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Abstract

Model Predictive Control has been implemented on a large drainage canal system in the Netherlands. This water system can be
represented as a reservoir with uncertain inflow due to rainfall runoff and a water level that has to be kept within a certain range by a
control flow that is limited in capacity. Tests demonstrate that Model Predictive Control outperforms feedback and feedforward
controls. To deal with uncertainty in the expected inflow, Multiple Model Predictive Control (MMPC) is proposed. This controller
minimizes an objective function in which the risk of damage is used by applying different scenarios to multiple identical models.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In areas with considerable amounts of precipitation,
water systems are designed to drain water out of the area
into an adjacent river or sea. The precipitation falls on the
land, resulting in a run-off into the system through
infiltration via ground water and more direct from
precipitation on the water surface and surface run-off.
The water system consists of storage and conveyance
canals and structures to manipulate the flows in these
canals. The sluice gates and pumps that discharge water
out of the system are the most important structures, as
their capacity defines the maximum drainage capacity of
the system. The capacity of the structures is designed to be
sufficient to deal with regular storm events. Heavy storm
events cause inflows that exceed drainage capacity, result-
ing in rising water levels. This rise could eventually lead to
overtopping of dikes and embankments, causing inunda-
tion with damage to farm land and communities. Conse-
quently, the storage capacity within the water system needs
to be utilized as much as possible for these heavy storm
events. By lowering the water level before a storm event
actually starts, extra storage is created that can be utilized
to store the run-off water to avoid high water levels. On the
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other hand, water levels cannot be lowered too much due
to the risk of collision of dikes. Also, changes to the
structure’s settings need to be minimized to avoid wear and
tear to the structures and strong transition waves in the
canals. The management of the water levels between these
minimum- and maximum-allowed water levels is normally
performed by an operator, who needs to have extensive
experience with the system. He judges the present state of
the water system and the precipitation forecast for the
coming period to decide on the control actions. In his
decision, he uses an estimate of the effect that the storm
event has on the water levels and the limited capacity of the
structures.

As requirements from the society in which the drainage
system functions, increase over time and the storm events
tend to become more intense, the operator needs to be
supported in his difficult task by the implementation of a
control system. The objective of the control system is to
keep the water levels in the canal system close to target
level, given the limited capacity of the structures.

Over the last few decades, the type of controllers applied
on water systems have evolved from feedforward, feed-
back, feedback in combination with feedforward towards
more advanced control methods such as Model Predictive
Control (Camacho & Bordons, 1999; van Overloop,
Schuurmans, & Brouwer, 2003; Qin & Badgwell, 2003).
(Malaterre, Rogers, & Schuurmans, 1998) gives a thorough
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classification of all types of control methods used on water
systems. This trend of implementing more advanced
control systems is in line with the increasing capability
over the last decade to implement controllers in ‘real time’.
To a large extent, this is the result of the increased
computational power of computers and microprocessors.
Nowadays, by making use of predictions, Model Predictive
Control makes it possible to anticipate on expected
future problems resulting from the limited capacity of the
structures, by wusing an internal process model to
calculate the future state of the system. In the Model
Predictive Controller, a trade-off is made between water
level deviations from setpoint and the required changes in
structure setting. This way of controlling the drainage
system resembles the way operators manage the system. In
2003, a Model Predictive Controller has been implemented
in the Decision Support System of the drainage canal
system of Waterboard Delfland in the Western part of the
Netherlands (Schuurmans, van Overloop, & Beukema,
2003). Every 15min, this automated system calculates the
optimal control actions for the structures for the next 24 h
and communicates these actions to the operator through a
user interface. When the operator accepts the advice, it is
sent to the structures that effectuate the control actions
automatically.

The use of predictions implies the introduction of
uncertainties. The inflow in the canal system, that cannot
be measured directly, is influenced by uncertainty in
(forecasted) precipitation and in parameters of the hydro-
logical run-off process. A way to gain insight in the extent
of the uncertainties is to use an ensemble prediction system.
Here, the predictions are computed in a number of runs.
For each run, the parameters of the model are slightly
changed. The result is a range of scenarios providing an
estimate of the outer bounds and the probabilities of the
predicted inflow.

A fundamental question is how to use the uncertainties
represented by ensemble predictions in the computation of
the control actions. A method that is sometimes used to
calculate the control actions under uncertainty is chance-
constrained programming (Charnes & Cooper, 1959). Due
to heavy non-linear processes, especially in the rainfall-
runoff part, this method is hard to apply to the Delfland
case. Furthermore, this method will result in control
actions that try to come as close as possible to the chance
constraint, while in the Model Predictive Controller as
applied in this article, the water levels should be kept
to setpoint as close as possible. This requires usage
of the deviation of water levels from setpoint or,
preferably, the derived variable damage in the objective
function of the Model Predictive Controller. Another way
to incorporate the uncertainty in the optimization problem
is to minimize the risk resulting from the uncertain inflows.
Previous work considers risk in optimization and control
problems (Zafra-Cabeza, Ridao, & Camacho, 2004, 2005;
Zafra-Cabeza, Ridao, Camacho, Kempf, & Rivera, 2007).
In the case presented in this article, however, the risk itself

is the direct result of an uncertain disturbance that varies in
time. The control actions influence both the probability
and the damage associated with extreme water levels. The
product of these two variables is part of the objective
function. When the total risk of all scenarios is minimized,
the optimal control actions are computed, taking into
account the uncertainties in the system. In this article, a
Multiple Model approach (Murray-Smith & Johansen,
1997) is proposed to incorporate the risk of damage in
computing the control actions using a probabilistic
approach.

2. Model of drainage canal system

A simple model of a drainage canal system in a low-land
area is used to illustrate the functioning of control on water
systems. In Fig. 1 the water system is shown, in which / is
the average water level (m with respect to mean sea level),
Q. is the control flow that pumps water out of the system
(m’/s) and Q, is the disturbance rainfall-runoff inflow
(m?/s). This disturbance flow originates from the precipita-
tion that finds its way through the ground water and
overland flow to the water system and the direct precipita-
tion on the water surface.

The discrete time invariant process model used is
given by

T(r Tc
hik +1) = h(k) = —= Q. (k — ka) + — Q4 (k). (1)

where A, is the average storage area (m?), T, is the control
time step (s), k; is the number of delay steps between
control action and change in average water level and k is
the time step index. The canal system can be modelled as a
large reservoir because the storage canals are wide and well
interconnected. This type of water system model is referred
to as the Integrator Delay model (Schuurmans, 1997).
Most of the drainage systems in low-land areas can be
modelled in this way, as they are characterized by wide
canals with a flat bottom slope. To demonstrate the validity
of the simplified model, measurements of the Delfland
water system are compared to simulation results of the

Fig. 1. Schematization of drainage water system.
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simplified model. This water system is controlled by the
Model Predictive Controller as described in this article.
Table 1 presents the parameters of the simplified model as
derived from the actual water system. Figs. 2 and 3 present
the comparison of the actual water system and the model
over 12 days starting from 7 January 2006. Note that the
reference level in this period is set to —0.475 m with respect
to mean sea level. In Fig. 2, the precipitation over this
period is shown together with the resulting rainfall
runoff. This flow is the disturbance to the reservoir model
and is calculated based on a non-linear deterministic

Table 1

Model and controller parameters

Parameter Symbol Value
Storage area Ay 73,00,000 m>
Control time step T, 900s

Delay step ka 1

Water level setpoint R —0.40mMSL
Minimum water level Dimin —0.55mMSL
Maximum water level Dax —0.30mMSL
Minimum control flow O¢.min 0m3/s
Maximum control flow O¢.max 75m’ /s
Prediction horizon N 97 (24 h)
Proportional gain K, 1106.1
Integral gain K; 75.4

Penalty weight on e 0. 25

Penalty weight on Ae One 400

Penalty weight on e.,,. e 2,50,000
Penalty weight on AQ.. Rag, 0.01

Penalty weight on u_,,, Ry le-12

rainfall-runoff model. Especially in this sub-system, un-
certainties play an important role. Both the prediction of
the precipitation and parameters such as the initial
groundwater level, infiltration capacity and saturation of
the soil, are uncertain to a considerable extent. The lower
part of Fig. 2 represents the actual (solid line) and the
modelled (dotted) control flow that is sent to the structures
in order to maintain the water levels close to reference
level. The upper part of Fig. 3 shows the water levels as
measured at various locations in the Delfland water
system. From these measurements, the weighted average
is calculated as shown in the lower part of Fig. 3 (solid
line). Here, also the modelled water level is shown (dotted
line) in comparison to the actual water level. It can be seen
that the reservoir model is an accurate representation of the
actual water system.

3. Control on drainage canal system

The control flow Q. is used to keep the water level in the
reservoir model between the minimum- and maximum-
allowed water levels. Different control methods can be
applied to manipulate this control flow. To show the
reason why more advanced control methods are required
to control large drainage systems, three general controllers
are tested on their capability to utilize the available storage
in the canal system as much as possible. The tests are open
loop tests over the prediction horizon, which means that
the results are the predictions of control actions to be taken
and the resulting predicted water levels. When the internal
model and predictions are assumed perfect, the closed loop
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Fig. 2. Flows of actual and modelled water system.
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Fig. 3. Water levels of actual and modelled water system.

will give the same results. As this article only aims to show
the potential of the different control methods for utilizing
storage in the water system, given the predictions and the
state of the water system, no closed loop tests are executed.
The following controllers are tested in Matlab (Math-
works, 1992) on the Integrator Delay model of the
drainage water system:

Proportional integral feedback control (Vandevegte,
1990). The water level /& is measured, compared to the
setpoint /,.,and the error e between these values is fed back
to the control flow using a PI controller tuned with rules
from (Schuurmans, 1997)

e(k) = h(k) = hy, )

The computed control flow Q. is limited when the
maximum capacity is exceeded.

Proportional integral feedback control with feedforward
control (Vandevegte, 1990). The same feedback law is
applied as used in the first controller and in addition to
this, the most likely prediction of the disturbance run-off
inflow Q.44 is used as feedforward signal

AQ. (k) = K)Ae(k) + Kie(k) + AQy 4, (k + ka). 4)

The computed control flow is
maximum capacity is exceeded.

Model Predictive Control (Camacho & Bordons, 1999).
The MPC uses a linear state space model with hard
constraints on the input AQ, and soft constraints on the
exceedence of the water level limitations (van Overloop,
2006). When formula (1) is substracted by the same formula
but now at time step k and A, from formula (2) is

limited when the

considered as constant, the change in error can be derived
T,
h(k + 1) — h(k) = h(k) — h(k — 1) — = O (k—kq)
T, T . T
+ZQ"(k —ka—1) +ZQd(k) - ZQd(k -1

= Aclh 1) = Aclk) ~ A~ O,k — k) + ALE 0, (k)
5)

As k4 is 1 time step (see Table 1), the state space model
can be written as

(11 0 L]
e(k+1) As e(k)
Ae(k + 1) 01 0 _% Ae(k)
enelk) | | eonek = 1)
1 1 0 —&
(10 0 0 0 |
_ & _
0 0 As
0 0| [AQ.K Z_ ok
+ : + s
0 -1 u;one(k) T. [ Qd( )]
1 0 A,
L 0]
Qc (k) = Qc,min (k)>
0.(k)< O max(k),
Uzone(K) Z hinin (k) — hrefa
Uzone(K) < himax (k) — hrefy (6)
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where k is the time step index, e is the deviation between
water level 4 and the fixed setpoint /., (m), Ae is the
change in water level deviation (m), e..,. is the water level
outside of the allowed margin (zone) around setpoint ()
given by the minimum and maximum allowed water levels
and u.,,, 1s the signal that is subtracted from the water level
deviation to make e.,,, either zero or a value corresponding
with the exceedence of the margin around setpoint (van
Overloop, 2006). This signal u.,,. has no physical meaning.
It is equal to e, when e is within the minimum- and
maximum-allowed levels around setpoint and limited to
these minimum and maximum deviations, when e is outside
the allowed margin (violation of soft constraints). Fig. 4
gives an example of the variables e, u.,,. and e.,,. for a
violation of a water level constraint.
The objective function J that is minimized is

T T
¢ - Q,-eitAe; - 0y, - Aci
T
+ezone,i : Qemm) * €zone,i

=0 +u;r(me,i ' R”Zune * Uzone,i + AQII : RAQ( ' AQC,[
@)

where 7 is the length of the prediction horizon, Q, is the
penalty weight on the water level deviation, Qa. is
the penalty weight on the change of water level deviation,
0,.,. is the (high) penalty weight on the water level
deviation outside of the margin around setpoint, R, is
the (very low) penalty weight on the virtual signal that
is subtracted from the water level deviation to make e.,,,.
either zero or a value that corresponds with the exceedence
of the margin around setpoint. The objective function is a
summation of penalties. In this article, the summed
penalties on the water level deviation related variables in
the objective function are considered to be the definition of
damage. This may be assumed because the controller
resembles the way operators manage the water system and
they implicitly try to minimize costs due to inundation,
failure of dikes and wear of structures. The optimal
predicted control flows, that give a minimum objective
function value, are computed using a quadratic program-
ming interior point algorithm (Wright, 1997).

The parameters used in the model and controllers are
given in Table 1. These parameters are derived from the
actual water system of Water Board Delfand in the

b}

Netherlands. The canal system of Delfland is representative
for most of the large drainage systems in low-land
areas. Although the size of different drainage canal systems
may vary, the basic dynamics are the same as in the
presented example. The values for the penalty weights are
derived by normalizing all terms in the objective function
to 1 when maximume-allowed values for the variables are
assumed. These values are 0.2 m, 0.05 m/time step, 0.002 m,
(10 m*/s)/time step and 10,00,000 m for the variables e, Ae,
€-one» AQ. and u.,,,., respectively.

The results of the three control methods are presented in
Figs. 5-7. The forecasted precipitation is the actual
precipitation of September 13 1998 6:00 that fell in the
Western part of the Netherlands. This event was one of the
heaviest storms in the past 100 years in this area.

In Fig. 5, the result of the proportional integral feedback
controller is shown. The first graph is the disturbance flow
0, The second graph is the computed control flow Q.,
while the third graph is the resulting water level 4. The
controller starts to react on the disturbance after this has
caused the water level to rise. In fact, the control action is
too late. When the disturbance inflow causes the water level
to rise, the control flow increases in order to bring the
water level back to setpoint. As the capacity of the control
flow is limited to 75m?/s, the water level rises higher than
the maximum allowed water level.

Fig. 6 is the result of the same proportional integral
feedback controller in combination with a feedforward
controller. The feedforward controller computes the
effect that the disturbance has on the water level and
compensates for this by counter acting on this effect. It
starts to discharge one time step before the disturbance
takes place, as the delay time from control action to
average water level change is one time step. Apart from this
time shift, the course of the control flow is similar to the
disturbance flow, as this controller tries to keep the
resulting water level deviation exactly to zero. Only when
the disturbance flow becomes higher than the maximum
control flow, the water level rises and violates the
maximum-allowed water level. This controller reacts faster,
but still does not satisfy the requirement on the controlled
water levels.

Fig. 7 shows that the Model Predictive Controller results
in a solution that does not violate the constraints. As the

——@ ——u_zone =——g_zone Violation
E
°
3
o
Time (h)

Fig. 4. Virtual variables required to construct soft constraint.
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Fig. 6. Feedback and feedforward control.

capacity of the pump is limited, the controller does not
function as a straightforward feedforward controller.
Instead, the control flow is augmented before the
disturbance actually takes place. By lowering the water
level beforehand, extra storage is created to accommodate
for the water level rise due to the inflowing disturbance.

4. Uncertainties in controlled drainage canal systems

Since the forecasted precipitation is uncertain and the
disturbance model contains model errors as well, the
disturbance inflow over the prediction horizon is uncertain.
As the hydrological process is highly non-linear, white
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noise-based methods such as LQG are not an option to
estimate the probability distribution of a solution. As the
hydrological model is based on physical parameters, a
Monte-Carlo analysis can be carried out in which these
parameters are varied according to their estimated
uncertainties. This analysis results in ensemble prediction
scenarios. Other possibilities include the use of uncertain-
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ties in rainfall forecast. For the example shown in Fig. 8, 50
runs are carried out in which the parameters of the
hydrological model are picked at random from normal
probability distributions with mean values and standard
deviations taken from expert judgement. The 50 runs are
shown in the left part of Fig. 8. In the right part of Fig. 8,
the 50 runs are sorted with respect to cumulative volume
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Fig. 7. Optimization by using Model Predictive Control.
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over the prediction horizon. The lowest 5, middle 40 and
highest 5 runs are averaged in a minimum, average and
maximum scenario. Consequently, the corresponding
probabilities of these scenarios are taken to be 10%, 80%
and 10%, respectively.

5. Multiple Model Predictive Control (MMPC) on drainage
canal systems

In case the three disturbance scenarios are applied to the
canal system with the same set of control actions for all
scenarios, this will result in three water level trajectories.
One is the maximum scenario with a small probability of
occurrence, but with high damage. The second is the
average scenario that is most likely to occur. The third is
the minimum scenario that also has a small probability and
high damage.

If one of the resulting water levels is pointed out as fully
unacceptable, the corresponding disturbance can be used in
the Model Predictive Controller. The control actions will
then be fully concentrated on avoiding this scenario, while
the other scenarios are neglected. However, if the chance of
occurrence of other scenarios is much higher, the question
can be posed whether this controller is too conservative.
Instead, the probability combined by the damage is a
more promising option. The variables that are related to
the water level deviations in the objective function are
considered as damage. So, the damage is assumed to be
proportional to the water level deviation from setpoint.
The probability P is multiplied with this damage to come to
a risk criterion that can be minimized

Risk = Probability x Damage. (®)

The risk criterion can be incorporated into the Model
Predictive Controller by using three identical process
models in parallel, fed by three different disturbance
models. In the objective function, the resulting three water
level deviations are weighted with an extra weight equal to
their probability of occurrence P. Fig. 9 and formula (9)
illustrate the functioning of this MMPC.

+ Py - Uy,

vg * uavg,zone,i " Buzone * Uavg,zone,i

T
+Prin * Uiy zone.i * Ritzone * Umin,zone,i

i=0 T T T
+Pmax : emax,i : Qe * €max,i + Pmax . Aemax,,’ : QAe : Aemax,i + Pavg : emax,;gne,,’ : Qemm, * €max,zone,i

T
+Prax - Umax,zone,i * R":nne * Umax,zone,i

+AQ!; - Rag, - AQ,;

where P, is the probability of the average scenario, P, is
the probability of the minimum scenario and P, is the
probability of the maximum scenario. The values for P,
P.in, and P, are taken at 80%, 10% and 10%
respectively. The optimization results in a control flow

T . T . . er . . .
Pavg : euvg,i : Qe * Cavg,i + Pavg : Aeavg,i : QAe : Aeab‘g,l + Pavg eavg,;one,i Qe;one €avg,zone,i

T T T
+Prin - €min,i ° Qe * €min,i + Prin - Aemin,i ’ QAe : Aemin,i + Pin - €min,zone,i * Qé’:one * €min,zone,i

that is mainly based on the most likely scenario, but in case
of a large water level deviation of one of the other
scenarios, the resulting control flow anticipates more on
that extreme deviation. The consistency of formula (9) can
be checked by assuming identical disturbance flows for the
three scenarios (for example if the standard deviations of
the normal distributions of all parameters in the dis-
turbance model are set at zero). The resulting water
levels of the three scenarios will then be identical. Multi-
plication with each probability and summation leads to the
exactly same result as given by formula (6). Note
that different process models, for example with mini-
mum, average and maximum storage area A, can also be
incorporated. This allows for robust control over all opera-
ting conditions (van Overloop, Schuurmans, Brouwer, &
Burt, 2005).

The same model as given in formula (1) and tested on the
various control methods, is now tested with MMPC using
different scenarios according to Fig. 8. Fig. 10 shows the
open loop prediction of disturbances, the optimal control
flow and the water levels. The results of MMPC have a
lower final water level of the average scenario compared to
the regular Model Predictive Controller. This is the result
of the maximum scenario violating the maximum allowed
water level. The soft constraint on that violation makes the
control flow start sooner with discharging out of the water
system. This results in lower water levels for all scenarios.
The fact that the maximum-allowed water level is violated
does not pose a problem, as the probability that it will
happen is small.

Interviews with operators reveal that the result of the
MMPC resembles the way that the operators manage the
water system. When the expected inflow is uncertain, for
example due to contradictive weather forecasts from
different meteorological institutes, they tend to keep the
water levels lower. Based on the uncertain predictions, the
operators consider high water levels with corresponding
high damage due to extreme precipitation probable. In that
manner, the operators are controlling the risk of damage in
a similar way as MMPC.

) ©)

The MMPC is a simple extension of the normal Model
Predictive Controller as only copies of the process model
are used. The only consequence is that the matrix sizes
increase with a factor of maximum 32. This increases the
computational time to solve the optimization.
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Fig. 10. Result of MMPC of one optimization step.

6. Conclusions

To control drainage canal systems in extreme conditions,
the available storage needs to be utilized as much as
possible. When heavy precipitation falls, feedback control
is less capable of avoiding exceedence of the maximum
water level than feedback control in combination with
feedforward. Model Predictive Control outperforms feed-
back and feedback in combination with feedforward, as it
can anticipate predicted disturbance beforehand, taking the
limited capacities of the structures into account.

Since the predictions are uncertain, a methodology is
applied that uses the risk approach in MPC that penalizes
the variables related to the water level deviations multiplied
by the probability of occurrence. A minimum, average and
maximum scenario is computed in an ensemble prediction
system. These scenarios are applied on three identical,
parallel models on which one set of control flows is
computed by a MMPC. The MMPC results in control
actions taking the uncertainties into account. This has an
advantage over control methods that only consider the
average prediction scenario. Other scenarios can have a
low probability, but may result in very high damage.

The methodology allows for structural application in a
wide variety of problems that exist in the control of water
systems, such as uncertain precipitation, uncertain process
models and different constraints on different scenarios.
Since any disturbance model and process model can be
used, MMPC can be applied to other types of water
systems such as control of large reservoirs, irrigation
canals, etc.
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