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Abstract— Multi-robot systems can solve complex tasks that
require the coordination of the team-member positions with re-
spect to each other. While the development of ad-hoc relative po-
sitioning platforms embedding cheap off-the-shelf components
is a practical choice, it leads not only to differences between the
platforms themselves, but also to a high sensitivity to external
factors. In this paper, we present a novel lightweight online
calibration method composed of two phases, capable of running
on miniature robots with limited computational capabilities.
Furthermore, by exploiting a Gaussian process regression in
its second phase, the proposed calibration approach is able
to capture deviations from an assumed underlying physical
model. We compare the performance of our approach with
the theoretical Cramér-Rao lower bound and test its efficiency
on real robots equipped with range and bearing modules.

I. INTRODUCTION

Recent years have seen the development of infrared range

and bearing sensors for commercially available robots [12],

open robot architectures [4] or customized robots [13]. The

main usage of these hardware modules is to acquire the rela-

tive position of nearby robots (teammates) to accomplish col-

laborative tasks. Unfortunately, these modules have several

disadvantages: (i) infrared receivers have variable sensitivity,

(ii) infrared emitters have variable emitting powers, and (iii)

environmental conditions (i.e. background noise) have a high

impact on their performance. Moreover, these artifacts, even

if mitigated by a careful and manual component selection,

are exacerbated when using cheap off-the-shelf components,

and thus one can often not fully rely on a priori physical

models to calibrate such sensors. Nevertheless, appropriate

software can be developed to remedy these issues. In this

context, we propose a two-phase calibration method which

explicitly addresses this problematic in real-time for a multi-

robot system. The first phase of our method consists in

applying a standard online stochastic-gradient method, which

results in a fairly good estimation of the parameters of

the underlying physical model. The second phase of our

method consists in refining this first estimate by adapting

the underlying physical model to the present observations.

Thus the combination of these two phases not only resolves

issues (i) and (iii), but also implicitly adapts the a priori

underlying physical model. Finally, by utilizing the results
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of the first calibration phase and reducing the search space

of the second, computationally more complex phase, the

methodology is purposefully designed to run on resource-

constrained robots.

A. Related Work

The importance of sensor calibration is widely acknowl-

edged in the robotics community. Many works can be found

on camera and laser range scanners calibration [5, 9, 16].

However, to the best of our knowledge, calibration of

infrared-based range and bearing modules has not been

considered so far. Yet, most recent work using such platforms

assume that the relation between the measured signal strength

and the distance to the emitters is known [4, 12, 13].

This relation is often established manually by placing the

platforms at specific positions and measuring the strength of

the modulated infrared light received. Since this procedure is

cumbersome and impossible for certain applications, we in-

spire ourselves from the same motivations that have fostered

the literature covering online self-calibration of odometry

parameters [8, 14]. Indeed, self-calibration from on-board lo-

calization capabilities or even auto-calibration given external

ground-truth measurements offer an interesting alternative to

manual calibration. Additionally, since the infrared lighting

may constantly fluctuate, the ability to calibrate online and

in real-time rather than a single time offline is a must.

B. Problem Statement

Although the calibration strategy presented in this paper is

generalizable to a wide range of online calibration problems,

we have chosen the case-study of infrared-based range and

bearing sensors. Let us assume that we have a team of robots

each equipped with a range and bearing module. An example

of such a platform is shown on Figure 1(a). The shown

module has sixteen evenly-spaced infrared Light Emitting

Diodes (LEDs). As there are enough infrared LEDs to emit

omni-directionally with respect to the robot carrying this

platform (and for the sake of simplicity), we will consider the

robot itself as an emitter. The shown platform also contains

eight evenly-spaced infrared receivers capable of measuring

the Received Signal Strength Indicator (RSSI) of the incom-

ing infrared light. The measured raw dimensionless RSSI

is proportional to the actual magnitude of the modulated

light emitted. This platform is also able to broadcast low

bit rate communication packets, thus enabling association of

RSSI values with a specific emitter. Furthermore, we assume

that, at arbitrary moments during their mission, the robots

are able to determine their actual (even if approximate)
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Fig. 1: (a) A Khepera III robot with a range and bearing board attached. This
range and bearing module features sixteen infrared light emitting diodes and
eight infrared light sensors. (b) At each time step k, a robot receives infrared
light coming from an emitter located at a range rk and a bearing θk from it.
In a training phase, the receiving robot obtains an approximated distances
xk

i and angle of incidence ξk
i between the emitter and each receiver. In

an evaluation phase, it estimates the range rk and bearing θk using the
received signal strength indicator from its infrared light sensors.

position in a common frame, either through an external

system (e.g., overhead camera) or using their own sensing

capabilities (e.g., odometry, ultrasound).

Formally, each robot has M receivers, and at each time

step k, the i-th receiver can analyze the incoming infrared

light and measure a corresponding RSSI yk
i . The measured

RSSIs (yk
1 , . . . , yk

M ) are then associated to a specific emitter

(at each time step, one and only one emitter is associated to

the RSSIs). When localization information is available, actual

distances xk
i and angles of incidence ξk

i between the detected

emitter and each receiver i can be determined. Note that xk
i

and ξk
i do not need to be the true distances dk

i and angles ϑk
i .

When localization information is not available, robots need to

correctly estimate the range rk and bearing θk to neighboring

teammates given the currently measured RSSIs yk
1 , . . . , yk

M .

In other words, the training data (yk
1 , . . . , yk

M , xk
1 , . . . , xk

M )
may only be available at some unknown point in time,

whereas the evaluation of dk
i may be required at every point

in time. Figure 1(b) shows a schematic illustration of the

system.

This paper is organized as follows. In Section II, we

introduce the underlying physical model relating the distance

and the RSSI measurement and elaborate the individual

calibration methods constituting our approach. We conclude

the section by combining the introduced methods in a two-

phase range calibration procedure. Section III extends the

latter for range and bearing. Finally, our approach is validated

on real robots in real-time, and results are shown in a

comprehensive comparison with standard offline calibration

methods.

II. RANGE ESTIMATION

Throughout this section, we will concentrate on the cali-

bration of a single receiver in terms of range estimation (i.e.

all ϑk
i and ξk

i are equal to zero). For brevity, we will omit

the receiver index (e.g. xk
i becomes xk).

A. Preliminaries

1) Underlying Physical Model: Detecting the range be-

tween two robots equipped with range and bearing modules

requires a comparison between the strength of the received

infrared light and the one of the emitted light. It is clear

that an equation relating the emitted signal strength with the

received strength depends on the distance traveled by the

light. Here, inspired by the Beer-Lambert law [6], we assume

an exponential decay such that:

yk = α + β · e−γdk

+ ǫk
y with ǫk

y ∼ N (0, σ2
y) (1)

where yk is the RSSI measured by a specific receiver at the

k-th time step, α is the receiver offset and/or background

noise, β incorporates the receiver sensitivity on one hand and

the emitted strength on the other (which can vary depending

on the hardware), γ is the absorption coefficient which can

vary slightly due to environmental conditions (humidity, etc.)

and dk is the distance between the emitter and receiver.

Finally, ǫk
y is a white noise component sampled from a

normal distribution with standard deviation σy at time k.

Note that the decay of the signal strength with respect to the

distance, given here by the term e−γdk

, may also be given

by a lookup table as in [12].

2) Observation Model: As mentioned in Section I-B, an

actual distance xk between the emitter and the receiver is

arbitrarily available and follows the equation:

xk = dk + ǫk
x with ǫk

x ∼ N (0, σ2
x) (2)

where dk is the true distance and ǫk
x is a white noise

component sampled from a normal distribution with standard

deviation σx at time k. Importantly, xk is an unbiased

estimator for dk (i.e. its expectancy is dk). The use of a

biased estimator may lead to an unsatisfactory calibration

process (explained in Section II-C).

B. Calibration Methods

This section presents the two main components of our

two-phase method by detailing two standard calibration al-

gorithms capable of estimating the parameters of the physical

model in Equation 1. For both calibration methods, we

assume that during a training phase, N data points containing

the approximate range values xk and their corresponding

RSSI values yk are gathered. We will denote by x =
[x1, . . . , xN ]T the vector aggregating all ranges and by y =
[y1, . . . , yN ]T the vector of corresponding RSSI values.

1) Least Squares: Our objective is to adjust the parame-

ters Θm = [α, β, γ]T assuming the model below:
{

x = d + ǫx
y = α + β · f(d) + ǫy

(3)

where d is a vector of unknown values and f(d) is a

vectorial function and is equal to [e−γd1

, . . . , e−γdN

]T. The

values ǫx and ǫy are two vectors of independent zero-

mean random variables with unknown variances σ2
x and σ2

y ,

respectively. Given this model and since we do not have full

knowledge on the conditional probability density function
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Fig. 2: Example of a Gaussian process regression (GPR) on 20 data points.
We observe that the GPR estimates better the true function (α + βe−γd −

Kd) than the ordinary least square (OLS) regression when the model
assumed by both the OLS and the GPR is not the true model (here, only
α + βe−γd). The gray area denotes the ±1.96σ boundary found by the
GPR. We have set α = 200, β = 10000, γ = 1.5 and K = 650.

P(d|x, y) (in particular, we do not know σx and σy), we can

resort to a least-squares estimator. Obenchain [10] showed

that least squares estimation always provides estimates with

a minimum Mean Square Error (MSE) risk (even when

the assumed model is wrong). Hence our goal will be to

minimize the sum of the squared residuals

Θ̂m = argmin
Θm=[α,β,γ]T

(

S =

N
∑

i=1

(α + β · e−γxi

− yi)2

)

such that α, β, γ ≥ 0.

(4)

There is no closed-form solution to the above optimization

problem, but we can use the derivatives of S with respect

to the parameters to perform gradient descent and find an

approximation Θ̂m of the optimal parameters. If the problem

is assumed to be linear (i.e. by fixing γ which varies only

slightly in time), the problem takes the form of an Ordinary

Least Squares (OLS) estimation problem and the closed-form

solution for Θµ = [α, β]T is then

Θ̂µ = (XTX)−1XTy (5)

where X = [1, f(x)] with 1 = [1, 1, . . . , 1]T. Note that

Equation 5 is relatively cheap to compute as the matrix to

be inverted has a size equal to the number of parameters to

estimated.

Unfortunately, the use of least-squares estimation is con-

strained to the model proposed in Equation 3. Firstly, if we

fix γ to avoid a costly and maybe suboptimal numerical

optimization procedure, it might still be that γ is different

from the one provided. Secondly, the sensor response might

be nonlinear, thus invalidating the original model. It is

important to note that Equation 1, although being a fairly

good approximation of reality, does not match it perfectly.

Hence, it is useful to devise a regression procedure that can

approximate reality rather than a theoretical model.

2) Gaussian Processes: Due to the above issues, we

resort to another type of regression, namely Gaussian Process

Regression (GPR). GPR allows the incorporation of noisy

measurements from an unknown process in a probabilisti-

cally sound way, thus also enabling the recovery from wrong

a priori underlying models. We demonstrate these benefits in

Figure 2: we simulated observations employing a purposely

altered physical model and then attempted an OLS and GP

estimation which were based on the original physical model.

We observe that the GPR yields a better estimate of the

altered model than the OLS estimation.

For our specific case-study, a GP that enables us to predict

the range x given an RSSI y is described as a distribution

over functions so that the mean function µ(y) and covariance

function k(y1, y2) of a process are [1]

µ(y) = E[f(y)] (6)

k(y1, y2) = E[(f(y1) − µ(y1))(f(y2) − µ(y2))] (7)

and the Gaussian process is then

f(y) ∼ GP(µ(y), k(y1, y2)). (8)

Given a set of training data points x and y, a GPR can

predict the value x∗ of a new data point y∗:

x∗ = µ(y∗) + K(y∗,y) · K(y,y)−1 · (x − µ(y)) (9)

where K(y1,y2) is the covariance matrix relating the n
points of y1 with the m points of y2:

K(y1,y2) =







k(y1
1 , y

1
2) · · · k(y1

1 , y
m
2 )

...
. . .

...

k(yn
1 , y1

2) · · · k(yn
1 , ym

2 )






. (10)

The GPR also yields the uncertainty about the new point x∗:

σ2
∗

= k(y∗, y∗) − K(y∗,y) · K(y,y)−1 · K(y, y∗). (11)

The mean function µ(y) and covariance function k(y1, y2)
can vary and may depend on additional parameters (called

hyper-parameters of the Gaussian process). For our case-

study we have

µ(y) = −
1

γ
log

(

y − α

β

)

(12)

k(y1, y2) = σ2
f e−

‖y1−y2‖2

2λ2 + σ2
n · δ(y1 − y2) (13)

where σf models the amplitude of the process variance, λ
the length scale of process variation and σn the observation

noise. The value δ(y) is 1 when y = 0 and 0 otherwise.

The mean function reflects the empirical model for light

propagation of Equation 1 and the covariance function is

the standard exponential covariance function. Note that all

parameters Θm = [α, β, γ]T and Θk = [σf , λ, σn]T control

the shape of each function and thus affect the behavior of the

GP. In order to optimize and find the hyper-parameters it is

useful to compute the marginal log-likelihood of the model

with respect to the training data

logP (x|y,Θm,Θk)=−
1

2
(x−µ(y))TK(y,y)−1(x−µ(y))

−
1

2
log |K(y,y)| −

N

2
log 2π. (14)
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Fig. 3: Example of a two-phase calibration procedure. Training and estima-
tion are interleaved depending on whether ground-truth is available.

Finally, one can derive the log-likelihood with respect to the

different hyper-parameters and perform gradient ascent to

maximize it.

In conclusion, the advantage of a GPR is that it can

account for characteristics present in the data that are not

visible in the given explicit prior on the mean function.

Hence, it is able to find the nonlinearities present at the

level of the receiver sensor. On the other hand, finding

optimal values for Θm or Θk is cumbersome as it requires

a numerical optimization procedure that needs to invert

the covariance matrix of size N . Note that in [3], authors

successfully use GPR to estimate the position of a radio

emitter with a Scarab robot. The real-time requirements of

their approach are maintained thanks to a 2.5 GHz processor

running a well-optimized available C++ library capable of

handling a hundreds of training data points. In our case-

study, we use the Khepera III robot which has a 400 MHz

processor and not even enough disk space to hold the C++

standard library.

C. Two-Phase Online Calibration

This section presents the core of this paper by combining

the two previous calibration methods to estimate the param-

eters of the model in Equation 1 and by refining that model

over time.

At each time step k, a receiver gathers a range xk and

an RSSI value yk. Starting with the model described by

Equations 1 and 2, we try to find the optimal values for

Θµ = [α, β]T whilst keeping γ fixed. Typically, γ was found

to be around 1.5 with only very mild variations throughout an

experimental run and across multiple receivers. We transform

Equation 5 of the OLS estimation into a standard online

stochastic-gradient method, the least-mean-squares (LMS)

algorithm [15]. Many variations of the LMS algorithm exist,

but we will only consider its standard variant. At each time

step k, we can make a new estimation of Θµ using the update

Θ̂k
µ = Θ̂k−1

µ +ν · [1, e−γxk

]T · (yk − [1, e−γxk

] · Θ̂k−1
µ ) (15)

where ν is a fixed positive step-size (usually small) and Θ̂0
µ

is an initial guess for α and β. Note that in this case the LMS

algorithm iteration requires 5 multiplications and 5 additions,

thus being computationally lightweight. The negative aspect

of this approach is its lack to adapt quickly to changes and

the fact that it is limited to the given model (exponential
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Fig. 4: Simulated performance of the offline and online calibration de-
pending on the number of training data points. We have set α = 1000,
β = 10000, γ = 1.5, σx = 0.05m, σy = 200, dmin = 0m and
dmax = 3m.

decay and fixed decay rate). To overcome these limitations

we use the parameters Θ̂k
µ computed by the LMS, and

bootstrap a GPR that uses Equation 12 as its mean function

with a fixed γ. The hyper-parameters σf , σn and λ are also

fixed (as in [3]) and can be easily tuned by hand depending

on the given hardware. We will see in Section IV that the

performance of the two-phase calibration is not sensitive to

moderate changes of either γ or the hyper-parameters.

We use Equation 9 to predict the range d̂k corresponding

to the new observation yk when xk is not available:

d̂k = µ(yk) + K(yk,y) · K(y,y)−1 · (x − µ(y)) (16)

where x and y contain the training data gathered so far. Note

however, that this step requires the inversion of the covari-

ance matrix. To reduce the complexity of this inversion, we

select a handful of training data points, in our case 10, instead

of using all available data points. The selection of these data

points may be crucial for certain applications and a multitude

of selection methods could be envisioned. In this paper, the

different selection schemes will not be presented, and we

resort to the last 10 available training data points. As we will

see later in Section IV, even this simplistic selection performs

reasonably well. An example of the two-phase calibration

procedure is reported in Figure 3. The figure shows how the

two phases of the calibration are interleaved, depending on

whether ground-truth information is available.

D. Comparison with the Cramér-Rao Lower Bound

In order to validate the performance of our algorithm, we

compare it with the Cramér-Rao lower bound (CRLB) [2].

The CRLB states that the variance (or mean square error)

of an estimator is at least as high as the inverse of the

Fisher Information. If an estimator achieves this lower bound,

it is said to be efficient. The complete derivation of the

CRLB is available online at http://disalw3.epfl.ch/

publications/IROS11_cramerrao.pdf.

Figure 4 shows the average Root MSE (RMSE) of an

offline OLS estimation, an offline GPR, an online LMS

algorithm and our online two-phase calibration method with

respect to the number of training data points observed.
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Fig. 5: An infrared receiver sensing a RSSI yk from an omni-directional
infrared emitter. h(dk, ϑk) = yk is the isoline of all position where the
emitter could be such that the receiver senses an RSSI yk .

Observations are generated from our underlying physical

model from Equations 1 and 2. These performances are

compared with the CRLB. We observe that the RMSE of

the offline calibrations is close the Cramér Rao lower bound.

Online calibrations reach the same performance as that of the

offline calibrations but only after more data points have been

collected. In particular, we also see that the additional GPR

phase is very useful as the error is decreased with respect

to an online LMS estimation only, even when the model

provided to the LMS estimation is the true model.

III. RANGE AND BEARING ESTIMATION

In this section, we will extend the general calibration pro-

cess explained in Section II to account for the incident angle,

thus enabling the evaluation of the bearing direction. Indeed,

by thus adapting our framework, the following elaborations

are specific to the range and bearing sensor case-study.

A. Single Receiver Calibration

As already observed in [12], the RSSI yk sensed by a

given receiver at time k is highly dependent on the angle

of incidence ϑk of the emitted light. Hence, just like in

the previous section, we assume the existence of a relation

g(dk) = yk. We extend it by assuming that there exists a

function h(dk, ϑk) = yk that relates the incidence angle

and distance to the receiver with the RSSI measured at the

receiver. We schematize this interaction in Figure 5.

By including the angle of incidence, we would have to

calibrate in an augmented dimensional space. This would in-

crease the computational requirements as well as the number

of training data points to acquire before good performance is

achieved. Fortunately, we conclude from [12] that the relation

h(dk, ϑk) = yk can be decomposed into g(dk) ·cos ϑk = yk.

This allows us to train the distance response of each receiver

on yk/ cos ξk and xk, and perform the calibration procedures

explained in Section II-B or II-C.

B. Computing the Range and the Bearing

In this section, to conclude the procedure, we explain

how to find the range and bearing estimate given the above

calibration method. As explained in Section I-B, each robot

has M receivers that we are now able to calibrate (using

either an offline or online procedure). Hence, each receiver i

s1
Robot body

θ

r

hi(d
k
i , ϑk

i ) = yk
i

hi+1(d
k
i+1, ϑ

k
i+1) = yk

i+1

IR emitter

R κi+1

Fig. 6: Two infrared receivers mounted on a robot body sensing RSSI
yk

i and yk
i+1

from an omni-directional infra-red emitter. The emitter

should line at the intersection between the two isoline hi(d
k
i , ϑk

i ) = yk
i

and hi+1(dk
i+1

, ϑk
i+1

) = yk
i+1

. Note how in this example one of the
intersections can safely be eliminated due the geometrical constraints (i.e.
radius of a robot).

has a known (estimated) response ĥi(d, ϑ) = ĝi(d) cosϑ =
yk

i relating the distance and angle of incidence to the receiver

and its measured RSSI value. Given the position of each

receiver with respect to the receiving robot we can then

compute the intersections of the isolines ĥi(d, ϑ) = yk
i .

Figure 6 shows the intersection of two isolines generated

from two contiguous receivers. Note however, that a better

estimate of the range and bearing [r, θ]T can be obtained by

taking the three receivers i−1, i, i+1 measuring the highest

sum of RSSI values and minimizing:

[r̂, θ̂]T = argmin
r,θ

1
∑

j=−1

(

ĝ−1
i+j

(

yi

cosϑi+j

)

− di+j

)2

(17)

where ĝ−1
i (y) is given by Equation 16. If each receiver i is

positioned around the robot at a distance R from the center

and a bearing κi (as shown on Figure 6), we have:

di =
√

r2 − 2Rr cos(θ − κi) + R2 (18)

cosϑi =
r cos(θ − κi) − R

di

(19)

The choice of this method to compute the range and bearing

estimate is arbitrary and many other methods are possible.

In particular, by assuming that the range is much greater

than the robot radius, simple trigonometric relations can be

found [12].

IV. EXPERIMENTS

Experiments were performed using Khepera III

robots [11], developed by K-Team in collaboration

with the Distributed Intelligent and Algorithms Laboratory

(DISAL) at EPFL. This robot has a diameter of 12 cm,

making it appropriate for multi-robot indoor experiments.

As shown on Figure 1(a), we equip each robot with a range

and bearing module. We perform two sets of experiments,

one set with two robots and another one with four robots.

For each set, five runs of five minutes each are made,

making a total of 25 minutes worth of evaluation. Robots

move randomly in a 3×3m2 arena. Their ground truth

position and orientation is monitored with SwisTrack [7], an
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Fig. 7: Average error in the estimation of the range and bearing with 2
robots in the arena. The error bars define the 95% confidence intervals.

open-source tracking software. We evaluate the performance

of four calibration methods:

1) Global Manual Calibration: In a preliminary step, robots

are placed pairwise in the arena, and moved manually to

different known locations, to gather 50 data points per

receiver over a range of distances from 0.3 to 2 meters.

Once all data points for all receivers of one robot have been

gathered, we perform a least mean square regression on the

model in Equation 1 to estimate the best overall α, β and

γ values for all receivers of each single robot. During the

experimental runs, if a robot detects a neighboring robot, it

will estimate the range and bearing to the detected robot.

Simultaneously, we calculate the error with the true range

and bearing values (measured by the tracking system).

2) Local Manual Calibration: Same as above, except that α,

β and γ values are estimated for each receiver (instead of

for each robot).

3) Offline Calibration: In a preliminary step, either two or

four robots (depending on the experimental set) are placed

in the arena. The robots move randomly for ten minutes and

training data points are gathered using the range and bearing

module in conjunction with the camera tracking system. For

each receiver i, a GPR is performed to estimate its response

ĝ−1
i . During the experimental runs, the performance is

evaluated in the same manner as above.

4) Online Calibration: No preliminary step is performed.

During the experimental runs, if a robot detects a neigh-

boring robot and measures the corresponding RSSI values

it will estimate the range and bearing to the detected robot.

Only after the estimation of these values, it will receive in

100%, 50% or 10% of the cases the true range and bearing

from the tracking system in order to improve the calibration

of its receivers.

Each robot estimates the range and bearing to other robots

using all aforementioned methods at the same time on the

same RSSI values. At the end of all runs, the average

RMSE between the true and estimated range and bearing

is computed for each method.

Figure 7 shows the average performance for the first set of

experiments conducted with two robots. For the range, the

error is presented in percent, and for the bearing, in radians.
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Fig. 8: Average error in the estimation of the range and bearing with 4
robots in the arena. The error bars define the 95% confidence intervals.

As expected, we observe that the global calibration performs

the worst. The local and offline calibration methods perform

quite similarly showing only a slight benefit of using the

GPR calibration. The online calibration performs the best

when all data points are used and this is also expected since

it can account for changing conditions (e.g. presence of a

corner or a wall that reflects additional infrared light). When

using half of the data points it reaches the same performance

as that of the offline calibration and finally degrades to the

performance of the local calibration when using only a tenth

of the data points. This is quite exceptional since a tenth of

the data points represents about 50 points for all receivers

per run (instead of 50 points per receiver per run).

Figure 8 shows the average performance for the second

set of experiments conducted with four robots. The perfor-

mances have all degraded, especially the local calibration

which now has a similar performance as that of the global

calibration. In fact, when calibrating the robots in a pairwise

manner, they are exposed to different external influences than

they actually undergo during experimentation. By adding two

robots in the experimental arena, the environmental condi-

tions drastically change, worsening results for the manual

calibration methods. The offline calibration method again

shows very good results as it was performed with four

robots in identical conditions. On the other hand, if other

environmental factors would have changed, its performance

would have degraded significantly. Finally, the two-phase

online calibration shows very good results overall.

These results are very symptomatic of the constant envi-

ronmental changes happening in real-time, even in a highly

controlled experimental arena. Performing a calibration on

the actual test-bed where the robots will be evaluated im-

proves the performance of the system. Unfortunately, this is

rarely possible in reality. Hence, the advantages of an online

calibration procedure are obvious and as the results show, an

online method is able to perform better than manual offline

calibration methods, even when using only a fraction of the

number of training data points.

Finally, we perform a sensitivity analysis by varying each

of the GPR hyper-parameters σn, σf and λ as well as γ.

We re-compute the range and bearing errors with the data
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Fig. 9: Sensitivity of the average (a) range and (b) bearing error with 4 robots in the arena using the online calibration at 50%. The GPR hyper-paramters
as well as γ are varied in turn between 50% and 200% of their original values. The error bars define the 95% confidence intervals.

gathered experimentally. Each parameters is modified in turn,

while the others remain unchanged. Figure 9 reports the

resulting errors. We observe that the performance of the

two-phase calibration method is hardly affected by moderate

changes of the parameters. We, thus, conclude that the

parameters can be tuned by hand without compromising

performance.

V. CONCLUSION

A standalone least-mean-squares algorithm is not able

to capture even the smallest deviation from the assumed

underlying physical model. In this paper, we have proposed a

novel online two-phase calibration technique based on the se-

quential combination of a least-mean-squares algorithm and

a Gaussian process regression. We have shown how, by using

the estimation results of the least-mean-squares algorithm to

define the mean function of the Gaussian process regression,

we are able to significantly reduce its search space and

thus its computational complexity. Hence, the two-phase

method is ideal for miniature or resource-bounded robots. We

compared our approach with the Cramér-Rao lower bound

showing that its estimation of the true parameters is efficient.

Finally, we performed real robots experiments which show

improved performance when compared with standard offline

calibration procedures.
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