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Abstract

Cepstral normalisation in automatic speech recognition
is investigated in the context of robustness to additive
noise. In this paper, it is argued that such normalisa-
tion leads naturally to a speech feature based on signal
to noise ratio rather than absolute energy (or power).
Explicit calculation of this SNR-cepstrum by means of a
noise estimate is shown to have theoretical and practi-
cal advantages over the usual (energy based) cepstrum.
The relationship between the SNR-cepstrum and the ar-
ticulation index, known in psycho-acoustics, is discussed.
Experiments are presented suggesting that the combina-
tion of the SNR-cepstrum with the well known percep-
tual linear prediction method can be beneficial in noisy
environments.

1 Introduction

An important problem encountered in speech signal pro-
cessing is that of how to normalise a signal for the effects
of noise. In speech enhancement the task is to remove
noise from a signal to reproduce the uncorrupted signal
such that it is perceived by a listener to be less noisy.
In automatic speech recognition (ASR), the task is to re-
duce the effect of noise on recognition accuracy. This
paper concentrates on the latter (ASR) problem.

Two categories of noise are generally considered: Ad-
ditive noise is that which represents a distinct signal
other than the one of interest. Convolutional noise is
that which alters the spectral shape, and can be associ-
ated with either the signal of interest, or both the signal
and the additive noise.

The present work stems from the practical experience
that it is very difficult to improve upon cepstral normal-
isation techniques for noise robustness. Cepstral mean
normalisation (CMN) (Furui, 1981) is a well established
technique that compensates, in a theoretically sound
way, for convolutional noise. It is based on the per-
suasive observation that a linear channel distortion be-
comes a constant offset in the cepstral domain. More
heuristically, CMN also affords some robustness to addi-
tive noise. Cepstral variance normalisation (CVN) (Viikki
and Laurila, 1997, 1998) generally results in very good

noise robustness, but the reason for this is not well un-
derstood.

Many common practical solutions for additive noise
compensation are based on the assumption of a simple
additive Gaussian model for both speech and noise in
the spectral domain. In ASR, the spectral subtraction
approach of Boll (1979) is well established. In speech
enhancement, much work is based on the technique of
Ephraim and Malah (1984). Both these techniques have
influenced the design of the ETSI (2002) standard ASR
front-end. However, at least in a batch mode of opera-
tion, and certainly combined with multi-condition train-
ing, CMN combined with CVN can exceed the perfor-
mance of all these techniques.

In this paper, building on previous work, the theoret-
ical effect of CMN and CVN in additive noise is studied.
It is shown that the use of CMN implies that the fea-
tures presented to an ASR decoder are in fact measures
of (log) signal to noise ratio (SNR) rather than (log) en-
ergy. Based on this observation, a SNR feature is de-
rived formally, the derivation providing both theoretical
and practical advantages over the equivalent for energy
based features.

The SNR-cepstrum is then placed in context amongst
other techniques, emphasising that there is a great deal
of commonality between noise robustness in ASR, speech
enhancement and indeed the workings of the inner ear.

The paper is split roughly into two parts. Sections 1
to 4 are largely theoretical, expanding previous work to
give a thorough basis for the SNR-cepstrum. Sections 5
to 7 proceed to evaluate the SNR-cepstrum in the con-
text of the linear predictive features that are common in
modern ASR systems.

2 Background

In a simplistic, but informative, view of an ASR front-
end, an acoustic signal is Fourier transformed to give a
vector of spectral coefficients (s1, s2, . . . , sF)T. After a
linear transform (filter-bank) implementing a non-linear
frequency warp, the cepstrum is calculated. The cep-
strum involves a logarithm followed by another linear
transform (DCT).
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2.1 Convolutional noise

Although only one is normally considered, note that two
types of convolutional noise can be distinguished:

1. A source noise, g = (g1,g2, . . . ,gF)T, associated
only with the speech signal. This can be thought
of as being representative of a speaker.

2. A channel noise, h = (h1,h2, . . . ,hF)T, associated
with the microphone and transmission channel.

In the presence of convolutional noise, which is multi-
plicative in the frequency domain, the logarithm for each
frequency bin, f ∈ {1, 2, . . . , F}, becomes

log(hfgfsf) = log(hf) + log(gf) + log(sf), (1)

where log(sf) varies, and log(hf) is constant over time.
log(gf) is taken to represent the component of the
speech that is constant over time, being some charac-
teristic of the speaker.

It follows from equation 1 that, if log(sf) can be as-
sumed to have zero mean, the noise terms can be re-
moved by subtracting the long term average of the log-
spectrum. This is achieved by cepstral mean normalisa-
tion (Furui, 1981, although the technique has been at-
tributed to Atal even earlier) or by the RASTA processing
of Hermansky and Morgan (1994). Note also that, when
the filter-bank is considered, the above holds if the hf
and gf are assumed constant within a given filter-bank
bin.

2.2 Additive noise

When additive noise is also present, typically it is as-
sumed to remain additive after the Fourier transform. In
this sense, the logarithm operation becomes

log (hfgfsf + hfnf) = log(hf) + log(gfsf + nf). (2)

where (n1,n2, . . . ,nF)
T is the noise spectrum. From

equation 2, it appears that CMN and the like cannot work
in significant additive noise unless the additive noise is
removed first. To this end, there is a large body of work
focusing on additive noise removal. In ASR, the spectral
subtraction approach of Boll (1979) was further devel-
oped by, for instance, Van Compernolle (1989), and is
well established. It is often used as a means to derive
a Wiener filter. In speech enhancement, much work is
based on the technique of Ephraim and Malah (1984).

The state of the art in additive noise robustness is
probably in the body of work based on the additive
model of Acero and Stern (1990); Acero (1990), and the
vector Taylor series approach of Moreno et al. (1996);
Moreno (1996). Such techniques are characterised by a
large Gaussian mixture prior on the speech signal, a re-
cent exemplar being Li et al. (2007). It is not the goal of
the present paper to approach the performance of such
techniques. Rather, a building block is presented that
could be used in combination with these techniques.

2.3 SNR features

The logarithm of a sum can be written

log(x+ a) = log(a) +
x

a
−
x2

2a2 +
x3

3a3 . . .

= log(a) + log
(

1 +
x

a

)
.

(3)

Although the relationship is clear without the series ex-
pansion, the latter emphasises that the term log(a) is the
component that is independent of x. This in turn sug-
gests that equation 2 might better be written

log (hfgfsf + hfnf) = log(hfnf) + log
(

1 +
gfsf

nf

)
,

(4)
emphasising that CMN would actually remove the con-
stant term log(hfnf), or its mean if either hf or nf were
non-deterministic.

It appears from the above analysis that, if CMN is used,
the features that are presented to the ASR decoder are
actually (a linear transform of) the logarithm of one plus
the signal to noise ratio (SNR). This will happen even
if the additive noise is simply the minimal background
noise usually associated with clean recordings. It follows
that one could try to calculate the SNR from the outset
rather than calculate a spectral power measure and rely
on CMN to produce the SNR. A-priori, such an approach
has at least three appealing properties:

1. The flooring of the logarithm happens naturally. The
SNR (expressed as a power ratio) cannot fall below
zero, so the argument of the logarithm is naturally
floored at unity, and the logarithm is hence positive.

2. SNR is inherently independent of h, the convolu-
tional noise associated with microphones and the
gain associated with pre-amplifiers.

3. If applied before the filter bank, the assumption that
hf remains constant over the range of the filter bin
is no longer required.

It turns out that SNR is also mathematically appealing.
Notice that, whilst the channel noise, hf, is cancelled

by taking the SNR, the source noise, gf, is still present.
However, for high SNR it will be removed by CMN. It
follows that the SNR is not a replacement for CMN in its
speaker normalisation sense. It also suggests that direct
comparison of SNR based features with CMN would not
be fair.

3 The SNR spectrum

In contrast to the previous section, which was left delib-
erately simplistic, a more rigorous derivation of a SNR
based feature is now presented. After defining a Gaus-
sian model of speech in noise, the derivation proceeds
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by showing that power spectral subtraction can be seen
as a particular maximum-likelihood (ML) solution. Two
ML estimators for the SNR are then derived.

3.1 Gaussian model

Assume that a DFT operation produces a vector, x, with
complex components, x1, x2, . . . , xF, where the real and
imaginary parts of each xf are Gaussian, independent
and identically distributed (i.i.d.) with zero mean and
variance υf. That is,

p (xf | υf) =
1
πυf

exp

(
−
|xf|

2

υf

)
. (5)

In the case where two coloured noise signals are distin-
guished, a background noise, n, and a signal of interest,
s, typically speech, denote the noise variance as ν and
the speech variance as σ. In general, the background
noise can be observed in isolation and modelled as

p (nf | νf) =
1
πνf

exp

(
−
|nf|

2

νf

)
. (6)

The speech, however, cannot normally be observed in
isolation. It is always added to noise. When both speech
and additive noise are present the variances add, mean-
ing that the total signal, tf = sf + nf, can be modelled
as

p (tf | σf,νf) =
1

π(σf + νf)
exp

(
−

|tf|
2

σf + νf

)
. (7)

Although neither the Gaussian nor i.i.d. assumptions are
likely to be true in practice, the above model is the ba-
sis of the Wiener filter and of the widely used Ephraim
and Malah (1984) speech enhancement technique. The
goal is usually formulated as requiring an estimate of sf.
However, it is first necessary to find an estimate of σf.

3.2 Variance as an ASR feature

The well known maximum likelihood estimate of σf is
instructive in determining the right approach for the def-
inition and estimation of SNR. It proceeds as follows,
where the f subscript is dropped for simplicity: Assume
that an estimate, ν̂, of ν is available via solution of (6)
during, for instance, non-speech segments of the signal.
The estimate of the speech variance, σ, then follows
from Bayes’ theorem,

p (σ | t, ν̂) ∝ p (t | σ, ν̂)p (σ | ν̂) . (8)

Assuming p (σ | ν̂) = p (σ)p (ν̂) and a flat prior p (σ) ∝
1, substituting (7) into (8), differentiating with respect
to σ and equating to zero gives the ML estimate,

σ̂ = max
(
|t|2 − ν̂, 0

)
. (9)

Notice that, in ASR at least, this is simply power spec-
tral subtraction. More generally, it is known to provide
a “reasonable” estimate of the speech variance, but al-
ways requires regularisation. In ASR, it is regularised
by means of an over-subtraction factor, α, and a flooring
factor, β:

σ̂ = max
(
|t|2 − αν̂,βν̂

)
, (10)

as in Van Compernolle (1989).
The above derivation shows that a commonly used

speech feature can be seen in a Bayesian sense as an
estimate of the variance σ. This interpretation is rein-
forced when convolutional noise is considered. Making
the substitution yf =

√
hfxf in equation 5, the Jacobian

determinant is h−1
f , so

p (yf | hf,υf) =
1

πhfυf
exp

(
−

|yf|
2

hfυf

)
, (11)

i.e., the convolutional term multiplies the variance, ex-
actly as in the simplistic model of section 2.

The above implies that estimation for the purposes of
ASR can focus on the variance, σ, rather than the (un-
corrupted) observation, s, as in enhancement.

3.3 ML SNR estimate

Motivated by the term of interest being the variance, de-
fine the SNR as

ξf =
σf

νf
, (12)

The f subscript indicates that the SNR is frequency de-
pendent. Substituting σf = ξfνf into (7),

p (tf | ξf,νf) =
1

πνf(1 + ξf)
exp

(
−

|tf|
2

νf(1 + ξf)

)
.

(13)
The subscript is dropped again hereafter for simplicity.

This time, the posterior is in terms of ξ,

p (ξ | t, ν̂) ∝ p (t | ξ, ν̂)p (ξ | ν̂) . (14)

Assuming a flat prior, substituting (13) into (14), differ-
entiating and equating to zero,

ξ̂ = max

(
|t|2

ν̂
− 1, 0

)
. (15)

3.4 Marginalisation over noise variance

Thus far it has been assumed that an estimate, ν̂, of the
noise variance is available. In a Bayesian sense, however,
the noise is a nuisance variable, the correct approach be-
ing to marginalise over it. In the case of variance esti-
mation, such marginalisation is not easily tractable. By
contrast, the form of (13), with multiplicative instead of
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additive terms in the denominators, presents no major
difficulty for marginalisation.

If there are N frames (spectral vectors) of noise,
{n}N = {n1,n2, . . . ,nN}, that are observed in isolation,
one can write

p (νf | {n}N) =

∏N
i=1 p (ni,f | νf)p (νf)∫∞

0 dν
′ ∏N

i=1 p
(
ni,f | ν ′

f

)
p
(
ν ′
f

) , (16)

where the products are over the likelihood terms, not
the priors. Again, hereafter subscripts are dropped for
simplicity. The likelihood terms are exactly the form of
equation (6), and a non-informative prior, p (ν) ∝ ν−1,
is arbitrarily chosen. Equation (16) then reduces to the
inverse gamma distribution

p (ν | {n}N) =
BA

Γ(A)
ν−A−1 exp

(
−
B

ν

)
(17)

where

A = N, B =

N∑
i=1

|ni,f|
2 . (18)

The MAP solution, ν̂, of ν would be

ν̂ =
B

A+ 1
, (19)

however, the distribution can be used to marginalise over
ν. Assuming the prior on SNR is independent of the
noise estimate, equation (14) becomes

p (ξ | t) ∝ p (ξ)
∫∞

0
dνp (t | ξ,ν)p (ν | {n}N) . (20)

Substituting (13) and (17) into (20), the forms are con-
jugate and the integral is just the normalising term from
the inverse gamma distribution.

p (ξ | t) ∝ p (ξ)×

BA

Γ(A)

Γ(A+ 1)
ξ+ 1

(
|t|2 + (ξ+ 1)B

ξ+ 1

)−(A+1)

.

(21)

If a flat prior, p (ξ) ∝ 1, is assumed as before, differ-
entiating (21) and equating to zero gives a marginal ML
estimate:

ξ̂ = max

(
A |t|2

B
− 1, 0

)
(22)

Curiously, equation (22) is basically the same as equa-
tion (15). It was shown by Garner (2009) that this result
requires no further regularisation to work well.

Hereafter, the SNR vector, ξ, is referred to as the SNR-
spectrum. This leads to the resulting cepstrum being
called the SNR-cepstrum.

4 Context

Whilst the above derivation is novel to the knowledge
of the author, the SNR-spectrum is by no means a new
concept. Rather, it draws together several loosely related
topics.

4.1 Enhancement

ξ is exactly the a-priori SNR of McAulay and Malpass
(1980), popularised by Ephraim and Malah (1984). In
enhancement, this measure is used as an intermediate
result in the reconstruction of an enhanced spectrum.
The Wiener filter can be defined in terms of the SNR:

w =
ξ

ξ+ 1
. (23)

In the decision directed estimator of Ephraim and
Malah (1984), the ML estimate of ξ of (15) is regularised
using an estimate based on the previous spectral magni-
tude estimate. This is further explored by Cohen (2005),
and is used in a modified form in ETSI (2002); Plapous
et al. (2004). Whilst these approaches are beyond the
scope of the present study, the proposed approach does
not preclude using them.

4.2 Automatic speech recognition

Lathoud et al. (2005) present an ad-hoc model allow-
ing a signal to be described in terms of noise and speech
spectra. Those authors perform what they refer to as
“Unsupervised” spectral subtraction. In fact, they explic-
itly floor the SNR using (in the present notation)

max
(

1,
sf

nf

)
. (24)

Notice that

log(1 + ξ̂) = log

(
max

[
1,

|t|2

ν̂

])
, (25)

which is the same form as (24). However, no ad-hoc
spectral model is necessary. It was shown by Garner
(2009) that this formulation can actually exceed the per-
formance reported by Lathoud et al. (2005).

The terminology raises an interesting issue: in the con-
text of CMN, there is little difference between using the
SNR-spectrum, and spectral subtraction. This is explored
below in section 6.2.

4.3 Relationship with articulation index

Allen (1994) describes earlier work by Fletcher analysing
the probable workings of the inner ear. In particular,
Allen states that Fletcher’s experiments suggest that the
cochlea is sensitive to SNR:
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The signal to noise ratio of each cochlear inner
hair cell signal is important to the formation of
the feature channels since [the channel error] is
known to depend directly on these SNRs rather
than on spectral energy.

Later, Allen (2005) defines the articulation index (AI) as

AIk = min
(

1
3

log10(1 + c2snr2
k), 1

)
. (26)

The AI is lower bounded at 0 by the logarithm, and up-
per bounded at 1 by a heuristic 30dB dynamic range of
speech.

Notice that the AI has the same form, except for linear
transformation, as the speech feature described above
that arises from CMN. This in turn is known to work well
in ASR. These two derivations are totally independent. It
follows that, under CMN, the feature being presented to
an ASR decoder is the AI, just as in the human ear.

In fact, the AI has been used directly as an ASR feature
by Lobdell et al. (2008). The approach of those authors
was to use the AI specifically to mimic the function of
the ear. In this sense, the present approach is comple-
mentary, driven more mathematically than perceptually.

4.4 Noise tracker

In order to obtain a noise estimate, Garner (2009) used
the low-energy envelope tracker advocated by Lathoud
et al. (2006), based on Ris and Dupont (2001) and Mar-
tin (2001). The low-energy envelope tracker normally
requires correction as its estimate is biased too small.
Lathoud et al. (2006) suggest that a multiplicative cor-
rection factor

C =
1

(1.5γ)2 , (27)

works well, where γ is the fraction of samples assumed
to be noise. However, Garner (2009) found that a value
of C = 1 was better for the SNR-cepstrum, rather than
the C ≈ 11 that would be implied from equation 27.
This in turn implied that the feature being presented to
the decoder was closer to

log(1 + 11ξ) = log(11) + log
(

1
11

+ ξ

)
. (28)

The right hand side of equation 28 implies that this
corresponds to using a smaller floor in the logarithm.
Further, it is close to the one empirically found to work
well as the parameter β in spectral subtraction. How-
ever, the left hand side of equation 28 suggests a rela-
tionship with the AI: Allen (2005) states that the value
c from equation 26 should be around 2. The square is
certainly the same order of magnitude as the 11 that oc-
curs empirically in the results of Garner (2009). C is
based on noise minima and c is based on speech max-
ima; whatever the actual value of these constants, the

present approach is unable to distinguish them. How-
ever, that they appear to cancel each other out suggests
they have the same origin.

4.5 Cepstral variance normalisation

Whilst cepstral variance normalisation (CVN) is known
to provide noise robustness (Viikki and Laurila, 1997,
1998), the justification for this is normally attributed
to a heuristic and brute force shift of the observation
PDF towards that of the model. This heuristic is used
to good advantage in histogram normalisation (Segura
et al., 2002; de la Torre et al., 2005). In the context of
the SNR-spectrum, however, the concept of CVN is far
more tangible: It is normalising SNR dynamic range.

As an aside, it follows that it may be possible to nor-
malise for SNR at some other point in the processing
chain. This has been investigated by the author with-
out success. An obvious tentative conclusion is that the
removal of the source noise, g, via CMN is important
beforehand.

4.6 Summary

The SNR-spectrum arises as a natural consequence of do-
ing CMN on ASR features. CVN then takes on a physi-
cal interpretation as normalisation of the SNR dynamic
range in dB. If defined more formally as the ratio of
speech and noise variances, the intuitive estimator of
SNR is also the marginal ML estimator under Gaussian
noise.

The SNR-cepstrum appears to be exactly (differing
only by linear transform) the AI of Fletcher as defined
by Allen, suggesting a close relationship with the sen-
sory mechanisms in the cochlea. Calculating the SNR-
cepstrum as suggested both by the cochlea and practical
computation leads to better noise robustness at low SNR.

5 Experiments

5.1 Previous results

Garner (2009) presented results showing that SNR based
MFCC (mel frequency cepstral coefficients) features
were more noise robust than the usual energy based
features on the aurora 2 database. The aurora 2 task
(Hirsch and Pearce, 2000) is a well known evaluation
for noise compensation techniques. It is a simple English
digit recognition task with real noise artificially added
in 5 dB increments such that performance without noise
compensation ranges from almost perfect to almost ran-
dom. Both clean (uncorrupted) and multi-condition (ad-
ditive noise corrupted) training sets are provided, along
with three test sets:

A Data corrupted with the same noise used in the (multi-
condition) training.
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Figure 1: A summary of previous aurora 2 results for
MFCC features. See the text for a description.
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Figure 2: PLP results on aurora 2 database.

B As test set A, but using different noise.

C A subset of the noises above, but additionally with a
convolutional filter.

Aurora 2 does not distinguish evaluation and test data,
so results may be biased towards this data-set and should
be considered optimistic. It should also be stressed that
the results in this paper are not state of the art for this
database; the purpose is to compare techniques.

Aurora 2 is very useful for optimisation and evalua-
tion of front-ends; this is because it runs quickly and has
a thorough test set. However, several criticisms can be
levelled at aurora 2:

1. It is real noise, but added artificially. This assumes
that the additive noise assumption is exact, and ig-
nores effects associated with the fact that speak-
ers will modify their voices to compensate for noise
presence.

2. It is digits, hence with a limited grammar and in-
complete phonetic coverage.

There is also a somewhat intangible feeling in the com-
munity that aurora 2 results are often not reflected in

real world systems.
The results from Garner (2009) are summarised in fig-

ure 1. Each graph represents a full aurora 2 evaluation
for either multi-condition or clean training. As the re-
sults for the different test sets (A, B and C) are virtually
indistinguishable when CMN is used, each curve is the
average of the three sets. The SNR of clean testing data
was measured to be around 48 dB, and is off the axis,
but the result is shown as the first number in parenthe-
ses in the legend. The second number in the legend is
the usual aurora 2 figure of merit: the average of the
scores from 0 dB to 20 dB. Both numbers are averaged
over the three test sets.

The first curve in figure 1 shows an MFCC baseline
using CMN in clean (mismatched) training conditions.
The following two curves show the benefits of using
CVN too (CMVN: cepstral mean and variance normali-
sation), and of multi-condition (matched) training. The
next curve shows that spectral subtraction cannot im-
prove on CVN, whilst the penultimate curve shows that
the SNR-cepstrum can further improve on CVN in mis-
matched conditions. The final curve shows that the SNR-
cepstrum does not afford any further improvement in
matched conditions. In fact, all techniques perform very
similarly under multi-condition training.

Notice that, whilst the aurora 2 figure of merit is
higher for the SNR based features, it is mainly gained
from improvements below about 15 dB SNR. In cleaner
conditions, the usual energy based features perform bet-
ter. It seems reasonable to attribute this difference to
the noise tracker. Certainly the noise tracker is imper-
fect, and it is the only major difference between the two
techniques at high SNR.

5.2 Hypotheses

In the present investigation, two hypotheses are under
test:

1. State of the art systems often use linear prediction
features as alternatives to the MFCCs used in pre-
vious work. Do such features also benefit from the
use of SNR based features?

2. The previous experiments were limited to the scope
of aurora 2. Do the benefits of SNR based features
transcend the restrictions of the this database?

5.3 Perceptual linear prediction

Linear prediction (LP) is a common speech analysis
method that represents speech using an all pole model
(Makhoul, 1975). In the context of ASR, it is used to
smooth a spectrum based on the fact that the signal orig-
inates from a vocal tract.

LP is normally used in ASR in the form of the percep-
tual linear prediction (PLP) of Hermansky (1990). PLP
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modifies the auto-correlation calculation in the first stage
of the LP calculation as follows:

1. The power spectrum is binned into critical bands
separated according to the bark scale.

2. The bands are weighted according to an equal loud-
ness criterion.

3. The bands are compressed by a cube root represent-
ing the power law of human hearing.

PLP has become quite widely used in state of the art ASR
systems, e.g., the AMIDA system of Hain et al. (2010).
In this sense, it merits investigation in the SNR-spectrum
framework.

Whilst LP has a rigorous mathematical underpinning,
PLP is more a set of heuristics. That is, the spectral warp-
ing is not derived as such, it is introduced in an ad-hoc,
but intuitively reasonable manner. Using the same intu-
ition, PLP cepstra can be calculated based on SNR rather
than energy. If PLP is seen as simply a smoothing oper-
ation, it is reasonable to assume that the same smooth-
ing can be applied to the SNR spectrum rather than the
power (energy) spectrum.

5.4 Method

Features in the spirit of PLP were extracted using the
Tracter toolkit (Garner and Dines, 2010). That is, pre-
emphasis was used in lieu of an equal loudness weight-
ing, then a 256 point DFT was performed every 10ms.
The power spectrum of 129 bins was applied to a filter
bank of 32 mel-spaced triangular bins (rather than bark
spaced trapezoidal bins). The filter bank was cube root
compressed (initially), then the usual DCT and LP recur-
sions yielded 13 cepstral coefficients (including C0) plus
first and second order delta coefficients. Cepstral means
and variances were calculated separately for the whole
of each utterance; all new results in this paper use both
CMN and CVN.

The SNR based PLP features were extracted as above,
except using one plus the ML estimate of the SNR as
described in section 3.4. The LP calculation was as
above, except that no cube root compression was em-
ployed. This was found to improve performance signifi-
cantly, and is discussed later in section 6.3.

Following Garner (2009), the noise values were ob-
tained using the low-energy envelope tracking method
described by Ris and Dupont (2001), but with a simpli-
fied correction factor from Lathoud et al. (2006): The
20 lowest energy samples in a sliding 100 frame (1 sec-
ond) window were averaged, but not multiplied by any
correction factor.

5.5 Aurora 2 results

Results are shown in figure 2. The energy based PLP fea-
tures perform similarly to the energy based MFCC fea-

tures. However, the improvement for SNR based fea-
tures is considerably more than that for MFCCs in the
mismatched (clean training) case. This is encouraging;
it strongly suggests not only that the SNR spectrum is
applicable to PLP features, but that it is more suited to
PLP features than to MFCCs.

5.6 Aurora 3 and 4 results

Aurora 3 and 4 go some way to combat the criticisms
that are often levelled at aurora 2.

Aurora 3 is a digit subset of SpeechDat-Car; that is, a
similar task to aurora 2 but uttered in real noise. The
noise is various driving conditions of a car. Several lan-
guages are available; the present experiments are per-
formed on the German (Netsch, 2001) and Danish (Lind-
berg, 2001) versions. As with aurora 2, a standardised
train and test harness is provided using HTK. However,
as the noise conditions are real, only three conditions are
defined:

wm is well-matched; a mixture of all conditions and mi-
crophones for both training and testing.

mm is mid-mismatch; training with quiet and low noise
data on a hands free microphone, testing on high
noise data from the same microphone.

hm is high-mismatch; training in all conditions on a
close talking microphone, testing in low and high
noise on a hands free microphone.

No SNR information is immediately available for the
Danish database. However, Netsch (2001) gives SNR dis-
tributions for the various microphones and conditions.
The close talking microphone averages around 20 dB,
and the hands free microphones averages around 5-10
dB; however all conditions spread 10 dB either side of
the average. Given these broad measurements, and com-
paring with aurora 2 results, a-priori it may be expected
that SNR features may not afford any improvement on
the wm and mm conditions. However, an improvement
is expected for the hm condition; although perhaps not
as much as in aurora 2 as the mismatch is not as large.

Results are shown in figure 3. Contrary to expecta-
tions, there is a small improvement across the board, ex-
cept for the Danish matched conditions. As expected,
however, the improvement is most significant for the
highest mismatch.

Aurora 4 is a noisy version of the well known wall
street journal (WSJ) based SI-84 task. Aurora 4 goes
back to using real noise artificially added to other-
wise undistorted speech, but is large vocabulary (5000
words), hence covering the phone set thoroughly. As in
aurora 2, both clean and multi-condition training sets
are defined. However, rather than define tests at partic-
ular SNRs, 14 individual enumerated tests are specified;
these are summarised in table 1.
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Microphone Clean
Noise added between 5 dB and 15 dB

Car Babble Restaurant Street Airport Train
Sennheiser 1 2 3 4 5 6 7
Second 8 9 10 11 12 13 14

Table 1: Test set composition for aurora 4.
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Figure 4: PLP results on aurora 4 database — Sennheiser microphone.
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Figure 3: PLP results on aurora 3 database. The G and D
prefixes refer to German and Danish respectively.

Although a test harness was made available by Parihar
et al. (2004), other authors have written their own (e.g.,
Au Yeung and Siu, 2004). In the present experiments, a
scheme in the spirit of that of Parihar et al. (2004), but
using HTK, was used.

To better reflect a typical WSJ system, the 16 kHz data
were used with a 400 point DFT and 40 bank mel filter.
Other parameters were as in the 8 kHz experiments. Re-
sults are shown in figure 4 (Sennheiser microphone) and
figure 5 (second microphone). A priori, from the aurora
2 result, one would not expect the multi-condition re-
sults to vary much between SNR and energy based PLPs.
The added noise is in the range 5-15 dB, however, which
is within the range in which SNR features have been

shown to afford an improvement. In this sense, the clean
training results should be better for SNR based PLPs.

In practice, the a-priori expectations are borne out
quite well.

5.7 Rich text

The SNR-cepstrum was briefly evaluated in the context
of meeting room recognition. The baseline was the
AMIDA RT06 system of Hain et al. (2006). Only the
first pass was evaluated, and only the IHM (individual
headset microphone). At an early stage, it was clear that
the results from the SNR-cepstrum were no better than
those from the baseline, and further experiments were
abandoned.

In fact, this result is broadly what would be expected
a-priori given the aurora 2 results. The training and test
condition are matched, and the SNR is quite high; per-
haps better than the notional 15 dB threshold.

5.8 Experimental conclusions

The hypotheses are hence proven:

1. PLP features appear to benefit from SNR spectra in
the same way as MFCC have been shown to do. At
least on aurora 2, the results are better than for
MFCCs.

2. Predictions made on the basis of aurora 2 results
carry over to real noisy data, and to a large vocabu-
lary system.
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Figure 5: PLP results on aurora 4 database — second microphone.

6 Discussion

6.1 State of the art

The experiments show that SNR-spectrum based fea-
tures can be beneficial in noisy environments when there
is a mismatch between the training and testing condi-
tions. Garner (2009) also showed that such features out-
perform various types of spectral subtraction. No other
comparison is made with other noise robustness tech-
niques. Rather, the use of standard databases means the
results can be readily compared with those in the liter-
ature. No claim is made that the SNR-spectrum gives
state of the art results. For instance, Li et al. (2007) re-
port considerably better results on aurora 2.

6.2 Analysis

That the SNR-spectrum performs well is a curious result
since there is not a large theoretical difference between
SNR spectrum features and energy spectrum features
when CMN is used. The difference is that the SNR spec-
trum features normalise before the filter-bank, whereas
CMN works after it.

If the filter-bank weights for a single bin are denoted
byw1,w2, . . ., the SNR features presented to the decoder
are of the form

log (1 +w1ξ1 +w2ξ2 + · · · ) , (29)

whereas the energy based features are closer to the form

log
(

1 +
w1(s1 + n1) +w2(s2 + n2) + · · ·

w1n1 +w2n2 + · · ·

)
. (30)

In broadband noise, ∀f : sf � nf, both expressions
clearly reduce to the same value (log 1). However, if the
noise is isolated to a particular bin, f, then only one term

in the first expression will approach zero. In the sec-
ond, the whole expression will reduce. It follows that
the noises in the experimental conditions are suitably
coloured for this effect to be significant.

These results are complementary to those of Lobdell
et al. (2008), who also find advantages associated with
AI features, albeit working after the filter-bank, and
without cepstral normalisation.

6.3 PLP power law

One corollary of the aurora 2 experiments is that the
cube root compression of Stevens (1957) normally used
in PLP is not beneficial in the presence of noise. Whilst it
is not the object of this study to investigate optimal PLP
parameters, one hypothesis is as follows:

The compression affects the relative contribution of
large and small spectral values in the LP calculation.
Higher powers favour the higher values. The smaller
power of 0.33 in PLP will enhance the contribution of
smaller spectral values. The smaller values are likely to
be noise. It follows that compression is in general not a
noise robust operation. This issue is related to the SNR
spectrum in that the SNR calculation can reduce noise
peaks.

It can be tentatively concluded that additive noise is
a more dominant concern than optimal compression in
the present experimental conditions.

7 Conclusions

SNR-spectrum features for ASR have several practical
and mathematical advantages over the more usual spec-
tral power features. The naive SNR estimate is actually
the optimal estimate under a fairly rigorous Bayesian
analysis, and the framework leaves room for further in-
corporation of prior information, as is common recently
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in ASR. SNR features combined with CMN and CVN per-
form well in noisy conditions, especially when the SNR
is below 15dB.

The SNR-spectrum combined with the usual cepstral
processing can be seen as an independent derivation
of the articulation index. This also leads to insights
into how to handle the noise tracker. Certainly the
empirically optimal configuration is one with no hyper-
parameters. The SNR-spectrum is also closely related to
features known to be beneficial in speech enhancement.

Experiments on artificial and restricted data give re-
sults that appear to generalise to real and less restricted
data. Whilst no effort has been made to approach state
of the art noise robustness figures, the SNR-spectrum ap-
pears complementary to techniques producing such re-
sults.
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