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Abstract

We propose a stochastic phoneme space transformation technique that allows the conversion of con-
ditional source phoneme posterior probabilities (conditioned on the acoustics) into target phoneme pos-
terior probabilities. The source and target phonemes can be in any language and phoneme format such
as the International Phonetic Alphabet. The novel technique makes use of a Kullback-Leibler divergence
based hidden Markov model and can be applied to non-native and accented speech recognition or used
to adapt systems to under-resourced languages. In this paper, and in the context of hybrid HMM/MLP
recognizers, we successfully apply the proposed approach to non-native English speech recognition on
the HIWIRE dataset.

Index Terms: Non-native speech recognition, universal phoneme set, multilingual acoustic modeling

1 Introduction

State-of-the-art speech recognizers typically use phonemes as sub-word units. However, training
phoneme models is still a challenging task given the high pronunciation variability of words (within
the same language), as well as the variability of the acoustic realization of the same phoneme (within
and between languages). In this paper, we propose an approach addressing some of the issues related
to acoustic modeling of phonemes and apply the proposed approach to non-native speech recognition in
the framework of a hybrid HMM/MLP, using a Multilayer Perceptron (MLP) to estimate phonetic class
posteriors used in Hidden Markov Models (HMM).

A phoneme set represents the sounds of spoken language and is specific to a language in the sense
that two languages could share some, but usually not all, phonemes. The creation of a phoneme set and
a lexicon requires linguistic expertise and resources, which include human knowledge.

To date, ASR studies have mainly focused on the recognition of speech from native speakers, while
effectively recognizing speech from both native and non-native speakers is still a major challenge. Usually,
pronunciation lexicons are created by only taking into account how native speakers pronounce the words.
Even then, it is known that acoustic realizations of the same phoneme exhibit high variability, thus, a
considerable amount of data is necessary to properly train the models. Modeling variability of the acoustic
realizations becomes even more challenging if we have to deal with non-native and accented speech, the
main reason being the influence of the native language on the target language sound pronunciation.

In previous work (Imseng et al., 2011), we found that ASR performance on non-native speech can
be improved by pooling resources from multiple languages via a universal phoneme set. In this paper,
we boost non-native ASR performance by transforming multilingual class probabilities conditioned on
the acoustics into monolingual class probability estimates of a target language. More specifically, we
first create a universal phoneme set, and then train universal acoustic models with data from five Eu-
ropean languages. Given an entirely new target database, along with the lexical resources, the relation
between the universal phoneme set and the target phoneme set is learned on the adaptation data by
using a Kullback-Leibler divergence based HMM, as presented in Section 2. The learned relation can
be seen as a data-driven soft mapping between two phoneme sets that takes the acoustics into account.
During recognition, the resulting stochastic mapping is then exploited to transform the conditional pos-
terior probabilities of the universal phonemes into estimates of posterior probabilities of the phonemes
belonging to the target database. With less than two minutes of non-native adaptation data, the proposed
system yields significant improvement compared to a system trained on native English.

1



Figure 1: Two different phoneme sets cover the same acoustic space differently. Xs(k) and Xd(l) are acoustic
subspaces associated with phonemes sk and dl respectively.

2 Stochastic phoneme space transformation

Although humans are able to produce a large variety of phones, we assume here that all those phones,
across speakers and languages, share a common acoustic space X. None or only very few languages make
use of all phones. Therefore, most languages only partially cover X.

In ASR, we usually use phonemes as sub-word units to model human speech production. A phoneme is
defined as the smallest sound unit of a language that discriminates between a minimal word pair (Schultz,
2006). In contrast to phones, phonemes are defined in the context of a particular language. Therefore,
as visualized in Figure 1, two different phoneme sets partition the same acoustic space differently. We
consider:

• A source phoneme set Φ consisting of S phonemes sk

• A target phoneme set Ψ consisting of D phonemes dl

where k ∈ {1, . . . ,S} and l ∈ {1, . . . ,D}

In this paper, we investigate a new approach to map conditional class probabilities of phonemes from
a source phoneme set Φ to a target phoneme set Ψ, given acoustic observations. In general, we consider
the source and target phoneme sets to be defined in different languages. It is evident that phoneme sets
of foreign languages have a different coverage of the acoustic space X.

More specifically, we consider the following problem: given an MLP trained to estimate source
phoneme posterior probabilities conditioned on acoustic observations, we would like to perform ASR
on a target database that makes use of a target phoneme set. No source phoneme transcriptions are
available for the target database. However, we assume that the target database can be divided into an
adaptation and a testing set. For the testing set, X̂ = {x̂1, . . . , x̂T̂ }, no transcriptions are available at all,
but for the adaptation data X = {x1, . . . , xT }, we assume access to target phoneme transcriptions, i.e.
we assume that we can associate a sequence of target phonemes to X, but we are not able to associate
a target phoneme to a particular xt. Therefore, our approach makes use of an HMM where the states
(hidden variables) will be associated with the target phoneme sequence.

Hence, we can formulate the problem of estimating target phoneme posteriors conditioned on the
acoustic observation x̂t at time t, the parameters θH of the HMM and the parameters θM of the MLP as
follows:

P(dlt|x̂t, θ) =
S∑
k=1

P(dlt|s
k
t , x̂t, θ)P(skt |x̂t, θ) (1)

=

S∑
k=1

P(dl|sk, θ)P(skt |x̂t, θM) (2)

where θ = {θH, θM}. The target phoneme posterior estimates, P(dlt|x̂t, θ), can then be used to perform
ASR on the target database.

Equation (2) was obtained by making the following conditional independence assumptions:
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Figure 2: The HMM structure is “left-to-right“ and obtained from the target phoneme transcriptions. Each
state is parametrized by a multinomial distribution of dimensionality S. The transition probabilities are also
parameters of the HMM.

• The conditional probability P(dlt|s
k
t , x̂t, θ) can be seen as a similarity measure between a source

phoneme sk and a target phoneme dl. It is assumed to be time invariant and independent of the
acoustic observation x̂t at time t.

• The source phoneme posteriors P(skt |x̂t, θ) are obtained with the MLP1 that was previously trained
on an independent, frame-level labeled, database that may contain speech of the same language,
a different language, or from multiple languages. Since frame-level labeling is available for the
source database, the source phoneme posterior probability estimates are considered independent
of θH.

Since the states of the HMM will be associated with the target phoneme sequence, we have to estimate
P(sk|dl, θ) rather than P(dl|sk, θ). Applying Bayes rule to P(dl|sk, θ), (2) becomes:

P(dlt|x̂t, θ) =
S∑
k=1

P(sk|dl, θ)P(dl|θ)∑D
l=1 P(s

k|dl, θ)P(dl|θ)
P(skt |x̂t, θM) (3)

where the sum in the denominator acts as a normalization factor. Given P(skt |x̂t, θM), the estimation of
P(dlt|x̂t, θ) thus requires us to estimate the conditional probability P(sk|dl, θ) and the prior probability
P(dl|θ).

2.1 Estimation of the conditional probability P(sk|dl, θ)

To estimate P(sk|dl, θ), we perform a Viterbi (segmentation-maximization) training procedure. This
requires that we first forward pass all the adaptation data X through the MLP to obtain P(skt |xt, θM).
We then use P(skt |xt, θM) along with the target phoneme transcriptions, to train the HMM parameters
θH. As illustrated in Figure 2, the deployed HMM uses one state per target phoneme dl in a left-to-right
structure that is obtained from the target phoneme transcriptions. In Figure 2 for example, we consider
an utterance that can be transcribed as /d3/ /d1/ /d2/. Thus, the associated HMM has five states q3,
q1, q2 including non-emitting start and end states. Each state ql, where l ∈ {1, . . . ,D}, is parametrized
by a multinomial distribution yl = {yl(1), . . . ,yl(S)}. The dimensionality of yl is S, the number of
source phonemes. Each dimension k of the multinomial distribution yl can serve as an estimate of the
conditional probability of sk, given the state dl, the previously trained MLP and the HMM:

yl(k) = P(sk|dl, θ) (4)

The transition probabilities aij, to go from state i to state j, are also parameters of the HMM, θH =
{yl,aij}. We fixed them to 0.5 (except a01 = 1) to minimize their effect on decoding.

The multinomial distributions Y = {y1, . . . ,yD} can be optimized (maximization step) by using all the
adaptation data X and minimizing a cost function F(X, Y), defined as follows:

F(X, Y) =
T∑
t=1

D∑
l=1

Fl(xt,yl)δl(xt) (5)

1The deployed MLP takes a temporal context of four preceding and following frames into account. For the ease of notation, we
just write P(skt |x̂t,θ).
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where Fl(xt,yl) is a cost function associated with state dl and δl(xt) is the Kronecker delta defined as:

δl(xt) =

{
1, if xt ∈ Xd(l)

0, if xt /∈ Xd(l)

where Xd(l) is the acoustic subspace that corresponds to dl. To associate each xt with one of
the acoustic subspaces Xd(l), the HMM aligns the source phoneme posterior probability vector P =
{P(s1

t |xt, θM), . . . ,P(sSt |xt, θM)} with the states by minimizing F(X, Y) (expectation step).
Since we estimate conditional probability distributions P(sk|dl, θ), given posterior distributions

P(skt |xt, θM), it seems reasonable to use a Kullback-Leibler (KL) divergence based cost function for the
optimization:

Fl(xt,yl) =
S∑
k=1

P(skt |xt, θM) log
P(skt |xt, θM)

yl(k)
(6)

Hence, this work makes use of a particular HMM structure which is referred to as KL-based
HMM (Aradilla, 2008). KL-based HMMs are particularly well suited to deal with posterior probabili-
ties. To minimize F(X, Y) subject to

∑S
k=1 y

l(k) = 1, we take the partial derivative and introduce the
Lagrange multipliers λ:

∂

∂yl(k)

D∑
l=1

T∑
t=1

Fl(xt,yl)δl(xt) + λ

(
S∑
k=1

yl(k) − 1

)
= 0

which can also be rewritten as:

∂

∂yl(k)

D∑
l=1

∑
∀x∗t∈Xd(l)

Fl(x∗t ,y
l) + λ

(
S∑
k=1

yl(k) − 1

)
= 0 (7)

where the second sum extends over all the elements x∗t , associated with the acoustic subspace Xd(l).
Solving Equation (7) yields: ∑

∀x∗t∈Xd(l)

P(skt |x
∗
t , θM)

yl(k)
+ λ = 0

hence:
yl(k) = −

1
λ

∑
∀x∗t∈Xd(l)

P(skt |x
∗
t , θM)

To guarantee
∑S
k=1 y

l(k) = 1, we set λ = − |Xd(l)|, where the operator |.| stands for the cardinality of a
set. We thus obtain:

P∗(sk|dl, θ) =
1

|Xd(l)|

∑
∀x∗t∈Xd(l)

P(skt |x
∗
t , θM) (8)

with P∗(sk|dl, θ) being the “optimal” estimation of P(sk|dl, θ) with respect to the cost function F(X, Y).
The described HMM can be trained by applying an adapted version of the Viterbi algorithm, using (6)

as local distances and re-estimating the multinomial distributions according to (8). Therefore, we run
Algorithm 1 until convergence of the cost function.

The initialization step makes use of prior knowledge. If the IPA symbol of the destination phoneme
dl is not present in the source phoneme set, yl is initialized uniformly. If the IPA symbol of dl and sk

are same however, all the components of y are set to a small positive value ε except of the corresponding
component yl(k) which is set to 1 − (D − 1)ε. Since the cost function involves the computation of the
KL divergence between P(st|xt, θM) and yl, given in Equation (6), we need to ensure that yl does not
contain zeros.

3 Experimental setup and results

We hypothesize that the proposed approach can yield improvement on non-native ASR because universal
phoneme posterior probabilities estimated by an MLP trained on multiple languages are more robust to
pronunciation variability as observed in non-native speech. Furthermore, we suppose that the proposed
stochastic phoneme space transformation is superior to manually derived phoneme set mappings.
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Algorithm 1 HMM Training

Step 0: Initialization of yl(k)
for all l ∈ {1, . . . ,D} and k ∈ {1, . . . ,S} do

yl(k) =


1
D

, if dl /∈ Φ
1 − (D− 1)ε, if dl ∈ Φ and sk = dl

ε, if dl ∈ Φ but sk 6= dl

ε being small, but positive
end for
Step 1: Segmentation:
Given P(st|xt, θM) ∀ xt, perform forced alignment to assign each xt to one Xd(l) such that F(X, Y) is
minimized, i.e.:

xt ∈ Xd(j) if j = arg min
l

Fl(xt,yl)

Step 2: Optimization:
for all l ∈ {1, . . . ,D} do

Given P(st|x∗t , θM) ∀ x∗t ∈ Xd(l), use (8) to estimate yl by minimizing the KL divergence based cost
function given in (6).

end for
Iterate step 1 and 2 until convergence

3.1 Source phoneme posteriors

Source phoneme posteriors are estimated on British English, Italian, Spanish, Swiss French and Swiss
German SpeechDat(II) databases. All SpeechDat(II) databases contain native speech and are gender-
balanced, dialect-balanced according to the dialect distribution in a language region and age-balanced.
The databases were recorded over the telephone at 8 kHz and are subdivided into different corpora. We
only used Corpus S, that contains ten read sentences from each of the 2000 speakers per language.

We trained MLP-based posterior estimators with Quicknet2 software, as explained in (Imseng et al.,
2011), for two different source phoneme sets in SAMPA3 format.

• English phoneme set: we used only the British English data to train a monolingual MLP (MLP EN)
to estimate English SAMPA phoneme posteriors.

• Universal phoneme set: since all the SpeechDat(II) dictionaries use SAMPA symbols, we merged
phonemes that share the same symbol across languages to build a universal phoneme set. Two
MLPs were trained to estimate universal phoneme posteriors; MLP UNI (universal MLP) with all
available data and MLP sUNI (small universal MLP) with one fifth of the data randomly chosen, to
match the amount of training data available to MLP-EN.

All the MLPs were trained from 39 Mel-Frequency Perceptual Linear Prediction (MF-PLP) features
(C0 − C12 + ∆+ ∆∆) in a nine frame temporal context (four preceding and following frames), extracted
with HTK4, as input. The number of parameters in each MLP was set to 10% of the number of available
training frames. Table 1 summarizes all systems (MLP-AE is presented in Section 3.2).

Table 1: Overview over all the phoneme posterior estimators. The total amount of training data as well as
the phoneme set including the number of phonemes (S) are given.

System Phoneme set S Data (h)
MLP-EN SAMPA English 45 12.4
MLP-sUNI SAMPA universal 117 12.7
MLP-UNI SAMPA universal 117 63.0
MLP-AE ARPABET English 38 2.4

2http://www.icsi.berkeley.edu/Speech/qn.html
3http://www.phon.ucl.ac.uk/home/sampa/
4http://htk.eng.cam.ac.uk/
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3.2 Target phoneme posteriors

To study the proposed approach, we used the HIWIRE (Segura et al., 2007) database. HIWIRE is a
non-native English speech corpus that contains English utterances pronounced by natives of France (31
speakers), Greece (20 speakers), Italy (20 speakers) and Spain (10 speakers). The utterances contain
spoken pilot orders made up of 133 words and the database also provides a grammar with a perplexity
of 14.9. The dictionary is in CMU format and makes use of 38 ARPABET5 phonemes. HIWIRE consists of
100 recordings per speaker, of which the first 50 utterances are commonly defined to serve as adaptation
data and the second 50 utterances as testing data.

Since HIWIRE was recorded at 16 kHz, the recordings were down-sampled to 8 kHz to “match” the
recording conditions of the SpeechDat(II) data. Then, the same MF-PLP feature analysis was applied and
passed through each of the three MLPs (MLP-EN, MLP-sUNI and MLP-UNI) to estimate source phoneme
posteriors. P(sk|dl, θ) and P(dl|θ) were estimated on the adaptation data, as explained in Section 2.
The testing set was used to estimate target phoneme posteriors, P(dlt|x̂t, θ), according to (3). The target
phoneme posteriors were then divided by the priors P(dl|θ) and a hybrid HMM/MLP system (Morgan
and Bourlard, 1995) was used to perform ASR.

For the sake of comparison, system MLP-AE was trained on the HIWIRE adaptation set. Target
phoneme alignments were obtained with system MLP-UNI. During MLP training, 90% of the data was
used for training and the remaining 10% for validation. System MLP-AE directly estimates target
phoneme posteriors P(dlt|x̂t) and does not involve an HMM-based phoneme space transformation. Thus,
system MLP-AE has no access to P(dl|θ) and makes use of the priors estimated by system MLP-UNI to
perform hybrid ASR.

3.3 Results

We investigated all the systems described in Table 1 and compared them to the baseline that was reported
in (Segura et al., 2007).

Table 2: Word accuracies on the HIWIRE testing set. The baseline was reported in (Segura et al., 2007).
Systems MLP-AE, MLP-EN, MLP-sUNI and MLP-UNI are described in Table 1.

base MLP-AE MLP-EN MLP-sUNI MLP-UNI
91.4 92.8 92.6 93.7 96.0

The baseline system used Mel-Frequency Cepstral Coefficients with Cepstral Mean Subtraction and
was trained on the TIMIT database that contains read American English speech, recorded at 16 kHz.
The baseline system did not use the adaptation set. System MLP-AE, yields a better performance than
the baseline. The performance of system MLP-AE is not significantly different from the performance of
system MLP-EN, that was trained on 12.4 hours of native English SpeechDat(II) data. For the significance
test, we used the bootstrap estimation method (Bisani and Ney, 2004) and a confidence interval of 95%.
System MLP-sUNI was trained on 12.7 hours of multilingual data and significantly outperforms system
MLP-EN. MLP-UNI was trained on five times more multilingual data than MLP-sUNI, which also yields
significant improvement.

Table 3: Word accuracies on the HIWIRE testing set if source phonemes are manually mapped to target
phonemes.

base MLP-AE MLP-EN MLP-sUNI MLP-UNI
- - 83.2 83.5 88.8

Table 3 presents results for a manual mapping between source phonemes and target phonemes. We
converted all involved phoneme sets to IPA6 format and then mapped source and target phonemes that
share the same IPA symbol. For each target phoneme without matching source phoneme, we manually
selected the most similar source phoneme according to the IPA chart. For the complete manual mapping,
see Table 5.

The results from Tables 2 and 3 prove our hypothesis and confirm that the novel approach can be
used to transform robust universal phoneme posteriors to monolingual phoneme posteriors and improve
ASR performance on non-native speech. The huge performance gap between the proposed approach and

5http://www.speech.cs.cmu.edu/cgi-bin/cmudict
6http://www.langsci.ucl.ac.uk/ipa/
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a manual mapping shows that manually derived one-to-one mappings are detrimental to ASR systems
and illustrates that target and source phoneme sets have significant differences in their coverage of X.

3.4 Corollary

The HIWIRE database provides us with 144 minutes of adaptation data, enough to train a complete
system. In Table 4, we show that the proposed approach yields equal performance with only ten minutes
of adaptation data. If we use only one minute and 40 seconds of data (manually chosen to cover the
whole target phoneme space), the system still yields significant improvement compared to systems MLP-
AE and MLP-EN. Thus, the proposed approach has potential for fast adaptation of systems, to perform
ASR for under-resourced languages.

Table 4: Performance of system MLP-UNI with different amounts of adaptation data (in minutes).

Data (in minutes) 144 32 10 2.7 1.7
Word accuracy 96.0 96.2 96.0 95.1 93.8

4 Conclusion

We proposed a stochastic phoneme space transformation approach and applied it to non-native ASR.
The contribution of this paper is twofold. 1) We showed that different phoneme sets cover the same
acoustic space differently and that manually derived phoneme mappings are detrimental to ASR systems.
However, only ten minutes of data along with phoneme transcriptions are sufficient to transform multi-
lingual phoneme posterior probabilities to monolingual English phoneme posterior probabilities. 2) We
demonstrated that the transformed multilingual phoneme posteriors yield significant improvement on
non-native ASR compared to native and non-native English systems.

In future, we intend to apply the proposed approach to ASR for under-resourced languages.
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HIWIRE UNI EN
man hard hard man hard

(UNI) (sUnI)
sil sil sil sil sil sil
m m m m m m
n n nn nn n n
ï ï ï ï ï ï
p p p p p b
b b b b b b
t t t t t t
d d dd d d d
k k k k k k
g g g g g g
f f f f f f
v v v v v v
T T pf f T T
D D D D D v
s s ss ss s s
z z dz Z z z
S S SS SS S S
h h h h h h
ô ô ô ô ô ô
j j jj L j j
l l ll ll l l
w w w w w w
tS tS tS tS tS tS
dZ dZ dZ dZ dZ dZ
i i i: i: i: i:
u u u: u: u: u:
I I I Y I i:
E E e@ e@ e e@
3~ 3: œ œ 3: 3:
2 2 ẽ a:5 2 A:
O O o:5 o:5 O: O:
æ æ æ æ æ æ
A A a: a: A: A:
eI eI e: e: eI eI
oU @U o: o: @U O:
OI OI OI OI OI OI
aU aU aU aU aU aU
aI aI aI aI aI aI

Table 5: Knowledge Driven (manual mapping) and data-driven (hard decision mapping) of the destina-
tion phonemes (HIWIRE) to the English (EN) and universal (UNI) source phonemes (SpeechDat). Bold
symbols are different from the destination phoneme symbol. All symbols are in IPA format.
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