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Abstract In this study, we describe the seasonal variation
in 15N abundance in the litter of two Sphagnum species and
four vascular plant species during 3 years of field
decomposition in an Italian Alpine bog. Litter bags were
periodically retrieved at the end of summer and winter
periods, and the δ15N in residual litter was related to mass
loss, litter chemistry, and climatic conditions. In Sphagnum
litter, higher rates of decomposition during summer months
were associated with an increase of δ15N probably due to
the incorporation of microbial organic compounds rich in
15N. The litter of Eriophorum vaginatum and Carex
rostrata was characterized by a decrease of δ15N, so that
the final signature was significantly lower than in initial
litter. On the other hand, the residual litter of Potentilla
erecta and Calluna vulgaris was characterized by a final
δ15N higher than in initial litter. Our data reported a

seasonality of 15N abundance in the residual litter of
Sphagnum species, but not in that of vascular plant species,
thus highlighting the role of differences in litter chemistry.

Keywords δ15N . Decomposition . Italian Alps . Litter C/N
quotient . Peatland . Sphagnum . Vascular plants

Introduction

On a global scale, the natural abundance of nitrogen (N)
stable isotope ratio (δ15N) in leaves and bulk soil is known
to increase with increasing mean annual temperature and to
decrease with increasing mean annual precipitation
(Amundson et al. 2003; Craine et al. 2009). In addition,
Craine et al. (2009) have shown that mycorrhizal plant
species have a lower foliar 15N abundance than no-
mycorrhizal species and the largest depletion was observed
for ericoid mycorrhizal symbiosis. Consequently, on a local
scale, the dependence of foliar δ15N on mycorrhizal
association can significantly affect the 15N abundance of
initial plant litter accumulating on soil.

Many processes can alter the 15N/14N ratio of the source
and the sink pool, but usually 15N abundance increases with
soil depth (Hogberg 1997). Among the N processes
affecting δ15N there are (1) ammonia volatilization, which
discriminates against 15N and enriches residual soil N in
15N; (2) nitrification from NH4

+ to NO3
− produces NO3

−

with a lower δ15N and thus enriches the residual NH4
+ in

15N; (3) denitrification, which releases N2 depleted in 15N,
enriches the remaining NO3

− in 15N; (4) mycorrhizal fungi
are enriched in 15N so that the host plants can receive 15N-
depleted N compounds; (5) the mixing of soil layers by
biotic and abiotic processes can affect the 15N/14N ratio
(Hobbie and Ouimette 2009).
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In peatlands, a general increase of 15N abundance with
peat depth has also been reported (Kohzu et al. 2003; Asada
et al. 2005a; Cortizas et al. 2007) and attributed to
microbial alteration of organic matter more than to
accumulation of recalcitrant compounds (Kramer et al.
2003). However, a better understanding of the changes in
15N abundance in peat requires to know the changes in
isotopic composition of fresh plant litter during early stages
of decomposition, i.e., before plant remnants turn into peat
because litter decomposition is a crucial process in
controlling the rate of peat accumulation in peatlands
(Bragazza et al. 2009). For example, Asada et al. (2005b)
reported an increase of 15N abundance in the litter of the
peat moss Sphagnum fuscum after 2 years of field
decomposition as consequence of the incorporation of
15N-enriched N from the surrounding. Such a result was
in accordance with Connin et al. (2001) reporting an
increase of δ15N in the litter of desert plant species over a
5-year period, but in contrast with Melillo et al. (1989)
showing a decrease of δ15N in pine needles over a 6-year
period. Additional studies are then needed to better
understand the extent of isotopic changes during short-
term litter decomposition in peatlands so as to allow the use
of stable isotope ratios as a tracer of organic matter
alteration and the origin of decomposed material.

This paper is part of a broad study investigating the
stable isotope composition (13C and 15N) in plant litter
during field decomposition in an Alpine bog (Bragazza and
Iacumin 2009). Here, we will describe the seasonal
variation of 15N abundance in the litter of two Sphagnum
species and four vascular plant species during 3 years of
decomposition. We used litter bags and periodically
monitored the 15N abundance of residual litter so as to
relate the isotopic signature to mass loss, litter chemistry,
and climatic conditions. We have hypothesized that
seasonal microbial activity is primarily responsible for the
changes of δ15N in the residual plant litter.

Materials and methods

Study site

The study site (Marcesina peatland) is located on the Italian
pre-Alps (45°57′ N; 11°37′ E), province of Vicenza, at an
altitude of 1,300 ma.s.l. The Marcesina peatland has an
area of about 2 ha and is prevalently fed by rain water.

Climatic data were collected from a meteorological
station (Rifugio Marcesina) about 1 km away from the
study bog. During the study period 2004–2007, the mean
temperature of summer months, i.e., from the beginning of
May until the end of September, was about 11.0°C, whereas
during winter months, i.e., from the beginning of October

until the end of April, the mean temperature was about −2.3°C.
Mean total precipitation during summer months was 820 mm
and during winter months 740 mm.

Litter bag preparation and sampling interval

The same dominant plant species previously selected for
13C monitoring were considered in the present study, that is,
Eriophorum vaginatum L., Carex rostrata Stokes, Calluna
vulgaris (L.) Hull, Potentilla erecta (L.) Raüschel, Sphag-
num fuscum (Schimp.) Klinggr., and Sphagnum magellani-
cum Brid. (Bragazza and Iacumin 2009).

Litter bags were prepared according to Bragazza and
Iacumin (2009). Very briefly, in mid-September 2004,
freshly senescent and undecomposed leaves were collected
from vascular plant species, whereas the stem segment
between 2 and 4 cm below the growing tip was used as
representative of Sphagnum litter. Litter bags were made of
polyethylene fabric with 0.5-mm mesh size and contained
about 1 g of air-dry Sphagnum litter or about 1.5 g of air-
dry vascular plant litter. For each plant species, three
subsamples of litter were oven dried for 48 h at 40°C to
calculate oven-dry weight of each litter bag before burial.

At the beginning of October 2004, 48 litter bags for each
plant species were buried into the peat soil at about 5-cm
depth, in correspondence of the respective species habitats.
Eight litter bags for each plant species were periodically
sampled at the beginning of May and at the beginning of
October. For simplicity, hereafter, we will call “winter
period” the period from the beginning of October until the
end of April and “summer period” the period from the
beginning of May until the end of September. After
sampling, each litter bag was cleaned from debris, dried at
40°C for 48 h, and then weighted.

Mass loss, isotopic, and chemical analyses

The percentage mass loss at time t and the seasonal rate of
mass loss, i.e., the percentage mass loss during each single
winter and summer period, were calculated according to
Bragazza and Iacumin (2009). The rate of mass loss for
each plant species has been reported by Bragazza and
Iacumin (2009).

Total N and carbon (C) concentration and 15N abun-
dance were quantified in the residual litter with an
elemental analyser (EA 1110, Carlo Erba, Milan, Italy)
coupled online with an isotope ratio mass spectrometer
(delta Plus XP, ThermoFinnigan, Bremen, Germany). In
particular, N isotopic abundance is expressed as δ15N and
was calculated as follows:

δ(‰) = [(Rsample / Rstandard) – 1)] × 1000
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where R is the 15N/14N ratio in the sample and the standard,
being the latter atmospheric N2. The standard deviation of
replicates was better than 0.2‰.

All chemical analyses were performed after grinding and
sieving (<0.1 mm) the litter samples. All concentrations
were converted to standard oven-dry weight (40°C for 48h).

The seasonal change of mean δ15N was calculated as
difference between the mean value at time t and that at time
t−1, i.e., δ15Nt−δ15Nt − 1. The C/N quotient (weight/
weight) was calculated for each litter bag basing on C and
N concentration.

Statistical analysis

The effect of litter type (i.e., plant species) and time of
burial on seasonal changes in δ15N were tested by the two-
way ANOVA, whereas the one-way ANOVAwas applied to
assess significant differences in litter chemistry within and
among plant species. All statistical analyses were per-
formed using Statistica for Windows v. 6.0.

Results and discussion

The δ15N in initial litter differed among the selected plant
species in the following sequence: Carex rostrata>E.
vaginatum> S. fuscum= S. magellanicum>Calluna
vulgaris>P. erecta (Fig. 1). These differences can be
explained taking into account the presence and the type of
mycorrhizal symbiosis. Indeed, the foliar δ15N in ericoid
mycorrhizal and ectomycorrhizal plants is typically lower
than in arbuscular mycorrhizal and nonmycorrhizal plants
(Michelsen et al. 1998; Craine et al. 2009) as a consequence
of a greater discrimination against 15N by ericoid mycor-
rhizal and ectomycorrhizal fungi (Emmerton et al. 2001).
Accordingly, the low δ15N in Calluna vulgaris litter reflects
the presence of ericoid mycorrhizal infection, which is
known to express the greatest 15N discrimination, so that
the fungal mycelium is enriched and the host plant is
depleted in 15N (Michelsen et al. 1998; Nordbakken et al.
2003; Aerts et al. 2009). On the other hand, the higher δ15N
in Carex rostrata and E. vaginatum litter is in accordance
with the absence of mycorrhizal infection in these two
Cyperaceae (Miller 1982; Thormann et al. 1999; Asada et
al. 2005a). Rather surprisingly, P. erecta litter had the
lowest 15N abundance, although this species is character-
ized by arbuscular mycorrhizae (Harley and Harley 1987;
Titus and Leps 2000). Anyway, Craine et al. (2009)
reported a great variation of foliar δ15N in arbuscular
mycorrhizal plants suggesting the transfer of 15N-depleted
N from the mycorrhizal fungi to the host plant in a similar
way to ectomycorrhizal plants (Leigh et al. 2009).
However, the extent to which the arbuscular mycorrhizal
symbiosis can affect the foliar δ15N of host plant is still
rather unclear (Hobbie and Hobbie 2008).

The δ15N of initial Sphagnum litter did not differ
significantly between S. fuscum and S. magellanicum and
was comparable to previous values reported for ombrotro-
phic Sphagnum species of the Italian Alps (Bragazza et al.
2005). Because peat mosses typically rely on atmospheric
deposition as primary source of nutrients (Nordbakken et al.
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Fig. 1 Mean seasonal value (±SD) of δ15N in Sphagnum litter and
vascular plant litter during 3 years of field decomposition. The
isotopic signature at time zero corresponds to the δ15N of the initial
litter. W is the winter period (from 1st October until the end of April),
S is the summer period (from 1st May until the end of September)

Table 1 The C/N quotient in initial litter and during the decomposition period

Mean initial C/N quotient Average C/N quotient during 3years Correlation value C/N vs. δ15N

S. fuscum 74.5 (2.9) 71.8 (6.7) n.s.

S. magellanicum 68.0 (3.0) 61.3 (5.0) n.s.

Carex rostrata 42.7 (4.7) 29.6 (4.5) 0.87 (P<0.01)

E. vaginatum 38.5 (1.5) 21.8 (3.7) 0.88 (P<0.01)

Calluna vulgaris 49.2 (2.3) 30.8 (3.7) n.s.

P. erecta 48.1 (1.0) 32.8 (3.1) n.s.

The correlation value between mean C/N quotient and corresponding mean δ15 N during 3 years of field decomposition is also reported. Values are the
average (±SD) of five replicates for initial litter and six seasonal mean values for the average C/N quotient. Correlation is based on Pearson’s R value

n.s. not significant
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2003), the 15N abundance in initial Sphagnum litter seems
then to reflect the N isotopic signature of local atmospheric
deposition (Bragazza et al. 2005; Zechmeister et al. 2008).

According to the two-way ANOVA, the δ15N of residual
litter differed significantly among plant species and
sampling periods (P<0.01) with a significant interaction
between plant species and time of sampling (P<0.01). In
the case of Sphagnum litter, mean δ15N in initial and final
litter did not differ significantly, but we observed that the
average value of δ15N in S. fuscum and in S. magellanicum
litter at the end of summer periods (−5.90±0.66 and −6.30±
0.44, respectively) was significantly higher (P<0.01; n=24
per species) than at the end of winter periods (−6.69±0.42
and −6.75±0.35, respectively), thus indicating an enrich-
ment in 15N of residual litter by the increase of air
temperature (Fig. 1). In addition, the mean litter C/N
quotient was negatively correlated with the mean percentage
of mass loss (Pearson’s R<−0.53, P<0.05; n=6 per species).
We hypothesize that the relative increase of δ15N during
summer months could reflect a higher microbial growth and
activity (Gioacchini et al. 2006), in particular the incorpora-
tion of microbial organic compounds by Sphagnum
residual litter (Connin et al. 2001; Kramer et al. 2003;
Asada et al. 2005a; Huygens et al. 2008). This hypothesis
is supported by the fact that microbial biomass is generally
enriched in 15N compared to the bulk soil (Dijkstra et al.
2006; Coyle et al. 2009). A similar mechanism has been
proposed for explaining the summer enrichment of 13C
abundance in the same litter bags (Bragazza and Iacumin
2009). Indeed, in Sphagnum litter, the seasonal change of
mean δ15N was positively correlated with the corresponding
seasonal change of mean δ13C (Pearson’s R=0.63, P=0.051;
n=10).

In vascular plant litter, the average value of δ15N at the
end of summer periods and that at the end of winter periods
did not differ significantly, thus indicating the absence of
seasonal differences in the 15N abundance. The litter of
Carex rostrata and E. vaginatum was characterized by a
decrease of δ15N so that the final 15N abundance was
significantly lower (P<0.01) than both values of the initial
litter (Fig. 1). In addition, the mean litter C/N quotient was
positively correlated with the corresponding mean δ15N
(Table 1) indicating that with increasing N over C retention,
the residual litter was more and more depleted in 15N. We
hypothesize that the decrease of 15N abundance could
reflect the taxonomical diversity of decomposing microbes.
Indeed, the dominance of fungi in decomposing litter is
supposed to enrich the litter with microbial products having
a higher δ15N, being fungal mycelium typically enriched in
15N (Hobbie and Colpaert 2003; Lindahl et al. 2007; Mayor
et al. 2009). Instead, a dominance of bacteria can decrease
the δ15N of residual litter because bacteria have a greater
potential for immobilizing nitrate depleted in 15N (Hogberg

1997; Lehmann et al. 2002; Myrold and Posavatz 2007).
Unfortunately, we did not measure the bacteria-to-fungi
biomass ratio in the residual litter, but the proposed
mechanism seems to be supported by the fact that, during
the study period, the lower average value of the C/N ratio
for the litter of Carex rostrata and E. vaginatum indicated
nutrient conditions more suitable for bacterial than for
fungal colonization (Hodge et al. 2000; Wallander et al.
2003; Hogberg et al. 2007), in particular if compared with
the significantly higher average C/N quotient (P < 0.01) of
S. fuscum and S. magellanicum litter (Table 1).

The δ15N of P. erecta litter showed a gradual increase
during the first year of burial with a corresponding mean
mass loss of 84%±4.2%, then the δ15N decreased to reach a
mean final value that was significantly higher (P<0.05) than
that of the initial litter (Fig. 1). In addition, there was a
significant correlation between the mean percentage of mass
loss and the corresponding mean δ15N (Pearson’s R=0.83,
P<0.05; n=7, including initial value), thus supporting the
hypothesis that the increase in the 15N of P. erecta litter
could be due to microbial activity (Kramer et al. 2003; Asada
et al. 2005b). A similar mechanism could also be proposed
for Calluna vulgaris litter considering the positive correla-
tion between mean percentage of mass loss and mean δ15N
(Pearson’s R=0.75, P=0.051; n=7 including initial value),
although the final 15N abundance did not differ significantly
from initial value (Fig. 1). The smaller N isotopic changes in
Calluna vulgaris litter compared to P. erecta litter were in
accordance with the significantly different decomposition
rate after 3 years, i.e., 69.8%±8.1% for Calluna vulgaris and
91.8%±1.6% for P. erecta. It is worthy to note that the
average C/N quotient for P. erecta and Calluna vulgaris litter
was significantly higher (P<0.01) than that of Carex rostrata
and E. vaginatum litter (Table 1), thus supporting the
hypothesis that decomposition was primarily driven by fungi
in Calluna vulgaris and P. erecta litter.
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