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Abstract

Francis turbines can experience critical instabilities at high load operating points, limiting their maximum power output. The
swirling flow developed in the draft tube produces a cavitating axisymmetric volume, acting as an internal energy source leading
to a self-excited surge phenomenon. The pulsation of the vortex rope corresponds to one of the eigenfrequencies of the hydraulic
system.

Efforts to accurately characterize, simulate and predict this phenomenon have been undertaken by several researchers, using a
1-D hydroacoustic model of the full load vortex rope. The key physical parameters are the mass flow gain factor, standing for the
excitation mass source of the hydraulic system, the cavitation compliance factor, representing the wave speed and the
thermodynamic damping, modeling the energy dissipation between the liquid and the gas. These parameters need to be determined
either numerically or experimentally. The aim of the present investigation is to determine the mass flow gain factor and the
cavitation compliance using experimental data obtained during a measurement campaign on a reduced scale Francis turbine model
and to compare the results to existing CFD data.
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1. Introduction

Hydraulic power generation systems may experience critical limitations of their produced output during full load operating conditions
due to flow instabilities in the draft tube cone. The self-excited oscillation of the cavitating axisymmetric vortex rope at one of the
eigenfrequencies of the hydraulic system leads to high vibration and noise, preventing a further increase of power output.

Early measurements at full load on a reduced scale model presenting this type of instability were performed by Jacob et al. [8] in
1988, linking the frequency of the recorded pressure fluctuations to a computed eigenfrequency obtained by a forced excitation of the
system. Studying the Pogo effect in cavitating turbo pumps, Brennen and Acosta developed in 1976 [3] and 1978 [4] a transfer function
relating the pressure and the inlet flow rate fluctuations to the same quantities at the outlet, including the cavitation compliance and the
mass flow gain factor as key parameters. A similar approach based on cavitation parameters mapping was used by Tsujimoto et al. in
1993 [13] to explain inducer instabilities and later by Duttweiler and Brennen in 2002 [7] and Watanabe and Brennen in 2003 [14] to
explain propeller instabilities. Koutnik et al. applied the transfer matrix method to Francis turbines in 1996 [9] and performed a time
domain simulation of a full load instability occurring in a Francis pumped-storage plant in 2006 [10]. Further contributions to the
simulation of the full load surge were made by Chen et al. in 2007 [5], Alligné et al. in 2010 [1] and Ddrfler et al. in 2010 [6], choosing
different approaches modelling the physics of the draft tube flow.

The experimental determination of the parameters of the hydroacoustic model is a main challenge. This paper presents an optical
method to compute the instantaneous volume of the vortex rope, necessary for the calculation of both the cavitation compliance and the
mass flow gain factor. The method is based on the processing of images recorded with a high speed camera on a reduced Francis
turbine model. Measuring the relevant flow parameters at four different operating points, the cavitation compliance and the mass flow
gain factor are estimated.
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2. Case study

The experimental data was collected in the scope of an extensive measurement campaign on a reduced Francis turbine model of
specific speed v= 0.27 on the EPFL test rig PF2 in 2008. The flow in the diffuser is recorded with a high speed camera at a
resolution of 1024 x 1024 pixels and an acquisition rate of 50 frames per second. The experimental setup is shown in Fig. 1. The
backside of the Plexiglas cone was covered with an anti-reflective paper and the flow was being illuminated by two 800 W
spotlights with linear tungsten-halogen bulbs.

Anti-reflective paper

\— 800 W spotlight

Fig. 1 Experimental setup for the measurements on the reduced model

The camera was synchronized with dynamic pressure sensors installed in the draft tube to measure the pressure fluctuations.
For further details on this particular case study, please refer to [1] and [2]. A sequence of images of typical shapes of the full load
vortex rope during one cycle of its volumes oscillation is shown in Fig. 2.

Fig. 2 lllustration of full load surge on the reduced model on EPFL test rig PF2 (OP#4)

3. Testing conditions

For the following investigation, four operating points at full load are chosen. The corresponding operating conditions are given
in Table 1 for the reduced model and the existing prototype. From the nominal operating point OP#2, which possesses a Froude
similitude with respect to an unstable operating point of the prototype, a variation of the Thoma number o and Froude number Fr
is performed.

Table 1 Summary of operating conditions to determine the hydroacoustic parameters y and C¢

Operating  Guide

point vane EM QM Neo Qeo Teo c Fr EP Q°
number  opening (sigma)  (Froude)

[-] [] [Pkg'l [m’s’] [-] [-] [-] [-] [-] Pkgl  [m’s7]
OP#1 30.0 115.78 0.347 0.274 0.263 0.133 0.100 5.80 1786.38  324.240
OP#2 30.0 115.84 0.347 0.274 0.263 0.133 0.110 5.80 1786.80  324.015
OP#3 30.0 115.91 0.347 0.274 0.263 0.133 0.153 5.80 1787.50  324.091
OP#4 30.0 192.02 0.453 0.274 0.267 0.135 0.110 7.50 1788.77 328.75
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4. Determination of the vortex rope volume

The property of vapour to reflect light, in contrast to the transparent flow of water, is used to visualize the cavitation vortex
rope. The edges of the vortex rope are detected in order to deduce the volume for each frame. An important criterion of a given
method is the ability to deal with problems due to inhomogeneous illumination or missing edges at certain boarder regions of the
cavity. The conversion of the images to a binary format by thresholding did not produce satisfying results; therefore a second
order edge detection by applying a Laplacian of Gaussian (LoG) filter was used according to [11].

The illumination of the vortex rope being not homogeneous, a brighter left part and a darker right part is identified at most
stages. For the following method, the picture is split into two parts along the vertical symmetry line, treated separately and then
reassembled in order to identify the edges of the cavity.

A Gaussian image smoothing recalculates the components of a (2x2) matrix, corresponding to pixel values of an image, using a
normal distribution according to

G(x,y)=2ﬂ102 exp(X +y ] 1)

207

where o is the standard deviation. The effect is a blur and the removal of details and noise from the picture. The second
derivative of a Gaussian is an appropriate filter to detect intensity changes in an image and as a consequence the edges of a given
object in the picture, as described by Marr and Hildreth [11]. The different steps of the image processing are shown in Fig. 3 for
different stages A) - D) of the vortex rope within one cycle. The original images are shown in the top row and the results of the
application of the LoG filter in the second row. The value of the standard deviation used for the Gaussian smoothing is o= 2. The
third row displays the first and the last white pixel in each horizontal line, represented by green and red crosses, respectively. It is
noticed that the black and white pixels have been inverted in the second row of Fig. 3 in order to enhance the visibility on paper.

Fig. 3 Original images (top), results of LoG filtering (middle) and edges of the vortex rope (bottom) for OP#4
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The volume of the vortex rope is calculated by counting the number of pixels between the red and the green cross for every
horizontal plane of the image, as illustrated at the bottom of Fig. 3. Knowing the geometry of the cone, this number can be
converted to an equivalent diameter of the assumed axisymmetric vortex rope at a given location and the different cross sections
are then added up to an approximate volume; the inclination angle of the camera; not being taken into account. The dimensionless
time dependant fluctuation of the vortex rope volume is shown in Fig. 4 for OP#4. The volume is divided by the total volume of
the Plexiglas cone and the time is made non dimensional by the rotating speed of the runner n. The oscillation is periodical at a
frequency of 0.17 times n.
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Fig. 4 Vortex rope volume as a function of time for the operating point OP#4

For the determination of the hydroacoustic parameters, a mean value of the cavity volume is calculated. This value is given in
Table 2, together with the dimensionless flow parameters and the discharge for the investigated operating points. The mean vortex
rope volume as a function of the Thoma number and the discharge, respectively, is shown in Fig. 5 including the standard
deviation at each operating point.

Table 2 Mean vortex rope volume for different operating points

Operating M . Er Mean Number
point number (sigma) (Froude) volume of images
[] [m3s7] [-1 [ [m’] []
OP#1 0.347 0.100 5.80 0.0028751 201
OP#2 0.347 0.110 5.80 0.0023842 301
OP#3 0.347 0.153 5.80 0.0014431 301
OP#4 0.453 0.110 7.50 0.0035331 301
[-]| woid fraction [-]] woid fraction
0.08 0.08
0.07 0.07
0.06 0.06
0.05 { 0.05 {
0.04 0.04
0.03 2 0.03
G QQ,
02 01 011 012 013 014 [] 015 016 0.0z 1 105 14 115 12 125 13[] 135

Fig. 5 Mean volume as a function of the Thoma number (left) and the discharge (right)

5. Calculation of the hydroacoustic parameters

A new 1-D model for the draft tube was developed by Alligné et al. [2] for an accurate stability analysis with the in-house
software SIMSEN. The model is shown in Fig. 6, featuring the mass flow gain factor y, representing the effects of the swirling
flow in the diffuser, the cavitation compliance Cc, standing for the compressibility of the gaseous volume and a damping
coefficient Ry, taking into account the thermodynamic exchange between liquid and gas.
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Fig. 6 Draft tube domain (left) and equivalent electrical scheme of the set of cone and elbow parts (right) [1]

The node equation in the electrical scheme corresponds to the continuity equation between the runner outlet(T) and the elbow

outIet(E):
DV, dh, dQ,
Q* _Q* — c _ C 1+1/2 + 2 (2)
TR T o g At
Q, represents the discharge at the runner outlet, Q,the discharge atA;, h. . the piezometric head at the node in-between

and V. the vortex rope volume. The cavitation compliance Cc and the mass flow gain factor y are hence defined as

oV, oV,
c=-— and y=——%. ©))
ah1+1/2 6Q§
Cavitation compliance factor C¢
The cavitation compliance can also be expressed as a function of the Thoma number, assuming
oV oV 10V,
CC —_ C ~ c __ = C (4)

M, o Hoo

The necessary values are obtained by comparing the change in the vortex rope volume V¢ and in the Thoma number o for the
operating points OP#1 and OP#3. Using the values in Table 1 and Table 2, the cavitation compliance becomes

Co~—~2Y _988.10°463.10° m?, ©)
H Ao

where the uncertainty interval is obtained by computing the cavitation compliance using the maximum and the minimum
values of the volumes V. The compliance can also be written as a function of the speed of sound [12], as in

Ce=- ivc -9 ©)
0 1+1/2 a
Using eq. (5) ineq. (6) finally yields
a= géA" ~28.0+0.4 m-s™. @)

Mass flow gain factor g

For the calculation of the mass flow gain factor, the changes in the vortex rope volume and the discharge between the
operating points OP#2 and OP#4 are considered and used in
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oV, AV,
= m et ®)
8QE AQé
Given the values in Table 1 and Table 2, the mass flow gain factor becomes
AV,
o~ ——= =-10.8-10%+1.6-10° s. 9)

2

The calculated values for the cavitation compliance and the mass flow gain factor are compared to numerical results obtained
with CFD by Alligné et al. [1], [2] and are found to lie within the same order of magnitude.

6. Conclusions

The cavitation compliance and the mass flow gain factor play an important role in predicting the stability of hydraulic systems
using a hydroacoustic 1-D model. These two key parameters were calculated based on a high speed visualization of the cavitation
vortex rope. A tool to determine the instantaneous volume of the vortex rope processing the images from a high speed camera was
developed. The applied Laplacian of Gaussian filter detects accurately the edges of the vortex rope, despite the inhomogeneous
illumination of the cavity.
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Nomenclature

A Pipe cone section area [m?] L Inductance [s>.m]

a Wave speed [m.s™] n Runner rotational frequency [s™]
C Electrical capacitance [m?] Nep Speed factor [-]

Cc Cavitation compliance [m?] Q Volumetric discharge [m®.s?]

E Machine specific energy [J.kg™] Qep Discharge factor [-]

Fr Froude number [-] R Electrical resistance [s.m?]

g Gravitational acceleration [m.s?] Rue Thermodynamic resistance [s.m™]
h Piezometric head [m] t Time [s]

H Hydraulic head [m] Ve Cavity volume [m?]

I Length of cone and elbow parts [m] ¥ Mass flow gain factor [s]
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