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Abstract

In this paper we study the simultaneous optimization of berth al-
location and quay crane assignment in seaport container terminals.
We propose a model based on an exponential number of variables
that is solved via column generation. An exact branch-and-price al-
gorithm is implemented to produce optimal integer solutions to the
problem. In particular, we present several accelerating techniques for
the master and the pricing problem that can be generalized to other
branch-and-price schemes. Computational results show that the pro-
posed approach outperforms commercial solvers. Furthermore, the
developed algorithm allows for a comparative analysis between the
hierarchical and the integrated solution approach that confirms the
added value of integration in terms of cost reduction and efficient
use of resources. To the best of our knowledge, this is the first ex-
act branch-and-price algorithm for both the berth allocation problem
and the berth allocation problem with quay crane assignment.
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1 Introduction

Containerized sea-freight transportation has grown dramatically over the
last two decades, much faster than other sea transportation modes. Con-
tainer traffic increased about 9.5% per year between 2000 and 2008, while
the average annual rate for cargo traffic was 5.3% (ISL, 2009). The share of
containerized trade in the world’s total dry cargo increased from 5.1% in
1980 to 25.4% in 2008 (UNCTAD, 2009).

Similarly to air transport and the airline industry, which have greatly
benefited from operations research (OR) since the 1950s (Barnhart et al.,
2003), maritime transport and seaport logistics represent a more recent
OR research field. It has mainly been pushed forward by the compet-
itive environment, forcing operators to optimize their cost to maintain
margins. The optimization of container terminal operations has received
increasing interest in the scientific literature over the last years and cur-
rent research directions in container terminal management point towards
the integrated planning of operations. This potentially yields to signifi-
cant improvements in terms of efficiency and productivity for the termi-
nal. From a mathematical point of view, the resulting integrated problems
are very complex. Therefore, large-scale optimization techniques need to
be designed in order to cope with this complexity and provide exact so-
lutions. In particular, column generation and branch-and-price schemes
represent nowadays the most successful tool to solve such complex prob-
lems (Lübbecke and Desrosiers, 2005). They have been recently applied
to maritime transportation (Grønhaug et al., 2010) and container terminal
management (Choo et al., 2010).

In this paper we present an exact algorithm for the integrated planning
of berth allocation and quay crane assignment in the context of container
terminal management. The problem aims at assigning vessels to berthing
positions, performing the scheduling of vessels in each berth and allocat-
ing quay cranes (QC) to vessels over a given time horizon, taking into
account the quay crane capacity of the terminal. Although different math-
ematical models and heuristic procedures have been designed for the joint
optimization problem (cf. the survey by Bierwirth and Meisel, 2010), no
exact approach has been proposed so far.

We propose a model for the integrated optimization problem based
on an exponential number of variables. The model exploits the problem
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structure and it is solved by column generation. Furthermore, we design
and implement an exact branch-and-price algorithm with the purpose of
proving good-quality bounds and optimal solutions to the problem. We
propose a specific branching scheme and several accelerating techniques
both for the pricing and the master problem. Compared to state-of-the-art
techniques such as bidirectional dynamic programming and dual stabi-
lization, we reduce the number of states in the pricing problem by defining
a new dominance rule and we speed up the dynamic programming (DP)
algorithm by introducing an incremental heuristic DP step. These tech-
niques, specifically designed for our problem, proved to be very useful
and can be easily generalized to other branch-and-price schemes. Further-
more, our algorithm can be adapted to solve the berth allocation problem
only. Therefore, the exact branch-and-price enables us to perform a com-
parative analysis between the hierarchical and the integrated optimization
approach that confirms the added value of integration in terms of cost re-
duction and efficient use of resources. To the best of our knowledge, this
is the first exact branch-and-price algorithm for both the berth allocation
problem and the berth allocation problem with quay crane assignment.

The paper is organized as follows. Recent contributions concerning the
integrated planning of berth allocation and quay crane assignment are re-
viewed in section 2. The joint problem is described in section 3, where the
mathematical model is presented. The column generation scheme is illus-
trated in section 4 while section 5 provides details on the implementation
of the exact branch-and-price algorithm. Computational results are dis-
cussed in section 6, including some insights on the comparison between
hierarchical vs integrated solution approaches. Section 7 concludes the
paper.

2 Literature review

The need for an efficient management of logistic activities at modern con-
tainer terminals is well recognized and there exists a rich literature of op-
timization models and algorithms designed for specific operational prob-
lems.

Vis and de Koster (2003) illustrate the main logistic processes in a con-
tainer terminal reporting about 50 references up to 2001. Steenken et al.
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(2004) present an exhaustive overview of optimization methods in con-
tainer terminal management, reviewing more than 200 references up to
2004; the survey has been recently updated by Stahlbock and Voss (2008).
A review of operations research methods in maritime logistics by Chris-
tiansen et al. (2004) focuses more generally on ship routing and schedul-
ing.

A promising research track is represented by the integrated optimiza-
tion of decision problems that are highly interdependent, yet usually solved
hierarchically by terminal’s planners, as pointed out by Vacca et al. (2007;
2010). In particular, a recent survey by Bierwirth and Meisel (2010) reviews
contributions on integrated solution approaches for the berth allocation
problem (BAP) and the quay crane assignment problem (QCAP).

The integrated planning of berth allocation and quay crane assign-
ment, introduced by Park and Kim (2003), has been further investigated
by Imai et al. (2008) and Meisel and Bierwirth (2009). The resulting mod-
els represent a good starting point for tackling such a complex problem;
however, they still present some unrealistic assumptions and limits. In
fact, the relationship between the number of quay cranes and the handling
time is ignored (Imai et al., 2008) or the crane productivity is assumed to
be proportional to the number of QCs (Park and Kim, 2003), although it is
known that quay cranes interference reduces the marginal productivity.

These unrealistic assumptions are addressed by the model proposed
by Giallombardo et al. (2010). The joint problem, called the Tactical Berth
Allocation Problem (TBAP), makes use of the concept of quay crane as-
signment profiles to capture real-world issues. A quay crane profile en-
codes the number of quay cranes assigned to a vessel along the time steps
that the vessel is berthed at the port. The new modeling feature is de-
signed to include some requirements that terminals impose on the quay
crane assignment process: quay cranes can be moved from one vessel to
another only at the end of a working shift; productivity losses due to crane
interference are taken into account in the profile definition as well as ves-
sels’ priorities in terms of number of quay cranes and handling time. The
authors propose two mixed integer programming (MIP) formulations and
a heuristic algorithm based on tabu search and mathematical program-
ming techniques, and provide computational results based on real-world
instances.

From an algorithmic point of view, all the mentioned approaches rely
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on heuristic methods to provide good and fast solutions. To the best of our
knowledge, the only attempt to solve exactly the berth allocation problem
(without quay crane assignment) is the one by Buhrkal et al. (2011): the
authors present a generalized set-partitioning model for the discrete BAP
where all columns are enumerated a-priori. The formulation outperforms
existing models (e.g. Imai et al., 2001; Cordeau et al., 2005) and guarantees
optimality; however, authors recognize that a branch-and-price algorithm
should be implemented in order to solve larger instances.

From the reviewed contributions we remark that there exists no exact
algorithm for the integrated planning of berth allocation and quay crane
assignment. However, we believe that it is important to characterize opti-
mal solutions and in this paper we intend to exploit the problem structure
in order to design an exact algorithm able to cope with the problem com-
plexity.

3 The model

We consider the problem defined by Giallombardo et al. (2010) for the Tac-
tical Berth Allocation Problem.

Given a set of vessels and a set of berths, the joint optimization problem
aims at assigning a berthing position and a quay crane assignment profile
to every vessel over a given time horizon as well as at scheduling incom-
ing vessels according to their time windows. The objective is to maximize
the difference between the revenue associated with the chosen quay crane
profiles and the housekeeping costs generated by transshipment flows ex-
changed by the vessels.

A monetary value is associated with every quay crane profile, which
corresponds to the price charged by the terminal to the shipping compa-
nies for the provided service.

The key point is that the handling time associated with the vessel di-
rectly depends on the number of assigned quay cranes and thus on the
assigned profile. Furthermore, the total capacity of the terminal in terms
of quay cranes cannot be exceeded.

Time is discretized in time steps of constant length (one hour in our
study).

The input data of the Tactical Berth Allocation Problem are:
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N set of vessels;
M set of berths;
H set of time steps;
Pi set of feasible quay crane assignment profiles for vessel i ∈ N;
tpi handling time associated with profile p ∈ Pi, i ∈ N, expressed

as number of time steps;
vpi monetary value associated with the quay crane profile p ∈ Pi;
qpu
i number of quay cranes used by profile p ∈ Pi, i ∈ N at time

step u ∈ (1, ..., tpi );
Qh maximum number of quay cranes available at time step h ∈ H;
fij number of containers exchanged between vessels i, j ∈ N;
dkw unit housekeeping cost between yard slots corresponding to

berths k,w ∈ M;
[ai, bi] [earliest, latest] feasible arrival time step of ship i ∈ N;
[ak, bk] [start, end] of availability time step of berth k ∈ M.

Our model is based on the concept of berth sequence, a sequentially or-
dered subset of ships in a berth with an assigned quay crane profile. We
define the set Ωk for every k ∈ M that represents the set of all sequences
of vessels moored at berth k, feasible with respect to time windows con-
straints and with a unique quay crane profile assigned to each vessel.

In order to model sequences of vessels in berth k ∈ M, the graph Gk =

(Vk, Ak) ∀k ∈ M is defined, where Vk = N∪{o(k), d(k)} and o(k) and d(k)

are additional vertices representing berth k. The set of arcs Ak ⊆ Vk × Vk

represents feasible precedence relationships between vessels: an arc (i, j)

exists if vessel i can precede vessel j according to their time windows.
The decision variables of our optimization problem are:

• xkij ∈ {0, 1} ∀k ∈ M, ∀(i, j) ∈ Ak, equal to 1 if ship j is scheduled after
ship i at berth k, and 0 otherwise;

• yk
i ∈ {0, 1} ∀k ∈ M, ∀i ∈ N, equal to 1 if ship i is assigned to berth k,

and 0 otherwise;

• λp
i ∈ {0, 1} ∀p ∈ Pi, ∀i ∈ N, equal to 1 if ship i is served by the profile

p, and 0 otherwise;

• srk ≥ 0 ∀rk ∈ Ωk, associated with the selection of sequence rk. At
optimality, srk assumes binary values: it equals 1 if sequence rk is
chosen in the optimal solution and 0 otherwise.
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Every berth sequence rk ∈ Ωk is described by the following coefficients:
xijrk binary coefficient equal to 1 if vessel j follows vessel i in sequence rk;
yirk binary coefficient equal to 1 if vessel i is moored at berth k in sequence rk;
λp
irk

binary coefficient equal to 1 if profile p is assigned to vessel i in sequence rk;
qh
rk

coefficient that counts the number of quay cranes used by sequence rk
at time step h;

vrk monetary value associated with sequence rk, defined as
vrk =

∑
i∈N

∑
p∈Pi

λp
irk
vpi .

The Tactical Berth Allocation Problem is formulated as follows:

max
∑

k∈M

∑

rk∈Ωk

vrksrk −
∑

i,j∈N

∑

k,w∈M

fijdkwy
k
iy

w
j (1)

∑

k∈M

∑

rk∈Ωk

yirksrk = 1 ∀i ∈ N, (2)

∑

k∈M

∑

rk∈Ωk

qh
rk
srk ≤ Qh ∀h ∈ H, (3)

∑

rk∈Ωk

srk ≤ 1 ∀k ∈ M, (4)

∑

rk∈Ωk

xijrksrk = xkij ∀i, j ∈ N, ∀k ∈ M, (5)

∑

rk∈Ωk

yirksrk = yk
i ∀i ∈ N, ∀k ∈ M, (6)

∑

k∈M

∑

rk∈Ωk

λp
irk
srk = λp

i ∀p ∈ Pi, ∀i ∈ N, (7)

srk ≥ 0 ∀rk ∈ Ωk, ∀k ∈ M, (8)

xkij ∈ {0, 1} ∀(i, j) ∈ Ak, ∀k ∈ M,(9)

yk
i ∈ {0, 1} ∀i ∈ N, ∀k ∈ M, (10)

λp
i ∈ {0, 1} ∀p ∈ Pi, ∀i ∈ N. (11)

The objective function (1) maximizes the difference between the total
monetary value associated with the selected sequences, i.e., the total value
of selected profiles, and the total housekeeping cost generated by the berth
allocation plan. Constraints (2) ensure that every ship is assigned to ex-
actly one sequence, and thus to one berth, while constraints (3) ensure
that the quay crane capacity is not violated. Constraints (4) select at most
one sequence for each berth. Constraints (5)-(8) link decision variables xkij,
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yk
i and λp

i to srk . Finally, the integrality of the solution is ensured by con-
straints (9)-(11).

The proposed model relies on an exponential number of variables srk
and it is therefore solved by the means of column generation. To this pur-
pose, the quadratic objective function is linearized by adding a new deci-
sion variable zkwij = yk

i y
w
j , as suggested by Giallombardo et al. (2010).

Furthermore, we remark that model (1)–(11) corresponds to the Dantzig-
Wolfe reformulation of the TBAP model by Giallombardo et al. (2010).
Indeed, constraints (5)-(8) represent the so-called coupling constraints that
make the link between variables of the compact formulation (xkij, y

k
i and

λp
i ) and variables of the extensive formulation (srk).

4 Column generation

The linear relaxation of formulation (1)–(11), linearized by the means of
zkwij variables, is solved via column generation. In this section we define the
master problem and the pricing subproblem and we illustrate the column
generation scheme.

4.1 Master problem

If we relax the integrality requirements (9)-(11), constraints (5)-(7) become
redundant and can be removed from the formulation. We obtain the fol-
lowing master problem:
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max
∑

k∈M

∑

rk∈Ωk

vrksrk −
∑

i,j∈N

∑

k,w∈M

fijdkwz
kw
ij (12)

∑

k∈M

∑

rk∈Ωk

yirksrk = 1 ∀i ∈ N, (13)

∑

k∈M

∑

rk∈Ωk

qh
rk
srk ≤ Qh ∀h ∈ H, (14)

∑

rk∈Ωk

srk ≤ 1 ∀k ∈ M, (15)

∑

k∈M

∑

w∈M

zkwij = gij ∀i, j ∈ N, (16)

∑

rk∈Ωk

yirksrk − zkwij ≥ 0 ∀i, j ∈ N, ∀k,w ∈ M,(17)

∑

rw∈Ωw

yjrwsrw − zkwij ≥ 0 ∀i, j ∈ N, ∀k,w ∈ M,(18)

zkwij ≥ 0 ∀i, j ∈ N, ∀k,w ∈ M,(19)

srk ≥ 0 ∀rk ∈ Ωk, ∀k ∈ M. (20)

where constraints (16)–(19) are due to the linearization of objective func-
tion (1).

The resulting linear program involves an exponential number of vari-
ables (columns). Therefore, the column generation scheme starts solving a
restricted master problem, defined on a subset of columns and, at each itera-
tion, it generates new profitable columns to be added to the formulation,
if any.

4.2 Pricing subproblem

Let π, µ, ξ, θ and η be the dual vectors associated with constraints (13),
(14), (15), (17) and (18), respectively. Given an optimal solution of the
restricted master problem, the reduced cost of sequence r ∈ Ωk is given
by:

ṽrk = vrk −
∑

i∈N

πiyirk −
∑

h∈H

µhqh
rk
− ξk −

∑

i,j∈N

∑

w∈M

θkw
ij yirk −

∑

i,j∈N

∑

w∈M

ηkw
ij yjrw .

The pricing subproblem identifies, for every berth k ∈ M, the column
r∗k with the maximum reduced cost. Additional decision variables are:
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• Ti ≥ 0, representing the arrival time step of ship i ∈ N;

• To ≥ 0, representing the time step when operations start in the berth;

• Td ≥ 0, representing the time step when operations end in the berth.

The pricing subproblem is formulated as follows:

max
∑

i∈N

(vpi λ
p
i−πiyi)−

∑

i∈N

∑

p∈Pi

∑

h=1...t
p
i

µTi+h−1qph
i λp

i−ξk−
∑

i,j∈N

∑

w∈M

(θkw
ij yi+ηkw

ij yj)

(21)
∑

j∈N∪{d}

xo,j = 1, (22)

∑

i∈N∪{o}

xi,d = 1, (23)

∑

j∈N∪{d}

xij −
∑

j∈N∪{o}

xji = 0 ∀i ∈ N, (24)

∑

j∈N∪{d}

xij = yi ∀i ∈ N, (25)

Ti +
∑

p∈Pi

tpi λ
p
i − Tj ≤ (1− xij)M1 ∀i ∈ N, ∀j ∈ N ∪ {d(k)}, (26)

To − Tj ≤ (1− xo,j)M2 ∀j ∈ N, (27)

aiyi ≤ Ti ∀i ∈ N, (28)

Ti ≤ biyi ∀i ∈ N, (29)

ak ≤ To, (30)

Td ≤ bk, (31)
∑

p∈Pi

λp
i = yi ∀i ∈ N, (32)

xij ∈ {0, 1} ∀(i, j) ∈ Ak, (33)

yi ∈ {0, 1} ∀i ∈ N, (34)

λp
i ∈ {0, 1} ∀p ∈ Pi, ∀i ∈ N, (35)

Ti ≥ 0 ∀i ∈ N ∪ {o, d}, (36)

where M1 and M2 are large positive constants.
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The objective function (21) maximizes the reduced cost of a column
in berth k. Constraints (22)–(24) ensures flow conservation, while vari-
ables yi are linked to variables xij by constraints (25). Precedence con-
straints (26)–(27) and time windows constraints (28)–(31) ensure the cor-
rect scheduling of vessels over time while the profile assignment is con-
trolled by the set of constraints (32). Finally, constraints (33)–(36) define
the domain of variables.

We remark that index k has disappeared from decision variables x and
y with respect to the notation introduced in section 3, since the pricing
subproblem is solved for a fixed berth k.

At each iteration of column generation, we solve m = |M| subprob-
lems, one for every berth k ∈ M. If ṽr∗

k
> 0 for some k, we add column

sr∗
k

to the restricted master problem and we iterate the process; otherwise,
the current solution of the master problem is proven to be optimal and we
stop.

4.2.1 Dynamic programming

The pricing subproblem (21)-(36) can be cast to a Resource Constrained
Elementary Shortest Path Problem (RCESPP), where the resource is repre-
sented by time, and it is solved by the means of dynamic programming.
The underlying network G(V,A) has one vertex for every vessel i ∈ N,
for every profile p ∈ Pi and for every time step h ∈ H. Transit time on
arcs equals the handling time of profile p ∈ Pi assigned to vessel i. Vertex
(i, h, p) represents vessel i berthed at time step h and operated by quay
crane profile p. The graph has two additional vertices o, d associated with
the specific berth k ∈ M for which the pricing is solved, representing the
origin and the destination of the path.

The RCESPP aims at finding a maximum-cost elementary path from
o to d that satisfies the constraints on resources: the objective function of
the RCESPP associated with the pricing subproblem corresponds to (21),
while the resource constraint requires not to exceed the given time hori-
zon.

The dynamic programming (DP) algorithm iteratively extends states.
A state for vertex (i, h, p) represents a path from o to (i, h, p); many states
are associated with the same vertex (i, h, p), representing different paths.
Each state is encoded by a label of the form (S, τ, C, i, h, p), that is a path
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from o to (i, h, p) with time consumption τ and cost C; furthermore, to
ensure elementarity, set S keeps tracks of vessels visited along the path
(Beasley and Christofides, 1989). The optimal solution is given by the max-
imum cost state associated with the destination vertex d.

At vertex o, time consumption τ is initialized at 0 and S = {o}; cost C
is initialized to −ξk, where k is the berth for which the pricing problem
is being solved. When extending state (S, τ, C, i, hi, pi) to another feasible
state (S′, τ′, C′, j, hj, pj), the label is updated according to the formula:

S′ = S+ {j} (37)

τ′ = hj + t
pj
j (38)

C′ = C+ vpj − πj −

hj+t
pj
j∑

h=hj

µhq
pj(h−hj)

j −
∑

n∈N

∑

w∈M

(θkw
jn + ηwk

nj ) (39)

The extension is feasible if j /∈ S (elementarity), τ′ < |H| (total duration)
and hj satisfies time windows [aj, bj].

The efficiency of dynamic programming strongly depends on the ef-
fectiveness of dominance rules that are used to fathom feasible, yet non-
optimal states. In particular, dominated states are not extended further.
According to Beasley and Christofides (1989), state (S′, τ′, C′, j, hj, pj) dom-
inates (S′′, τ′′, C′′, j, hj, pj) if:

S′ ≤ S′′ (40)

τ′ ≤ τ′′ (41)

C′ ≥ C′′ (42)

and at least one of these inequalities is strictly satisfied.

5 Branch-and-price algorithm

In order to obtain integer solutions, we implement a branch-and-price al-
gorithm where column generation is applied at every node of the search
tree. The search tree is explored according to a best-first strategy with re-
spect to the upper bound associated with the node. The algorithm makes
use of a column pool that keeps track of all columns generated in different
nodes of the search tree.

In the remainder of this section we illustrate the branching rules as well
as accelerating techniques both for the pricing and the master problem.
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5.1 Branching scheme

In the search tree, branching is required when the master problem is solved
at optimality and the corresponding solution in terms of original formula-
tion’s variables is not integer. We implement a branching scheme consist-
ing of four hierarchical levels.

1. If the total number of berths K̃ =
∑

k∈M

∑
rk∈Ωk srk is fractional, then

branching requires an additional constraint to be added in the master
problem:

•
∑

k∈M

∑

rk∈Ωk

srk ≤ bK̃c on the first child node;

•
∑

k∈M

∑

rk∈Ωk

srk ≥ dK̃e on the second child node.

This branching requires the dual value associated with the additional
constraint, denoted by π0, to be collected and accounted in the pric-
ing subproblem. We remark that π0 is a constant, regardless of the
berth. In particular, the additional constraint in the master problem
modifies the objective function of the pricing subproblem as follows:

max vrk −
∑

i∈N

πiyirk −
∑

h∈H

µhqh
rk
−ξk−

∑

i,j∈N

∑

w∈M

(θkw
ij yirk +ηkw

ij yjrw)−π0.

2. If some vessel i ∈ N is assigned fractionally to some berth k ∈ M, i.e.,
quantity Ỹk

i =
∑

rk∈Ωk y
rk
i srk is fractional, then the branching requires

an additional constraint to be added to the master problem for the
given vessel i and berth k:

•
∑

rk∈Ωk

yrk
i srk = 0 on the first child node;

•
∑

rk∈Ωk

yrk
i srk = 1 on the second child node.

This branching requires the dual value associated with the additional
constraint, denoted by ϕk

i , to be taken into account in the pricing
subproblem. We remark that ϕk

i is collected in the pricing for berth
k if vessel i is visited by the sequence. In particular, the additional
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constraints in the master problem modify the objective function of
the pricing subproblem as follows:

max vrk−
∑

i∈N

πiyirk−
∑

h∈H

µhqh
rk
−ξk−

∑

i,j∈N

∑

w∈M

(θkw
ij yirk+ηkw

ij yjrw)−π0−
∑

i∈N

ϕk
iyirk.

3. If some profile p ∈ Pi is assigned fractionally to some vessel i ∈ N,
i.e., quantity Λ̃p

i =
∑

k∈M

∑
rk∈Ωk λ

prk
i srk is fractional, then branching

is handled directly in the pricing subproblem by modifying the set
Pi of feasible profiles for vessel i. On the first node child, we enforce
profile p to be assigned to vessel i by removing all other feasible pro-
files from set Pi; this branching corresponds to enforce λp

i = 1 in the
original formulation. On the second child node, we prevent profile
p to be used by removing it by set Pi; this branching corresponds to
enforce λp

i = 0 in the original formulation. We remark that neither
the master nor the pricing formulation is modified by this branching
in terms of objective function and additional constraints. However,
infeasible columns must be removed from the master problem, ac-
cording to the branching decision associated with the analyzed node.

4. If none of the above conditions holds, then there exist some vessel
i ∈ N such that the quantity T̃h

i =
∑

k∈M

∑
rk∈Ωk T

hrk
i srk is fractional

for some h∗ ∈ H, where Thrk
i is a binary coefficient equal to 1 if ves-

sel i arrives at time step h in sequence rk. In this case, branching
is handled in the pricing subproblem, by modifying the time win-
dows [ai, bi] associated with vessel i, as similarly proposed by Géli-
nas et al. (1995) for the Vehicle Routing Problem. We denote t∗i the
arrival time associated with time step h∗. On the first child node, we
enforce the vessel to arrive before time step h∗: the new time win-
dows for vessel i are therefore [ai, t

∗

i − ε] and this corresponds to
enforce γh

i = 0 ∀h ≥ h∗ in the original formulation. On the second
child node, we enforce the vessel to arrive at or after time step h∗:
the new time windows for vessel i are therefore [t∗i , bi] and this cor-
responds to enforce γh

i = 0 ∀h < h∗ in the original formulation. We
remark that neither the master nor the pricing formulation is modi-
fied by this branching in terms of objective function and additional
constraints. However, infeasible columns must be removed from the
master problem, according to the branching decision associated with
the analyzed node.
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The order of branching is determined by the increasing complexity of
the branching rules due to additional constraints in the master problem or
additional complexity of the pricing problem.

5.2 Accelerating techniques

5.2.1 Solving exact dynamic programming

We implement state-of-the-art techniques for solving the RCESPP such
as bounded bidirectional dynamic programming and decremental state
space relaxation.

Bounded bidirectional DP (Righini and Salani, 2006) consists of two
steps: firstly, states are extended in forward and backward direction un-
til half of the so-called critical resource (time, in our case) is consumed;
secondly, forward and backward paths are joined to produce feasible se-
quences. Bounding is used to discard non-dominated non-optimal states.

The basic idea of decremental state space relaxation (Righini and Salani,
2008) is to start checking elementarity only on a subset S̄ of S. If the final
solution is non-elementary, one or more vertices violating the constraint
are added to S̄ and DP is executed again.

The implemented search policy takes into account time windows (Liberatore
et al., 2011). At every iteration of dynamic programming, states are ex-
plored according to the vertices (vessels) they are associated with. We
decide to sort vessels according to the starting time ai of their time win-
dows; this search strategy proves to be important for the effectiveness of
the algorithm in our tests.

Furthermore, we design an additional technique for accelerating the
exact pricing, that is specifically designed for our pricing subproblem.

Domination of (h,p) pairs Unlike RCESPP subproblems arising in vehi-
cle routing, where customers are visited one right after the other, in our
problem it may be convenient to wait some time between the departure of
a vessel and the arrival of the next one. This is due to the quay crane ca-
pacity constraint, that control the interactions between berths at the master
problem level; in particular, these interactions are captured by dual vec-
tors θ and η. More specifically, when extending a label to the next vessel
j, we have as many new states as the number of feasible arrival time steps
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hj; furthermore, we may have more than one profile pj associated with a
single time step hj and viceversa. In order to reduce the number of states,
preprocessing is performed at the beginning of the DP algorithm: we pop-
ulate a list of non-dominated (hj, pj) pairs for every vessel j and we refer
to this list when extending a label to vessel j. We remark that in the special
case of θ = 0 and η = 0, the list has at most one pair (hj, pj) for every
profile pj.

5.2.2 Heuristic pricing

The pricing subproblem is firstly solved heuristically. An exact solution is
computed only if needed.

The heuristic dynamic programming algorithm is based on a relaxed
dominance rule that allows to eliminate much more states during the com-
parison of labels (Dell’Amico et al., 2006). The final solution is an elemen-
tary shortest path that satisfies resource constraints; however, optimality
is no longer guaranteed. When using relaxed dominance, we say that state
(S′, τ′, C′, j, hj, pj) dominates (S′′, τ′′, C′′, j, hj, pj) if:

τ′ ≤ τ′′ (43)

C′ ≥ C′′ (44)

and at least one of these inequalities is strictly satisfied. In other words,
we do not compare anymore the set of vertices S′, S′′ visited by the partial
paths. As the dominance is weaker, the number of eliminated labels is
greater. This results in a reduced computational effort to solve the pricing.
In particular, we remove from the dominance criteria the set S of visited
nodes as it encodes the combinatorial nature of the problem. After its
removal the solution can be found in pseudo-polynomial time.

Furthermore, the following accelerating techniques are implemented
with the main purpose of avoiding the call to exact pricing as much as
possible.

Multiple pricing strategy At every iteration of column generation, we
firstly solve a pricing subproblem for every berth k ∈ M using the heuris-
tic dynamic programming algorithm; exact DP is called only if heuristic
pricing cannot provide a negative reduced cost column. As soon as we
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find a negative reduced cost column for some berth k∗, the pricing termi-
nates. At this point, columns generated for berth k∗ are evaluated for all
berths k 6= k∗, k ∈ M: if a column is feasible for another berth, say k̄, and
its reduced cost re-computed for berth k̄ is strictly positive, then the col-
umn is duplicated and added to the master problem also for berth k̄. This
strategy provides a fast column generation, avoiding the time-consuming
pricing subproblem for berth k̄.

Incremental heuristic dynamic programming The basic idea is to incre-
mentally strengthen the relaxed dominance rule introduced for the heuris-
tic pricing, in order to increase the probability of finding a negative re-
duced cost column and therefore avoid calling exact DP. We define the set
of critical vertices Ñ ⊂ N for which exact dominance is required, similarly
to decremental state space relaxation (Righini and Salani, 2008); the set Ñ
is initialized with the empty set, and it is iteratively incremented until a
given percentage δ of vertices is reached. At each iteration, β|N| critical
vertices are chosen from the set N \ Ñ. Vertices with the greatest associ-
ated non-negative dual price are chosen. The dominance rule is the one
described in section 4.2, except for the definition of set S: a vertex j be-
longs to S if it is visited by the partial path and if j ∈ Ñ. The first iteration,
when Ñ = {∅}, corresponds to the heuristic DP algorithm outlined at the
beginning of this subsection; the special case of δ = 1 corresponds to exact
dynamic programming. In our tests, we fix β = 0.2 and δ = 0.4.

5.2.3 Dual stabilization

Column generation is known to suffer slow convergence (tailing-off ef-

fect) mainly due to stability problem. Degeneracy of the master prob-
lem implies an infinite number of dual optimal solutions: the simplex
method typically provides an extreme dual optimal vector, whereas in-
terior dual vectors could be more suitable for generating good paths in
the pricing subproblem. Stabilization methods try to overcome this is-
sue by providing a better approximation of optimal dual values (du Merle
et al., 1999; Rousseau et al., 2007).

Our stabilized version of column generation is inspired by Addis et al.
(2009). The basic idea is the following: a dual optimal solution π to the
restricted master problem can be either feasible, and thus optimal, or in-
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feasible for the dual of the complete master problem. We are mainly inter-
ested in pricing out with a dual vector close to the optimal dual, thus close
to feasibility.

We define the stability center π̄ that represents our current best guess
for the optimal dual. At each iteration of column generation, we modify
the dual vector provided by the restricted master problem and we obtain
a new vector π̃ that we use in the pricing problem. The update formula is
clear and simple:

π̃ = απ+ (1− α)π̄, (45)

where α is a parameter between 0 and 1. At every iteration of column
generation the value of α is initialized to α0 = 0.5 and it is increased by a
step of 0.1 until positive reduced cost columns are found. The process is
repeated until α = 1 and no positive reduced cost columns can be found.

5.2.4 Primal heuristic

Integer feasible solution are rarely produced in column generation, as the
optimal solutions of restricted master problems are typically fractional.
Therefore we implement a primal heuristic in order to identify feasible in-
teger solutions during the search process: the main purpose is to improve
the primal bound, and thus increase the pruning in the search tree.

The heuristic algorithm takes as input a fractional optimal solution to
a restricted master problem and identifies the variable s∗rk with the highest
fractional value strictly lower than 1; variable s∗rk is set equal to 1 and the
linear program is solved again. The procedure is repeated until either a
integer solution is found or the linear problem becomes infeasible.

Although very simple, the primal heuristic proves to be helpful in find-
ing integer solutions especially for larger instances.

5.2.5 Initialization

The master problem is initialized with a set of artificial variables that sat-
isfy constraints (13), (17) and (18).

A second initialization makes use of the solution provided by the heuris-
tic algorithm by Giallombardo et al. (2010): columns associated to the ini-
tial solution are added to the master problem at the root node.
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6 Computational results

The branch-and-price algorithm for the TBAP is implemented in C++ and
compiled with gcc 4.1.2. All restricted master problems are solved using
ILOG CPLEX version 12. Computational experience is run under a linux
operating system on a 2Ghz Intel processor equipped with 2GB of RAM.

6.1 Instances

Computational experiments are performed on instances derived by the
test set introduced by Giallombardo et al. (2010). We consider instances
with 10 up to 20 vessels and 3 up to 5 berths over a time horizon of one
week. The name of the instance indicates the traffic volume, high (H) or
low (L), and the number of feasible quay crane assignment profiles for
each vessel (10, 20 or 30).

In addition to the existing instances, an intermediate class of instances
is defined. The new set considers 15 vessels and 3 berths over a time hori-
zon of one week; these instances are obtained by considering the first 15
vessels and the first 3 berths of the class 20 x 3. Furthermore, we consider
an additional set of instances for class 20 x 5 where the time horizon is
shortened from seven to four working days; this new class is denoted by
the suffix 4d in the instance name.

6.2 Branch-and-price results

We compare our branch-and-price algorithm to the mixed integer linear
programming (MILP) formulation by Giallombardo et al. (2010) solved by
CPLEX. The results presented by Giallombardo et al. (2010) have been re-
performed on our machines with CPLEX version 12.

Tables 1 and 2 report results for instances with 10 vessels and 3 berths
over a time horizon of one week. Table 1 provides a comparison between
the upper bound of the linear relaxation of the original MILP formula-
tion (zLP) and the upper bound obtained via Dantzig-Wolfe reformulation
(zDW), i.e., the optimal value of the master problem at the end of the root
node. Computational times are not reported, as they are negligible for
both cases. Column ’% zDW’ reports the percentage of the bound improve-
ment, that is always less than 0.5%, thus not very significant. However,
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10 x 3 Instance zLP zDW % zDW

10_3_H1_p10 800614 797594 0.38%
10_3_H1_p20 800890 797870 0.38%
10_3_H1_p30 800924 798136 0.35%

10_3_H2_p10 740947 738540 0.32%
10_3_H2_p20 741487 739190 0.31%
10_3_H2_p30 741523 739417 0.28%

10_3_L1_p10 519319 518334 0.19%
10_3_L1_p20 519354 518750 0.12%
10_3_L1_p30 519389 518785 0.12%

10_3_L2_p10 568152 566976 0.21%
10_3_L2_p20 568188 567012 0.21%
10_3_L2_p30 568224 567146 0.19%

Table 1: Linear relaxation results for 10 ships and 3 berths over 1 week.

the DW formulation proves to be much stronger than MILP when em-
bedded into a branch-and-bound framework. Indeed, we notice that, af-
ter one hour of computation, the CPLEX bound is unchanged, despite of
the depth of the search tree and the several branching decisions that have
been made. On the contrary, it is often sufficient to perform a few branch-
ing decisions to see an improvement in the bound provided by the master
problem.

The superiority of our approach is clearly shown in Table 2, that com-
pares our branch-and-price algorithm to the general-purpose MIP solver
on instances with 10 vessels; the root node initialization relies either on the
artificial variables only (B&P) or on the solution provided by the heuristic
by Giallombardo et al. (2010) (B&P + INIT ). Column opt_sol reports the
value of the optimal solution while column t(s) reports the computational
time of branch-and-price expressed in seconds; the time required by the
heuristic algorithm to provide the initial solution is denoted by t(init),
while the total computational time (initialization step + branch-and-price)
is denoted by t(tot). The best solution found by CPLEX in one hour of
computation is denoted by best_sol; the gap with respect to the optimal
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10 x 3 CPLEX (1h) B&P B&P + INIT

Instance best_sol GAP opt_sol t(s) opt_sol t(s) t(init) t(tot)

H1_p10 x ∞ 790735 21 790735 16 7 23
H1_p20 x ∞ 791011 25 791011 15 21 36
H1_p30 780722 1.30% 791045 10 791045 25 39 64

H2_p10 712669 2.81% 733276 2 733276 7 8 15
H2_p20 x ∞ 735646 7 735646 9 20 29
H2_p30 723818 1.61% 735682 9 735682 8 33 41

L1_p10 515902 0.00% 515902 7 515902 11 7 18
L1_p20 515991 0.40% 518049 5 518049 11 18 29
L1_p30 513731 0.84% 518084 27 518084 125 37 162

L2_p10 564831 0.00% 564831 9 564831 8 8 16
L2_p20 561504 0.60% 564867 7 564867 19 18 37
L2_p30 559389 0.98% 564903 8 564903 20 36 56

Table 2: Branch-and-price results for 10 ships and 3 berths over 1 week.

solution value is also reported.
The branch-and-price algorithm clearly outperforms CPLEX: it always

provides the optimal solution in a few seconds, whereas the MIP solver
often produces feasible solutions within a gap of 3%. In three cases, the
MILP formulation cannot find a feasible solution in one hour. Further-
more, we remark that CPLEX fails to prove optimality for instances L1_p10
and L2_p10 because of the poor linear relaxation bound, that cannot be im-
proved during the search in the branch-and-bound tree. Remarkably, for
this class of instances, our branch-and-price shows computational times
comparable (or even smaller) than the heuristic algorithm, while ensuring
optimality of the solutions. As a result, the heuristic initialization slows
down our branch-and-price algorithm. Still, the superiority with respect
to CPLEX is evident.

Computational results for instances with 15 vessels and 3 berths over a
time horizon of one week are reported in Tables 3 and 4. The improvement
of the linear relaxation bound is comparable to the one obtained for class
10 x 3 ( about 0.5%), and the computational time, although not negligible,
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15 x 3 Instance zLP zDW % zDW t(s)

15_3_H1_p10 1189962 1183344 0.56% 11
15_3_H2_p10 1292357 1285075 0.56% 11
15_3_L1_p10 1110159 1105395 0.43% 7
15_3_L2_p10 899876 896483 0.38% 320

Table 3: Linear relaxation results for 15 ships and 3 berths over 1 week.

15 x 3 CPLEX (1h) B&P B&P + INIT

Instance best_sol GAP opt_sol t(s) opt_sol t(s) t(init) t(tot)

H1_p10 x ∞ 1170783 3507 1170783 1448 34 1482
H2_p10 1250124 3.27% 1272236 3787 1272236 1673 32 1704
L1_p10 x ∞ 1098411 1203 1098411 898 116 1014
L2_p10 x ∞ 890211 8975 890211 3555 28 3583

Table 4: Branch-and-price results for 15 ships and 3 berths over 1 week.

is still reasonable (except for instance L2_p10). The branch-and-price al-
gorithm always finds the optimal solution. CPLEX is only able to provide
a feasible solution for instance H2_p10 within 3 hours of computational
time. Although the branch-and-price algorithm requires a significant ef-
fort in terms of computational time (about 2 orders of magnitude higher
than for class 10 x 3), the heuristic initialization is very effective in speed-
ing up the whole procedure: computational time is more than halved for
instances H1, H2 and L2 and reduced by a third for instance L1. All in-
stances are therefore solved within one hour.

Tables 5 and 6 report results for instances with 20 vessels and 5 berths
over a time horizon of 4 days. The linear relaxation bound is improved
on average by 2%; remarkably, the MILP linear relaxation bound is un-
changed, despite of the time horizon reduction and modified time win-
dows. This gives an insight of how much “fractional” the MILP linear
relaxation solution is. The root node is closed in about 5 minutes on av-
erage. In Table 6 we report the best solutions found after three hours of
computation: CPLEX is not able to provide any feasible solution, whereas
the branch-and-price algorithm always provides solution with a gap be-
tween 3% and 5%. Furthermore, the heuristic initialization produces a
gap reduction for all the instances.

Finally, tables 7 and 8 report the results for instances with 20 vessels
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20 x 5 Instance zLP zDW % zDW t(s)

20_5_H1_p10_4d 1383614 1356460 1.96% 315
20_5_H2_p10_4d 1474082 1444042 2.04% 136
20_5_L1_p10_4d 1298356 1274821 1.81% 483
20_5_L2_p10_4d 1103212 1084936 1.66% 373

Table 5: Linear relaxation results for 20 ships and 5 berths over 4days.

20 x 5 CPLEX (3h) B&P (3h) B&P + INIT (3h)

Instance best_sol GAP best_sol GAP best_sol GAP

H1_p10_4d x ∞ 1293184 4.66% 1305216 3.78%
H2_p10_4d x ∞ 1379208 4.49% 1381241 4.35%
L1_p10_4d x ∞ 1224458 3.95% 1231385 3.41%
L2_p10_4d x ∞ 1045778 3.61% 1050171 3.20%

Table 6: Branch-and-price results for 20 ships and 5 berths over 4days.

20 x 5 Instance zLP zDW % zDW t(s)

20_5_H1_p10 1383614 1369818 1.00% 721
20_5_H2_p10 1474082 1459341 1.00% 504
20_5_L1_p10 1298356 1287080 0.87% 520
20_5_L2_p10 1103212 1094480 0.79% 640

Table 7: Linear relaxation results for 20 ships and 5 berths over 1 week.

20 x 5 CPLEX (3h) B&P (3h) B&P + INIT (3h)

Instance best_sol GAP best_sol GAP best_sol GAP

H1_p10 x ∞ x ∞ 1337077 2.39%
H2_p10 x ∞ x ∞ 1429249 2.06%
L1_p10 1221191 5.12% 1256529 2.37% 1258150 2.25%
L2_p10 x ∞ 1059231 3.22% 1070543 2.19%

Table 8: Branch-and-price results for 20 ships and 5 berths over 1 week.
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10 x 3 Basic B&P Improved B&P

Instance t(s) % pricing t(s) % pricing speed up(%)

H1_p10 114 97% 21 10% 82%
H1_p20 995 97% 25 12% 97%
H1_p30 557 99% 10 18% 98%

H2_p10 12 82% 2 10% 83%
H2_p20 29 90% 7 11% 76%
H2_p30 25 92% 9 13% 65%

L1_p10 4054 99% 7 42% 100%
L1_p20 761 99% 5 62% 99%
L1_p30 470 99% 27 93% 94%

L2_p10 4697 99% 9 54% 100%
L2_p20 1573 99% 7 62% 100%
L2_p30 2680 99% 8 63% 100%

Table 9: Reduction of computational time obtained with the accelerating tech-

niques.

and 5 berths over a time horizon of one week. In Table 7 we can observe
that the improvement in terms of linear relaxation bound has slightly de-
creased (from 2% to about 1% on average) compared to the 4 days case.
Furthermore, the computational effort required by column generation has
increased, as it takes about 10 minutes on average to close the root node.
On the contrary, the MILP linear relaxation is solved in fractions of a sec-
ond.

Table 8 compares the best solutions found by CPLEX and our branch-
and-price algorithm after three hours of computation. We notice that the
increased size of the problem affects the efficiency of the algorithm, since
no instance is solved at optimality. However, branch-and-price still per-
forms better than CPLEX: it always provides feasible solutions with a gap
between 2% and 3%, whereas CPLEX finds a feasible solution only for in-
stance L1. Furthermore, the importance of a good initialization strategy is
emphasized by the results.

Summing up, computational experiments show that our specialized
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branch-and-price algorithm outperforms the general-purpose solver in terms
of quality of solutions and computational time. The results confirm that
designing sophisticated algorithms and exploiting the problem structure
is crucial when tackling large-scale optimization problems as the TBAP.

Most of the implemented accelerating techniques concern the pricing
problem. This is motivated by the fact that preliminary results produced
with a “basic” implementation of the branch-and-price algorithm (that
included only heuristic pricing as accelerating technique) point out that
about 99% of the computational time was spent in the pricing. The de-
sign of sophisticated and specialized techniques for the pricing problem
is extremely successful: we reduced the computational time by 90% on
average, as shown in Table 9. For the basic and the specialized imple-
mentation of the branch-and-price algorithm we report the computational
time (t(s)) and the percentage of time spent in solving the pricing prob-
lem (%pricing). The results confirm the large speed up produced by the
designed accelerating techniques on the solution process.

6.3 Hierarchical vs integrated planning

The exact branch-and-price algorithm enables us to perform a compara-
tive analysis between hierarchical and integrated optimization approaches
for the Tactical Berth Allocation Problem. In hierarchical planning, berth
allocation is solved first, according to an estimated handling time for the
vessels; in a second stage, the quay crane assignment is performed on the
resulting berth allocation plan. On the contrary, in the integrated planning
approach, the two problems are solved simultaneously.

Remarkably, our algorithm can be adapted to solve the berth alloca-
tion problem only. Whereas approaches based on column generation have
been recently proposed by Mauri et al. (2008) and Buhrkal et al. (2011),
it represents the first exact branch-and-price algorithm for the BAP. On
the other hand, the quay crane assignment is easily solved by a general-
purpose solver. For all the details concerning this experiment, including
the BAP and QCAP formulations, we refer the reader to Vacca (2011).

Handling time estimation In the hierarchical approach, the handling
time of vessels is assumed to be known in advance. In practice, the ex-
pected handling time is provided by terminal planners, who base their
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estimations on quantitative data such as vessel’s workload, average QC
productivity, availability of transfer equipment, vessel’s priority, as well
as on their experience. In particular, some extra time can also be included
in the estimation in order to guarantee more robustness and flexibility to
the schedule.

In our experiment, among the available TBAP data, we are given the
set of feasible quay crane assignment profiles defined for every vessel and
known in advance; in particular, we know the duration in terms of work-
ing shifts of every feasible QC profile, expressed by the input parameter
tpi .

In order to start the entire hierarchical optimization process, we pro-
duce two different estimations for the handling time, both motivated by
the practice:

Scenario A for every vessel, the handling time is given by the longest fea-
sible quay crane assignment profile;

Scenario B for mother vessels, the handling time is given by the shortest
feasible quay crane assignment profile whereas for feeders, the han-
dling time is given by the longest feasible quay crane assignment
profile.

Scenario A is very conservative and somehow represents the worst-case
scenario, when all vessels are serviced at the lowest rate. However, this
handling time estimation may be useful to produce robust schedules. Sce-
nario B can be considered more realistic, since mother vessels typically
have higher priority than feeders. In particular, we expect the terminal to
operate as fast as possible mother vessels in order to minimize their stay
at the port. Both scenarios are realistic and reasonable in practice.

Comparative analysis We consider instances with 10 vessels and 3 berths
over a time horizon of 4 days. Such instances are obtained by reducing the
time horizon from seven to four working days, in order to add congestion
to the problem; in order to maintain feasibility, vessels’ time windows are
also relaxed and the quay crane capacity increases from Q = 8 to Q = 10.
For additional results considering a time horizon of one week, we refer the
reader to Vacca (2011).
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10 x 3 Scenario A Scenario B Integrated TBAP

Inst. opt_sol K t(s) opt_sol K t(s) opt_sol K t(s) %(A) %(B)

H1_10_4d x x 777398 3 39 ∞ ∞

H1_20_4d 776331 3 10 x 779674 3 47 0.43% ∞

H1_30_4d 776365 3 13 x 782300 3 66 0.76% ∞

H2_10_4d 718900 3 8 x 722431 3 28 0.49% ∞

H2_20_4d 719987 3 11 x 724345 3 36 0.61% ∞

H2_30_4d 719701 3 13 x 725585 3 28 0.82% ∞

L1_10_4d 507422 3 5 508657 3 7 512533 2 4 1.01% 0.76%
L1_20_4d 507304 3 4 508505 3 6 512533 2 19 1.03% 0.79%
L1_30_4d 507339 3 4 508540 3 6 512991 2 10 1.11% 0.88%

L2_10_4d 553971 3 6 x 558750 2 16 0.86% ∞

L2_20_4d 554380 3 6 556272 3 4 558786 2 25 0.79% 0.45%
L2_30_4d 554380 3 6 556280 3 4 558822 2 6 0.80% 0.46%

Table 10: Optimal solutions for 10 vessels and 3 berths over 4 days.

Table 10 compares the optimal solutions for the hierarchical approach
under scenarios A and B to the integrated TBAP approach. For all solu-
tions we report the value of the objective function (optsol), the number of
used berths (K) and the computational time in seconds (t(s)). Columns
’%(A)’, ’%(B)’ indicate the improvement of the integrated solution with
respect to the hierarchical approach under scenarios A, B respectively.

For congested instances the hierarchical approach clearly shows its
drawbacks: first of all, it is not always able to provide a feasible solu-
tion. More specifically, the quay crane assignment may not be feasible for
a given berth allocation plan, due to the QC capacity constraint; this is of-
ten the case for scenario B, where the shortest handling time is assigned
to mother vessels, and therefore a higher number of cranes is used. In
particular, the hierarchical approach fails in providing a solution for all
the high-load instances (H1 and H2) under scenario B. On the contrary,
the integrated approach finds the optimal solution for all tested instances.
Surprisingly, the computational effort required by the integrated approach
(always less than one minute) is comparable to the hierarchical approach:
optimal integrated solutions are therefore produced in a fast and efficient
way. Also, it is interesting to notice that the integrated solution makes use,
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in some cases, of one berth less than the solution provided by the hierar-
chical approach.

Summing up, computational results confirm the added value of in-
tegration in terms of cost reduction and efficient use of resources. The
main outcome of the analysis is that the strong assumptions made by the
sequential approach may prevent to find any feasible solution, whereas
the integrated approach always finds the optimal one. This occurs espe-
cially for congested instances. Furthermore, the additional effort required
to solve the integrated problem is moderate.

7 Conclusions

In this paper we have presented a new model and a branch-and-price al-
gorithm for the Tactical Berth Allocation Problem.

The model is based on an exponential number of variables and it is
solved via column generation. In order to obtain integer solutions, a branch-
and-price scheme has been implemented, introducing several accelerating
techniques specifically designed for our problem.

Computational tests prove that our exact algorithm outperforms com-
mercial solvers: especially on small instances, branch-and-price always
provides optimal solutions relatively fast. The problem size still repre-
sents an issue and additional advanced techniques should be further in-
vestigated to overcome the complexity of the problem.

Furthermore, the proposed branch-and-price algorithm enables us to
provide an experimental comparison between the traditional hierarchical
approach (that sequentially solves the berth allocation and the quay crane
assignment) and the integrated planning approach. Computational exper-
iments confirm the added value of integration in terms of cost reduction
and efficient use of resources.

Most of the presented accelerating techniques concern the pricing prob-
lem and prove to be very successful, reducing the computational time in
the pricing by 90% on average. Future research should focus on improving
the master problem. Alternative linearizations of the quadratic objective
function should be investigated. Furthermore, cutting planes for the mas-
ter problem should be studied in order to improve the bounding phase
throughout the search tree.
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