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The Distributed Multiple Voting Problem
Florence Bénézit, Patrick Thiran, and Martin Vetterli

Abstract—A networked set of agents holding binary opinions
does not seem to be able to compute its majority opinion by means
of local binary interactions only. However, the majority problem
can be solved using two or more bits, instead of one (F. Bénézit et
al., “Interval consensus: From quantized gossip to voting,” Apr.
2009, pp. 3661–3664). Pairs of agents asynchronously exchange
their states and update them according to a voting automaton.
This paper presents binary voting automata as well as solutions
to the multiple voting problem, where agents can vote for one
candidate among � candidates and need to determine the
majority vote. The voting automata are derived from the pairwise
gossip algorithm, which computes averages. In the binary case
� ���, we focus on averages in dimension 1, but in the multiple
case � �� we quantize gossip in dimension �, which is
larger than or equal to 1. We show in particular that a consensus
on majority can be reached using 15 possible states (4 bits) for the
ternary voting problem, and using 100 possible states (7 bits) for
the quaternary voting problem.

Index Terms—Density classification, distributed estimation,
gossip algorithms, voting problem.

I. INTRODUCTION

A LTHOUGH local interactions rule our physical world,
they are believed to have strong limitations because a net-

worked set of agents holding binary opinions does not seem to
be able to compute its majority opinion by means of local bi-
nary interactions only. This is intriguing because majority is the
simplest global piece of information that one can retrieve from
a binary system: Are there more positive opinions than negative
opinions? This question requires a simple yes-or-no answer, and
yet, so far, no binary distributed scheme has managed to drive
all the agents to reach a consensus on majority.

In this paper, we consider a finite set of agents connected
in an undirected graph , which is possibly time-
varying. Each agent initially votes for a “color” among a finite
unordered set of colors. By means of local communications
only, and using constant, identical, and simple updating rules,
the agents want to distributively reach a state of consensus in-
dicating the initial majority color. Agents do not know the total
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number of agents nor the network topology. So far, this problem
has appeared in its binary version , under two names
such as density classification task or voting problem. In this
case, the two colors are often denoted by 0 and 1. We start by
showing the close link between the voting problem and gossip
algorithms.

A. From Gossip to Interval Consensus and Binary Voting

In the past years, algorithms called gossip were developed
to compute in a distributed way the average of values dissemi-
nated in a network. Pairwise gossip [2], the most famous gossip
algorithm, randomly and iteratively computes local pairwise av-
erages until the estimates at each node reach some level of pre-
cision. Although gossip algorithms converge to the average, the
states of the nodes will be equal to the true average only asymp-
totically. At finite times nodes hold only approximate values of
the average, which differ in general for each node. As a con-
sequence, an exact consensus cannot be reached in finite time.1

Yet, in any real problem, the states of the nodes must be read
after a finite time.

In some scenarios however, such as sounding an alarm as soon
as the mean temperature exceeds some threshold, nodes must
take a common decision knowing which interval contains the
average, but do not require to know the exact value of the av-
erage. In these coordinated decision making scenarios, classical
gossip algorithms are not an ideal solution, in particular when
the average is close to the boundary between two consecutive
intervals. In this case indeed, stopping the algorithm after a fi-
nite time will result in having some nodes holding estimates in
one interval, whereas some other nodes hold estimates in the ad-
jacent interval. This leads to rather inconvenient, contradictory,
and possibly erroneous decisions.

A first solution to this problem is to enforce consensus at
finite time at the price of some error on the output consensus
value. Kar and Moura [3] and Aysal, Coates, and Rabbat [4]
designed probabilistic algorithms that are able to reach a true
consensus in finite time. In [4], it is shown that if nodes use
probabilistic quantization at each iteration, then all the states
converge to a common but random quantization level. These
probabilistic algorithms compute an unbiased estimate of the
average of the initial data, but with a nonzero variance error;
hence, the correctness of the result is not guaranteed.

To solve this correctness issue, in this paper, we quantize
gossip such that nodes can reach a consensus on the interval
in which the average lies, rather than on the average itself [1].
Our quantization idea resembles the work of Kashyap, Başar,
and Srikant in [5], where the authors suggested an average
consensus algorithm over integers, which is a quantized version
of pairwise gossip. In their setting, nodes initially measure

1Except for some rare cases, e.g., the agents start from a consensus already,
or the number of nodes � is a power of 2, etc.
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Fig. 1. Two-bit voting automaton.

some integer values, and the two integers framing the average
of these values are denoted by and . When conver-
gence is reached, some nodes have state , the remaining
nodes have state , and the overall average is preserved.
This quasi-consensus was called “quantized consensus.” By
changing the set of quantized states, we are able in this paper
to transform “quantized consensus” into “interval consensus.”

Our algorithm, called interval consensus gossip [1], can be
directly applied to solve the binary voting problem. If votes are
denoted by 0 and 1, and if the number of nodes is odd, the
voting question can be restated as: “Is the average of votes in
the interval [0, 0.5] or in the interval [0.5, 1]?” Answering this
question with a regular gossip algorithm would require to code
the estimates on bits in order to deal with the case where
there are zeros and ones. Happily, with interval
consensus gossip, two coding bits are sufficient.

The two-bit voting algorithm works as follows. The four
states are denoted by 0, 0.5 , 0.5 and 1. States 0 and 0.5
decide majority 0 and states 0.5 and 1 decide majority 1.
Nodes wake up iteratively uniformly at random and call a
random neighbor. At each iteration, the pair of activated neigh-
bors exchange their states and update them according to the
automaton of Fig. 1: A node with state 0 and a node with state
1 will update to, respectively, state 0.5 and state 0.5 , a node
with state 1 and a node with state 0.5 will update to, respec-
tively, state 0.5 and state 1, etc. The reader can check that the
average value of states is conserved through iterations (states
0.5 and 0.5 both have value 0.5). Nodes with consecutive
states swap their states, which allows information flow, and
finally updated states are either consecutive or equal, which
enforces convergence. A simple formal proof of convergence
of the algorithm can be found in [1]. In this paper, we give a
general proof of convergence for the multiple voting automata,
which includes the simple binary case.

In the next section, we show how an extension of the in-
terval consensus problem allows us to solve the multiple voting
problem.

B. From Interval Consensus to Volume Consensus and
Multiple Voting

To solve the multiple voting problem, we first restate it as
a geometry problem, then we show that extending the interval

Fig. 2. Ternary voting problem: three majority zones.

consensus idea to higher dimensions could solve the latter ge-
ometry problem. By extension to higher dimensions, we mean
that intervals become convex areas in 2-D (two dimensions),
convex volumes in 3-D, and convex hyper-volumes in greater
dimensions.

While the binary voting problem can be restated as an in-
terval consensus problem, the ternary voting problem can be re-
stated as an area consensus problem in 2-D. Associate votes ,

and to each of the three vertices of an equilateral triangle
(Fig. 2). Then the majority vote is determined by the position
of the barycenter of the votes in either the white zone, the gray
zone, or the black zone in Fig. 2. This barycenter idea is gen-
eralizable to any dimension, as formally explained in the next
paragraph.

Notations: Let be the regular simplex with vertices
(denoted by ), and be their center of mass (or

barycenter). For every , vertex is called the vertex of
color . Simplex is a point, simplex is a line, simplex

is an equilateral triangle, simplex is a regular tetrahe-

dron, etc. We denote by the vector . By definition

. For any color , let be the number of
agents that voted for . Let be the barycenter of the system

. By definition, is such that

We claim that the position of the barycenter contains the
majority vote information. Indeed, the following lemma shows
that there is a bijective mapping between the barycenter points
in and the vote ratio configurations ,

where .
Lemma I.1 (Center of Mass Mapping or Caratheodory The-

orem): For any point , there is a unique sequence

, such that and
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Proof: Suppose that there were two such sequences
and . Then,

By definition of volume, the determinant
is not equal to zero which means that the

vectors are linearly inde-

pendent. Therefore, for any , , but

; hence, for every .
The regularity of is not used in the proof of Lemma

I.1, but it gives a very simple criterion to find the majority
color : it is the color corresponding to the vertex
of which is the closest to the barycenter of the system

.
Core Idea of This Paper: The first idea that would come nat-

urally to mind after the observations made from Lemma I.1 is
to design the following algorithm:

1) Assign to each agent the vertex corresponding to its
voting color .

2) Have the agents compute distributively the center of mass
of the assigned vertices, i.e., the barycenter of the system

.
3) Have the agents compute locally the vertex which

is the closest to , and output as the majority color.
If there are several such vertices , then the agents
deduce that there is a tie between the corresponding set of
colors.

Pairwise gossip for average consensus [2] is a distributed al-
gorithm which computes averages with real states; when two
agents and exchange their states and , they both update
their state to . This procedure conserves the global
average, and with time, the states in the network approximate
the true average up to any desired level of precision, if the net-
work is jointly connected in time. This continuous-valued algo-
rithm is obviously generalizable to multiple dimensions and, in
theory, it could be used to achieve the second step of the above
algorithm.

This first idea, however, does not work well for the same
reason as in the 1-D case (Section I-A). When votes are close to
a tie, the barycenter is close to several vertices. At finite times,
the agents running gossip hold different estimates of and do
not agree on a single value, which can lead to different color
outputs. A second issue is that pairwise gossip needs to be quan-
tized in practice, and a careless quantization could lead to larger
imprecisions and make the first issue worse. In this paper, we de-
rive quantized versions of pairwise gossip using a finite number
of states, such that based on its state, an agent can eventually tell
which is the closest vertex to the center of mass. Or, in words
adapted to the interval/volume consensus framework, instead of
computing the barycenter of votes itself, agents can decide in

which (convex) majority hyper-volume is located. Our gen-
eralization includes the 2 bit automaton, and necessitates more
sophisticated notations and tools to prove convergence than in
[1]. This explains why the notations in this paper significantly
differ from the ones used in [1].

More precisely, we will derive a list of sufficient conditions
for an algorithm to converge to the majority vote. These con-
ditions will allow us to claim that our automata converge cor-
rectly. Checking that a given automaton fulfills the sufficient
conditions is easy, but constructing an adequate automaton is
challenging. We managed to build correct automata for the bi-
nary, ternary, and quaternary cases, but constructing them for
arbitrary sets remains an open problem.

It is important to mention that the robustness of gossip al-
gorithms against the loss of a message or of an agent remains
present in our generalization. In gossip, if a node transforms by
mistake its state in a state , then the error induced in the
computed barycenter compared to the correct barycenter
is . This error is small when the net-
work size is large and it has no consequence if stays in the
correct majority hyper-volume, which is likely to happen if the
votes are far enough from a tie. If too many errors add up, then
the algorithm looses track of the initial barycenter. It is thus ro-
bust to some amount of message or agent losses, which depends
on , on the initial barycenter and on the specific automaton
that is being used.

C. History of the Battles to Solve the Binary Voting Problem

The binary voting problem, particularly popular among the
cellular automaton (CA) community, is well-known for its con-
trast between its simplicity of statement and its difficulty to be
solved. Before [1], research has unsuccessfully focused on au-
tomata coded on 1 bit. This section summarizes the years of
work on the problem and highlights the key ingredients that a
solution needs and that are possible to gather by coding states
on 2 bits instead of 1.

In [6], Land et al. showed that a synchronous deterministic
two-state automaton, which always successfully classifies den-
sity in a connected network, does not exist. Several binary au-
tomata were tentatively designed on the ring network, the most
successful one being able to solve the problem in at most 83%
of the initial voting configurations [7]. The behavior of the sim-
plest automaton, which applies the local majority rule, has been
carefully studied [8], [9]. In the local majority rule, agents up-
date their state to the majority state of their neighborhood. The
inability of this rule to lead all the states to a consensus consti-
tutes its major flaw.2 For example, consider the line topology
with initial configuration (0, 0, 1, 1, 1). This configuration does
not evolve with time, because the second agent sees (0, 0, 1) and
keeps state 0, and the third agent sees (0, 1, 1) and keeps state
1. Additionally, even when a consensus is reached, the bit on
which agents agree is not necessarily the initial majority bit. As
a consequence of this failure, research has tried to avoid frozen

2On a positive note, this lack of convergence to a consensus can be used to
detect communities in large-scale networks. See label propagation algorithms
[10].
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situations as (0, 0, 1, 1, 1) with the local majority rule, and CAs
were developed with a crucial new feature: information flow.

For example, by slightly modifying the problem setting, two
exact solutions were found on the ring network [11], [12]. Both
are based on the traffic flow rule, also called 184 rule, in which
the number of 0 s and 1 s stays unchanged, while the 0 s and 1 s
interlace with time, until the minority bits are systematically sur-
rounded by 2 majority bits. Inevitably, some neighboring agents
have common majority bit states. Both solutions are based on
simple observations. In the first solution, at each iteration, this
interlaced configuration shifts by one position in the network
so that all the agents eventually discover two consecutive iden-
tical bits, which are equal to the majority bit. In the second so-
lution, the network switches to the local majority rule, which is
successful on any interlaced configuration reached by rule 184.
Both solutions confirm the power of information flow in the den-
sity classification task. Furthermore, they highlight the impor-
tance of conserving the global information through iterations.
In [13], Capcarrere and Sipper proved that density conserva-
tion is a necessary condition for a CA to be successful. Despite
their success on rings, neither solutions however are extend-
able to arbitrary graph topologies, so the research effort was de-
voted to design rules adapted to any network, focusing back on
bringing states to a consensus. To avoid the impossibility result
[6], asynchronous and probabilistic automata were proposed
[14]. An automaton is used asynchronously when nodes wake
up at random times (usually exponentially distributed), com-
municate with their neighbors and update their state according
to the automaton. The order in which nodes update their state
is thus random, which could appear as an additional difficulty
[15]. Most probabilistic automata are run synchronously. Ex-
amples of probabilistic automata converging to a consensus are
numerous; in probabilistic polling, nodes update their state to
the state of a randomly chosen neighbor. If the probabilities are
well tuned, this algorithm can reach proportionate agreement:
the probability of reaching a consensus on 1 is equal to
(the initial density of 1 s), and consensus on 0 has probability

. In [16], Fuks designs a probabilistic automaton on the ring
which conserves density in expectation and thus achieves pro-
portionate agreement. However, none of these algorithms con-
verges to the correct consensus with probability 1.

In arbitrary connected networks, the asynchronous graph au-
tomaton using 4 states instead of 2 described in Section I-A
solves the binary voting problem in finite time with probability
1 for any vote configuration presenting a strict majority. The
idea is that two states indicate that 0 is the majority bit, and two
other states indicate that 1 is the majority bit. When running the
4-state automaton, any connected network reaches in finite time
a configuration using the two possible states which agree on the
initial majority bit. The algorithm uses asynchronicity to ensure
that information flows, and adding a bit allows to code the extra
global information, necessary to guarantee convergence to the
correct bit. Our main challenge is to generalize this simple graph
automaton to automata that solve the multiple voting problem
( ).

The general structure of our approach is the following. First,
in Section II, we define pairwise asynchronous graph automata
(PAGA). In particular, the 4-state automaton which solves the

binary voting problem is a PAGA. In Section IV, we state a
number of sufficient conditions for a PAGA to compute the ma-
jority color almost surely (a.s.) in finite time in any connected
network. The conditions on the updating rules depend only on
the number of possible votes: they are advantageously inde-
pendent of the network topology. A number of notions are de-
fined to write the conditions on the PAGA and to prove conver-
gence based on these conditions (the proof is in Section V). To
illustrate these notions with concrete examples, we describe be-
forehand, in Section III, the 4-state automaton, which solves the
binary voting problem, as well as a simple 15-state automaton,
which solves the ternary voting problem. The theory we de-
velop in this paper is able to handle more complicated voting au-
tomata, which we describe in Section VI. In particular we build
a 100-state automaton, which fulfills all conditions for , the
quaternary voting problem.

II. AUTOMATA AND THE VOTING PROBLEM

A. Pairwise Asynchronous Graph Automata (PAGA)

Assume that the agents are fixed, but that the edges con-
necting them can be time-varying. We are thus given a sequence
of graphs . We denote by the (finite)
set of graphs representing the network over time, and by the
set of discrete probability distributions.

Definition II.1 [Pairwise Asynchronous Graph Automata
(PAGA)]: A pairwise asynchronous graph automaton is an
ordered quadruple , where:

• is a finite set of states;
• is a set of initial states;
• is a local transition function of the form: ;
• is a function of the form . For a given graph

, is a probability distribution over .
A PAGA is run asynchronously. At each iteration , an edge

of the current graph is drawn at random with the
probability distribution . The two end agents and
of the selected edge exchange their states and . Agent
updates its state to , and agent updates its state
to .

There is a classical example of function to implement a
PAGA in a distributed way. Agents are given random indepen-
dent exponential clocks. When its clock ticks, an agent calls a
neighboring agent in the current graph at random. These
two agents form the selected edge. If the neighbor choice is done
uniformly then, for an edge , where has degree and
where has degree , . Note
that does not rule the construction of the sequence of graphs

, which is imposed to us, but it defines
which edge is selected in for an update at every iteration.

We have not defined final states; a PAGA theoretically never
terminates. Therefore, a termination algorithm should be run in
parallel. It is well known that an algorithm which detects con-
sensus requires at least bits at each node [17]. If there
are processes of votes, which majorities are to be computed in
parallel, then each node needs memory
bits: bits per process to code the PAGA states, and
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bits, which are common to the processes, to terminate the par-
allel computations. In that case, the termination algorithm de-
tects consensus, when the processes have converged to con-
sensus.

B. Voting PAGA

The possible votes are also called colors for simplicity. Let
be the set of the initial majority color(s) (there might be a

tie between several colors).
Definition II.2 (Voting PAGA for Set , and Graphs ): Let

be the set of colors. A voting PAGA is a pairwise asynchronous
graph automaton which admits the following prop-
erties.

• There is a set such that . Any state can be
written as ; is called the coordinate (or point)
of , and its color. By extension, an agent with state is
also said to have coordinate and color .

• For every color , there is a single state ,
which is adopted initially by the agents voting for ;

.
• When running with this initial state configuration, there is

almost surely a finite time after which all the agents in
have color in .

According to this definition, a voting PAGA solves the voting
problem for colors and network . Indeed, after iteration ,
all the agents know the majority vote based on their states. The
goal of this paper is to state sufficient conditions on
and for a PAGA to be a voting PAGA.

In this paper, is a set of points in that is carefully
chosen, because the set of states is determined by . Let

, and be the coordinates of , then we use state notations
and interchangeably.

Definition II.3 (Valid States With Respect to ): Let be
a set of points in . For any point ,

, where is the Euclidean distance. A valid
state with respect to is defined as follows:

is a valid state

In our work, the state set is taken as the set of valid states
with respect to a set :

. By extension, we say that a point has color
if . Note that point may have

several colors, whereas a state has a unique color .
In the next section, we give two simple examples of PAGA so

that the theory developed in Sections IV and V can already be
supported by concrete examples.

III. SIMPLE EXAMPLES OF VOTING PAGA

The two following PAGA are voting PAGA if the graphs
are independent and identically distributed (i.i.d.) in

, and if is a connected graph, i.e., graphs in
are jointly connected.

1) The 4-State Binary Voter: We recall here the 4-state au-
tomaton described in Section I-A and already derived in [1], in

order to get used to the geometrical framework in a simple ex-
ample. In the binary voter problem, and is
a line segment . The barycenter of the segment is thus
its center. To construct , we first define .
Then, according to Definition II.3,

. We choose for example the classical
function described in Section II. For every pair of states

, we define as follows:

(1)
As updates are pairwise asynchronous, we recommend to read
the table by pairs: and , and to check that,
as in pairwise gossip, the center of mass is conserved by the au-
tomaton updates. The reader can also check that this automaton
is the same as the one described in Fig. 1.

2) The 15 State Ternary Voter: In the ternary voter
problem, and is an equilateral
triangle . The barycenter of the simplex is lo-
cated at the intersection of the medians , , and

, where is the middle of . For 1,2,3,
let be the middle of . To construct , we first define

. Then,
according to Definition II.3,

. To simplify
notations, the states are numbered from 1 to 15 as in Fig. 3(b).
The set of initial states is . We
choose the same function as in previous automaton. For every
pair of states , we define as in Table I. Note
that 15 states can be coded on 4 bits.

To get familiar with the automaton, we suggest that
the reader checks some transitions (together with their
symmetric transitions), and locates them on Fig. 3(b):

. The ternary automaton
can be downloaded at [18].

IV. SUFFICIENT CONDITIONS TO CONSTRUCT VOTING PAGA

Our goal is to build a theoretical framework in which we can
show that all the automata we formulate in this paper do con-
verge and solve the voting problem in finite time with proba-
bility 1. In this section, we fix a set of colors , and we state
sufficient conditions on and for a PAGA
to be a voting PAGA on . We design the conditions such that
they are fulfilled by all the automata we present in this paper, so
that we can conclude that our automata are indeed voting PAGA.
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Fig. 3. Ternary voting problem. (a) The 15 states of the automaton described
in Section III-2 and (b) their numbering and their associated tiling.

TABLE I
TERNARY AUTOMATON

Before we state the conditions, we first need to set up a few def-
initions. is a regular simplex with vertices embedded in

the Euclidean space of dimension .
Definition IV.1 (Tiling Associated to ): A tiling associated

to is a set of tiles, which are convex polytopes with
positive volume, such that 1) the tile interiors are disjoint, 2) the
union of all tiles is equal to , and 3) any tile vertex is in .

Example IV.1: is a tiling associated to
from Section III-1. Fig. 4 shows two tilings asso-

ciated with points of Section III-2.
We design voting automata with a finite number of states

only. Therefore, the set of state coordinates is finite, and if
the barycenter of votes does not coincide with a point of ,

Fig. 4. Tilings for the triangle. (a) The tiling of the ternary automaton of
Section III-1. (b) Using the same points � as in (a), a tiling which does not
follow conditions �� and ��.

the automaton cannot reach a consensus on the coordinates of
. Instead, the idea is to have the agents coordinates converge

to several points in , where is the tile which contains
barycenter .

Definition IV.2 (Tile-Neighbor): Two points in are tile-
neighbors if and only if they belong to the same tile.

Definition IV.3 ( -Face, Colors of an -Face.): For any
, the -faces of a tile are recursively defined

as follows.
• If , then the only -face is itself.
• If , then the -faces are the intersections of the

tangent hyperplanes of dimension with the -face(s)
of .

In addition, the colors of an -face are the colors of its
barycenter (center of mass of its vertices); their set is

.
The vertices of an -face of a tile are also vertices of .

Therefore, they belong to .
The 0-faces are the vertices of the tiles, the 1-faces are their

edges, etc. In 3-D for example, a tetrahedral tile has four 0-faces,
six 1-faces, four 2-faces, and one 3-face (the whole tetrahedron
itself).

The study of -faces is important because it is possible that
the barycenter of votes lies on a face and not in the interior
of a tile. In this case, belongs to more than one tile. To avoid
any ambiguity, we will always consider the -face it belongs to,
and not only the tile(s) which contain(s) .

We are now ready to state the conditions on .
Condition IV.1 (on ): is constructed as in Definition II.3,

with a set of points , which admits an associated tiling such
that:

• Q1: No tile interior contains a point with several colors:
for any tile , for any in the interior of tile

.
• Q2: Any -face of any tile has at most one -face

that does not have exactly the same colors as .
If there is such an -face , then, for any point

, has exactly the same colors as .
• Q3: The tiling is consistent: if a set of points are pairwise

tile-neighbors, then they all belong to the same tile.
Remark IV.1: implies that all the interior points of a tile

share the same unique color. Indeed, if there were two points
of different colors, then, by continuity of the distance function,
there would be a two-color point somewhere between them; this
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Fig. 5. Example of vote barycenters (black hexagonal dots) with their corre-
sponding convergence cells (gray circular shapes) in the ternary voting PAGA
of Section III-1.

is forbidden by since the tiles are convex. The set of points
in that have more than one color form boundaries between
the strict majority zones, and they lie on tile faces of dimension
smaller than .

Fig. 4 shows two tilings associated with the set of the
automaton of Section III-2, one that follows Condition IV.1
[Fig. 4(a)] and one that does not [Fig. 4(b)].

Condition IV.2 (on ): The simplex vertices
and is the set , where the initial state of an agent
with vote is .

When running a PAGA, each agent should eventually hold a
state with the majority color (or a majority color in case of a tie).
In our setting, at any time, the agents hold states whose coordi-
nates have barycenter (by definition, is the barycenter of
the initial votes). These coordinates converge to some tile points

, whereas the states (coordinates + colors) converge to a
set of states, called a cell, which depends on . Then, if the
PAGA is correct, the states in this cell should admit the color(s)
of , and only the color(s) of . In Fig. 5, we show examples of
cells on the ternary automaton of Section III-1. The black dots
represent some locations of , and their corresponding conver-
gence cells are circled out. Note that a cell is defined relatively
to a face. It excludes the states of the vertices of this face, whose
colors are different from the colors of the face interior. Before
we can state conditions on , the notion of tiling needs therefore
to be refined. We will now properly define the notion of cell.

Definition IV.4 (Cell of a Face ): For any
, and for any -face of any tile, a cell

is constructed. Let be the colors of and
the coordinates of the points of . Then

is the subset of with coordinates and colors
. is said to have dimension .

Example IV.2: The binary voting PAGA
(Section III-1) with tiling has cells

and
. See Fig. 5 for some examples of cells of the

ternary voting PAGA (Section III-1)
Example IV.3: For any tile , we construct a cell of dimen-

sion with points , and one color: the color of the
interior of (Remark IV.1).

Example IV.4: Let be the barycenter of . It is easy to
show that . The cell of dimension 0 constructed with
is .

Lemma IV.1: Condition implies that all the elements of a
cell are valid states with respect to : .

Proof: Let be a tile from which an -face with colors
was constructed and consider its corresponding cell . From
Remark IV.1, the interior of tile has a unique color; denote
this color by . By continuity of the distance function, any point
in has color . In particular points in have
color . Therefore, if , by definition of the state space
( if and if has color ), . Suppose now
that (which excludes ), then by Definition IV.3,
the barycenter of has colors . In particular
lies on the perpendicular bisector of segment , which is
a hyperplane of dimension . If is not entirely included
in the bisector, then the bisector crosses , which is excluded
by . Indeed, if this was the case, there would be points in
that are equidistant from and : would also be a color
of . Therefore is included in the perpendicular bisectors
of all segments for , and any point of
is equidistant from . The points in already have
color , therefore they also have colors . In particular,
points in have colors , which proves that all
states in are valid states (see Definition II.3)

Remark IV.2: The previous proof also shows that all the
points in the -interior of an -face have exactly the same colors,
which are the colors of the -face. Indeed, we can replace
by any other interior point in the proof. Therefore, the second
part of Condition Q2 is a little redundant with Condition Q1
and could be restricted to “If there is such an -face ,
then, for any point , has exactly the
same colors as ,” where refers to the -interior of .

Definition IV.5 (Adjacent States): Two states are adjacent if
they belong to the same cell.

A state is adjacent with itself. The points of two adjacent
states are tile-neighbors, but the reverse statement is not true.
On the other hand, the following holds.

Lemma IV.2: Two states and are adjacent if
and only if points of coordinates and are tile-neighbors
and if and .

Proof: obvious. Suppose that and are
tile-neighbors and that they both have colors and . Let
be the face of smallest dimension containing and and
let be its dimension. Consider the Voronoi cells of points

. Then and belong to the Voronoi cells
of both and . Voronoi cells being convex, any points of
the segment also belong to these two Voronoi cells. In
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other words any points of the segment have colors
and . Face being the face of smallest dimension, then such
points are in the -interior of . By Remark IV.2, has colors

and , and the cell constructed with has these colors as
well.

Definition IV.6 (Smallest Cell): Let be a subset of a tile.
The smallest cell of is the cell of smallest dimension whose
points’ convex hull contains .

In the proofs of Theorems V.1 and V.2, we will show that the
states of the agents eventually belong to the smallest cell of the
barycenter of the votes. This will guarantee that the agents
eventually adopt the colors of , which are the majority colors.

Condition IV.3 (on ): Condition holds so that is orga-
nized in cells as in Definition IV.4. For any states
and , let and

. enjoys the following properties.
• : Conservation of the center of mass: .
• : Cell contraction: and are adjacent.
• : Mixing: if and are tile-neighbors, then

and .
• : Color swap: Let be the smallest cell of . If

is a color of , then . Similarly, if is a color
of , then .

• : Spatial contraction: There is a potential function
such that ,

where the inequality is an equality if and only if
and .

Remark IV.3: In practice, it is worth refining to “ swaps
tile-neighbor coordinates unless it is possible to further contract
them within their tile .” If there are coordinates and in

such that and such that
, then it is interesting to set and equal to and

in either order.
Remark IV.4: Let (barycenter of ) be the origin of the

Euclidean space where lies. Condition is called spatial
contraction condition because , which is a valid
potential function for the automata of Section III, has a simple
geometrical contraction interpretation. For any point of coordi-
nates , is the square distance to the origin of the Eu-
clidian space. Assume that holds and let

. Then satisfies if and only if
(except when and ):

and are inside the circle centered at which
goes through and . Indeed,

Fig. 6. Spatial contraction property (a) The pair of state updates for states in�
and� should lie in the gray circle for the function� ��� � � � to be a spatially
contracting potential function. (b) � ��� � � � is a valid potential function of
the ternary automaton of Section III-2. (a) Geometrical interpretation. (b) V for
ternary automaton.

The potential function satisfies the spatial contraction prop-
erty if and only if

The inequality should be strict as soon as states do not swap
coordinates. For the ternary automaton of Section III, can be
visualized in Fig. 6(b).

Condition IV.4 (on and ): is i.i.d. Let
be the finite set defined by . Let

be the set of edges that are chosen with positive
probability: . Graph

is connected, i.e., graphs are jointly
connected.

V. ALMOST SURE CONVERGENCE IN FINITE TIME

We prove in this section that our automata solve the multiple
voting problem.

Theorem V.1: Assume that Conditions 1, 2, and 3 hold for
a given PAGA. If there is a finite time after which all agents
states belong to the same cell, then, after , every agent color is
in .
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Proof: Let be the cell of smallest dimension the agents
states belong to after time , let be the face from which cell

is built, and let be the set of agents coordinates. Let be
the barycenter of the initial votes; has color(s) . In this
proof, we show that is the smallest cell of , that it implies
that has colors , and thus that agents have colors .
By Conditions IV.2 and (conservation of center of mass),

lies in the convex hull of the points of , i.e., . Let
be the smallest cell of , and be the face from which it

is built. We need to show that . First ( is a
face of ) because belongs to both faces, and is the one of
smallest dimension. Suppose that , then there is a point
of in . Tiles are convex, thus their faces are convex too.
Hence, any point in is not in the tangent hyperplane
to containing , and actually lies on one side only
of , but is a weighted barycenter of the points in , thus

cannot be in ; hence, . This contradicts .
Therefore, , and is the smallest cell of . Two cases
appear: 1) either constitutes a 0-face and then is the cell
built from the 0-face and color(s) ; 2) or is not a
0-face. Then , and has exactly the colors of
(Remark IV.2). The agents states are in ; thus, they have colors
in .

Theorem V.2 (Main Theorem): If and
satisfy Conditions 1, 2, 3, and 4, then

is a voting PAGA, i.e., there is a.s. a finite time after
which all the agents colors are in .

Let be the first time when all agents states are in the same
cell. By and , if and are adjacent states, then
swaps states: and . Therefore,
states remain in the same cell forever after . Note that states
remain in the same cell even when Remark IV.3 is implemented.
Thus, according to Theorem V.1, it is sufficient to show that
there is a time when all agents are a.s. in the same cell
to prove Theorem V.2.

Proof: This proof has two parts: “Coordinates” and
“Colors.” In the “coordinates” part, we use the spatial contrac-
tion property to set up a time after which states coordinates
are systematically swapped whenever two agents communicate.
We show that any pair of coordinates is eventually swapped
with probability 1 because the network is jointly connected. By

, updated states are adjacent, hence swapped coordinates
are tile-neighbors. As a consequence, at time , every pair
of agents a.s. has tile-neighbor coordinates. The tiling being
consistent, all the coordinates are a.s. in the same tile. Then we
need to show that states eventually adopt the “right colors,” i.e.,
the colors of a cell containing the coordinates of the agents.
This is proven in the “color part” of the proof. Condition
guarantees that there is an agent whose coordinates admit
only right colors. Each time an agent with coordinates
communicates with a neighbor, it transforms its neighbor’s
color into a right color. Since this coordinate travels in
the network thanks to , it eventually attracts all the colors
into . This is how the algorithm proceeds, and the proof
translates this phenomenon in the following way. Formally,
we show that there is a time after which the number of
right colors is maximum. Then we show that with probability

1, coordinate eventually meets all the colors. Therefore,
with probability 1, at time , all the colors of the agents were
already right colors.

Coordinates: For , let be the state
of agent at time . The sum of potential functions

is a non-increasing se-
quence , i.e., it is a Lyapunov function. Since there is a
finite number of states, the Lyapunov function can take only a
finite number of values. Thus, it reaches a minimum in finite
time . We first show that, after , all agents states are a.s.
pairwise tile-neighbors, i.e., they all belong to a tile .
Take a pair of agents and (with coordinates and at time

) and build the following sequence: ,
and for any ,

if and
communicate at time .

if does not
communicate at time .

(2)

if and
communicate at time .

if does not
communicate at time .

(3)

After , by , pairs of communicating agents swap coor-
dinates (otherwise decreases); therefore, for , agent

(respectively, ) has coordinates (resp., ). We con-
sider the joint process , which is a homoge-
neous Markov chain over the state space

(for any , ). Indeed, at
any time , depends on and on
the edge that is selected at random in an i.i.d. fashion at time
: is independent

of ( is i.i.d.). By Condition 4, the set of edges
such that forms a connected graph

. Therefore is irreducible. Moreover, for
any edge , the Markov chain
admits a positive transition probability from
state to state . It was shown in [1] that any transi-
tion with positive probability of an irreducible Markov chain
over a finite state set is used in finite time with probability 1.
Therefore, with probability 1, there is a finite time such that
agents and communicate and swap their coordi-
nates and at time . Condition imposes that updated
states are adjacent. Thus, and are tile-neighbors with prob-
ability 1. Therefore, at time , states coordinates are a.s. pair-
wise tile-neighbors.

Colors: Let be the smallest cell that the agents coordinates
occupy at time , and we claim that all the agents states end up
in . If has dimension 0, then the agents states are necessarily
in at time (such a cell gathers all the colors of a given tile
vertex). Suppose now that has at least two states of different
coordinates. Let be its dimension and let be the set
of agents whose states are in , i.e., whose colors are colors of

. The sequence is a non-decreasing integer sequence;
thus, it reaches a maximum in finite time . Indeed, any
cell of smaller dimension than , and whose points are in ,
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Fig. 7. Ternary voter automaton with 39 states. The potential function in (b) is
� ��� � �� . (a) 39 states. (b) Potential � .

has the colors of and maybe some more; thus, implies
that any time an agent with a state in is activated, then its
activated neighbor in adopts its color (and thus its state).
Cell being the smallest cell of the agents coordinates, and
considering condition , there is at least one agent in
the network whose coordinates at time admits only colors
of . Let be its color. Now, take any other agent with state

at time , and build the same sequences
and as in (2), (3), with , . Then,
for , agent has state . Furthermore, if is
not a color of , then the color of agent at time is
not in either (otherwise would increase). At any time
, the coordinates of are . From the “coordinates” part of

the proof, we know that and communicate in finite time
with probability 1. Therefore, there is a.s. a finite time when
agents and communicate. Agent updates
its state to and agent updates to for some
color , such that states and are adjacent ,
but admits only colors in , and Lemma IV.2 shows that the
states and are adjacent only if has color ,
i.e., by statement , only if is a color of . Therefore, with
probability 1, is a color of , which is possible only if is a
color of as well (by statement ). In other words, for any
agent , at time (and after time ), its state is
a.s. in ; at time , agents states a.s. belong to a single cell .

Fig. 8. Ternary voter automaton with 33 states. The potential function in (b) is
not � ��� � �� . When the two circled states with � � � situated on both
sides of�� communicate, they update to� �� � �� and� �� � ��, one
with color 1 (white), the other with color 2 (gray). �� holds, but this updating
is not spatially contracting in the Euclidian sense. (a) 33 states. (b) Potential � .

VI. OTHER EXAMPLES OF VOTING PAGA

A. Binary and Ternary Voters

For the binary and the ternary voting problems at least, voting
PAGA are not unique. Sets from Section III-1 can be made
larger by adding for example a point in the middle of each edge
of each tile. This leads to automata with states that solve
the binary voting problem. For the ternary voting problem, refer
to Fig. 7 to see the new set , as well as its tiling and its asso-
ciated potential function .

A large set with a radically different tiling can also be de-
signed for the ternary voting problem, as shown on Fig. 8. The
resulting automaton is interesting because it is not spatially con-
tracting in the Euclidian sense. However, a potential function

can be found to show that the automaton does clas-
sify majority among three votes. Unfortunately, the automaton
has states, which still requires 6 bits. Remember
that the ternary PAGA of Section III-1 has 15 states, that can be
coded on 4 bits.

B. Practical Considerations on Larger Automata

Larger sets lead to voting PAGA which tend to reach con-
sensus on faster. Indeed, in situations close to a tie be-
tween two colors, the barycenter of votes are close to the fron-
tier between the two color zones. Having more possible states
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close to the frontier allows to have more agents in the network
holding a state which is strictly inside a color zone. These nodes
have the power of attracting the states that are on the frontier to
the correct color.

Their transition functions are omitted because they do not
fit on a page. However, if a proper tiling and a potential function

are given, the reader can easily build a correct function by
following the “instructions” of Condition IV.3. In a few words,
for any pair of states and .

1) Compute the center of mass .
2) If is inside a tile ,

• Look for two points and in , that have center of
mass .

• If there are several such pairs, take the pair that mini-
mizes .

• Assign and as updates and
. Out of the two possible assignments, it is

heuristically interesting (better speed of convergence) to
assign them in an order that maximizes

(4)

3) If is on a face .
• Look for two points and in , that have center of

mass , that minimize the sum of energies .
• Assign the update coordinates in order to maximize the

sum of distances as in (4).
• The update colors should be colors of . Follow

when possible. In the case where does not impose
any color, then choose arbitrarily any color of . We
recommend that if has several colors, then the two
updates should have different colors. Also it is more el-
egant to respect the symmetry of the triangle, and to im-
pose the same global number of updates of color 1, color
2, and color 3. The goal is not to give the advantage to
any color in the automaton in case of a tie between two or
three colors. Note that the triangle has a rotational sym-
metry, which makes perfectly balanced automata pos-
sible, whereas the tetrahedron is not rotationally sym-
metrical. It is thus difficult to construct well-balanced
automata on the tetrahedron.

To summarize, the tiling and the potential function contains
all the necessary information to code a correct automaton. From
a design point of view, constructing a new voting PAGA boils
down to finding a new tiling on which Conditions IV.1 and IV.3
can be applied.

C. Quaternary Voter

We have successfully built a quaternary voting PAGA.
1) Construction of Set : is a regular tetrahedron with

vertices , , , and and barycenter . Denote by
the middle of edge and form the orthogonal basis

with origin at . Consider the 3-D-lat-
tice generated by the -span of the basis, and let be the
intersection of with minus the points situated on the edges

Fig. 9. (a) Set � in the tetrahedron. (b) States and tiling for the quaternary
PAGA on the cut of � along the hyperplane � � � . A state ��� �� is rep-
resented by a circle of color � at position �. Color 1 is white, 2: black, 3: light
gray, 4: dark gray. � is the barycenter of face � � � . Note that Remark
IV.3 can be applied on the shaded 2-face. (c) The tiling, without the states. (a)
Set � . (b) States on a cut. (c) A cut of the tiling.

of different from and from .3 Set
generates 100 states, 25 of each color. See Fig. 9(b) and (a)

to visualize the 100 states, which are listed in Table II. Note
that 100 states can be coded on 7 bits.

2) Tiling: The 3-D-lattice cuts the tetrahedron in unit
cubes. Each unit cube is divided in six tiles, shaped as tetra-
hedra. The six tetrahedra in each cube share a common edge,
which is one of the four big diagonals.4 Therefore, for each unit
cube, one should choose one big diagonal. There are two case.

3This is useful to limit the number of states. Also, note that the quaternary
PAGA, restricted to each of the four faces of the tetrahedron should constitute a
ternary PAGA, which appears to be impossible if these points are not removed.
This simplex face constraint is the main difficulty in the design of voting PAGA
for arbitrary �.

4In more technical terms, the big diagonal is called the circumradius.
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TABLE II
STATE INDEXING FOR THE 4-VOTER AUTOMATON WITH 100 STATES. STATES 1,

26, 51, AND 76 ARE THE INITIAL STATES

1) The cube does not cross a frontier zone. Then, the big di-
agonal goes through the cube vertex closest to , where
is is the color of the cube.

2) The cube crosses a frontier zone. Then the big diagonal is
included in the frontier. Moreover no tetrahedron should
cross the frontier zone.

Finally, for cubes that are close to the edges of the tetrahedron,
we had to adapt the shape of the tiles to make the automaton
work. See Fig. 9(c).

3) Potential Function : Building the potential function
is slightly more complicated than for the triangle, since the qua-
ternary PAGA is not strictly spatially contracting in the Eu-
clidian sense. Indeed, if the middle of the coordinates of two
states is equal to the center of mass of a cube, then the updated
states should be the vertices of the big diagonal of the cube
chosen in the tiling construction. Now, if the two states are orig-
inally another big diagonal of the same cube, then the updates
do not spatially contract, i.e., they lie on the same sphere cen-
tered in . Therefore, is not appropriate. However,

works, as it adds a perturbation factor
that favors states aligned with . The resulting potential table
is given in Table III.

4) Transition Function : It is important to understand that
only the function is needed to implement a voting algorithm.
As we have already computed , one just needs to get , to
know which are the initial states and what are the states’ colors.
The transition function is a simple table that in-
dicates how to update the states for any pair of states. For the
tetrahedron, 10 000 entries have thus been computed, using all
the possible symmetries of the tetrahedron. The detailed con-
struction is omited here. The automaton can be downloaded at
[19].

5) Simulations: Fig. 10 shows a simulation, where the au-
tomaton runs on a ring network. The algorithms induced by the
automata can be slow and there are heuristics to make them con-
verge faster. For example, if nodes with state coordinate do

TABLE III
POTENTIAL FUNCTION FOR THE 100 STATES FOR THE 4-VOTER AUTOMATON.

� ��� � ����� � �
�
� ��

Fig. 10. Quaternary PAGA running on a ring of 108 agents with votes: 33
blacks, 30 dark grays, 25 light grays and 20 whites. The successive state color
configurations are shown with time increasing towards the right �� � ��	 �
��
 iterations per column�.

not wake up, it is easy to see that the algorithm still converges.
The algorithm is especially slow when the votes are close to a
tie. In that case, many nodes have a state at , and it is thus
worth making them silent. In a wireless network, by reducing
interference, the remaining nodes can decide to wake up more
often and attract states of other nodes to their color more effi-
ciently.

VII. CONCLUSION

A. Summary

In this paper, we focused on the multiple voting problem,
where every node votes for one candidate among can-
didates and needs to learn the majority vote of the network. We
stated a number of sufficient conditions for an automaton to
solve the multiple voting problem. We then designed automata
fulfilling these conditions for the cases of 2, 3, and 4 pos-
sible votes. These automata reach correctly consensus on the
majority color, but they do not have final states and at conver-
gence nodes keep swapping their coordinates. Simple parallel
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procedures need therefore to be implemented to detect that color
consensus is reached, and terminate the algorithm.

B. Further Work: More Than Four Votes and Extension to the
Ranking Problem

When more than four votes coexist in the network, we can
create algorithms based on the binary, ternary or quaternary au-
tomata to solve the multiple voting problem or even to rank all
votes by frequency of apparition (ranking or sorting problem).

For large , one can sequentially use the algorithms de-
signed for small to perform successive comparisons. For
example, ranking votes can be done with the binary
automaton sequentially performing pairwise comparisons. To
compare votes and votes with the binary automaton in the
presence of other votes , nodes with vote start with
initial state 0, nodes with vote start with initial state 1, and
nodes which hold another vote initialize their state to coordinate

(here 0.5 or 0.5 ) to be neutral. All in all, this sorting al-
gorithm requires 2 communication bits and uses
times the binary voting algorithm.

If time is more critical than memory, another voting or sorting
solution is to run the -ary automata ( 2, 3, or 4) in parallel,
in a way that allows to compare the frequencies of apparition of
all pairs of votes . To rank votes using the
binary automaton , one needs parallel processes,

thus requiring bits.
The number of parallel processes needed to compute the ma-

jority vote(s) for with the ternary (respectively, the
quaternary) automaton is more complicated: it is the minimum
number of triangles (respectively, complete graphs of 4 nodes)
needed to cover the complete graph of nodes. This number
scales as . For , it turns out that the best solution
is hybrid and demands a total of 15 bits. To compute majority
out of votes , one can compare in parallel

using the quaternary automaton 7 bits

using the ternary automaton 4 bits

using the ternary automaton 4 bits

Note that this procedure only computes the majority vote, but
we are only a small step away from a full sorting of the vote fre-
quencies, i.e., from solving the ranking problem. In the ternary
automaton of Section III-1, in the ternary automaton of Fig. 7
and in the quaternary automaton of Section VI-C, every cell cor-
responds to a specific vote ranking (see Fig. 11). Therefore, if
the algorithm which detects consensus computes the converging
cells of the parallel processes, every node can deduce the whole
vote ranking from the partial rankings.

C. Open Problems

Many related questions remain open. Do voting automata
exist for any ? The speed of convergence of the 2-bit au-
tomaton was studied in [20], but what is the speed of conver-
gence of a multiple voting automaton? How can the distribu-
tion of activated edges be optimized to speed up convergence?
Given a spatio-temporal process of message/agent losses, what
is the probability of error of the algorithm? Most importantly,

Fig. 11. Deducing ranking from cells.

what is the minimum number of bits that agents need to store/ex-
change in order to solve the multiple voting problem for a given

?
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