Necessary and sufficient condition for unique flows in certain intersection models

Gunnar Flötteröd¹

May 12, 2011

¹in the context of joint work with R. Corthout, C. Tampere, F. Viti

- deterministic dynamic traffic assignment
- ambiguous solutions at network level possible
- what about ambiguous solutions at *node* level?

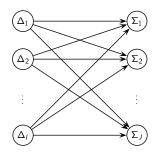
Sufficient condition

Necessary condition

Sufficient condition

Necessary condition

Modeling assumptions (1/2)



- Δ_i is flow demand of ingoing link i
- Σ_j is flow supply of outgoing link j
- not every i needs to compete for every j
- also covers internal conflicts

- every ingoing link *i* maximizes its inflow q_i^{in} subject to
 - demand constraints $q_i^{\mathsf{in}} \leq \Delta_i$
 - supply constraints $q_j^{\mathsf{out}} \leq \Sigma_j$ on node outflows q_j^{out}
 - first-in/first-out and flow conservation: $q_j^{out} = \sum_i \beta_{ij} q_i^{in}$ with turning fractions β_{ij}
 - q_{i_1} and $\overline{q_{i_2}}$ are constrained by $j \Rightarrow q_{i_1}/q_{i_2} = \alpha_{i_1j}/\alpha_{i_2j}$ with strictly positive and finite priorities α_{ij}
- priorities are decisive for unique flow solutions

Sufficient condition

Necessary condition

Sufficient condition and solution algorithm

• Flows are unique if there are positive α_i and c_j such that

 $\alpha_{ij} = \alpha_i c_j$

holds for all upstream links i that could enter constraint j.

- Proof: By known solution algorithm.
 - 1. assign unique inflow priority $\alpha_i = \alpha_{ij}/c_j$ to every ingoing link
 - 2. set all inflows to zero; label all $i = 1 \dots I$ as "unconstrained"
 - 3. while there are unconstrained inflows left:
 - 3.1 increase all unconstrained inflows proportionally to their priorities until the next constraint binds
 - 3.2 label all inflows that reached the constraint as "constrained"

Sufficient condition

Necessary condition

Necessary condition

 The sufficient condition is also necessary: There are positive α_i and c_j such that

$$\alpha_{ij} = \alpha_i c_j$$

holds for all upstream links i that could enter constraint j.

- Sketch of proof:
 - Assume that the necessary condition does not hold.
 - Show that a non-unique solution can always be constructed.

- Every outgoing link j with only one ingoing link i can be transformed into a demand constraint on i.
- Hence, for all affected *i* and *j*:
 - 1. replace Δ_i by min $\{\Delta_i, \Sigma_j / \beta_{ij}\}$
 - 2. remove *j* from consideration

• A test priority $\tilde{\alpha}(j_1, \ldots, j_J)$ is defined as follows:

$$ilde{oldsymbol{lpha}}(j_1,\ldots,j_l) = \left(egin{array}{c} lpha_{1j_1} \ dots \ lpha_{lj_l} \end{array}
ight) \quad j_1,\ldots j_l ext{ arbitrary}$$

 That is, go through all ingoing links i = 1... l and assign to it one of its priorities α_{ij}.

Linearly dependent test prios \Leftrightarrow necessary cond.

• The necessary condition is equivalent to linear dependence of all test priorities:

$$\alpha_{ij} = \alpha_i c_j \,\,\forall i, j \quad \Leftrightarrow \quad \tilde{\boldsymbol{\alpha}}(j_1, \dots, j_l) \propto \tilde{\boldsymbol{\alpha}}(l_1, \dots, l_l) \,\,\forall j_i, l_i$$

- Proof: " \Rightarrow " by insertion; " \Leftarrow " by rearrangement.
- Implication: If the necessary condition does not hold,
 - there are linearly independent test priorities $ilde{lpha}^{\sf A}$ and $ilde{lpha}^{\sf B}$;
 - there are ingoing links $i_1 \neq i_2$ with $\tilde{\alpha}_{i_1}^{A} / \tilde{\alpha}_{i_2}^{A} \neq \tilde{\alpha}_{i_1}^{B} / \tilde{\alpha}_{i_2}^{B}$.
- Focus on these links.

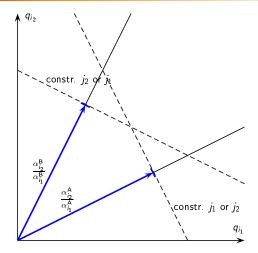
• Consider two supply constraints:

$$\begin{split} \Sigma_{j1} &\geq & \beta_{i1,j1} q_{i1} + \beta_{i2,j1} q_{i2} + \sum_{l \neq i1,i2} \beta_{l,j1} q_l \\ \Sigma_{j2} &\geq & \beta_{i1,j2} q_{i1} + \beta_{i2,j2} q_{i2} + \sum_{l \neq i1,i2} \beta_{j,j2} q_l. \end{split}$$

- Scale down Σ_{j_1} , Σ_{j_2} , and all Δ_i until all other Σ_j never bind.
- Ensure that i_1 , i_2 are the first inflows to be constrained.

- 1. both i_1 and i_2 compete for both j_1 and j_2
- 2. i_1 does not compete for j_2
- 3. i_1 does not compete for j_1 and i_2 does not compete for j_2

Case 1: both i compete for both j



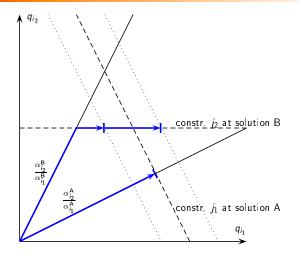
Construction of case 1

• binding constraints:

$$q_{i2} = \frac{1}{\beta_{i2,j1}} \left(\Sigma_{j1} - \sum_{l \neq i1,i2} \beta_{l,j1} q_l \right) - \frac{\beta_{i1,j1}}{\beta_{i2,j1}} q_{i1}$$
$$q_{i2} = \frac{1}{\beta_{i2,j2}} \left(\Sigma_{j2} - \sum_{l \neq i1,i2} \beta_{j,j2} q_l \right) - \frac{\beta_{i1,j2}}{\beta_{i2,j2}} q_{i1}$$

- construction:
 - 1. set constraint slopes with the β s
 - 2. shift constraints with the $\boldsymbol{\Sigma}\boldsymbol{s}$

Case 2: i_1 does not compete for j_2



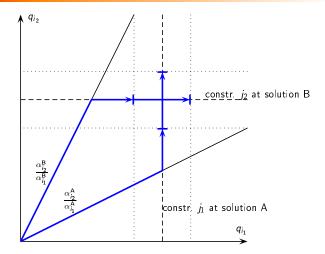
Construction of case 2

• bindung constraints:

$$q_{i2} = \frac{1}{\beta_{i2,j1}} \left(\sum_{j1} - \sum_{l \neq i1,i2} \beta_{l,j1} q_l \right) - \frac{\beta_{i1,j1}}{\beta_{i2,j1}} q_{i1}$$
$$q_{i2} = \frac{1}{\beta_{i2,j2}} \left(\sum_{j2} - \sum_{l \neq i1,i2} \beta_{j,j2} q_l \right)$$

- construction:
 - 1. set the β for some slope of j_1
 - 2. set the Σ such that j_2 is "atop" of j_1

Case 3: $i_1(i_2)$ competes only for $j_1(j_2)$



Construction of case 3

• binding constraints:

$$q_{i1} = \frac{1}{\beta_{i1,j1}} \left(\sum_{j1} - \sum_{l \neq i1,i2} \beta_{l,j1} q_l \right)$$
$$q_{i2} = \frac{1}{\beta_{i2,j2}} \left(\sum_{j2} - \sum_{l \neq i1,i2} \beta_{j,j2} q_l \right)$$

- construction:
 - 1. set the $\boldsymbol{\Sigma}$ somehow
 - 2. avoid unique solution by reducing some Δ_l , $l \neq i_1, i_2$ until it shifts a binding constraint

Sufficient condition

Necessary condition

- summary: better keep the node model simple
- outlook: nonlinear internal node constraints

