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Abstract— This work is situated in the context of collabo-
ratively solving the localization problem for unknown initial
conditions. We address this problem with a novel, fully decen-
tralized, real-time particle filter algorithm, designed to accom-
modate realistic robotic assumptions including noisy sensors,
and asynchronous and lossy communication. In particular, we
introduce a collaborative reciprocal sampling algorithm which
allows a drastic reduction in the number of particles needed to
achieve localization. We elaborate an analysis of our reciprocal
sampling method and support our conclusions with simulation
results. Finally, we validate our approach on a team of four
real robots within a controlled experimental setup.

I. INTRODUCTION

Accurate position localization is an enabling technology,

with a large body of publications manifesting its significance

for the mobile robotics domain. In this paper, we consider

the problem of absolute localization of a team of mobile

robots for unknown initial pose estimates (i.e., global lo-

calization). We design an algorithm targeting miniaturized,

computationally limited platforms equipped with noisy, low-

power sensing modalities. Given its efficiency in solving

localization problems for unknown initial conditions, and

for accommodating arbitrary probability density functions,

our method of choice is the particle filter, building on the

probabilistic framework of Monte-Carlo Localization (MCL)

presented in [2]. Our collaboration strategy uses associated

range and bearing observations and inter-robot communi-

cation. We develop a range and bearing robot detection

model which we introduce into our localization formalism. In

particular, we implement an efficient sampling method based

on reciprocal robot observations. Jointly with our detection

model, this allows us to drastically reduce the number

of particles needed to localize, without compromising the

performance of the algorithm. In order to assess the impact

of our collaborative localization strategy independently from

any additional feature-based localization information, we

run the algorithm (in real-time) on a team of robots by

using only odometry measurements and by sharing only their

relative range and bearing observations. Finally, we ensure

the scalability of our approach by presenting a localization

strategy that in practice has a computational cost which is

constant with respect to the number of robots N .
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A. Related Work

The problem of collaborative multi-robot localization was

first addressed by Kurazume et al. [3], and was followed by a

number of subsequent studies. In an early work, Roumeliotis

et al. [10] enable the distribution of a Kalman estimation

scheme. Yet, as covariance matrix updates occur during each

update step and require information exchange between all

robots and a centralized processor, the method is particularly

vulnerable to single-point failures, and assumes a communi-

cation infrastructure without any packet loss. The method

scales in O(N3) with respect to the number of robots,

and thus limits its scalability due the high computational

cost. Martinelli et al. [4] propose an extension to [10], by

generalizing the formalism, but without further improving the

algorithm’s scalability and cost. Nerurkar et al. [7] address

the reduction of computational complexity and single-point

failures by implementing a maximum a posteriori estimation

method. Nevertheless, the O(N2) computational cost is

significant. Also, the proposed method requires synchronous

communication among the robots, and its feasibility still

remains to be validated on real robots. Mourikis et al. [5]

consider the problem of resource-constrained collaborative

localization by limiting the number of measurements pro-

cessed at each time step, with the goal of deriving optimal

sensing frequencies. Yet, as exteroceptive data is dealt with

in a centralized way, the sensing frequencies inevitably

decrease with an increasing number of robots, thus limiting

the scalability of the approach. Finally, a decentralized lo-

calization algorithm based on an extended information filter

presented in [1] tries to alleviate the problems described

above. However, its computational cost increases for every

new observation made, and it assumes bidirectional syn-

chronous communication, the feasibility of which remains

to be evaluated on real robots.

We note that all above mentioned approaches assume

Gaussian noise models and known initial positions for all

robots in the team (i.e., local localization). Fox et al. [2] first

introduce a multi-robot Monte-Carlo localization algorithm

for global localization, which relaxes noise assumptions as

well as inter-robot dependencies. They propose a method

with which robots mutually synchronize their position beliefs

upon detection, and show successful localization. However,

the method proposed has limited scalability due to over-

confidence (particle collapse) occurring upon multiple robot

detections. Simultaneously, large particle sets are required to

avoid particle depletion, ultimately driving up the computa-

tional requirements.
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Fig. 1. System of two robots (Rn andRm) sharing a common localization
frame. The figure illustrates the robots’ relative range (rnm and rmn) and
bearing (θnm and θmn) values.

B. Problem Formulation

Our problem is described as follows. We have a multi-

robot system of N robots R1,R2, ...RN , where the number

N does not need to be known by the robots. The robots

navigate in a bounded space. For a robot Rn, at time t,
the pose xn,t is given by the Cartesian coordinates xn,t, yn,t
and orientation φn,t. Also, at time t, a robot Rm is in the set

of neighbors Nn,t of robot Rn if robot Rm can determine

a range rmn,t and bearing θmn,t to robot Rn. Thus, at

every moment in time, the neighborhood topology is defined

by the physical characteristics of the relative observation

sensors deployed on the robots. We make the assumption

that a robot Rm can communicate with a robot Rn, if

Rm ∈ Nn,t. Apart from a sensing modality which enables

the robots to determine relative range and bearing, they are

also equipped with a dead-reckoning self-localization module

(e.g., odometry), but do not possess any exteroceptive sensors

capable of accurate feature recognition, such as laser-range

finders or cameras. Given these specificities, the goal is to

localize all robots, without any prior knowledge of the initial

state or previous measurements.

II. COLLABORATIVE MONTE-CARLO LOCALIZATION

In this section, we briefly review Monte-Carlo Localiza-

tion [12] (MCL) as it forms the baseline for our work.

We then extend the standard MCL formalism to a fully

decentralized, collaborative adaptation to match our problem

formulation (see Section I-B).

A. Preliminaries

Let us from hereon consider a robot Rn. At time t, after

a sequence of motion control actions un,t and a sequence of

observations zn,t the recursive update equation of the Bayes

filter is denoted

Bel(xn,t) = η p(zn,t|xn,t)

∫

p(xn,t|xn,t−1, un,t−1)

Bel(xn,t−1) dxn,t−1(1)

where Bel(xn,t) estimates of the posterior state xn,t

and is called a belief. The value η is a normaliza-

tion constant, p(zn,t|xn,t) is the measurement model, and

p(xn,t|xn,t−1, un,t−1) the motion model.

The main idea of MCL lies in the way the belief is

represented—samples, or particles, are drawn from the poste-

rior probability distribution of the robot pose to form a set of

particles. By weighting these particles one obtains a discrete

probability function that approximates the continuous belief

Bel(xn,t), and hence we have

Bel(xn,t) ∼ {〈x
[i]
n,t, w

[i]
n,t〉|i = 1, ...,M} = Xn,t (2)

where M is the number of particles, x
[i]
n,t is a sample of

the random variable xn,t (the pose), and w
[i]
n,t is its weight.

The symbol Xn,t refers to the set of particles 〈x
[i]
n,t, w

[i]
n,t〉 at

time t belonging to robot Rn. In contrast to other methods

(for example Kalman filtering), the advantage of this form of

representation is that it can approximate probability densities

of any shape. Given this flexibility, MCL is also able

to accommodate arbitrary sensor characteristics and noise

distributions.

B. Multi-Robot MCL

The framework presented in Section II-A takes into ac-

count a single robot. However, when operating a collab-

orative multi-robot system, the baseline formalism must

be adapted to integrate measurements taken on different

platforms [2]. If we make the assumption that individual

robot poses are independent, we can formulate the event that

robot Rn is detected by robot Rm as

Bel (xn,t) = p (xn,t|zn,0..t, un,0..t)
∫

p (xn,t|xm,t, rmn,t, θmn,t)Bel (xm,t) dxm,t (3)

where p(xn,t|zn,0..t, un,0..t) describes the nth robot’s current

belief, and
∫

p(xn,t|xm,t, rmn,t, θmn,t) Bel (xm,t) dxm,t

describes the mth robot’s belief about the position of

robot Rn. For such a collaboration to take place, robot

Rm needs to communicate rmn,t, θmn,t and Bel (xm,t) to

robot Rn. Thus a communication message is composed as

dmn,t = 〈rmn,t, θmn,t, Xm,t〉. If several robots in a neigh-

borhood Nn,t communicate with robot Rn, the received

information is the set of all relative observations of robot

Rn at time t, as well as the belief representations Xm,t of

all detecting robots Rm ∈ Nn,t. We denote this data set as

Dn,t = {dmn,t|Rm ∈ Nn,t}. We note that the collaborative

aspect of this formalism lies in the integration of robot Rm’s

belief into that of robot Rn. This update step is shown in

Algorithm 3 (line 5).

As previously discussed in [2], there are certain limitations

to this approach. Due to the fact that robot Rm integrates

its position belief into that of robot Rn upon detection,

subsequent detections would induce multiple integrations

of this belief, ultimately leading to an overconfident (and

possibly erroneous) belief of the actual pose. Fox et al.

remedy this shortcoming by considering two rules: (i) their

approach does not consider negative sights (no detection) of

other robots, and (ii) they define a minimum travel distance

which a robot has to complete before detecting a same robot

again. Although rule (i) is a practical consideration, rule (ii)

strongly limits the scalability and robustness of the approach.

The frequency of potentially useful information needs to be

artificially bounded. Also, it depends on the mobility of a

given team member, and does not hold, for instance, for a

hybrid network of partially static and partially mobile robotic

nodes.



0.5m

(a) (b)

Fig. 2. Detection model for multiple detecting robots, (a) for two robots
and (b) for three robots. Here, a set of 20 particles is shown, represented
by oriented triangles. The detected robot is shown in white. The model’s
probability density is superimposed on the detected robot. The dotted line
and the orientation of the robots show the actual relative range and bearing.

III. RANGE & BEARING DETECTION MODEL

The idea of the detection model is to propose a probability

density function which is based on the relative observations

made by the detection sensors, and which is also based on

the belief of the detecting robot. Here, for the purpose of

our case-study, we use a simple Gaussian distribution in

polar coordinates, but all reasonings are valid for completely

arbitrary distributions. Indeed, as we use a particle filter,

we can keep the same framework for any possible sensor

model and possible underlying range and bearing hardware

not fulfilling the Gaussian assumption. For brevity, we omit

the subscript t in the following derivations.

As pointed out in Section II-B, when a robot Rm de-

tects a robot Rn it sends its detection data dmn. We will

now formulate the detection model as Pmn(xn|dmn) which

describes the probability that robot Rm detects robot Rn

at pose xn = [xn yn φn], given the detection data dmn.

For a given particle i in robot Rm’s belief, we define the

range difference ∆rmn, and the bearing difference ∆θmn.

The range and bearing differences are given by the geometric

relations

∆rmn =
√

∆x2
mn +∆y2mn − rmn (4)

∆θmn = atan2(∆ymn,∆xmn)− (φ[i]
m + θmn) (5)

where we denote ∆xmn = (x
[i]
m − xn) and

∆ymn = (y
[i]
m − yn). Assuming Gaussian noise and

knowledge of the range and bearing standard deviation (σr

and σθ, respectively), and the independence of range and

bearing measurements, the detection probability is

Pmn(xn|dmn) = η ·
∑

〈

x
[i]
m

w[i]
m

〉

∈Xm

Φ

([

∆rmn

∆θmn

]

,

[

σ2
r 0
0 σ2

θ

])

· w[i]
m (6)

where Φ(·, S) is the zero-mean, multivariate normal probabi-

lity density function with the covariance matrix S and where

η is a normalization constant. Also, in the case where robot

Rn reciprocally detects robot Rm, it can use the additional

information of its own relative observations to determine

the orientation difference ∆φmn, which is defined by the

following geometric relation

∆φmn = π − φ[i]
m − φn + θmn − θnm. (7)

The detection probability is then augmented by an additional
component, resulting in

Pmn(xn|dmn) = η ·
∑

〈

x
[i]
m

w
[i]
m

〉

∈Xm

Φ









∆rmn

∆θmn

∆φmn



,





σ2
r 0 0
0 σ2

θ 0
0 0 4σ2

θ







 · w[i]
m (8)

Finally, the detection model incorporating the detection

data from multiple detecting robots can be formulated as

an update equation as shown in Algorithm 1.

Algorithm 1 Detection Model(Dn,t,x
[i]
t , w

[i]
t )

1: w ← w
[i]
t ·

∏

dmn∈Dn,t
Pmn(x

[i]
t |dmn)

2: return w

Figure 2 shows an illustration of the probability density

function resulting from the detection model, (a) for two

detecting robots, and (b) for three detecting robots. We notice

that when detection data from multiple robots is integrated

into the range and bearing model, the detection precision

increases.

IV. MULTI-ROBOT RECIPROCAL MCL

In this section, we present a novel approach to multi-robot

MCL. Motivated by the goal of overcoming the limitations

of current multi-robot localization algorithms, which to-

date are hard to employ on large-scale, distributed systems

for unknown initial conditions, we develop an any-time,

fully scalable localization algorithm which takes advantage

of reciprocal robot observations to reduce the number of

particles needed while maintaining good performance.

A. Concept of Reciprocal Sampling

In addition to using a robot detection model for up-

dating the belief representation Bel(xn,t), our approach

relies on a reciprocal sampling method. As for a standard

MCL algorithm, the posterior estimate of reciprocal MCL is

represented by Bel(xn,t)—the difference between the two

methods lies in the proposal distribution. Let us refer to

the iterative process described in Algorithm 3: instead of

sampling from Bel(xn,t−1) in line 11, the reciprocal MCL

algorithm samples from the distribution x
[i]
n,t ∼ p(Dn,t|x

[i]
n,t),

according to a robot detection model. Thus, samples are

drawn at poses which are probable given the reciprocal

robot observations, and which are independent of the previ-

ous belief Bel(xn,t−1). Then, by employing the reciprocal

sampling algorithm within the collaborative paradigm of

our general framework, a detected robot augments its own

belief with new pose estimates deduced from reciprocal robot

observations with a fixed proportion of α. In particular, as

this method exploits the information available in a whole

robot team, it continuously creates particles in areas of the

pose space which are likely to be significant, and allows for

very small particle set sizes.



The idea of extending standard MCL with additional sam-

pling methods was first shown in [11]. In this previous work,

the resulting algorithm named Mixture MCL was shown to

increase the robustness of single-robot global localization.

Our method differs from the one presented in [11] in that it

extends to collaborative multi-robot localization algorithms

by sampling from the detection model of one or several

mobile robots (whose positions are unknown) as opposed to

sampling from the detection model of a potentially large set

of static environmental features (whose positions are known).

Indeed, for complex environments, the method in [11] must

be preceded by a cumbersome fingerprinting process.

B. Reciprocal Sampling Algorithm

The reciprocal sampling routine is shown in Algorithm

2, where line 4 represents the reciprocal sampling step.

Algorithm 3 shows the complete routine of multi-robot

reciprocal MCL. The second part (lines 8–16) resamples

particles from the weighted proposal distribution to create

a new, updated pose belief. Particles are sampled from the

robot’s own belief with a probability 1 − α, and with a

probability of α, particles are sampled from the probability

density function proposed by the detection model (line 13).

There are a multitude of methods which can be applied to

sample from a given distribution. Here, we employ the slice

sampling method [6], which is a low-cost method based on

Markov chains, and particularly useful since it can sample

from arbitrary shaped distributions. The symbol U on line 9

of Algorithm 3 refers to the uniform distribution.

Algorithm 2 Reciprocal Sampling(Dn,t, X̄n,t)

1: if Dn,t = ∅ then

2: x← Sampling(X̄n,t)
3: else

4: x ∼
∏

dmn∈Dn,t
Pmn(x|dmn)

5: end if

6: return x

Algorithm 3 MultiRob Recip MCL(Xn,t−1, un,t, zn,t, Dn,t)

1: X̄n,t = Xn,t = ∅
2: for i = 1 to M do

3: x
[i]
n,t ← Motion Model(un,t,x

[i]
n,t−1)

4: w
[i]
n,t ← Measurement Model(x

[i]
n,t)

5: w
[i]
n,t ← Detection Model(Dn,t,x

[i]
n,t, w

[i]
n,t)

6: X̄n,t ← X̄n,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

7: end for

8: for i = 1 to M do

9: r ∼ U(0, 1)
10: if r ≤ (1− α) then

11: x
[i]
n,t ← Sampling(X̄n,t)

12: else

13: x
[i]
n,t ← Reciprocal Sampling(Dn,t, X̄n,t)

14: end if

15: Xn,t ← Xn,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

16: end for

17: return Xn,t

C. Analysis

It is clear from the previous sections that performance

of the reciprocal sampling algorithm depends on the accu-

racy of the detection sensors. Simultaneously, we need to

find an appropriate reciprocal sampling proportion α which

enables fast convergence to a low localization error. Thus,

for the purpose of analysis, we resort to a minimal scenario

consisting of two collaborative robots moving randomly in

bounded space. The goal of the exercise is to discuss the

localization performance of the first robot Rn, which is

initially unlocalized, given two alternative conditions for the

second robot Rm: (1) Rm is continuously localized (i.e.,

receives absolute position fixes at a frequency that is as least

as high as the robot detection frequency) and (2) Rm is

only initially localized (and then receives no more absolute

position fixes). We note that our evaluations throughout this

paper do not consider the time it takes for the first robot to

localize, as this is part of a separate process and independent

from our algorithm.

In this analysis, we will show that the reciprocal sam-

pling proportion α can be tuned to affect the steady-state

performance, and how the convergence speed is affected

when employing a finite number of particles. We derive

the formulations for both the standard sampling algorithm

(Algorithm 3 with α = 0), as well as our reciprocal

sampling algorithm (Algorithm 3 with α > 0). To simplify

the following formalisms, without loss of generality, we

consider that the origin of the coordinate system coincides

with the true position of robot Rn. Thus, we assume that

the state of any robot can be expressed in a 1-dimensional

space as a position ρ, bounded by −ρmax ≤ ρ ≤ ρmax.

The belief of robot Rn at time t is thus simply given by

Bel(ρn,t). In consequence, we formulate our error metric as

the expectancy over all possible estimated distances ρn,t of

robot Rn to the origin

E(ρ2n,t) =

∫

Bel(ρn,t) · ρ
2
n,tdρn. (9)

The following two paragraphs detail Bel(ρn,t) as well as

E(ρ2n,t) for t → ∞, for both the standard sampling algorithm

(SS) and the reciprocal sampling algorithm (RS), in cases (1)

and (2).

1) Rm continuously localized: We initialize

Beln,t=0 = 1/(2ρmax) as a uniform distribution over

ρ, and Belm,t = δ(ρm), for all t, where ρm is the true

position of robot Rm and δ(·) the Dirac function.

Let us assume that the observation and motion models can

be modeled with Φ(·, σ) a the zero-mean, normal probability

density function with the standard deviation σmn and σn,

respectively. The belief Bel(ρn,t) of robot Rn at time t for

the standard sampling algorithm then reads

BelSS(ρn,t) = Φ(ρn,t, σmn)
∫

Φ(ρn,t − ρn,t−1, σn) ·BelSS(ρn,t−1)dρt−1. (10)

Given that the probability density of Equation 10 is normal,

we can easily calculate the steady-state error. For t → ∞,

Equation 9 is

ESS(ρ
2
n,t)

=
t→∞

σn

2

(

√

σ2
n + 4σ2

mn − σ2
n

)

. (11)
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Fig. 3. The plots show in (a) and (c) the development of the the root-
mean-square-error for the standard sampling (SS) and reciprocal sampling
(RS) algorithms, and in (b) and (d) the steady-state error in function of the
reciprocal sampling proportion. The first row shows results for robot Rm

continuously localized, and the second row for robot Rm only initially
localized. The space was defined by ρmax = 2.6m and a constant motion
noise of σn = 0.1 was employed.

We now extend this formalism to the case of reciprocal

sampling with a reciprocal sampling proportion α. We have

BelRS(ρn,t) = α · Φ(ρn,t, σmn) + (1− α) · Φ(ρn,t, σmn)
∫

Φ(ρn,t − ρn,t−1, σn) ·BelRS(ρn,t−1)dρn,t−1. (12)

The steady-state error of Equation 12 will vary, depending

on the reciprocal proportion α. For this work, it suffices to

consider the maximum possible steady state error, which is

simply given by σ2
mn (for α = 1).

2) Rm only initially localized: As before, we initialize

Beln,t=0 = 1/(2ρmax), and Belm,t=0 = δ(ρm). As robot

Rm does not receive regular position fixes anymore, we must

now reformulate the equations above to include the reciprocal

sampling mechanism for both robots simultaneously. Without

loss of generality, we assume that the moment of information

exchange takes place at each update step after application

of the motion model when the prior Bel(ρ·,t) has been

calculated. Thus, when a robot Rm detects a robot Rn, it

transmits its prior Bel(ρm,t), defined as

Bel(ρm,t) =

∫

Φ(ρm,t − ρm,t−1, σm) ·Bel(ρm,t−1)dρm,t−1.

(13)

The belief of robot Rn for the standard sampling algorithm

is then

BelSS(ρn,t) =

∫

Φ(ρn,t, σmn) ·BelSS(ρm,t)dρm,t

BelSS(ρn,t). (14)

As in Equation 11, we formulate the steady state error of

Equation 14 as
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Fig. 4. The figures show the root-mean-square-error for (a), (c) standard
sampling and (b), (d) reciprocal sampling, in a space defined by ρmax =
2.6m. A variable number of particles was employed, ranging from a total of
5 to 100 particles. Additionally, the solid black line shows the results for an
infinity of particles. We employed a motion noise σn = 0.1 and detection
noise σmn = 0.1 for all plots, and a reciprocal sampling proportion of
α = 0.2 for plots (b) and (d). The first row shows results for robot Rm

continuously localized, the second row for robotRm only initially localized.
For each experiment employing a finite set of particles, 5000 runs were
performed. The errorbars show the standard deviation.

ESS(ρ
2
n,t)

=
t→∞ σn

√

σ2
mn + σ2

n. (15)

Analogously, we extend the formalism for the reciprocal

sampling algorithm

BelRS(ρn,t) = α ·
∫

Φ(ρn,t, σmn) ·BelRS(ρm,t)dρm,t+

(1− α) ·
∫

Φ(ρn,t, σmn) ·BelSS(ρm,t)dρm,t ·BelRS(ρn,t).

(16)

In this particular case, the steady-state cannot be found

analytically. Yet, we note that the the maximal steady-state

error of Equation 16 for α = 1 is unbounded for an

unbounded space. Equations 13–16 are equally formulated

for robot Rm.

D. Discussion

In order to analyze the performance of the filters in Equa-

tions 10, 12, 14 and 16, we resort to a numerical solution

for each update t, and discuss the localization performance

of robot Rn.

Figure 3 shows the performance for standard and recipro-

cal sampling algorithms in an ideal filter (with an infinity of

particles). A gray line marks the lower-bound error derived

from Equations 11 and 15. The steady-state bounds in Fig.

3(b) vary between the steady-state errors defined by Equation

11 and σmn, and provide a lower bound on the steady-

state performance in Fig. 3(d). With the current analysis dis-

cussing an ideal filter with an infinity of particles, we cannot

expect any benefit from the reciprocal sampling algorithm.



Fig. 5. The Khepera III robot with a relative range and bearing module.
The board is composed of a ring of 16 infrared LEDs.

However, the results show that in particular for moderate

observation noise values σmn, the loss of accuracy is very

small, regardless of the reciprocal sampling proportion α.

Figure 4 shows the localization error for both standard

(first column) and reciprocal sampling (second column) for

a variable set of finite particle numbers. We see that for

an increasing number of particles, the localization error

converges to that of the ideal filter (with an infinity of

particles). In contrast to Figure 3, we observe how, in the

case of a finite number of particles, the reciprocal sampling

algorithm converges faster to the steady-state error. Even

when employing as little as 5 particles in total, 1 reciprocal

particle is enough to accelerate convergence nearly 10-fold.

Indeed, for an infinity of particles, the standard sampling

algorithm will always outperform reciprocal sampling. Yet,

for any finite number of particles, the reciprocal sampling

algorithm is highly likely to accelerate convergence. More-

over, we note that for modest noise values σmn, we are able

to benefit from the reciprocal sampling algorithm, regardless

of the sampling proportion α, without significantly affecting

the steady-state performance of the system. In conclusion, we

note that while σmn and σn are often given by the real system

at hand, parameters such as α and the number of particles

can be tuned and thus adapted to available computational

and communication resources.

V. EXPERIMENTS

We validate our proposed approach by performing ex-

periments on a team of Khepera III robots1 [8]. Our real

experimental setup consists of a 3m large empty square

arena. In order to measure the ground truth, we installed an

overhead camera system as detailed in our previous work [8].

For all experiments, the robots move straight at a speed of

one robot-size per second (12cm/s), and perform standard

Braitenberg obstacle avoidance. The robots are equipped

with wheel encoders and use odometry for self-localization.

We note that our measurement model routine (line 4 in

Algorithm 3) simply reduces the particles’ weights as they

leave the bounded space, and does not take into account

any exteroceptive sensor readings. The robots use a relative

range and bearing module [9], which provides the measures

used by the detection model. Figure 5 shows the sixteen

evenly-spaced infrared Light Emitting Diodes (LEDs) that

this platform uses. In our experimental arena, the boards

1http://www.k-team.com/
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Fig. 6. (a) Schematic illustration of two robots driving past each other.
Three detections are made. (b) Localization error for an initially unlocalized
robot. It detects a localized robot three times along its path. The standard
and reciprocal sampling algorithms (employing 50 particles) are tested 1000
times on the data set. The times at which the observations are made are
marked by dotted lines (11.2s, 13.6s, 16s).

have a proportional range noise of σr = 0.15·rmn, a bearing

noise of σθ = 0.15rad, and the detection range is bounded

at 2.5m. We discuss the localization performance in terms

of the mean positioning error of all particles in the robots’

beliefs.

A. Two Robots Meet

We illustrate the effect of reciprocal robot detections by

performing a short experiment involving two Khepera III

robots, one of which is initially localized. The sensor data

is gathered and then tested offline on the standard sampling

algorithm as well as on the reciprocal sampling algorithm

with 50 particles. Figure 6 shows the localization error for

the second, initially unlocalized, robot. In comparison to

the standard sampling algorithm, we see that the reciprocal

sampling algorithm reduces the localization error by taking

better advantage of information available on the localized

team-member. Additionally, in this case where the first robot

is well localized during this short time span, an increased

reciprocal sampling proportion α is more efficient due to the

higher probability of drawing accurate reciprocal samples.

B. Four Robots Meet

To give the readers a feel for the behavior of the reciprocal

sampling algorithm, we performed an experiment employing

a team of four Khepera III robots. The robots are placed

randomly inside the arena at the beginning of the experiment,

and sensor data is subsequently gathered throughout the run.

Figure 7 shows eight snapshots of the localization process for

one robot initially localized. In the 35s time-span, an average

of 10 reciprocal robot observations were made per robot.

The snapshots show that, even though the robots employ a

very sparse particle set (20 particles per robot over a 9m2

space), the reciprocal sampling algorithm is able to produce

particles which coincide with the approximate true locations

of the robots. An additional experiment taking place in a real

office space can be viewed at http://disalw3.epfl.ch/

publications/IROS11_demo.pdf.



C. Systematic Evaluation

We perform a final experiment to confirm the reproducibil-

ity of our results. We run our algorithms on-board in real-

time on a team of four Khepera III robots. We consider two

scenarios, analogous to the two cases presented in IV-C. In a

first scenario, one robot continuously receives position fixes

at a frequency of 1Hz from the overhead camera system,

while the three other robots are unlocalized. In a second

scenario, one robot receives a one-time position fix at startup

from the overhead camera system, while again, the three

other robots are unlocalized. To begin, the robots are placed

randomly in the arena. Each robot has a total of 50 particles,

and the reciprocal sampling algorithm has is implemented

with α = 0.06. We repeat the experiment 10 times, where

each run lasts 3.5 minutes.

Figure 8 shows the positioning error averaged over the

number of runs for the three initially unlocalized robots. An

average of 14 reciprocal robot observations were made per

robot per run. Throughout the 3.5min time-span, the recip-

rocal sampling algorithm outperforms the standard sampling

algorithm. A larger performance gap between the first (Figure

8(a)) and second (Figure 8(b)) scenario is to be expected

for larger time-spans as the robot which is only initially

localized loses its position accuracy. This experiment shows

a successful application of our approach, also confirming

the feasibility of our algorithm with respect to real-time and

resource constraints.

VI. CONCLUSION

In this work, we presented a fully scalable, probabilistic

multi-robot localization algorithm. By relaxing communica-

tion constraints (any-time, asynchronous), we provided an ef-

ficient framework for collaborative localization. In particular,

we introduced an intrinsically distributed reciprocal sampling

algorithm, designed to enable good localization performance

in face of rigid system constraints. Our approach was suc-

cessfully experimentally validated on four resource-bounded

robots, confirming superior performance of our reciprocal

sampling algorithm over a standard sampling algorithm.

More work needs to be done in order to explore arbitrarily

distributed detection models as an extension to our general-

izable framework.
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Fig. 8. Average localization estimation error obtained over 10 runs of
3.5min duration, performed in real-time on 4 Khepera III robots with 50
particles each, and a reciprocal sampling proportion of α = 0.06. Two
scenarios are considered, (a) one continuously localized robot, three initially
unlocalized and (b) one initially localized robot, three initially unlocalized.
The errorbars show the standard deviations.
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(a) t = 0 (b) t = 5s (c) t = 10s (d) t = 15s (e) t = 20s (f) t = 25s (g) t = 30s

1m

(h) t = 35s

Fig. 7. The figure shows eight snapshots in 5s intervals of the reciprocal sampling algorithm run on data from an experiment with four real robots. Each
robot employed 20 particles, with a reciprocal proportion α = 0.1. The black lines show the trajectories completed in the time intervals between snapshots.
The red robot was initially localized (and then received no further position fixes).


