC in

real-time and processed.

- The processing power is increasing allowing

real-time processing with a limited amount

of multi-correlators. The introduction of

new multi core processors will be

advantageously for software receivers.

- Post-processing is one of the most important

benefits of a software receiver as it allows a

re-analysis of the signal several times with

all possible processing options. The

increasing hard disk capacity allows the

storage of several long data sequences.

- Some signal processing algorithms are

much easier to implement in software than

in hardware (such as frequency domain

tracking or maximum likelihood tracking).

Those methods require complex operations

at the signal level.

REFERENCES

[1] R. Lackey und D. Upmal, “Speakeasy: The

Military Software Radio,” IEEE

Communications Magazine, S. 56-61.

[2] D. van Nee und A. Coenen, “New Fast GPS

Code Acquisition Technique Using FFT,”

Electronics Letters, vol. 27, Jan. 1991, S. 158-

160.

[3] D.M. Akos, P. Normark, P. Enge, A. Hansson,

und A. Rosenlind, “Real-Time GPS Software

Radio Receiver,” Long Beach, CA: 2001.

[4] G.W. Heckler und J.L. Garrison, “Architecture

of a Reconfigurable Software Receiver,”

Long Beach, CA: 2004.

[5] G.W. Heckler und J.L. Garrison, “SIMD

correlator library for GNSS software

receiver,” GPS Solutions, 2006.

[6] T. Pany, S.W. Moon, M. Irsigler, B. Eissfeller,

und K. Fürlinger, “Performance assessment of

an under sampling SWC receiver for simulated

high bandwidth GPS/Galileo signals and real

signals,” Portland, OR: 2003.

[7] S. Charkhandeh, M. Petovello, R. Watson, und

G. Lachapelle, “Implemenation and Testing of

a Real-Time Software-Based GPS Receiver

for x86 Processors,” Monterey, California:

2006.

[8] B. Ledvina, S. Powell, und P. Kintner, “A 12-

Channel Real-Time GPS L1 Software

Receiver,” 2002.

[9] B. Ledvina, M. Psiaki, S. Powell, und P.

Kintner, “Real-time software receiver,” U.S.

Patent US0227856.

[10] G. Waelchli, M. Baracchi-Frei, C. Botteron,

und P. Farine, “Performances of a new

9

correlation algorithm for a platform-

independent GPS software receiver,”

Anaheim CA: 2009.

[11] Y. Chen und J. Juang, “A GNSS Software

Receiver Approach for the Processing of

Intermittent Data,” 2007.

[12] A. Fridmann und S. Semenov, “Architectures

of Software GPS Receivers,” GPS Solutions,

vol. 3, 2000, S. 58-64.

[13] M.L. Psiaki, “Real-Time Generation of Bit-

Wise Parallel Representation of Over-Sampled

PRN Code,” IEEE Trans. on Wireless

Communication, vol. 5, März. 2006.

[14] J. Tian, Q. HongLei, Z. JunJie, und L. Yang,

“Real-time GPS Software Receiver Correlator

Design,” 2007.

[15] P. Normark und C. Stahlberg, “Spread

spectrum signal processing,” U.S. Patent WO

2004/036238.

[16] M. Petovello und G. Lachapelle, “An Efficient

New Method for Doppler Removal and

Correlation with Application to Software-

Based GNSS Receivers,” Fort Worth, TX:

2006.

[17] http://www.geomatics.ucalgary.ca

[18] http://www.cornell.edu

[19] http://ifen.bauv.unibw-muenchen.de

[20] http://www.csr.com

[21] http://www.accord-products.com

[22] http://www.sirf.com

[23] http://www.alk.eu.com

[24] http://www.cell-guide.com

[25] http://www.datafusion.com

[26] http://www.navsys.com

[27] M. Petovello et al., “Architecture and Benefits

of an Advanced GNSS Software Receiver”,

International Symposium on GPS/GNSS 2008,

Tokio, 2008.

