
 

 

Real-Time GNSS Software Receiver:  

Challenges, Status, and Perspectives 
 

 

Marcel Baracchi-Frei, University of Neuchâtel, Switzerland 

Grégoire Waelchli, Cyril Botteron, Pierre-André Farine, Ecole Polytechnique Fédérale de 

Lausanne (EPFL), Electronic and Signal Processing Laboratory, Neuchâtel, Switzerland 

 

 

BIOGRAPHY 

 

Marcel Baracchi-Frei received his degree of 

Physics-Electronics at the University of Neuchâtel 

in March 2003. In July 2003 he joined the group 

„Electronics and Signal Processing Laboratory‟ 

(ESPLAB) of the University of Neuchâtel where he 

is currently working as PhD student. From July 

2003 to December 2004 he was involved in a 

project in the wireless sensor network domain. He 

focused on microcontroller programming and 

designing, testing, and characterizing small, 

printable antennas. Since December 2004 he is 

working in the domain of GNSS receivers. He has 

over 3 years of research experience in embedded 

systems, where he implemented the software part of 

a GPS L2 receiver on an embedded microprocessor 

and focalized on the navigation part of a Galileo 

receiver. Currently he is working on a software GPS 

receiver project. 

 

INTRODUCTION 

 

  The idea of a software receiver is to replace the 

data processing implemented in hardware with 

software and to sample the analog input signal as 

close to the antenna as possible. Thus, the hardware 

is reduced to the minimum (antenna and analog to 

digital converters) while all the signal processing is 

done in software. As current mobile devices (such 

as personal digital assistants and smartphones) 

include more and more computing power and 

system features it becomes possible to integrate a 

complete GNSS receiver with very few external 

components.  

  One advantage of a software receiver lies clearly in 

the low cost opportunity as the system resources 

such as the calculation power and system memory 

can be shared. Another advantage resides in the 

flexibility for adapting to new signals and 

frequencies. Indeed, an update can easily be 

performed by changing some parameters and 

algorithms in software while it would require a new 

re-development for a standard hardware receiver. 

  Updating capabilities may become even more 

important in the future as the world of satellite 

navigation is in complete effervescence: Europe is 

developing its own solution (named Galileo) that is 

foreseen to be operational in 2013; China is about to 

undertake a fundamental re-development of its 

current navigation system (named Compass); Russia 

is investing a huge amount of money in its 

GLONASS system to bring it back to full operation; 

and the U.S. GPS system will see some fundamental 

improvements during the next few years with new 

frequencies and new modulation techniques. At the 

same time, augmentation systems (either space 

based or land based) will be developed all over the 

world. 

  These future developments will increase the 

number of accessible satellites available to every 

user – with the advantage of better coverage and 

higher accuracy. However, to take full advantage of 

the new satellite constellations and signals, new 

GNSS receivers and algorithms must be developed. 

  In this paper, we will first give a short overview of 

the history of software receivers. Then, the term 

„software receiver‟ will be explained and the 

different classes of software receivers presented. 

The third section is dedicated to the challenges that 

the development of software receivers is confronted 

with. This includes the high data rate and the 

demanding computational power. The next section 

provides an overview and a short description of the 

current status related to the algorithms of code and 

carrier generation, acquisition, tracking and 

baseband processing for software receivers. This 

also includes a discussion about Single Instruction 

Multiple Data (SIMD) operations and bit-wise (or 

vector) processing. Finally, the last section provides 

some concluding remarks and a research outlook. 
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HISTORY 
 

  During the 1990‟s, a U.S. Department of Defense 

(DoD) project named Speakeasy was undertaken 

with the objective of showing and proving the 

concept of a programmable waveform, multiband, 

multimode radio [1]. The Speakeasy project 

demonstrated the approach that underlies most 

software receivers: the analog to digital converter 

(ADC) is placed as near as possible to the antenna 

front-end, and all baseband functions that receive 

digitized intermediate frequency (IF) data input are 

processed in a programmable microprocessor using 

software techniques rather than hardware elements, 

such as correlators. The programmable 

implementation of all baseband functions offers a 

great flexibility that allows rapid changes and 

modifications. This property is an advantage in the 

fast changing environment of GNSS receivers as 

new radio frequency (RF) bands, modulation types, 

bandwidths, and spreading/dispreading and 

baseband algorithms are regularly introduced. 

 

SOFTWARE REVEIVER: 

DEFINITION AND TYPES 

 

  The definition of a software receiver (SR) always 

brings some confusion among researchers and 

engineers in the field of communications and GNSS. 

For example, a receiver containing multiple 

hardware parts which can be reconfigured by setting 

a software flag or hardware pins of a chipset are 

regarded by some communication engineers to be a 

SR. In this paper, however, we will consider the 

widely accepted SR definition in the field of GNSS, 

that is, a receiver in which all the base-band signal 

processing is performed in software by a 

programmable microprocessor. 

  Nowadays, software receivers can be grouped in 

three main categories as shown in Figure 1. 

 

 
Figure 1 : Software receiver types 

 

The first category regroups the receivers that are 

based on Field Programmable Gate Arrays 

(FPGAs), which are sometimes also referred to the 

domain of SR. These receivers can be reconfigured 

in the field by software. 

The second category, post-processing receivers, 

includes, among others, the countless software tools 

or lines of code for testing new algorithms and for 

analyzing the GNSS signal, for example, to 

investigate GPS satellite failure or to decrypt 

unpublished codes. 

  Finally, the third category is the real-time capable 

software receivers group that will be further 

considered in this paper.  

  A modern GNSS receiver contains normally a RF 

front-end, a signal acquisition, a tracking, and a 

navigation block. A hardware-based receiver 

accomplishes the residual carrier removal, PRN 

code dispreading, and integration at the system 

sampling rate. Until the late 1990s, due to the 

limited processing power of microprocessors, these 

signal functions could only be practically 

implemented in hardware. 

  In 1990, researchers at the NASA/Caltech Jet 

Propulsion Laboratory introduced a signal 

acquisition technique for code division multiple 

access (CDMA) systems that was based on the Fast 

Fourier Transform (FFT) [2]. Since then, this 

method has been widely adopted in GNSS SR 

because of its simplicity and efficiency of 

processing load. 

  In 1996, researchers at Ohio University provided a 

direct digitization technique – called the bandpass 

sampling technique – that allowed the placing of 

ADCs closer to the RF portions of GNSS SRs. Until 

this time, the implemented SRs in university 

laboratories post-processed the data due to the lack 

of processing power mentioned earlier.  

  Finally, in 2001, researchers at Stanford University 

implemented a real-time processing-capable SR for 

the GPS L1 C/A signal [3]. 

  However, the GNSS SR boom really started with 

the development of real-time processing capability. 

This was first accomplished on a digital signal 

processor (DSP) and later on a commercial 

conventional personal computer (PC). Today, the 

DSPs are more and more replaced by specialized 

processors for embedded applications. 
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CHALLENGES 
 

The following chapter highlights some of the main 

challenges related to software receivers. This 

includes the problem of the high data rate when 

working with a nearly ideal implementation and also 

talks about the high processing power requirements 

for the base-band processing of the incoming GNSS 

signal. 

 

Data rate 

  The ideal software receiver would place the ADC 

as close as possible to the antenna in order to reduce 

the hardware parts to the minimum (see Figure 2). 

In that sense, the most straightforward approach 

consists in digitizing the data directly at the antenna, 

without pre-filtering or pre-processing. But as the 

Nyquist theorem must be fulfilled (i.e. sampling 

with at least twice the highest signal frequency), this 

translates into a data rate that is, for the time being, 

too high to be processed by a microcontroller. 

 

 

Figure 2 : Ideal software receiver 

 

  Considering the GPS L1 signal and assuming 1 

quantization bit per sample, this leads to the 

following values: 

 

FGPSL1 = 1.575 GHz 

FSampling ≥ 2 * FGPSL1 = 3.15 GHz 

Data rate ≥ 3.15 GBit/s = 393 MB/s 

 

  In order to reduce the data throughput, a solution 

such as a low intermediate frequency (low IF) or a 

sub-sampling analog front-end must be chosen. In a 

low IF front-end, the incoming signal is down-

converted to a lower intermediate frequency of 

several megahertz. This allows working with a 

sampling (and data) rate that can be more easily 

handled by a microcontroller. 

  The sub-sampling technique exploits the fact that 

the effective signal bandwidth in a GNSS signal is 

much lower than the carrier frequency. Therefore, 

not the carrier frequency but the signal bandwidth 

must be respected by the Nyquist theorem 

(assuming appropriate band-pass filtering). In this 

case, the modulated signal is under-sampled to 

achieve frequency translation via intentional 

aliasing. Again, if the GPS L1 signal is taken as an 

example with assuming 1 quantization bit per 

sample, this leads to the following values: 

 

Bandwidth GPS L1 = 2 MHz 

FSampling ≥ 2 * Bandwidth = 4 MHz 

Data rate ≥ 4 MBit/s = 500 kB/s 

 

  However as the sub-sampling approach is still 

difficult to implement due to current hardware and 

resources limitations, a more classical solution 

based on an analog IF down-conversion is often 

chosen. That means that the signal is first down-

converted to an intermediate frequency and 

afterwards digitized. 

 

Base-band processing 

  Considering an IF based architecture, the ADC 

provides a data stream (real or complex) which is 

first shifted into base-band by at least one complex 

mixer. The signal is then multiplied with several 

code replicas (generally Early, Prompt, and Late) 

and finally accumulated. An example of a real data 

IF architecture is shown in Figure 3. 

 

 

Figure 3 : Real IF architecture 

 

  In hardware receivers, the local code and carrier 

are generally generated in real-time by the means of 

a Numerically Controlled Oscillator (NCO) which 

performs the role of a digital waveform generator by 

incrementing an accumulator by a per-sample phase 

increment. The resulting value is then converted to 

the corresponding amplitude value in order to 

recreate the waveform at any desired phase offset. 

The frequency resolution is typically in the range of 

a few millihertz with a 32-bit accumulator and a 

sampling frequency in the range of a few megahertz. 

  Assuming that a look-up table (LUT) address can 

be obtained with 2 logical operations (one shift and 

one mask) and the corresponding LUT value read 

with 1 memory access - which is quite optimist - the 

amount of needed operations to generate the 

complex waveforms per channel becomes (see 

Table 1). 
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# integer additions 3 * NCh * FS * TInt 

# interer multiplications 4 * NCh * FS * TInt 

# logical operations 3 * NCh * FS * TInt 

Table 1: Operations for code and carrier generation 

  The real-time carrier generation is computationally 

expensive and is consequently not suitable for a one 

to one software implementation. Former studies [4] 

demonstrated that, assuming that an integer 

operation and a multiplication take 1 and 14 CPU 

cycles, respectively (for an Intel Pentium 4 

processor), the base-band operations (without carrier 

and code generation or navigation solution) would 

require at least a 3 GHz Intel Pentium 4 processor 

with 100% CPU load. Therefore, under these 

conditions, real-time operations are not suitable for 

embedded processors. Therefore standard hardware 

receiver architectures cannot be translated directly 

into software  and consequently, new strategies must 

be developed to lower the processing load. 

 

STATUS 

 

  A major problem with the software architecture is 

the important computing resources required for the 

base-band processing, especially for the 

accumulation process. As a straightforward 

transposition of traditional hardware based 

architectures into software would lead to an amount 

of operations which is not suitable for today‟s 

fastest computers, two main alternate strategies have 

been proposed in the literature: the first one relies 

on the utilization of Single Instruction Multiple Data 

(SIMD) operations which provide the capability of 

processing vectors of data. Since they operate on 

multiple integer values at the same time, SIMD 

could result in significant gains in execution speed 

for repetitive tasks such as base-band processing. 

However, SIMD operations are tied to specific 

processors and therefore severely limit the 

portability of the code. The second alternative 

consists in the bitwise parallel operations 

(sometimes also referred as vector processing in the 

literature), which exploit the native bitwise 

representation of the signal. The data bits are stored 

in separate vectors, one sign and one or several 

magnitude vectors, on which bitwise parallel 

operations can be performed. The objective is to 

take advantage of the universality, high parallelism, 

and speed of the bitwise operations for which a 

single integer operation is translated into a few 

simple parallel logical relations. While SIMD 

operations use advanced and specific optimization 

schemes, the latter methodology exploits universal 

CPU instructions set. 

 

Single Instruction Multiple Data 

  In 1995, Intel introduced the first instance of 

Single Instruction Multiple Data (SIMD) under the 

name of Multi Media Extension (MMX). The SIMD 

are mathematical instructions that operate on vectors 

of data and perform integer arithmetic on eight 8-bit, 

four 16-bit, or two 32-bit integers packed into a 

MMX register (see Figure 4). On average, the SIMD 

operations take more clock cycles to execute than a 

traditional x86 operation. Anyhow, since they 

operate on multiple integers at the same time, MMX 

code can result in significant gains in execution 

speed for appropriately structured algorithms. Later 

SIMD extensions, SSE, SSE2, and SSE3, added 

eight 128-bit registers to the x86 instruction set. 

Additionally, SSE operations include SIMD floating 

point operations, and expand the type of integer 

operations available to the programmer. 

 

 
Figure 4 : Single Instruction Single Data vs.  

Single Instruction Multiple Data  

 

SIMD operations are well fitted to parallelize the 

operations of the baseband processing (BBP) stage. 

In particular, they can be used to allow the PRN 

code mixing and the accumulation to be performed 

concurrently for all the code replicas. With the help 

of further optimizations such as instruction 

pipelining, more than 600% performance 

improvement with the SIMD operations compared 

to the standard integer operations can be observed 

[5]. For this reason, most of the software receivers 

with real-time processing capabilities use SIMD 

operations [4], [5], [6], [7]. 

 

Bitwise Operations (Vector Processing) 

  Bitwise operation (or vector processing) was first 

introduced in [8]. The method exploits the bit 

representation of the incoming signal where the data 

bits are stored in separate vectors on which bitwise 

parallel operations can be performed. Figure 5 

shows a typical data storage scheme for vector 

processing. 
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1 Sign word0 0 1 0 1 0 1

1 Magn 1 word1 1 0 1 0 1 1

1 Magn 2 word0 1 1 0 1 1 1

Time

1 Code1 1 1 1 1 0 0

Input sample #5

Value 2d

 
Figure 5 : Bitwise representation 

 

  The sign information is stored in the sign word 

while the remaining bit(s) representing the 

magnitude is (are) stored in the magn word(s). The 

objective is to take advantage of the high parallelism 

and speed of the bitwise operations for which a 

single integer addition or multiplication is translated 

into simple parallel logical operations. The carrier 

mixing stage is reduced to one or a few simple 

logical operations which can be performed 

concurrently on several bits. In the same way, the 

PRN code removal only affects the sign word.  

  In [9] the complete code and carrier removal 

process requires two operations for each code 

replica (Early, Prompt, and Late). The complexity 

can be even further reduced by more than 30% by 

considering one single combination of early and late 

code replicas (typically early-minus-late). This way, 

the author claims an improvement of a factor 2 for 

the bitwise method compared to the standard integer 

operations. 

  The inherent drawback of this approach is the lack 

of flexibility: the complexity of the process becomes 

bit-depth dependent and the signal quantification 

cannot be easily changed (while performing BBP 

with integers allows the signal structure to change 

significantly without code modification).  

  To overcome this limitation, a combination of 

bitwise processing and distributed arithmetic can be 

used. This method was described in details in [10]. 

The power consuming operations are performed 

with bitwise operations and to be able to keep the 

flexibility of the calculations standard integer 

operations are used after the code and carrier 

removal. The passage between the two methods is 

done with the distributed arithmetic. 

 

Code and carrier generation 

  Another important aspect in a software receiver is 

the code and carrier generation. As these tasks 

represent a huge processing load, new solutions 

have to be developed in this domain. 

 

Code generation 

  The pseudorandom noise (PRN) codes transmitted 

by the satellites are deterministic sequences with 

noise-like properties that are typically generated 

with tapped linear feedback shift registers. But in 

order to save processing power, it is preferable for 

software applications to compute off-line the 32 

codes and store them in memory. 

  A method that stores the different PRN codes in 

their oversampled representation (the code are pre-

generated) was proposed in [8]. As the incoming 

signal code phase is random, the beginning of the 

first code chip is in general not aligned with the 

beginning of a word and may occur anywhere 

within it. To overcome this issue, either all the 

possible phases can be stored in memory or the code 

can be shifted appropriately during the tracking. 

While the first approach increases the memory 

requirements, the second requires further data 

processing in function of the phase mismatch. 

Regarding the Doppler compensation, all the PRN 

codes in the table are assumed to have zero Doppler 

shifts. The code phase errors due to this hypothesis 

are eliminated by choosing a replica code from the 

table whose midpoint occurs at the desired midpoint 

time. The only other effect of the zero Doppler shift 

assumption is a small correlation power loss which 

is not more than 0.014 dB if the magnitude of the 

true Doppler shift is less than 10 kHz [9]. This 

approach is very popular in the domain of software 

receiver and can be found in several solutions [4], 

[11], [12], [13], [14]. 

 

Carrier generation 

  The generation of a local carrier frequency is 

necessary to perform the Doppler removal. The 

standard trigonometric functions or the Taylor 

decompositions for the sinus and cosines 

computation are too heavy for a software 

implementation and are seldom considered.  

  However, several other techniques exist to reduce 

the computational load for the carrier generation: the 

values for the carrier can be pre-generated and then 

stored in lookup tables. This method was first 

introduced into a software receiver by [8]. As it 

would require several gigabytes of memory to store 

all the possible frequencies, the values are recorded 

on a coarse frequency grid with zero phases and at 

the RF front-end (over-)sampling frequency. The 

carrier will thus be available in an (over-)sampled 

version. The limited number of available carrier 

frequencies introduces a supplementary mismatch in 

the Doppler removal process. This error can be 

compensated with a simple phase rotation of the 

accumulation results. This method is very popular in 

the domain of software receivers and many 
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solutions take advantage of it to avoid the power 

hungry real-time carrier generation [6], [7], [12]. 

  Based on the same principle as above, [15] 

proposed a method that pre-computes a set of carrier 

frequency candidates to be stored in memory. The 

grid spacing is selected such as to minimize the loss 

due to Doppler frequency offset. Furthermore, in 

order to provide phase alignement capabilities of the 

carriers, a set of initial phases is also provided for 

each possible Doppler frequency, as illustrated in 

Figure 6. 

 

 
Figure 6 : Set of carrier frequency candidates 

 

Contrarily to the approach in [8] and thanks to the 

phase alignement capabilities, the number of 

sampling points must not obligatorily correspond to 

an entire acquisition period. Therefore, the length of 

the frequency candidate vectors can be chosen with 

respect to the available memory space and becomes 

quasi independent of the sampling frequency. 

  Another approach consists in removing 

concurrently the Doppler from all received satellite 

signals [16]. The algorithm is implemented as a 

look-up table containing one single frequency and 

the carrier removal is performed for all channels 

with the same frequency, but the frequency error 

results normally in an unacceptable loss. To 

overcome this problem, the integration interval is 

split into sub-intervals for which a partial 

accumulation is computed. The result is rotated 

proportionally to the frequency mismatch in the 

same way as in the method described above. The 

algorithm can be applied recursively and with an 

appropriate selection of the sub-intervals, the total 

attenuation factor can be limited to a reasonable 

value. The author claims an improvement of up to 

30% compared to the standard look-up table method 

with respect to the total complexity for both Doppler 

removal and correlation stages. Regarding the 

computational complexity, the Doppler removal 

stage remains unchanged with the difference that it 

is only performed once for all satellites. But the 

rotation needs to be done for each of the sub-

intervals. However, this algorithm remains difficult 

to implement (number of samples varies in one or 

more full C/A code chip and the alignement of the 

data is different than the sub-interval boundaries). 

 

Acquisition 

  During acquisition, the BBP unit shifts locally the 

code replica until it correlates with the incoming 

code. The receiver must also detect the satellites or 

space vehicles (SVs) present in the incoming signal 

by searching the possible Doppler frequencies. The 

acquisition thus consists in a two dimensional 

search process. Different acquisition techniques can 

be envisaged.  

 

Serial Search 

  The serial search represents the classical approach 

and consists in sweeping the two dimensional code 

phase/Doppler spaces in a sequential manner. Every 

incoming sample is multiplied with the local carrier 

replica and a correlation peak is searched 

sequentially, as illustrated in Figure 7. 
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Figure 7 : Serial search architecture 

 

Parallel code search 

 The parallel code search tests all the code phases in 

parallel for a given Doppler frequency. The input 

signal is transformed into the frequency domain via 

a Discrete Fourier Transform (DFT). The DFT of 

the locally generated PRN code is also computed. 

After multiplication of these two sets of coefficients, 

the inverse DFT is performed to determine if a 

correlation peak is present. If not, the operation is 

repeated for the next Doppler frequency. The 

process is illustrated in Figure 8. As compared to the 

previous method, the parallel code phase search 

method reduces the search space to the different 

carrier frequencies. As the Fourier Transform of the 

replica PRN code can be pre-computed and stored, 

each of the bin searching consists in performing one 

Fourier Transform and one Inverse Fourier 

Transform.  
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Figure 8 : Parallel code search architecture 

 

Parallel frequency search 

  The parallel frequency search looks for the peak in 

the frequency domain by testing all Doppler bins at 

once and all code phases individually. The baseband 

signal is multiplied with the locally generated PRN 

code in order to form P consecutive partial 

correlations with a pre-detection time TC which is P 

times smaller than the integration time. The P 

results are regrouped into a vector on which a N-

point FFT is computed. If no correlation peak is 

detected, the operation is repeated with the next 

code phase, as shown in Figure 9. 
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Figure 9 : Parallel frequency search architecture 

 

AVAILABLE SOFTWARE RECEIVERS 

 

  Today, software receivers can be found at either 

university or commercial level. The development 

not only includes programming solution but also the 

realization of dedicated RF front-ends. As these RF 

front-ends are able to capture more and more 

frequencies with increasing bit-rates, the PC-based 

software receivers require a comparably complex 

interface to transfer the digitized IF samples into the 

computer‟s memory. 

  Two classes of PC-based GNSS SR front-end 

solutions can be found. The first one uses 

commercially available ADCs that are either 

connected directly to the PC (for example, via the 

PCI bus) or that are working as stand-alone devices. 

The ADC directly digitizes the received IF signal, 

which is taken from a pure analog front-end. This 

solution is often found at the university and research 

institute levels where a high amount of flexibility is 

required. As an example the Department of 

Geomatics Engineering of the University of Calgary 

[17], the Cornell University [18], and the University 

FAF Munich‟s Institute of Geodesy and Navigation 

[19] shall be mentioned here. 

  The second solution is based on front-ends that 

integrate an ADC plus an USB 2.0 interface. 

Currently, a quite impressive number of commercial 

and R&D front-ends are available for the GNSS 

market. NordNav (bought by CSR) [20] and Accord 

[21] were among the first to provide USB-based 

solutions. Another interesting development comes 

from the University of Colorado, which in an 

OpenGPS forum published all details on the RF and 

USB section. More and more companies announced 

and still announce front-ends that are not only 

capable of capturing a single frequency, but several 

different bands. To be able to deal with this 

increasing bandwidth, the USB port is very well 

suited for SR development and its maximum 

theoretical transfer rate of 480 MBit/s allows 

realizing GPS/Galileo multi-frequency high 

bandwidth frontends. The USB approach is one of 

the most important cornerstones of SR development. 

 

Software receivers for the embedded market 

As mentioned in the introduction, the embedded 

market will become important during the next years. 

A growing number of receivers are developed for 

this market, supporting different embedded 

platforms (e.g. Intel XScale, ARM based, and DSP-

based). Several companies offer already commercial 

software receivers for the embedded market, among 

others NordNav (bought by CSR) [20], SiRF [22], 

ALK Technologies Inc. [23], and CellGuide [24]. 

 

Commercial PC-based receivers 

The first commercial GPS/Galileo receiver for a PC 

platform was presented in 2001 by NordNav 

(bought by CSR) [20]. This SR can be compared to 

a normal GPS receiver, although the CPU load of 

this solution is still quite impressive. 

Several other solutions are presented lately. One of 

the first (car) navigation solution was presented by 

ALK Technologies [23] under the name CoPilot. 

The CPU load was drastically reduced and this 

solution works on a standard commercial personal 

computer. The client does not really see a difference 

compared to a solution that is based on a hardware 

receiver. 

 

Software receivers for research activities 

The use in teaching and for training is one of the 

most valuable and obvious application for software 

GNSS receivers. Receivers, for which the source 

code is available, allow the observation and 
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inspection of almost every signal data by the 

researcher. 

Several textbooks have been published related to 

software GNSS receivers. The pioneer in this area is 

James Bao-yen Tsui who wrote the first book on 

software receivers in 2000 with the title 

Fundamentals of Global Positioning System 

Receivers: A Software Approach (Wiley-

Interscience, updated in 2004). Kai Borre et al. 

published in 2006 a book that comes with a 

complete (post-processing) software receiver written 

in Matlab: A Software-Defined GPS and Galileo 

Receiver: A Single-Frequency Approach 

(Birkhäuser Boston, 1
st
 edition). 

  The European Union is financing the development 

of receivers for the upcoming Galileo system. One 

of the projects was the Galileo Receiver Analysis 

and Design Application (GRANADA) simulation 

tool. Running under Matlab, GRANADA is realized 

as a modular and configurable tool with a dual role: 

test-bench for integration and evaluation of receiver 

technologies, and SR as asset for GNSS application 

developers. 

  Other companies provide toolboxes (in Matlab or 

C) that allow testing of new algorithms in a working 

environment and inspecting almost all data signals. 

The solutions from Data Fusion Corporation (DFC) 

[25] and NAVSYS [26] shall be mentioned here. 

 

OUTLOOK 

 

Software receivers have found their place in the 

field of algorithm prototyping and testing for a long 

time. Nowadays they also play a key role for certain 

special applications. What remains unclear today is 

if they will enter and change drastically the 

embedded market or succeed as generic high-end 

receivers. 

  A software GNSS receiver offers different 

advantages including design flexibility, faster 

adaptability, faster time-to-market, higher 

portability and easy optimization at any algorithm 

stage. However, a major drawback persists in the 

slow throughput and the high CPU load. 

  Many different companies and universities have 

projects running that aim at optimizing and 

developing new algorithms and methods for a 

software implementation. The development not only 

includes the software level, but also enlarges in the 

direction of using additional hardware that is 

already available on a standard PC (for example, 

using the high performance graphic processing unit 

(GPU) for calculating the local carrier [27]). 

  On the opposite end of the spectrum from the mass 

market, the following factors seem to ensure that, 

sooner or later, high-end software receivers will be 

available: 

- High bandwidth signals (GPS and Galileo) 

can already be transferred into the PC in 

real-time and processed. 

- The processing power is increasing allowing 

real-time processing with a limited amount 

of multi-correlators. The introduction of 

new multi core processors will be 

advantageously for software receivers. 

- Post-processing is one of the most important 

benefits of a software receiver as it allows a 

re-analysis of the signal several times with 

all possible processing options. The 

increasing hard disk capacity allows the 

storage of several long data sequences. 

- Some signal processing algorithms are 

much easier to implement in software than 

in hardware (such as frequency domain 

tracking or maximum likelihood tracking). 

Those methods require complex operations 

at the signal level. 
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